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Abstract We introduce new classes of modulation spaces over phase space.
By means of the Kohn-Nirenberg correspondence, these spaces induce norms
on pseudo-di↵erential operators that bound their operator norms on Lp–
spaces, Sobolev spaces, and modulation spaces.

1 Introduction

Pseudo-di↵erential operators are discussed in various areas of mathematics
and mathematical physics, for example, in partial di↵erential equations,
time-frequency analysis, and quantum mechanics [19, 18, 21, 32, 34]. They
are defined as follows.

Let � be a tempered distribution on phase space R2d, that is, � 2 S 0(R2d)
where S(R2d) denotes the space of Schwartz class functions. The pseudo-
di↵erential operator T� corresponding to the symbol � is given by

T�f(x) =

Z
�(x, ⇠) bf(⇠) e2⇡ix·⇠ d⇠, f 2 S(Rd).

⇤Current of Shahla Molahajloo: Department of Mathematics and Statistics, Queen’s
University, Kingston, ON K7L3N6, Canada
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Here, bf denotes the Fourier transform of f , namely,

bf(⇠) = Ff(⇠) =

Z
f(x) e�2⇡ix·⇠ dx.

One of the central goals in the study of pseudo-di↵erential operators is to
obtain necessary and su�cient conditions for pseudo-di↵erential operators
to extend boundedly to function spaces such as Lp(Rd) [3, 5, 20, 33]. A
classical result in this direction is the following.

For m 2 R, we let Sm consist of all functions � in C1(Rd⇥Rd) such that
for any multi-index (↵, �), there is C↵,� > 0 with

���@�x@↵⇠ �
�
(x, ⇠)

��  C↵,�(1 + |⇠|)m�|↵|.

For � 2 S0(Rd), it is known that T� acts boundedly on Lp(Rd), p 2 (1,1).
A consequence of this result is that if � 2 Sm, then T� is a bounded operator
mapping Hp

s+m(Rd) to Hp
s (Rd), where Hp

s (Rd) is the Sobolev Spaces of order
s 2 R; for more details see Wong’s book [32]. Similarly, in [33], Wong
obtains weighted Lp–boundedness results for pseudo-di↵erential operators
with symbols in Sm.

Smoothness and boundedness of symbols though are far from being nec-
essary (nor su�cient) for the Lp-boundedness of pseudo-di↵erential opera-
tors. In fact, every symbol � 2 L2(R2d) defines a so-called Hilbert–Schmidt
operator and Hilbert-Schmidt operators are bounded, in fact, compact oper-
ators on L2(Rd). Non-smooth and unbounded symbols have been considered
systematically in the framework of modulation spaces, an approach that we
continue in this paper.

Modulation spaces were first introduced by Feichtinger in [9] and they
have been further developed by him and Gröchenig in [8, 9, 12, 10, 11, 13].
In the following, set �(x) = e�⇡kxk

2/2 and let the dual pair bracket (·, ·) be
linear in the first argument and antilinear in the second argument.

Definition 1.1 (Modulation spaces over Euclidean space). Let M⌫ denote
modulation by ⌫ 2 Rd, namely, M⌫f(x) = e2⇡it·⌫f(x), and let Tt be transla-
tion by t 2 Rd, that is, Ttf(x) = g(x� t).

The short-time Fourier transform V�f of f 2 S 0(Rd) with respect to the
Gaussian window � is given by

V�f(t, ⌫) = F
�
f Tt�

�
(⌫) = (f, M⌫Tt�) =

Z
f(x) e�2⇡ix⌫�(x� t) dx .
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The modulation space Mpq(Rd), 1  p, q  1, is a Banach space consisting
of those f 2 S 0(Rd) with

kfkMpq = kV�fkLpq =
⇣Z ⇣Z

|V�f(t, ⌫)|p dt
⌘

1/p

d⌫
⌘

1/q

< 1 ,

with usual adjustment of the mixed norm space if p = 1 and/or q = 1.

Roughly speaking, distributions in Mpq(Rd) ‘decay’ at infinity like a
function in Lp(Rd) and have the same local regularity as a function whose
Fourier transform is in Lq(Rd).

The boundedness of pseudo-di↵erential operators on modulation spaces
are studied for various classes of symbols, for example, in [5, 7, 15, 16, 27,
28, 30, 31]. In [27, 28] for example, Toft discusses boundedness of pseudo-
di↵erential operators on weighted modulation spaces. In [5], Nicola and
Cordero describe a class of pseudo-di↵erential operators with symbols � in
modulation spaces for which T� is bounded on Lp(Rd).

The modulation space membership criteria on Kohn–Nirenberg symbols
used in [5, 7, 27, 28] do not allow to require di↵erent decay in x and ⇠ of
�(x, ⇠). In the recently developed sampling theory for operators, though, a
separate treatment of the decay of x and ⇠ was beneficial [17, 23, 24]. In
fact, this allows to realize canonical symbol norms of convolution and multi-
plication operators as modulation space norms on Kohn-Nirenberg symbols.
Motivated by this work, we give the following definition.

Definition 1.2 (Modulation spaces over phase space). The symplectic Fourier
transform of F 2 S(R2d) is given by

eFF (t, ⌫) =

Z

R2d

e�2⇡i[(x,⇠),(t,⌫)]F (x, ⇠) dx d⇠, (1.1)

where [(x, ⇠), (t, ⌫)] is the symplectic form of (x, ⇠) and (t, ⌫) defined by

[(x, ⇠), (t, ⌫)] = x · ⌫ � ⇠ · t. Analogously, symplectic modulation fM
(t,⌫) is

fM
(t,⌫)F (x, ⇠) = e2⇡i[(x,⇠),(t,⌫)]F (x, ⇠).

The symplectic short-time Fourier transform eV�f of F 2 S 0(Rd) is given
by

eV�F (x, t, ⇠, ⌫) = eF
�
F T

(x,⇠)�
�
(t, ⌫) = (F, fM

(⌫,t)T(x,⇠)�) (1.2)

=

ZZ
e�2⇡i(ex⌫�e⇠t)F (ex, e⇠)'(ex� x, e⇠ � ⇠) dex de⇠.
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The modulation space over phase space fMp
1

p
2

q
1

q
2(R2d), 1  p

1

, p
2

, q
1

, q
2

,
1, is the Banach space consisting of those F 2 S 0(R2d) with

kFkfMp
1

p
2

q
1

q
2

= keV�FkLp
1

p
2

q
1

q
2

=
⇣Z ⇣Z ⇣Z ⇣Z

|(eV F )(x, t, ⇠, ⌫)|p1 dx
⌘p

2

/p
1

dt
⌘q

1

/p
2

d⇠
⌘q

2

/q
1

d⌫
⌘

1/q
1

< 1 , (1.3)

with usual adjustments if p
1

= 1, p
2

= 1, q
1

= 1, and/or q
2

= 1.

Note that the order of the list of variables in (1.2) is crucial as it indicates
the order of integration in (1.3). We choose to list first the time variable x
followed by the time-shift variable t. The time variables are followed by the
frequency variable ⇠ and the frequency-shift variable ⌫. Alternative orders
of integration were considered, for example, in [2, 5, 27, 28].

Below, L(X, Y ) denotes the space of all bounded linear operators map-
ping the Banach space X to the Banach space Y ; L(X, Y ) is equipped with
the operator norm. Below, the conjugate exponent of p 2 [1,1] is denoted
by p0. Our main result follows.

Theorem 1.3. Let p
1

, p
2

, p
3

, p
4

, q
1

, q
2

, q
3

, q
4

2 [1,1]. Then there exists
C > 0 such that

kT�kL(Mp
1

q
1 ,Mp

2

q
2

)

 C k�kfMp
3

p
4

q
3

q
4

, � 2 fMp
3

p
4

q
3

q
4(R2d), (1.4)

if and only if

1

p0
1

+
1

p
2

 1

p
3

+
1

p
4

, p
4

 min{p0
1

, p
2

}, (1.5)

1

q0
1

+
1

q
2

 1

q
3

+
1

q
4

, q
4

 min{q0
1

, q
2

}. (1.6)

Theorem 4.1 below is a variant of Theorem 1.3 that involves symbols in
weighted modulation spaces.

Observe that (1.5) depends only on the parameters pi, while (1.6) de-
pends analogously only on the parameters qi. That is, the conditions on
decay in time and on decay in frequency, or, equivalently, on smoothness in
frequency and on smoothness in time, on the Kohn-Nirenberg symbol are
linked to the respective conditions on domain and range of the operator,
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Figure 1: For fixed p
1

, p
2

and q
1

, q
2

, we mark the regions of ( 1

p
3

, 1

p
4

) and

( 1

q
3

, 1

q
4

) for which every � 2 fMp
3

p
4

q
3

q
4(R2d) induces a bounded operator

T� : Mp
1

q
1(Rd) ! Mp

2

q
2(Rd). In fact, for ( 1

p
3

, 1

p
4

) and ( 1

q
3

, 1

q
4

) in the hashed
region, there exists C > 0 with kT�kL(Mp

1

q
1 ,Mp

2

q
2

)

 C k�kfMp
3

p
4

q
3

q
4

. The
conditions on the time decay parameters p

1

, p
2

, p
3

, p
4

are independent of
the conditions on the frequency decay parameters q

1

, q
2

, q
3

, q
4

.
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but time and frequency remain independent of one another. See Figure 1
for an illustration of conditions (1.5) and (1.6).

An Lp–boundedness result for the introduced classes of pseudo-di↵erential
operators follows.

Corollary 1.4. Let p, p
3

, p
4

, q, q
3

, q
4

2 [1,1]. Assume

1

p0
+

1

q
 1

p
3

+
1

p
4

, p
4

 min{p0, q},

and
8
>>>>>><

>>>>>>:

1

p
+ 1

q
 1

q
3

+ 1

q
4

, q
4

 min{p, q}, if p, q 2 [1, 2],

1

p
+ 1

q0  1

q
3

+ 1

q
4

, q
4

 min{p, q0}, if 1  p  2  q,

1

p0 + 1

q0 
1

q
3

+ 1

q
4

, q
4

 min{p0, q0}, if 2  min{p, q},
1

p0 + 1

q
 1

q
3

+ 1

q
4

, q
4

 min{p0, q}, if 1  q  2  p.

Then T� : Lp(Rd) ! Lq(Rd) is bounded and there exists a constant C > 0
such that

kT�kL(Lp,Lq
)

 C k�kfMp
3

p
4

q
3

q
4

, � 2 fMp
3

p
4

q
3

q
4(R2d).

Corollary 1.4 encompasses, for example, the space of Hilbert–Schmidt
operators on L2(Rd), namely

HS
�
L2(Rd)

�
=
�
T� : � 2 fM2,2,2,2(R2d) = L2(R2d)

 
⇢ L(L2(Rd), L2(Rd)).

Moreover, Corollary 1.4 reconfirms also L2–boundedness of Sjöstrand class
operators [25, 26],

Sj ⇢ {T� : � 2 fM1,1,1,1(R2d)} ⇢ L
⇣
L2(Rd), L2(Rd)

⌘
.

Using the weighted version of Theorem 1.3, namely, Theorem 4.1, we get
the following boundedness result for Sobolev spaces.

Corollary 1.5. Let p
1

, p
2

, p
3

, p
4

2 [1,1] and s 2 R. Let w be a moderate
weight function on R4d satisfying

w(x, t, ⌫, ⇠) 
�
1 + |⇠|2

�s/2

�
1 + |⌫ + ⇠|2

�s/2

, x, t, ⌫, ⇠ 2 Rd.
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Assume that
1

p0
1

+
1

p
2

 1

p
3

+
1

p
4

, p
4

 min{p0
1

, p
2

}.

Then
kT�kL(H

p
1

s ,H
p
2

s )

 C k�kfMp
3

,p
4

,1,1
w

, � 2 fMp
3

,p
4

,1,1
w (R2d),

for some constant C > 0.

The paper is structured as follows. Section 2 discusses mixed norm
spaces and modulation spaces over Euclidean and over phase space in some
detail. In Section 3, our boundedness results for pseudo-di↵erential opera-
tors with symbols in modulation spaces over phase space are compared to
results in the literature. Finally, in Section 4 we prove our main results,
Theorem 1.3, Corollary 1.4, and Theorem 4.1.

2 Background on modulation spaces

In the following, x, ⇠, t, ⌫ denote d-dimensional Euclidean variables. If not
indicated di↵erently, integration is with respect to the Lebesgue measure
on Rd.

Let r = (r
1

, r
2

, . . . , rn) where 1  ri < 1, i = 1, 2, . . . , n. The mixed
norm space Lr(Rn) is the set of all measurable functions f on Rn for which

kFkLr =
⇣Z

R
. . .

⇣Z

R

⇣Z

R
|F (x

1

, . . . , xn)|r1

dx

1

⌘r
1

/r
2

dx

2

. . .

⌘rn/rn�1

dxn

⌘
1/rn

is finite [1]. Lr(Rn) is a Banach space with norm k · kLr . Similarly, we
define Lr(Rn) where ri = 1 for some indices i.

If n = 2d, r
1

= r
2

= · · · = rd = p and rd+1

= · · · = r
2d = q, then we

denote Lr(R2d) by Lpq(R2d). Similarly, if n = 4d and r
1

= r
2

= · · · = rd =
p

1

, rd+1

= · · · = r
2d = p

2

, r
2d+1

= · · · = r
3d = p

3

and r
3d+1

= · · · = r
4d = p

4

,
we write Lp

1

p
2

p
3

p
4(R4d) = Lr(R4d).

Let w be a nonnegative measurable function on Rn. We define Lr
w(Rn)

to be the space all f on Rn for which wf is in Lr(Rn). Lr
w(Rn) is a Banach

space with norm given by

kfkLr
w

= kwfkLr .
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In time-frequency analysis, it is advantageous to consider moderate
weight functions w. To define these, let R+

0

be the set of all nonnegative
points in R. Any locally integrable function v : Rn ! R+

0

with

v(x + y)  v(x)v(y)

is called submultiplicative. Moreover, if w : Rn ! R+

0

is locally integrable
with

w(x + y)  Cw(x)v(y),

C > 0, and v submultiplicative, then w is called moderate.
The short-time Fourier transform of a tempered distribution f 2 S 0(Rn)

with respect to the window  2 S(Rn) is given by

V f(x, ⇠) = F(fTx )(⇠) = (f, M⇠Tx )

where M⇠ and Tx denote modulation and translation as defined above.
With �(x) = e�⇡kxk

2/2, w moderate on R2d, and p, q 2 [1,1], the mod-
ulation space Mpq

w (Rd) is the set of all tempered distributions f 2 S 0(Rd)
such that

V�f 2 Lpq
w (R2d).

with respective Banach space norm. Clearly, if w ⌘ 1, then Mpq
w (Rd) =

Mpq(Rd). Moreover, for any s 2 R let

ws(x, ⇠) =
⇣
1 + |⇠|2

⌘s/2

and denote Mpq
ws

(Rd) by Mpq
s (Rd).

Note that replacing the Gaussian function � in the definition of modu-
lation spaces by any other  2 S(Rd) \ {0} defines the same space and an
equivalent norm, a fact that will be used extensively below.

Recall that the Sobolev space Hp
s (Rd) consist of all tempered distribu-

tions u 2 S 0(Rd) for which kukHp
s

= kTwsukLp < 1 [27]. For any s 2 R and
1  q  p  r  q0  1 we have

Mpq
s (Rd) ✓ Hr

s (Rd), (2.1)

and for some C > 0,

kfkHr
s
 CkfkMpq

s
, f 2 Mpq

s (Rd).
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Similarly, 1  q0  r  p  q  1 implies

Hr
s (Rd) ✓ Mpq

s (Rd), (2.2)

and for some constant C > 0,

kfkMpq
s
 CkfkHr

s
, f 2 Hr

s (Rd).

Let FLp(Rd) be the space of all tempered distributions f in S 0(Rd) for which
there exists a function h 2 Lp(Rd) such that ĥ = f . Then FLp(Rd) is a
Banach space equipped with the norm

kfkFLp = khkLp .

The following lemma shows that modulation space norms of compactly sup-
ported or bandlimited functions can be estimated using FLp and Lp norms
respectively [22, 6, 8, 29].

Proposition 2.1. For K ⇢ Rd compact and p, q 2 [1,1], there are con-
stants A, B, C, D > 0 with

(i) AkfkFLq  kfkMpq  BkfkFLq , f 2 S 0(Rd) with supp f ✓ K;

(ii) CkfkLp  kfkMpq  DkfkLp , f 2 S 0(Rd) with supp bf ✓ K.

In the following, we shall denote norm equivalences as in statement (i)
above by

kfkFLq ⇣ kfkMpq , f 2 S 0(Rd), supp f ✓ K.

Similarly, statement (ii) becomes

kfkLp ⇣ kfkMpq , f 2 S 0(Rd), supp bf ✓ K.

The symplectic Fourier transform of F 2 S(R2d) given in (1.1) is a 2d-
dimensional Fourier transform followed by a rotation of phase space by ⇡

2

.
This implies that the symplectic Fourier transform shares most properties
with the Fourier transform, for example, Proposition 2.1 remains true when
replacing the Fourier transform by the symplectic Fourier transform.

Let p
1

, p
2

, q
1

, q
2

2 [1,1] and let w be a v–moderate weight function on

R4d. The weighted modulation space over phase space fMp
1

p
2

q
1

q
2

w (R2d) is the
set of all tempered distributions F 2 S 0(R2d) for which eV F 2 Lp

1

p
2

q
1

q
2

w (R4d).
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Recapitulate that for F 2 S 0(R2d), we have eV F (x, t, ⇠, ⌫) = V F (x, ⇠, ⌫,�t),

kFkfMp
1

p
2

q
1

q
2

= keV�FkLp
1

p
2

q
1

q
2

=
⇣Z ⇣Z ⇣Z ⇣Z

|eV F (x, t, ⇠, ⌫)|p1 dx
⌘p

2

/p
1

dt
⌘q

1

/p
2

d⇠
⌘q

2

/q
1

d⌫
⌘

1/q
1

,

and

kFkMp
1

q
1

q
2

p
2

= kV�FkLp
1

q
1

q
2

p
2

=
⇣Z ⇣Z ⇣Z ⇣Z

|V F (x, ⇠, ⌫, t)|p1 dx
⌘q

1

/p
1

d⇠
⌘q

2

/q
1

d⌫
⌘p

1

/q
1

dt
⌘

1/p
1

,

with usual adjustments if p
1

= 1, p
2

= 1, q
1

= 1, and/or q
2

= 1.

This shows that the definition of fMp
1

,p
2

,q
1

,q
4(R2d) is based on changing the

order of integration and on relabeling the integration exponents accord-
ingly. Mixed Lp spaces are sensitive towards the order of integration, and,
hence fMp

1

p
2

q
1

q
2(R2d) * Mp

1

p
2

q
1

q
2(R2d) and Mp

1

p
2

q
1

q
2(R2d) * fMp

1

p
2

q
1

q
2(R2d)

in general. But for 1  p  q  1, Minkowski’s inequality
⇣Z ⇣Z

|F (x, y)|p dx
⌘q/p

dy
⌘p


⇣Z ⇣Z

|F (x, y)|q dy
⌘p/q

dx
⌘q

(with adjustments for p = 1 and/or q = 1 holds and implies the following.

Proposition 2.2. Let p
1

, p
2

, q
1

, q
2

2 [1,1] and w be a moderate weight
function on R4d.

(a) If p
2

 min{q
1

, q
2

}, then Mp
1

q
1

q
2

p
2

w (R2d) ✓ fMp
1

p
2

q
1

q
2

w (R2d) and
k�kfMp

1

p
2

q
1

q
2

w
 k�kM

p
1

q
1

q
2

p
2

w
.

(b) If max{q
1

, q
2

}  p
2

, then fMp
1

p
2

q
1

q
2

w (R2d) ✓ Mp
1

q
1

q
2

p
2

w (R2d) and
k�kM

p
1

q
1

q
2

p
2

w
 k�kfMp

1

p
2

q
1

q
2

w
.

Note that results similar to ours could also be achieved using symbols in
Mp

3

p
4

q
3

q
4

w (R2d), but the so obtained results would be weaker and they would
necessitate the additional condition p

4

 min{q
3

, q
4

} .

The modulation space over phase spacefMp
1

p
2

q
1

q
2

w (R2d) shares most of the
properties of ordinary modulation spaces. For example, if p

1

 ep
1

, p
2

 ep
2

,
q
1

 eq
1

and q
2

 eq
2

, then

fMp
1

p
2

q
1

q
2

w (R2d) ✓ fM ep
1

ep
2

eq
1

eq
2

w (R2d), (2.3)
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and
k�kfM ep

1

,ep
2

,eq
1

,eq
2

w
 k�kfMp

1

p
2

q
1

q
2

w
, � 2 fMp

1

,p
2

,q
2

,q
2

w (R2d).

Furthermore, let p
1

, p
2

, q
1

, q
2

2 [1,1]. Then the dual of fMp
1

p
2

q
1

q
2

w (R2d) is
fMp0

1

p0
2

q0
1

q0
2

w (R2d) where p0
1

, p0
2

, q0
1

, q0
2

are conjugate exponenets of p
1

, p
2

, q
1

, q
2

respectively.
The proofs of these results for modulation spaces over phase space are

similar to the ones for the ordinary modulation spaces [14], and are omitted.

3 Comparison of Theorem 1.3 to results in

the literature

Cordero and Nicola as well as Toft proved the following theorem on Mpq–
boundedness for the class of pseudo-di↵erential operators with symbols in
M s

1

s
1

s
2

s
2(R2d), see Theorem 5.2 in [5] and Theorem 4.3 in [27].

Theorem 3.1. Let p, q, s
1

, s
2

2 [1,1]. Then for some C > 0,

kT�kL(Mpq ,Mpq
)

 C k�kMs
1

,s
1

,s
2

,s
2

, � 2 M s
1

,s
1

,s
2

,s
2(R2d), (3.1)

if and only if
s
2

 min{p, p0, q, q0, s0
1

}.

Roughly speaking, to apply Theorem 3.1, we need to ensure that �(x, ⇠)
has Ls ‘decay’ in x and ⇠ and that F�(⌫,�t) = Fs�(t, ⌫) has Lmin{p,p0,q,q0,s0}

‘decay’ in t and ⌫. To apply Theorem 1.3, it su�ces to ensure that �(x, ⇠)
has Ls

1 ‘decay’ in x and Ls
2 ‘decay’⇠, and that Fs�(t, ⌫) has Lmin{p,p0,s0

1

}

‘decay’ in t and Lmin{q,q0,s
2

} ‘decay’ in ⌫.
Using embeddings such as (2.3), we observe that indeed Theorem 3.1

provides boundedness of T� if and only if

� 2
1[

s=max{p,p0,q,q0}

M s,s,s0,s0 ✓
1[

s=max{p,p0,q,q0}

fM s,s0,s,s0 (3.2)

while Theorem 1.3 provides boundedness of T� if and only if

� 2
1[

s
1

=max{p,p0}

1[

s
2

=max{q,q0}

fM s
1

,s0
1

,s
2

,s0
2 .

11



To obtain the set inclusion in (3.2), we used Theorem 2.2 and the fact that
s � max{p, p0} implies s � 2 � s0.

As L2 = M2,2, Theorem 3.1 implies the following L2–boundedness result.

Corollary 3.2. Let r, s 2 [1,1]. Then for some C > 0,

kT�kL(L2,L2

)

 C k�kMr,r,s,s , � 2 M r,r,s,s(R2d),

if and only if
s  min{2, r0}.

Corollary 3.2 has been obtained earlier in 2003 by Gröchenig and Heil
[15]. As comparison, we formulate the respective consequence of Theo-
rem 1.3.

Corollary 3.3. For r, s 2 [2,1], there exists a constant C > 0 such that

kT�kL(L2,L2

)

 C k�kfMr,r0,s,s0 , � 2 fM r,r0,s,s0(R2d).

As example, note that Theorem 3.1 does not imply that T� : L2(Rd) !
L2(Rd) is bounded for � 2 M1,2,2,1(R2d). But as M1,2,2,1(R2d) ✓ fM1,1,2,2(R2d),
Theorem 1.3 indeed implies boundedness of T� in this case.

For compositions of product and convolution operators, Theorem 1.3
implies the following result.

Corollary 3.4. For p, q 2 [2,1], let h
1

2 Mp,q0(Rd) and h
2

2 Mp0,q(Rd).
Define

Tf = h
1

· (h
2

⇤ f), f 2 L2(Rd),

and
Hf = (h

1

· f) ⇤ h
2

, f 2 L2(R).

Then T and H are bounded operators on L2 and moreover, there exist pos-
itive constants C and C 0 such that

kTkL(L2,L2

)

 C kh
1

kMp,q0kh
2

kMp0,q ,

and
kHkL(L2,L2

)

 C 0 kh
1

kMp,q0kh
2

kMp0,q .

The proof of Corollary 3.4 follows immediately from Corollary 3.3, Lemma 4.9
and Lemma 4.10. Note that not separately, the convolution and multipli-
cation operators above may not be bounded operators.
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4 Proof of Theorem 1.3, Corollary 1.4, and

Theorem 4.1

4.1 Proof of Theorem 4.1 and thereby of (1.5) and

(1.6) implies (1.4) in Theorem 1.3

In this section we prove the weighted version of one implication of Theo-
rem 1.3, that is the following theorem.

Theorem 4.1. Let w
1

, w
2

be moderate weight functions on R2d and w be a
moderate weight function on R4d that satisfies

w(x, t, ⌫, ⇠)  w
1

(x� t, ⇠)w
2

(x, ⌫ + ⇠). (4.1)

Let p
1

, p
2

, p
3

, p
4

, q
1

, q
2

, q
3

, q
4

2 [1,1] be such that

1

p0
1

+ 1

p
2

 1

p
3

+ 1

p
4

, p
4

 min{p0
1

, p
2

},
1

q0
1

+ 1

q
2

 1

q
3

+ 1

q
4

, q
4

 min{q0
1

, q
2

}.

Then there exists a constant C > 0 such that

kT�kL(M
p
1

q
1

w
1

,M
p
2

q
2

w
2

)

 C k�kfMp
3

p
4

q
3

q
4

w
, � 2 fMp

3

p
4

q
3

q
4

w (R2d).

To prove Theorem 4.1 we need some preparation. For functions f and
g in S(Rd), the Rihaczek transform R(f, g) of f and g is defined by

R(f, g)(x, ⇠) = e2⇡ix·⇠f̂(⇠)g(x).

For � 2 S(R2d), pseudo-di↵erential operators are related to Rihaczek trans-
forms by �

T�f, g
�

=
�
�, R(f, g)

�

for all functions f and g in S(Rd). We define A, TA by

(TAF )(x, t) = F (A(x, t)) = F (x� t, x) .

Then
R(f, g)(x, ⇠) = Ft!⇠

�
TA(f⌦g)(x, ·)

�
,

where

Ft!⇠f(· + x) =

Z
e�2⇡it⇠f(t + x) dt.

13



Lemma 4.2. Let ' be a real valued Schwartz function on Rd. Then for all
f and g in S(Rd)

VTA('⌦')

TA(f⌦g) (x, t, ⌫, ⇠) = V'f(x� t, ⇠) V'g(x, ⌫ + ⇠).

Proof We compute

VTA('⌦')

TA(f⌦g) (x, t, ⌫, ⇠)

=

ZZ
e�2⇡i(ex⌫+et⇠)TA(f⌦g)(ex,et)TA('⌦')(ex� x,et� t) dex det

=

Z ⇣Z
e�2⇡iet⇠f(ex� et)'(ex� x� et + t) det

⌘
e�2⇡iex⌫g(ex)'(ex� x) dex

=

ZZ
f(s)g(ex)e�2⇡i⌫ex�2⇡i⇠(ex�s)'(s� (x� t))'(ex� x) dex ds

=
⇣Z

e�2⇡i⇠sf(s)'(s� (x� t)) ds
⌘⇣Z

e�2⇡i(⌫+⇠)exg(ex)'(ex� x) dex
⌘

= V'f(x� t, ⇠) V'g(x, ⌫ + ⇠).

⇤

Lemma 4.3. Let ' 2 S(Rd) be a nonzero even real valued Schwartz function
on Rd. Then for all f and g in S(Rd)

VR(',')

R(f, g) (x, ⇠, ⌫, t) = e�2⇡i⇠t VTA('⌦')

TA(f⌦g) (x,�t, ⌫, ⇠) .

Proof For all f and g in S(Rd)

VR(',')

R(f, g)(x, ⇠, ⌫, t)

=

ZZ
e�2⇡i(⌫ex+te⇠)R(f, g)(ex, e⇠)R(',')(ex� x, e⇠ � ⇠) dex de⇠

=

ZZ
e�2⇡i(⌫ex+te⇠)Fet!e⇠

�
f(ex� ·)

�
g(ex)Fet!e⇠�⇠

�
'(ex� x� ·)

�
'(ex� x) dex de⇠

=

ZZ
e�2⇡i(⌫ex+te⇠)Fet!e⇠

�
f(ex� ·)

�
g(ex)Fet!⇠�e⇠

�
'(ex� x� ·)

�
'(ex� x) dex de⇠.

(4.2)
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On the other hand, Parseval’s identity gives

VTA('⌦')

TA(f⌦g)(x, t, ⌫, ⇠)

=

ZZ
e�2⇡i(ex⌫+et⇠)TA(f⌦g)(ex,et)TA('⌦')(ex� x,et� t) dex det

=

Z ⇣Z
e�2⇡iet⇠f(ex� et)'(ex� x� et + t) det

⌘
e�2⇡iex⌫g(ex)'(ex� x) dex

=

ZZ
Fet!e⇠

�
f(ex� ·)

�
F�1

et!e⇠

�
e�2⇡iet⇠'(ex� x + t� ·)

�
e�2⇡iex⌫g(ex)'(ex� x) de⇠ dex.

But,

F�1

et!e⇠

�
e�2⇡iet⇠'(ex� x + t� ·)

�
= e�2⇡it(⇠�e⇠)F�!⇠�e⇠

�
'(ex� x� ·)

�
,

therefore,

VTA('⌦')

TA(f⌦g)(x, t, ⌫, ⇠) = e�2⇡it⇠

ZZ
e2⇡i(te⇠�vex)Fet!e⇠

�
f(ex� ·)

�
·

Fet!⇠�e⇠
�
'(ex� x� ·)

�
g(ex)'(ex� x) dex de⇠.

Combining this identity with (4.2) completes the proof. ⇤

Proposition 4.4. Let w
1

, w
2

, w be moderate functions that satisfy

w(x, t, ⌫, ⇠)  w
1

(x� t, ⇠)w
2

(x, ⌫ + ⇠).

Let ' be a nonzero real valued Schwartz function on Rd and define

VTA('⌦')

TA(f⌦g) (x, t, ⇠, ⌫) = VTA('⌦')

TA(f⌦g) (x, t, ⌫, ⇠) (4.3)

for all f, g 2 S(Rd) and x, t, ⇠, ⌫ 2 Rd. If p
1

, p
2

, p
3

, p
4

, q
1

, q
2

, q
3

, q
4

2 [1,1]
satisfy

1

p
1

+ 1

p
2

= 1

p
3

+ 1

p
4

, p
3

 min{p
1

, p
2

, p
4

},
1

q
1

+ 1

q
2

= 1

q
3

+ 1

q
4

, q
3

 min{q
1

, q
2

, q
4

},
(4.4)

then
kVTA('⌦')

TA(f⌦g)kL
p
3

p
4

q
3

q
4

w
 kfkM

p
1

q
1

w
1

kgkM
p
2

.q
2

w
2

.
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Proof By Lemma 4.2, we have

VTA('⌦')

TA(f⌦g) (x, t, ⇠, ⌫) = V'f(x� t, ⇠) V'g(x, ⌫ + ⇠).

So, by (4.1), for t, ⇠, ⌫ 2 Rd,

kw(·, t, ⇠, ⌫)VTA('⌦')

TA(f⌦g)(·, t, ⇠, ⌫)kLp
3


⇣Z

|w
1

(x� t, ⇠)
⇣
V'f

⌘
(x� t, ⇠)|p3 |w

2

(x, ⌫ + ⇠)
⇣
V'g

⌘
(x, ⌫ + ⇠)|p3 dx

⌘
1/p

3

=
⇣
|w

2

(·, ⌫ + ⇠)V'g(·, ⌫ + ⇠)|p3 ⇤ |w
1

(·, ⇠)V'f(·, ⇠)|p3 (t)
⌘

1/p
3

.

Then, (4.4) implies
1

r
1

+
1

s
1

= 1 +
1

a
1

,

with r
1

= p
2

/p
3

� 1, s
1

= p
1

/p
3

� 1 and a
1

= p
4

/p
3

� 1, hence, we can
apply Young’s inequality and obtain

kw(·, ·, ⇠, ⌫)VTA('⌦')

TA(f⌦g)(·, ·, ⇠, ⌫)kLp
3

,p
4

= k|w
2

(·, ⌫ + ⇠)V'g(·, ⌫ + ⇠)|p3 ⇤ |w
1

(·, ⇠)V'f(·, ⇠)|p3k1/p
3

La
1

 k|w
2

(·, ⌫ + ⇠)V'g(·, ⌫ + ⇠)|p3k1/p
3

Lr
1

k|w
1

(·, ⇠)V'f(·, ⇠)|p3k1/p
3

Ls
1

. (4.5)

To estimate (4.5) further, we note that integrating with respect to ⇠ can be
again considered a convolution. In fact (4.4) leads to

1

r
2

+
1

s
2

= 1 +
1

a
2

,

where r
2

= q
2

/q
3

, s
2

= q
1

/q
3

and a
2

= q
4

/q
3

. Young’s inequality then
implies

kwVTA('⌦')

TA(f⌦g)kLp
3

p
4

q
3

q
4


⇣Z ⇣Z

|w
2

(x, y)V'g(x, y)|p3

r
1 dx

⌘
(r

2

q
3

)/(p
3

r
1

)

dy
⌘

1/(r
2

q
3

)

·
⇣Z ⇣Z

|w
1

(x, y)V'f(x, y)|p3

s
1 dx

⌘
(s

2

q
3

)/(p
3

s
1

)

dy
⌘

(1/s
2

q
3

)

= kfkM
p
1

q
1

w
1

kgkM
p
2

q
2

w
2

,

which completes the proof. ⇤
Now, we are ready to give su�cient conditions on the boundedness of
pseudo-di↵erential operators with symbols in fMp

3

,p
4

,q
3

.q
4(R2d).
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Lemma 4.5. Let w
1

, w
2

, w be moderate weight functions that satisfy (4.1).
Let p

1

, p
2

, p
3

, p
4

, q
1

, q
2

, q
3

, q
4

2 [1,1] be such that

1

p
3

2
h

1

p0
1

+ 1

p
2

� 1

p
4

, min{ 1

p0
1

, 1

p
2

, 1

p
4

}
i
,

1

q
3

2
h

1

q0
1

+ 1

q
2

� 1

q
4

, min{ 1

q0
1

, 1

q
2

, 1

q
4

}
i
.

(4.6)

Then there exists a constant C > 0 such that

kT�kL(M
p
1

q
1

w
1

,M
p
2

q
2

w
2

)

 C k�kfMp
3

p
4

q
3

q
4

w
, � 2 fMp

3

p
4

q
3

q
4

w (R2d). (4.7)

Proof Let us first assume p
1

, p
2

, p
3

, p
4

, q
1

, q
2

, q
3

, q
4

2 [1,1] satisfy (4.6)
and in addition

1

p0
1

+
1

p
2

=
1

p
3

+
1

p
4

and
1

q0
1

+
1

q
2

=
1

q
3

+
1

q
4

. (4.8)

Let f, g 2 S(Rd). Since the dual of fMp
3

p
4

q
3

q
4

w (R2d) is fMp0
3

,p0
4

,q0
3

,q0
4

w (R2d), it
follows that

|(T�f, g)| = |(�, R(f, g))|
 k�kfMp

3

p
4

q
3

q
4

w
kR(f, g)kfM

p0
3

,p0
4

,q0
3

,q0
4

w

.

To obtain (4.7), it is enough to show that there exists C > 0 such that

kR(f, g)kfM
p0
3

,p0
4

,q0
3

,q0
4

w

 C kfkM
p
1

q
1

w
1

kgk
M

p0
2

,q0
2

w
2

.

Let ' be a nonzero real valued even function in S(Rd). Then by Lemma 4.3,
���VR(',')

R(f, g) (x, t, ⇠, ⌫)
��� =

���VR(',')

R(f, g) (x, ⇠, ⌫,�t)
���

=
���VTA('⌦')

TA(f⌦g) (x, t, ⌫, ⇠)
���

=
���VTA('⌦')

TA(f⌦g) (x, t, ⇠, ⌫)
���.

where VTA('⌦')

is defined in (4.3). Therefore, by Proposition 4.4, we have

kR(f, g)kfM
p0
3

,p0
4

,q0
3

,q0
4

w

= kVTA('⌦')

TA(f⌦g)k
L

p0
3

,p0
4

,q0
3

,q0
4

w

 kfkM
p
1

q
1

w
1

kgk
M

p0
2

,q0
2

w
2

.
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To obtain (4.7) in the general case, that is p
1

, p
2

, p
3

, p
4

, q
1

, q
2

, q
3

, q
4

2 [1,1]
satisfy (4.6) but not necessarily (4.8), set

1

ep
2

=
1

p
3

+
1

p
4

� 1

p0
1

and
1

eq
2

=
1

q
3

+
1

q
4

� 1

q0
1

.

Then it is easy to see that ep
2

 p
2

, eq
2

 q
2

and p
1

, ep
2

, p
3

, p
4

, q
1

, eq
2

, q
3

, q
4

2
[1,1] satisfy (4.6). Hence

kT�fkM
p
2

q
2

w
2

 C kT�fkM
ep
2

,eq
2

w
2

 kfkM
p
1

q
1

w
1

k�kfMp
3

p
4

q
3

q
4

w
,

for some C > 0. ⇤
Proof of Theorem 4.1: Let f 2 S(Rd). Set

1

ep
3

=
1

p0
1

+
1

p
2

� 1

p
4

and
1

eq
3

=
1

q0
1

+
1

q
2

� 1

q
4

.

Then it is easy to see that

ep
3

� p
3

, eq
3

� q
3

.

Furthermore, {p
1

, p
2

, ep
3

, p
4

, q
1

, q
2

, eq
3

, q
4

} satisfies (4.6), therefore there exist
C

1

, C
2

> 0 such that

kT�fkM
p
2

q
2

w
2

 C
1

kfkM
p
1

q
1

w
1

k�kfM ep
3

,p
4

,eq
3

,q
4

w

 C
2

kfkM
p
1

q
1

w
1

k�kfMp
3

p
4

q
3

q
4

w
.

4.2 Proof of Corollary 1.4

Let 1  p, q  2. By Theorem 1.3, T� : Mp,p0 ! M q is bounded. Using the
bounded embeddings Mp ⇢ Lp ⇢ Mp,p0 for all 1  p  2 (for more details
see [8]), it follows that T� : Lp(Rd) ! Lq(Rd) is bounded. Similarly, using
Mp,p0 ⇢ Lp ⇢ Mp for all q � 2, we can prove T� : Lp(Rd) ! Lq(Rd) is
bounded for p, p

3

, p
4

, q, q
3

, q
4

satisfying (b) or (c) or (d) in Corollary 1.4. ⇤

4.3 Proof of (1.4) implies (1.5), (1.6) in Theorem 1.3

To show necessity of (1.5) and (1.6) in Theorem 1.3, we shall use two mixed
Lp norms on phase space, namely,

kFkLpq =
⇣Z ⇣Z

|F (x, ⇠)|p dx
⌘q/p

d⇠
⌘

1/q

,
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and

kFkeLpq =
⇣Z ⇣Z

|F (x, ⇠)|q d⇠
⌘p/q

dx
⌘

1/p

,

for p, q 2 [1,1). For p = 1 and/or q = 1 we make the usual adjustment.

Similarly, we can define fMpq(Rd) to be the space of all functions f 2
S 0(Rd) for which

kfkfMpq = kV'fkeLpq < 1,

where ' 2 S(Rd) \ {0}. Note that it can be easily checked that

kfkfMpq = k bfkMqp .

Below, we use an idea from the proof of Proposition 2.1 given in [22] to
prove the following lemma.

Lemma 4.6. Let K ⇢ R2d be compact. Then

k�kfMp
3

p
4

q
3

q
4

⇣ k�kF eLq
4

p
4

, � 2 S 0(R2d), supp� ⇢ K.

Proof Choose r > 0 with supp� ✓ B2d
r (0), where

B2d
r (0) = {x 2 R2d : kxk  r}

is the Euclidean unit ball in R2d with center 0, radius r and Lebesgue
measure |B2d

r (0)|. Let  2 S(R2d) with supp  ⇢ B2d
r (0). Then it is easy

to see that ��eV �
��(x, t, ⇠, ⌫) =

��� ⇤M⌫,�t
e 
��(x, ⇠),

where
e (x, ⇠) =  (�x,�⇠).

Therefore, for fixed t, ⌫ we have

supp
� ���eV �

��� (·, t, ·, ⌫)
�
✓ supp (�) + supp (M⌫,�t

e )

✓ B2d
r (0) + B2d

r (0) ✓ B2d
2r (0). (4.9)

Let ⇠ 2 Bd
2r(0). Then by (4.9),

keV �(·, t, ⇠, ⌫)kp
3

Lp
3

(Rd
)

=

Z

Bd
2r(0)

��eV �
��p3(x, t, ⇠, ⌫) dx

 |Bd
2r(0)|

��eV �(·, t, ⇠, ⌫)
��

L1
= |Bd

2r(0)|
��� ⇤M⌫,�t

e (·, ⇠)
��

L1

 |Bd
2r(0)|

��� ⇤M⌫,�t
e 
��

L1
 |Bd

2r(0)|
��F�1

�
b� T⌫,�t

b 
���

L1

 |Bd
2r(0)|

��b�T⌫,�t
b 
��

L1

= |Bd
2r(0)|

�
|b�| ⇤ | b |

�
(�⌫, t) (4.10)

19



On the other hand, if ⇠ 2 Rd \ Bd
2r(0), then by (4.9),

keV �(·, t, ⇠, ⌫)kLp
3

= 0. (4.11)

Therefore, (4.10) and (4.11) imply

k�kfMp
3

p
4

q
3

q
4

=
���eV �

���
Lp

3

p
4

q
3

q
4

 |Bd
2r(0)|1/p

3

Z ⇣Z

Bd
2r(0)

⇣Z ⇣
(|b�| ⇤ | b |(�⌫, t))p

4 dt
⌘q

3

/p
4

d⇠
⌘q

4

/q
3

d⌫
⌘

1/q
4

 |Bd
2r(0)|(1/p

3

)+(1/q
3

)

⇣Z ⇣Z
(|b�| ⇤ | b |(�⌫, t))p

4 dt
⌘q

4

/p
4

d⌫
⌘

1/q
4

 |Bd
2r(0)|(1/p

3

)+(1/q
3

)

���|b�| ⇤ | b |
���

eLq
4

,p
4

 |Bd
2r(0)|(1/p

3

)+(1/q
3

)kb�keLq
4

,p
4

k b keL1,1  Ckb�keLq
4

,p
4

.

Now, let  2 C1(R2d) be compactly supported with  ⌘ 1 on B2d
2r (0).

Let �B2d
r (0)

be the characteristic function on B2d
r (0). Then using supp � ✓

B2d
r (0), it follows that for all x, t, ⇠, ⌫ 2 Rd,

�B2d
2r (0)

(x, ⇠) eV �(x, t, ⇠, ⌫)

= �B2d
2r (0)

(x, ⇠)

Z

B2d
r (0)

�(ex, e⇠) e�2⇡i(ex⌫�e⇠t)  (ex� x, e⇠ � ⇠) dex de⇠

= �B2d
2r (0)

(x, ⇠)

Z

B2d
r (0)

�(ex, e⇠) e�2⇡i(ex⌫�e⇠t) dex de⇠

= �B2d
2r (0)

(x, ⇠)F�(⌫,�t).

Hence,

k�kfMp
3

p
4

q
3

q
4

=
��eV �

��
Lp

3

p
4

q
3

q
4

�
���B2d

2r (0)

eV �
��

Lp
3

p
4

q
3

q
4

=
⇣Z ⇣Z ⇣Z ⇣Z ���B2d

2r (0)

(x, ⇠)F�(⌫,�t)
��p3dx

⌘p
4

/p
3

dt
⌘q

3

/p
4

d⇠
⌘q

4

/q
3

d⌫
⌘

1/q
4

=
���B2d

2r (0)

kLp
3

q
3

k�kF eLq
4

,p
4

which completes the proof. ⇤

Lemma 4.7. Let � > 0 and '�(x) = e�⇡�|x|
2

. Then for � � 1,

k'�kMpq ⇣ k'�kfMpq ⇣ ��d/q0 ,
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and
k'��1kMpq ⇣ k'��1kfMpq ⇣ �d/p.

The proof of Lemma 4.7 is an immediate corollary of Lemma 3.2 in [4]
and is omitted here.

Lemma 4.8. Let K ⇢ Rd be compact. For h 2 C1(Rd) and � � 1 set
h�(x) = h(x)e�⇡i�|x|2. Then for all p, q 2 [1,1],

kh�kMpq ⇣ kbh�kLq ⇣ �d/q�d/2, h 2 C1(Rd), supp h ⇢ K.

Lemma 4.8 is well known and its proof can be found in, for example, [5].

Lemma 4.9. Let h
1

, h
2

2 S(Rd) and

⌘(t, ⌫) = e�2⇡it⌫h
2

(t)bh
1

(⌫), t, ⌫ 2 Rd.

If � = eF⌘. Then we have

�(x, ⇠) = (M⇠h2

⇤ h
1

)(x) (4.12)

and

T�f = (h
1

f) ⇤ h
2

, f 2 S(Rd). (4.13)

Moreover,
k�kfMp

3

p
4

q
3

q
4

= kh
1

kMp
3

,q
4

kh
2

kMp
4

,q
3

.

Proof Clearly, (4.12) and (4.13) hold. Now, let ' be any nonzero real
valued Schwartz function on Rd. Let

 (t, ⌫) = '(t)'(⌫)e�2⇡it⌫ .

and define
e (x, ⇠) = eF (�x,�⇠).

Then
���eV e �(x, t, ⇠, ⌫)

��� =
���
�
�, M⌫.�tTx,⇠

e 
����

=
���
� eF⌘, eF(T�t,⌫M�⇠,x )

���� .
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Now since eF is a unitary operator, it follows that
���
⇣
eV e �

⌘
(x, t, ⇠, ⌫)

��� =
���
⇣
⌘, T�t,⌫M�⇠,x 

⌘���

=

����
ZZ

⌘(et, e⌫) e2⇡i⇠(et+t) e�2⇡ix(v�e⌫) (t + et, e⌫ � ⌫) det de⌫
����

=

����
ZZ

bh
1

(e⌫)h
2

(et)'(e⌫ � ⌫)'(et + t) e�2⇡ie⌫(x�t) e2⇡iet(⌫�⇠) det de⌫
����

= |(V'bh1

)(⌫, x� t)| |(V'h2

)(�t, ⌫ � ⇠)|.

Hence,
k�kfMp

3

p
4

q
3

q
4

= kh
1

kMp
3

,q
4

kh
2

kMp
4

,q
3

.

⇤
Similarly, we can prove the following.

Lemma 4.10. Let Let h
1

, h
2

2 S(Rd) and � = h
1

⌦ bh
2

. Then

T�f = h
1

· (h
2

⇤ f), f 2 S(Rd)

and
kh

1

⌦ bh
2

kfMp
3

p
4

q
3

q
4

= kh
1

kMp
3

,q
4

kbh
2

kfMq
3

,p
4

.

Proof of (1.4) implies (1.5) and (1.6) in Theorem 1.3: Let h 2
C1(Rd) be chosen with compact support and h(0) = 1 and h(x) � 0 for all
x 2 Rd. Then for any � � 1, we define h� and �� respectively by

h�(x) = h(x)e�⇡i�|x|2 .

and
��(x, ⇠) = h⌦h�(x, ⇠) = h(x)h�(⇠).

Let f� = F�1h�. Then f� 2 S(Rd) and

T��
f�(x) =

Z
e2⇡ix⇠h(x)|h(⇠)|2 d⇠.

So, T��
f� is independent of �. Since �� has compact support, by Lemma 4.6

and Lemma 4.8

k��kfMp
3

p
4

q
3

q
4

⇣ kF��keLq
4

,p
4

= kbhkLq
4

(Rd
)

kbh�kLp
4

(Rd
)

⇣ �(d/p
4

)�(d/2). (4.14)
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Moreover, by Lemma 2.1 and Lemma 4.8, since Ff� has compact support,

kf�kMp
1

q
1

(Rd
)

= kf�kLp
1

(Rd
)

⇣ �(d/p
1

)�(d/2). (4.15)

Hence by (1.4), (4.14) and (4.15), there exists C > 0 such that for all � � 1

kT�f�kMp
2

q
2

(Rd
)

 C �(d/p
4

)+(d/p
1

)�d.

But kT�f�kMp
2

q
2

(Rd
)

is nonzero and independent of �, therefore d
p
4

+ d
p
1

�d �
0, and p

4

 p0
1

.
To prove q

4

 q0
1

, we let h
1

= f = h� and h
2

2 S(Rd) be such that bh
2

is
compactly supported, independent of � and

k(h
1

f) ⇤ h
2

kLp
2

(Rd
)

6= 0.

Let � = eF⌘ where
⌘(t, ⌫) = bh

1

(⌫)h
2

(t)e�2⇡it⌫ .

Then by Lemma 4.9 and (1.4)

k(h
1

f) ⇤ h
2

kLp
2

(Rd
)

 C kbh
1

kLq
4

(Rd
)

kh
2

kLp
4

(Rd
)

k bfkLq
1

(Rd
)

,

for some constant C > 0. So, by Lemma 4.8 for all � � 1

k(h
1

f) ⇤ h
2

kLp
2

(Rd
)

 C �(d/q
4

)�(d/2)�(d/q
1

)�(d/2),

but k(h
1

f) ⇤ h
2

kLp
2

(Rd
)

is nonzero and independent of �, therefore (d/q
4

) +
(d/q

1

)� d � 0 and, hence, q
4

 q0
1

.
Now, let h

1

= f = '� and h
2

= '��1 , where '� and '��1 are defined in
Lemma 4.7. If we let � = h

1

⌦ h
2

. Then by Lemma 4.7 and Lemma 4.10,
for � � 1 we have

k�kfMp
3

p
4

q
3

q
4

(R2d
)

⇣ �d/q
3

�d/q0
4

and kfkMp
1

q
1

(Rd
)

⇣ ��d/q0
1 . On the other hand T�f is also a Gaussian

function and it can be easily checked that

kT�fkMp
2

q
2

(Rd
)

⇣ ��d/q0
2 .

Therefore by (1.4)
�d/q

3

�d/q0
4

�d/q0
1

+d/q0
2 � 1

23



for all � � 1. Hence, we get

1

q0
1

+
1

q
2

 1

q
3

+
1

q
4

.

Similarly, by letting h
1

= f = '��1 and h
2

= '�, we get

1

p0
1

+
1

p
2

 1

p
3

+
1

p
4

.

Again assume � has the form given in Lemma 4.9. Let h(x) = f(x) =
e�⇡|x|

2/2 and h
2

= '��1 . Then T� is also a Gaussian function, moreover by
Lemma 4.7 and (1.4) for all � � 1

�d/p
4

�d/p
2 � C,

for some C > 0. Hence p
4

 p
2

.
To prove q

4

 q
2

, we let

�(x, ⇠) = e2⇡ix⇠h
1

(x)h
2

(⇠),

where h
1

and h
2

are compactly supported Schwartz functions on Rd. Then
� is compactly supported and therefore by Lemma 4.6,

k�kfMp
3

p
4

q
3

q
4

(R2d
)

= kF�kLp
4

,q
4

(R2d
)

.

On the other hand, by an easy calculation, we have
��F�

��(⌫, t) =
��Vh

1

bh
2

��(t, ⌫) =
��Vch

2

h
1

��(t, ⌫).

Therefore,
k�kfMp

3

p
4

q
3

q
4

(R2d
)

 Ch
2

kbh
1

kLq
4

(Rd
)

, (4.16)

and
k�kfMp

3

p
4

q
3

q
4

(R2d
)

 Ch
1

kbh
2

kLp
4

(Rd
)

,

where Ch
1

and Ch
2

are positive constants depending on h
1

and h
2

respec-
tively. Let h

1

= h� and h
2

be any compactly supported function and f be a
Schwartz function on Rd and both h

2

and bf be independent of � such that

(h
2

, bf) 6= 0. Then

kT�fkMp
2

q
2

(Rd
)

= kh
1

kMp
2

q
2

(Rd
)

|(h
2

, bf)|

= |(h
2

, bf)|kbh
1

kLq
2

(Rd
)

⇣ �(d/q
2

)�(d/2), (4.17)
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and by (4.16)
k�kfMp

3

p
4

q
3

q
4

(R2d
)

 Ch
2

�(d/q
4

)�(d/2).

Hence, (4.17) and (1.4) imply

�(d/q
4

)�(d/q
2

) � C,

where C > 0 is independent of � � 1. Hence (d/q
4

) � (d/q
2

) � 0 which
implies that q

4

 q
2

. ⇤
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[16] K. Gröchenig and C. Heil, Modulation Spaces and Pseudodi↵erential
Operators, Integr. Equat. Oper. th. 34 (4) (1999), 439-457.

[17] Y. M. Hong and G. E. Pfander, Irregular and multi-channel sampling
of operators, Appl. Comput. Harmon. Anal. 29 (2) (2010), 214-231.
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