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Abstract We introduce new classes of modulation spaces over phase space.
By means of the Kohn-Nirenberg correspondence, these spaces induce norms
on pseudo-differential operators that bound their operator norms on LP—
spaces, Sobolev spaces, and modulation spaces.

1 Introduction

Pseudo-differential operators are discussed in various areas of mathematics
and mathematical physics, for example, in partial differential equations,
time-frequency analysis, and quantum mechanics [19, 18, 21, 32, 34]. They
are defined as follows.

Let o be a tempered distribution on phase space R??, that is, o € S'(R??)
where S(R?*?) denotes the space of Schwartz class functions. The pseudo-
differential operator T, corresponding to the symbol o is given by

~

T, f(z) = / o(2,€) () ¢ de, e SRY).
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Here, fdenotes the Fourier transform of f, namely,

~

(€)= Fr(e) = / F(w) e 2 gy,

One of the central goals in the study of pseudo-differential operators is to
obtain necessary and sufficient conditions for pseudo-differential operators
to extend boundedly to function spaces such as LP(R?) [3, 5, 20, 33]. A
classical result in this direction is the following.

For m € R, we let S™ consist of all functions ¢ in C*°(R¢xR?) such that
for any multi-index (o, 3), there is C, 3 > 0 with

|(02080) (2,€)] < Cup(1+ €)1l

For o € SY(RY), it is known that T, acts boundedly on LP(R?), p € (1, 0).
A consequence of this result is that if o € S™, then T, is a bounded operator
mapping HY, (R?) to HP(R?), where H?(R?) is the Sobolev Spaces of order
s € R; for more details see Wong’s book [32]. Similarly, in [33], Wong
obtains weighted LP—boundedness results for pseudo-differential operators
with symbols in S™.

Smoothness and boundedness of symbols though are far from being nec-
essary (nor sufficient) for the LP-boundedness of pseudo-differential opera-
tors. In fact, every symbol o € L?(R?*?) defines a so-called Hilbert—Schmidt
operator and Hilbert-Schmidt operators are bounded, in fact, compact oper-
ators on L2(R?). Non-smooth and unbounded symbols have been considered
systematically in the framework of modulation spaces, an approach that we
continue in this paper.

Modulation spaces were first introduced by Feichtinger in [9] and they
have been further developed by him and Gréchenig in [8, 9, 12, 10, 11, 13].
In the following, set ¢(z) = e ™I#I°/2 and let the dual pair bracket (-,-) be
linear in the first argument and antilinear in the second argument.

Definition 1.1 (Modulation spaces over Euclidean space). Let M, denote
modulation by v € RY, namely, M, f(x) = 2™ f(x), and let T; be transla-
tion by t € R?, that is, T, f(z) = g(z — t).

The short-time Fourier transform Vyf of f € S'(R?) with respect to the
Gaussian window ¢ is given by

Vof(t,v) = F(f T) (v) = (f, M, T1¢) = /f(il?) e G(aw —t) dx .
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The modulation space MPI(RY), 1 < p,q < oo, is a Banach space consisting
of those f € 8'(R?) with

e = Waflloe = ([ ([ 1Vortmpar) " )" < o,

with usual adjustment of the mized norm space if p = oo and/or ¢ = 0o

Roughly speaking, distributions in MP?4(R%) ‘decay’ at infinity like a
function in LP(R?) and have the same local regularity as a function whose
Fourier transform is in L4(R?).

The boundedness of pseudo-differential operators on modulation spaces
are studied for various classes of symbols, for example, in [5, 7, 15, 16, 27,
28, 30, 31]. In [27, 28] for example, Toft discusses boundedness of pseudo-
differential operators on weighted modulation spaces. In [5], Nicola and
Cordero describe a class of pseudo-differential operators with symbols ¢ in
modulation spaces for which T}, is bounded on LP(R?).

The modulation space membership criteria on Kohn—Nirenberg symbols
used in [5, 7, 27, 28] do not allow to require different decay in = and & of
o(x,€). In the recently developed sampling theory for operators, though, a
separate treatment of the decay of z and & was beneficial [17, 23, 24]. In
fact, this allows to realize canonical symbol norms of convolution and multi-
plication operators as modulation space norms on Kohn-Nirenberg symbols.
Motivated by this work, we give the following definition.

Definition 1.2 (Modulation spaces over phase space). The symplectic Fourier
transform of F' € S(R??) is given by
]T"F(t, V) = / 6_2”[(3”’5)’(15”’)]1”’(177 ) dx dg, (1.1)
R2d

where [(x,§), (t,v)] is the symplectic form of (x,§) and (t,v) defined by
[(z,€),(t,v)] = x-v—&-t. Analogously, symplectic modulation ]\7@”) is
M) F(x,€) = e2ml@O@II Pz, €).

The symplectic short-time Fourier transform ‘7¢f of F € 8'(RY) is given
by

VoF(2,1,6,v) = F(FTag0)t.v) = (F, MuyTeoo) (1.2)
= [[ e Or GG - 0.6 - ) dr
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The modulation space over phase space MPrp2aie (R*), 1 < p1,p2, @1, @2, <
o0, is the Banach space consisting of those F € S'(R*?) with

1| stmpsarar = IV F || orpsnias
— (/ (/ </ </|(‘7wF)(l',t’€,y)|pl dx>P2/p1 dt)tn/pz d§>QQ/q1 dl/)l/ql
- (1.3)

with usual adjustments if py = 00, ps = 00, g1 = 00, and/or g = 0.

Note that the order of the list of variables in (1.2) is crucial as it indicates
the order of integration in (1.3). We choose to list first the time variable x
followed by the time-shift variable t. The time variables are followed by the
frequency variable ¢ and the frequency-shift variable v. Alternative orders
of integration were considered, for example, in [2, 5, 27, 28|.

Below, £(X,Y') denotes the space of all bounded linear operators map-
ping the Banach space X to the Banach space Y; £(X,Y) is equipped with
the operator norm. Below, the conjugate exponent of p € [1, 00] is denoted
by p’. Our main result follows.

Theorem 1.3. Let p1,ps, p3, P4, q1,q2, 3,91 € [1,00]. Then there exists
C > 0 such that

"TJ"[:(Mplql’MPQQQ) <C ”JHJ\7P3P443<147 o€ Mp3p4q3q4(R2d), (1.4)

if and only iof

1 1 1 1 .

p_,1+p_2 S p_3+p_47 Pa Smln{p/DPQ}v (15)
1 1 1 1 )

q_/1 + % < % + a, g4 < min{qy, g2} (1.6)

Theorem 4.1 below is a variant of Theorem 1.3 that involves symbols in
weighted modulation spaces.

Observe that (1.5) depends only on the parameters p;, while (1.6) de-
pends analogously only on the parameters ¢;. That is, the conditions on
decay in time and on decay in frequency, or, equivalently, on smoothness in
frequency and on smoothness in time, on the Kohn-Nirenberg symbol are
linked to the respective conditions on domain and range of the operator,
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Figure 1: For fixed pi,ps and ¢, ¢, we mark the regions of (pis, p%) and

(qig, q%;) for which every o € MPsPie391(R24) induces a bounded operator

T, : MP191(R?) — MP2e2(R?). In fact, for (=, &) and (£, 1) in the hashed
p3° P4 43’ 44

region, there exists C' > 0 with [|T5||z(ura preey < C|0|| 57pspsa500- The

conditions on the time decay parameters pi, ps, p3, ps are independent of

the conditions on the frequency decay parameters qi, ¢2, g3, q4.



but time and frequency remain independent of one another. See Figure 1
for an illustration of conditions (1.5) and (1.6).

An LP-boundedness result for the introduced classes of pseudo-differential
operators follows.

Corollary 1.4. Let p,ps, ps,q,qs,qs € [1,00]. Assume

_,—|——§——|——, p4§m1n{p7Q}7
p q P3 P4

and
)
sty St wsmin{pd, i pagell2]
L+ <lid g <min{y,¢}, if 2<min{pq},
| 7ty Sty esmin{p.gl, if 1<¢<2<p

Then T, : LP(R?) — LY(R?) is bounded and there exists a constant C' > 0
such that

HTUHE(LP,L‘I) <C HUH]\A/fP3P4Q3Q47 o € MPeprash (RQd)'

Corollary 1.4 encompasses, for example, the space of Hilbert—Schmidt
operators on L*(R?), namely

HS(L*(RY) = {T, : 0 € M***2(R*) = [*(R*)} c L(L*(RY), L*(R?)).

Moreover, Corollary 1.4 reconfirms also L*-boundedness of Sjostrand class
operators [25, 26],

Sj C {T, : o0 € MLoL(R)} ¢ £<L2(Rd), L2(Rd)>.

Using the weighted version of Theorem 1.3, namely, Theorem 4.1, we get
the following boundedness result for Sobolev spaces.

Corollary 1.5. Let py,pa, p3,ps € [1,00] and s € R. Let w be a moderate
weight function on R* satisfying

w(w,t,1,6) < (14 [EP) (1 + v+ €772 atv,6 R
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Assume that
1 1 1 1 o
—+ =< —+—, ps<min{p}, pa}.
1 P2 P3 D4

Then

HTo'Hﬁ(Hgl,HEQ) S C HUHM5J3,p4,1,1, o & M£3vp471,1(R2d)’

for some constant C' > 0.

The paper is structured as follows. Section 2 discusses mixed norm
spaces and modulation spaces over Euclidean and over phase space in some
detail. In Section 3, our boundedness results for pseudo-differential opera-
tors with symbols in modulation spaces over phase space are compared to
results in the literature. Finally, in Section 4 we prove our main results,
Theorem 1.3, Corollary 1.4, and Theorem 4.1.

2 Background on modulation spaces

In the following, z, &, t, v denote d-dimensional Euclidean variables. If not
indicated differently, integration is with respect to the Lebesgue measure
on R%.

Let r = (ry,79,...,7,) where 1 < r; < 00,4 =1,2,...,n. The mixed
norm space L"(R™) is the set of all measurable functions f on R"™ for which

1L =
T1/T2 Tn/Tn—1 1/rn
1
(4...(4<A]F(x1,...,xn) dac1> dxg...) da:n)

is finite [1]. L"(R™) is a Banach space with norm || - ||z-. Similarly, we
define L"(R™) where r; = oo for some indices i.

ftn=2d,ri=ro=---=rg=pand rg; = -+ = reg = ¢, then we
denote L"(R??) by LP1(R?*?). Similarly, if n =4d and ry =1y = -+ =1y =
P1, Tay1 =" =T2qg = P2, Toap1 =+ = r3q = p3 and rsgp1 = -+ = rag = pa,

we write LP1P2psps(R1) = [7(R49).

Let w be a nonnegative measurable function on R". We define L] (R™)
to be the space all f on R” for which wf is in L"(R™). L] (R") is a Banach
space with norm given by

[ fllzz, = llw ]l



In time-frequency analysis, it is advantageous to consider moderate
weight functions w. To define these, let Rj be the set of all nonnegative
points in R. Any locally integrable function v : R — R with

v(z +y) < v(z)u(y)

is called submultiplicative. Moreover, if w : R* — R{ is locally integrable
with
w(z+y) < Cwlz)u(y),

C > 0, and v submultiplicative, then w is called moderate.
The short-time Fourier transform of a tempered distribution f € S'(R")
with respect to the window ¢ € S(R™) is given by

where M, and T, denote modulation and translation as defined above.
With ¢(z) = e~ml=I*/2 ) moderate on R4, and p,q € [1, 00|, the mod-
ulation space MP4(R?) is the set of all tempered distributions f € S'(R%)
such that
Vf € LII(R™)

with respective Banach space norm. Clearly, if w = 1, then MPI(R?) =
MPi(R%). Moreover, for any s € R let

w(o, )= (14+167) "

and denote ME2?(R?) by MP?(R%).

Note that replacing the Gaussian function ¢ in the definition of modu-
lation spaces by any other 1 € S(R?) \ {0} defines the same space and an
equivalent norm, a fact that will be used extensively below.

Recall that the Sobolev space HP(R?) consist of all tempered distribu-
tions u € 8'(R?) for which ||u||gr = || T,ull» < oo [27]. For any s € R and
1<q¢<p<r<q¢ <oowe have

MP(R?) C H{(RY), (2.1)
and for some C > 0,

£l < Cllfllagzs,  f € MPI(RY).
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Similarly, 1 < ¢ <r < p < g < oo implies
HI(RY) € MP9(RY), (2:2)
and for some constant C' > 0,

[f[aze < Clf]

Let FLP(R?) be the space of all tempered distributions f in §'(R?) for which
there exists a function h € LP(R?) such that h = f. Then FLP(R?) is a
Banach space equipped with the norm

[ ll7ze = |7l Lo

The following lemma shows that modulation space norms of compactly sup-
ported or bandlimited functions can be estimated using FLP and LP norms
respectively [22, 6, 8, 29].

Proposition 2.1. For K C R? compact and p,q € [1,00], there are con-
stants A, B,C, D > 0 with

(i) Allflzea <\ fllae < Bl fllrea, | € S'(RY) with supp f C K;
(i) Clflle < | fllaree < D fllzo,  f € S'(RY) with supp f C K.

In the following, we shall denote norm equivalences as in statement (7)
above by

£l re < | fllazss,  f € S'(RY), supp f C K.

Similarly, statement (i7) becomes

£l = | fllame, [ € S'(RY), supp f C K.

The symplectic Fourier transform of F' € S(R??) given in (1.1) is a 2d-
dimensional Fourier transform followed by a rotation of phase space by 7.
This implies that the symplectic Fourier transform shares most properties
with the Fourier transform, for example, Proposition 2.1 remains true when
replacing the Fourier transform by the symplectic Fourier transform.

Let p1,p2,q1,q2 € [1,00] and let w be a v-moderate weight function on
R*. The weighted modulation space over phase space ij}mqm (R%) is the
set of all tempered distributions ' € &'(R2) for which V, F € Lpp2aie (R4d),
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Recapitulate that for I € S'(R??), we have X@F(m, t,&,v) =V, F(z,& v, —

HFHMmmqm = H‘~/¢F’|Lp1pzq1q2
~ p2/p1 q1/p2 q2/q1 1/q1
= w ) ) s
U (frencor sy oy a)

and

||FHMP1q1<I2p2 = ‘|V¢F||Lp1q1q2p2
= P a/p1 a@2/qn pi/q 1/p1
’V¢F(I7§’V7t)’ dx df dv dt 7

with usual adjustments if py = oo, po = 00, ¢1 = 00, and/or g2 = oc.
This shows that the definition of MP1:P2:41:41(R??) is based on changing the
order of integration and on relabeling the integration exponents accord-

ingly. Mixed L? spaces are sensitive towards the order of integration, and,
hence Mplpquth RQd 7¢_ M[P1P29192 (RQd) and MP1p2a192 RQd ,:(Z Mmpquth(R?d)
in general. But for 1 <p < q < oo, Minkowski’s 1nequahty

([([irewrar)” ) < ([( [irepra)” w)’

(with adjustments for p = oo and/or ¢ = 0o holds and implies the following.

Proposition 2.2. Let p1,p2,q1,q2 € [1,00] and w be a moderate weight
function on R4,

(a) If p» < min{qy, g2}, then MPraazp2(R2d) C \[pip2maz(R2) gnd

—~ < P1491492P2 .
o/l zzzirza102 < [lo || ppgparea:

(b) If max{qi, 2} < po, then Mf]}mqm (R2?) C MPprareep2(R) gnd

ol < ol .

Note that results similar to ours could also be achieved using symbols in
Mpspatsa4(R24) hut the so obtained results would be weaker and they would
necessitate the additional condition py < min{qs, qs4} .

The modulation space over phase spa(:e]\f\ffjlmqlq2 (R%4) shares most of the
properties of ordinary modulation spaces. For example, if p; < py, ps < po,
q1 < q1 and g2 < ga, then

VPP (R*) C NP1P2012 (R4, (2.3)

10
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and .
HU”Mgl,sz,ql,az < HO—HMS}PQ(HQQ, o€ M517p2,q2,q2(R2d)'

Furthermore, let p1,p2,q1,q2 € [1,00]. Then the dual of Mglmqm (R%) is

Miﬁp 201% (R%?) where p/, ph, q;, ¢, are conjugate exponenets of py, pa, q1, @2
respectively.

The proofs of these results for modulation spaces over phase space are
similar to the ones for the ordinary modulation spaces [14], and are omitted.

3 Comparison of Theorem 1.3 to results in
the literature

Cordero and Nicola as well as Toft proved the following theorem on MP?4—
boundedness for the class of pseudo-differential operators with symbols in
Mersis2s2(R2d) - see Theorem 5.2 in [5] and Theorem 4.3 in [27].

Theorem 3.1. Let p,q, s1, 52 € [1,00]. Then for some C > 0,
1Tl sty < C lollagmaca, o € MOS0 (@2, (31)

of and only iof
sz < min{p,p’,q, ¢, s1}.

Roughly speaking, to apply Theorem 3.1, we need to ensure that o(z, &)
has L* ‘decay’ in x and ¢ and that Fo (v, —t) = F,o(t,v) has Lmin{pr'a.ds'}
‘decay’ in t and v. To apply Theorem 1.3, it suffices to ensure that o(x, &)
has L* ‘decay’ in x and L** ‘decay’¢, and that F,o(t,v) has L™n{pr'sil
‘decay’ in t and L™™a4'2} ‘decay’ in v.

Using embeddings such as (2.3), we observe that indeed Theorem 3.1
provides boundedness of T, if and only if

o (o)
! ol — / /
oe U e U arees (3.2)
s=max{p,p’,q,q'} s=max{p,p’,q,q'}

while Theorem 1.3 provides boundedness of T}, if and only if

o

o0
— / /
o U U M 51551552585

si=max{p,p'} sy=max{q,q'}
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To obtain the set inclusion in (3.2), we used Theorem 2.2 and the fact that
s > max{p,p'} implies s > 2 > ¢'.
As L? = M?2, Theorem 3.1 implies the following L?>-boundedness result.

Corollary 3.2. Let r,s € [1,00]. Then for some C > 0,
||T0'||L‘,(L2,L2) S C ||U||M’I‘,’I‘,S,S’ g e MT’T7S7S(R2(1),

iof and only of
s <min{2,7'}.

Corollary 3.2 has been obtained earlier in 2003 by Grochenig and Heil
[15].  As comparison, we formulate the respective consequence of Theo-
rem 1.3.

Corollary 3.3. Forr,s € [2,00]|, there ezists a constant C > 0 such that
||TO'||L‘,(L2,L2) S C HO'”MT’T/’S’S/, o & Mr,r/7s,s/(R2d).

As example, note that Theorem 3.1 does not imply that T, : L*(R?) —
L*(RY) is bounded for 0 € M°*2*21(R?*?). But as M°*?21(R??) C MOOJQ’Q(RM),
Theorem 1.3 indeed implies boundedness of T}, in this case.

For compositions of product and convolution operators, Theorem 1.3
implies the following result.

Corollary 3.4. For p,q € [2,00|, let hy € M9 (R?) and hy € MP4(R?).
Define

Tf:hl(hQ*f)v f€L2(Rd)7
and

Hf = (hy- f)*hy, [ L*R).
Then T and H are bounded operators on L? and moreover, there exist pos-
itive constants C' and C' such that

1T 2z2.c2) < CllPallagmar [1P2llagora;

and
[ H |l 2z2.22) < C Pl agoa 12l gt

The proof of Corollary 3.4 follows immediately from Corollary 3.3, Lemma 4.9
and Lemma 4.10. Note that not separately, the convolution and multipli-
cation operators above may not be bounded operators.
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4 Proof of Theorem 1.3, Corollary 1.4, and
Theorem 4.1

4.1 Proof of Theorem 4.1 and thereby of (1.5) and
(1.6) implies (1.4) in Theorem 1.3

In this section we prove the weighted version of one implication of Theo-
rem 1.3, that is the following theorem.

Theorem 4.1. Let wy,ws be moderate weight functions on R* and w be a
moderate weight function on R* that satisfies

w(z, t,v, &) <w (z —t, ws(z, v +§). (4.1)

Let p1,p2, p3, Pa, Q15 G2, G3, @1 € [1,00] be such that

1 1 1 1 . ,
17_/1 + p_2 S p_‘i + p_4’ D4 S mln{plap2}>

1 1 1 1 :
ateSe T @smin{g el

Then there exists a constant C' > 0 such that
ITe lequazyn agey < C o sgunases, o € MIzPos (RRA)

To prove Theorem 4.1 we need some preparation. For functions f and
g in S(RY), the Rihaczek transform R(f,g) of f and g is defined by

R(f,9)(x,&) = ¥ f(&)g(2).

For o € S(R??), pseudo-differential operators are related to Rihaczek trans-
forms by

(Tof.9) = (0, R(f.9))
for all functions f and g in S(RY). We define A, T4 by

(TaAF)(z,t) = F(A(x,t)) = F(x —t,x).

Then B
R(f,9)(x,8) = Fie(Ta(fR9)(x,-)),

where

Frocf(+a) = / eI L (4 1) dt,
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Lemma 4.2. Let ¢ be a real valued Schwartz function on R:. Then for all
f and g in S(R?)

VTA(¢®¢)TA<7®9) (.CC,t, v, 5) = Vs&f<x - taf) Vsog(wa v+ 5)

Proof We compute

VTA(cp®g0)TA (?®g) (I’, t,v, 5)
= [[ e Fog) @ iTaene) @ - 0. - 1) di di

= / ( / HEF(F ~ Dp(F —w — T+ 1)l )e g (7)p(F — v) di
= // F(s)g(@)e rve=2mit@=9) (s — (z — t))p(T — x) dT ds

= ([ ermerpets =@ - as) ([ ey @@ - a) )
= Vof(z —1,6) Vog(z, v +¢).

O

Lemma 4.3. Let p € S(R?) be a nonzero even real valued Schwartz function
on RL. Then for all f and g in S(R?)

VWR(fy g) (:L‘7 57 v, t) = e—Qﬂ'ift VTA(‘P@Q&)TA(?@g) (l’, _t7 v, g) :

Proof For all f and g in S(R?)

VWR(fa g)(x7 57 v, t)
- / / e 2O R(f o) (T, ) R, 0)(T — 2,€ — £) dF d
- / / 2O (F(7 = ) g(0)Fs 7 (97 — 7 — ) (F — ) dF dE

_ / / IO (T — ) g(B)Fsp e(p(T — 3 — ))p(F — ) dF E.
(4.2)
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On the other hand, Parseval’s identity gives

VTA(%@AO)TA (7@9) ($’ t,v, 5)
= [[ e O Fag) @D T pe )@ - T 1) i

= / (/6_2”{{57(% — %V)gp(f —r—t+ t) d%v) e_QWiEVg(E)gp(f —x)dx

=[] AT - ) F AT b ) g )l - ) dE

But,
f{jg(e_QWitgw(f —r+t— )) = e_%it(g_g)fv_f_g(go(f -z — ))7
therefore,

VTA(¢®@)TA(7®Q)(I',t, v, 5) — e 2mitg // eQﬂ(tE—vi)j_—{_)g(?(%_‘)) )
Free(p(@ =2 =) g(@)p(T — x) dT dE.

Combining this identity with (4.2) completes the proof. O

Proposition 4.4. Let wyi,wy, w be moderate functions that satisfy
w( t,v,€) < wi(w — £, Ews (v +&).
Let ¢ be a nonzero real valued Schwartz function on R® and define
Vrpen Ta(f®9) (2., & v) = Vi, penTa(fRg) (2,1, v,€) (4.3)

for all f,g € S(RY) and x,t,&,v € R If p1, p2, p3, D1, @15 G2, G3, qa € [1, 0]
satisfy

pil + pig = plg, + pi47 b3 S min{p17p27p4}7 (44)

1,1 _ 1,1 ,
q1 + @2 g3 + qa’ a3 S mm{QbQQafh}a

then _
IVraeee) Ta(f@g)|| Lzsrassas < || fll gz gl amz-oe
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Proof By Lemma 4.2, we have

VTA(QD@@)TA(7®Q) (l’,t, 57 V) = vApf(x - t7£) chg(x7 v+ é)
So, by (4.1), for ¢, £, v € RY,

(-t & ) Vs oo Ta(FR9) (- £, &, V)| os
1/ps3
< ( / iz = 6,6 (Vaf ) (& = £, )P wn(e, v + €) (Vog ) (w0 + O da)

B <|U)2(-, v+ 5)‘/@9(7 v +€)|p5 * |w1(7§>v¢f(7§)|pd (t))l/p3,

Then, (4.4) implies
1 1 1
— = =14,
. S ay
with 71 = po/p3s > 1, s = p1/ps > 1 and a; = py/ps > 1, hence, we can

apply Young’s inequality and obtain
”UJ(, ) 5) V)VTA(Q(J@@)TA(?@LQ)('? ) 5, V) HLP371’4
= lwal, v + Vg (-, v + O 5 wi (-, Vi f (-, |25
< Nwa (v + EVpg(ov + PN E wi (-, )V f (-, O

To estimate (4.5) further, we note that integrating with respect to £ can be
again considered a convolution. In fact (4.4) leads to
1 1 1

—+ —=14—,
T2 S2 a2

s (4.5)

where 19 = ¢2/q3, S2 = ¢1/q3 and ay = ¢4/q3. Young’s inequality then
implies

1w Vr, (p90) Ta(fg) || Lrsrassas
, (r2q3)/(p3r1) 1/(r2q3)
< (/ (/]wg(x,y)vvg(a:,yﬂm ! d:z:) dy) )

(s293)/(p3s1) (1/s243)
([ ([ maVespr a) ™" a) "

= 1 s gz
which completes the proof. O

Now, we are ready to give sufficient conditions on the boundedness of
pseudo-differential operators with symbols in M/P3P4:d3-94 (R2),
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Lemma 4.5. Let wy,wy, w be moderate weight functions that satisfy (4.1).
Let p1,p2, p3, Pa, @15 G2, G3, @1 € [1,00] be such that

1 1
8 € [+~ ominlgh (4.6)
x [ +a o, m{—wq—zqﬂ
Then there exists a constant C' > 0 such that
1 To | coazpon aazgeey < Cllolgmsrssas, o € Mppstats (R2), (4.7)

Proof Let us first assume py, ps, ps, P4, ¢1, @2, q3, g1 € [1,00] satisfy (4.6)
and in addition

1 1 1 1 1 1 1 1

/

b1 D2 P3s P4 91 4 q3 44

Let f,g € S(R?). Since the dual of Mgﬁfp‘l%q‘*(RQd) is ]T/Ilgé’pi*’qé’qa(RQd), it
follows that

((To1,9)1 = (o, R(f, 9))]

< ||0-||M5,3p4q3q4 ”R(f? g) ||M5/37p21711/37[12 .
To obtain (4.7), it is enough to show that there exists C' > 0 such that

HR(fv g)”ﬂigmqué,qﬁl <C Hf”Mleql ||g||M5)'227q’2 .

Let ¢ be a nonzero real valued even function in S(R?). Then by Lemma 4.3,

R(cpcp (f g) (x>t7£>V) = VWR(fvg) (x7€7yv_t)‘
= VTA(‘P@’GD ( )(l’,t, v, f)‘

= VTA (e®¢) TA( ) <x’ t, f’ V)’

where Vrp, (,5,) is defined in (4.3). Therefore, by Proposition 4.4, we have

||R(f g)” p394q3q4 = ||VTA(¢®¢)TA(7®9)||Lig,pg,qg,qg
[WAIPVEREER (] s

IN
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To obtain (4.7) in the general case, that is p1, pa, p3, P4, G1, G2, 43, G4 € [1, 0]
satisfy (4.6) but not necessarily (4.8), set

1 1 1 1 1 1 1 1
+——— and —=—+———

272_]93 2! p’1 q2 q3 4 q/1'

Then it is easy to see that pa < pa, g2 < g2 and pi1, P2, p3,pa, @1, 42, 93,94 €
[1, 00] satisfy (4.6). Hence

T llagzge < CITofllygain < 11 llasgem Il ggmase

for some C' > 0. O
Proof of Theorem 4.1: Let f € S(R?). Set
1 1 1 1 1 1 1 1
7:—/+——— and 7:—/+———
b3 p1 P2 P4 q3 q1 q2 g4

Then it is easy to see that

P3>Dp3, 43> q3
Furthermore, {p1, p2, P3, P4, 1, G2, G3, 4 } satisfies (4.6), therefore there exist
C1,Cy > 0 such that
”Taf”Mfg” < C(1||JF||M511‘71 ||(7H”M§37P47537q4
<

C2Hf“M511q1 HUHM’EL’,M%M-

4.2 Proof of Corollary 1.4

Let 1 < p,q < 2. By Theorem 1.3, T, : MP?" — M9 is bounded. Using the
bounded embeddings M? C LP C MPP for all 1 < p < 2 (for more details
see [8]), it follows that T, : LP(RY) — L9(R?) is bounded. Similarly, using
MP® C [P C MP for all ¢ > 2, we can prove T, : LP(R%) — LI(RY) is
bounded for p, ps, p4, q, g3, g4 satistying (b) or (c) or (d) in Corollary 1.4. [J

4.3 Proof of (1.4) implies (1.5), (1.6) in Theorem 1.3

To show necessity of (1.5) and (1.6) in Theorem 1.3, we shall use two mixed
LP norms on phase space, namely,

1F = ([ ([1F@epar)” )",
18



and

1Pl = ([ ([ 1F@0a)" ar) ",

for p,q € [1,00). For p = 0o and/or ¢ = oo we make the usual adjustment.
Similarly, we can define MP1(R?) to be the space of all functions f €
S'(R?) for which
”.f”]\N/[Pq = ||V90f||[~,pq < 00,
where p € S(R?) \ {0}. Note that it can be easily checked that

1 | 5z00 = WF 1 agar-

Below, we use an idea from the proof of Proposition 2.1 given in [22] to
prove the following lemma.

Lemma 4.6. Let K C R*? be compact. Then
||0H]\7P3p4qsq4 = HOH}‘EMM» S S/(RQd)a suppo C K.

Proof Choose r > 0 with suppo C B?¢(0), where

BY(0) = {z e R*: [lz| < r}
is the Euclidean unit ball in R?¢ with center 0, radius r and Lebesgue
measure |B24(0)]. Let ¢ € S(R??) with supp ¢» C B24(0). Then it is easy
to see that B _

|V¢U|($,t,£, V) = |U * Ml/,fthx?é-)a

where

{/;(*/I;a 5) = w(—% _é)

Therefore, for fixed t, v we have

supp ( “Z&G’ (-t v)) C supp (o) + supp (M, )
BX(0) + B(0) € B3}(0). (4.9)

N

Let £ € BS.(0). Then by (4.9),

Voot ) e = |
Bd

2r

‘Vwa‘p?’(w,t,ﬁ,u) dx
0)

< 1BLO] [Voo ¢ .60)]| o = BEO)] o My, )
< BLO) o Myt o < (B O] IF @ Toi) | o
< 1B O [T -lll = [BS(0)] (3] *0]) (v 1) (4.10)
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On the other hand, if £ € R?\ B4 (0), then by (4.9),
||‘7¢0('7t7§7 V)HLPS = 0. (411)

Therefore, (4.10) and (4.11) imply

||U||MP3P443‘5’4 - vao-‘ LP3P44344

(VAN
/—\
\_/
—
~
3
w
VRS
S
IsH
—~
2
VRS
VRS
—
2
=
—~
SN—
S~—
3
fing
QL
N~
<
w
~
3
~
N~
<
=
~
Q
w
AS
N——
—
~
<
~

2r
~ / 1/
< rB;lT(o»“/Ps”Wqﬂ( [ ([ idiv.op )™ a)™

< [BL(0)[/ 0 || i3 5 3]

< B OYP VNG o [ ] 71 < CllGH z0ssa-

1,94-P4

Now, let ¢ € C*(R?*?) be compactly supported with ¢» = 1 on B2%(0).
Let X p2a(g) be the characteristic function on B24(0). Then using supp o C
B24(0), it follows that for all x,t,&,v € RY,

Xzi0) (¥, €) Vyo (2,8, v)

= oo @ [ @O Dy —a g

= Bm(xQ/ (7, &) e 2@ =€) g3 ¢
B2d(0)
= Xp2i(0 y(2,8)Fo(v,—t).
Hence,

||U||Mpsp4q3¢m = HVwUHLP3P4%Q4 = ||XB§$1(0) Vwo-HLpsmqm

T rtemacarag sy

= |xmzellzrsss loll pzon

which completes the proof. U

Lemma 4.7. Let A > 0 and o5 (x) = e=™ . Then for A > 1,

_ ’
ol = lloallgzme = A9,
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and

HSO)\—lHMPq = HSOA_IHMPQ - )\d/p.

The proof of Lemma 4.7 is an immediate corollary of Lemma 3.2 in [4]
and is omitted here.

Lemma 4.8. Let K C R? be compact. For h € C®°(RY) and X > 1 set
ha(x) = h(x)e ™ Then for all p,q € [1, 0],

|hxl| aree =< Hﬁ,\HLq = \Ya=d2 e C(RY), supph C K.

Lemma 4.8 is well known and its proof can be found in, for example, [5].

Lemma 4.9. Let hy, hy € S(R?) and
n(t,v) = e 7 hy(t)hi(v), t,veRL

If o = .7-"7]. Then we have

o(z,&) = (Mchg * hy)(x) (4.12)
and
T,f = (hif) *hy, feSRY. (4.13)
Moreover,
oWl 3zpsraasas = llhallarrsas || Aol arpacas

Proof Clearly, (4.12) and (4.13) hold. Now, let ¢ be any nonzero real
valued Schwartz function on R?. Let

U(t,v) = o(t)p(v)e ™.

and define B _
Then



Now since F is a unitary operator, it follows that
‘ <‘71Z0-> (IL‘, t7 gu V)‘ = ‘ (777 T—t,uM—ﬁ,aﬂp) ‘

_ ‘//n(a ) p2mik(+1) e—ZWiz(v—ﬁ)E(t +£; — V) dtdv

= ‘//ﬁl(ﬁ)hg(f)gp(ﬁ— y)gp(f+ t) e 2miw(e=t) 2milv=8) g g7

= |(Vohi) (v, — t)] |(Vioha)(—t,v — €)).

Hence,
oWl 37vspaasas = 2 llarrs.as || Azl agpacs

Similarly, we can prove the following.
Lemma 4.10. Let Let hy, hy € S(R?) and 0 = hy ® ho. Then
T.f =hi-(hax f), fe€SRY
and R R
1P1 @ hallzpspsssas = I1hallazrsian [1h2ll 7705 04

Proof of (1.4) implies (1.5) and (1.6) in Theorem 1.3: Let h €
C>=(R?) be chosen with compact support and h(0) = 1 and h(z) > 0 for all
x € R% Then for any A\ > 1, we define hy and oy, respectively by

ha(z) = h(z)e ™A,

and
ox(z,§) = h@hy(x,§) = h(z)h\(£).
Let fy = F~'hy. Then f, € S(RY) and

T, fy(x) = / 2 ()| ()2 d

So, T, f» is independent of A. Since o has compact support, by Lemma 4.6
and Lemma 4.8

”JA"MPBP4Q3Q4 = ”JTJ/\HEM,M

= ||Pll pas ey |2 l| £os ey
= \(d/p)=(d/2) (4.14)
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Moreover, by Lemma 2.1 and Lemma 4.8, since F f) has compact support,
1 F3llagrsor gy = [ fallon gy = ALPO=(02), (4.15)
Hence by (1.4), (4.14) and (4.15), there exists C' > 0 such that for all A > 1

||T0f)\||Mp2q2(Rd) S C)\(d/pél)""(d/pl)—d.

But || T5 ful| pr2a2 (gay is nonzero and independent of A, therefore p% + pil —d >
0, and py < pj.

To prove ¢ < ¢, we let hy = f = hy and hy € S(R?) be such that Ty is
compactly supported, independent of A and

[(h1f) * h2HLP2(Rd) #0.

Let 0 = .7::77 where

~

n(t,v) = hy(v)ha(t)e ™.
Then by Lemma 4.9 and (1.4)

[(h1f) * hallpeeray < C Rl pa way 1 h2l| oa vy || £ 1| Lo ey,
for some constant C' > 0. So, by Lemma 4.8 for all A > 1
|(hyf) * h2||LP2(Rd) < O)\(d/q4)—(d/2))\(d/ql)—(d/2)7

but [[(h1f) * hal|Lr2(ray is nonzero and independent of A, therefore (d/qs) +
(d/q1) —d > 0 and, hence, ¢4 < qj.

Now, let hy = f = ) and hy = -1, where ¢, and @,-1 are defined in
Lemma 4.7. If we let ¢ = hy ® hy. Then by Lemma 4.7 and Lemma 4.10,

for A > 1 we have
- \d/q3—d/d,
||U||MP3P4‘13q4(R2d) = >\ /Q?’ /q4

and || fllameia ey < A4, On the other hand T,f is also a Gaussian
function and it can be easily checked that

HTUfHMPMz(Rd) = Afd/qé'
Therefore by (1.4)

\Y/a3—d/dy=d/qi+d/a; > |
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for all A > 1. Hence, we get

1 1 1 1
—,+—§—+—.
q1 q2 q3 44

Similarly, by letting hy = f = -1 and hy = @), we get
1 1 1 1

—,—i——S——l——.
Y4 D2 P3s D4

Again assume o has the form given in Lemma 4.9. Let h(z) = f(z) =
e~™7%/2 and hy = pa-1. Then T, is also a Gaussian function, moreover by
Lemma 4.7 and (1.4) for all A > 1

\4/Pa—d/p2 > C,

for some C' > 0. Hence ps < ps.
To prove g4 < g, we let

o(w,8) = ™ hy (2)ha(8),

where h; and hy are compactly supported Schwartz functions on R%. Then
o is compactly supported and therefore by Lemma 4.6,

|’0||MP3P443q4(R2d) = ||-7:0'||Lp4,q4(R2d).

On the other hand, by an easy calculation, we have
|“;EO-|(V7 t) = |Vh1/h\d2‘(t7 V) = ‘VhQQh_1|(t, V)'

Therefore, R
HUHMPspMsM(RM) < Ch2 ||h1||Lq4(Rd)> (416)

and R
||0-||]\N/[P3P4q3¢14(R2d) < Chl ||h2||Lp4(]Rd)7
where C}, and C},, are positive constants depending on h; and hy respec-

tively. Let hy = hy and hy be any compactly supported function and f be a
Schwartz function on R? and both hy and f be independent of )\ such that

~

(ha, f) # 0. Then

—~

1To fllaraez ety = hallagraea may | (ha, )

= |(hay DIl poray = AW (4 17)
(R4)
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and by (4.16)

Ho—l‘]\?p3p4f13q4(R2d) S Ch2 )\(d/qzi)—(d/Q).

Hence, (4.17) and (1.4) imply

A\ (d/a1)—(d/q2) > C,

where C' > 0 is independent of A > 1. Hence (d/qs) — (d/q2) > 0 which
implies that g4 < gs. Il
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