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Abstract:

This paper reviews recent results on the geometry of Ga-
bor systems in finite dimensions. For example, we discuss
the coherence of Gabor systems, the linear independence
of subsets of Gabor systems, and the condition number
of matrices formed by a small number of vectors from a
Gabor system. We state a result on the recovery of sig-
nals that have a sparse representation in certain Gabor sys-
tems. The results listed here are obtained by the author in
collaborations with Jim Lawrence, Felix Krahmer, Peter
Rashkov, Jared Tanner, Holger Rauhut, and David Walnut
linear independence

1. Introduction and Notation

The theory of Gabor systems in the Hilbert space of square
integrable functions on the real line has received signifi-
cant attention during the last ten to twenty years (see, for
example, [4, 6, 8, 7] and references within). Much of the
research concentrates on showing that certain Gabor sys-
tems are frames or Riesz bases for their closed linear span.
The seemingly simpler concept of linear independence of
vectors in a Gabor system was addressed in [10]. There,
it was conjectured that any finite set of time—frequency
shifted copies of a single square integrable function is lin-
ear independent. This conjecture still remains to be re-
solved.

In the last years, in part due to the emergence of the the-
ory of compressed sensing and sparse signal recovery, the
structure of Gabor systems in finite dimensional spaces
has received increased attention. Such finite Gabor sys-
tems on finite Abelian groups are described below.

We let G denote a finite Abelian group. Its dual group
G consists of the group homomorphisms § : G +— St
We have G C CY = {f : G — C}, the latter being
the space of complex valued functions on G. The sup-
port size of f € C% is |fllo == |{z : f(x) # 0}
The Fourier transform of f EA(CG is normalized to be
F€) =Y eq f(2) €@), €€ G

Translation operators T., © € G, and modulation oper-
ators Mg, £ € G, on C© are unitary operators given by
(Tof)(t) = f(t — 2) and (M f)(t) = f(t) - £(t). Time-
frequency shift operators 7(A\), A = (z,£) € G x G,
are the unitary operator on C represented by 7(\)f =
Tpo Mef, A= (,6) € G x G.

The system {7(A\)g : A € G x G} C CY is called (full)
Gabor system with window g € CY, it consists of |G|
vectors in a |G| dimensional space.

The short-time Fourier transform with respect to g is given
by

Vol = (fm(Ng) =D fw)aly — 2)E(y),

yeG
feCq A= (28eGxa.

We shall not make a distinction between the linear map-
ping V, : C¢ — C%*¢ and its matrix representation
with respect to the Euclidean basis.

Full Gabor systems in finite dimensions share an impor-
tant and very useful property: for any g # 0, the collection
{m(N) g} eax e forms a uniform tight finite frame for C¢
with frame bound n? ||g||?, that is,

Y WLrWNg)P = lgl?lf1%

AEGXG

This is a simple consequence of the representation theory
of the Weyl-Heisenberg group [9, 12].

In this paper we are concerned with properties of sub-
sets of full Gabor systems. In Section 2, we consider
the linear independence of subsets of |G| elements of
{m(N)g}\eaxa- Recall that a finite set of vectors in
CC is in general linear position if any subset of at most
|G| of these vectors are linearly independent. While be-
ing a classical concept in mathematics, it is also relevant
for communications, namely, for information transmission
through a so-called erasure channel [2]. In fact, a frame
F = {ax}7x, in C" is called maximally robust to era-
sures if the removal of any | < m — n vectors from F
leaves a frame.

Moreover, we consider the coherence of Gabor systems
in Section 3. We state probabilistic estimates of the co-
herence of a full Gabor system with respect to a randomly
generated window. In Section 4, we consider the condition
number of matrices formed by a small subset of a Gabor
system.

The results presented below were obtained over the last
few years in collaboration with Jim Lawrence and David
Walnut [12], Felix Krahmer and Peter Rashkov [11], and
Holger Rauhut and Jared Tanner [14, 13].



2. Gabor systems in general linear position

The following simple observations illustrate the useful-
ness of Gabor systems which are in general linear posi-
tion.

Proposition 1 [11, 12] For g € C%\ {0}, the following
are equivalent:

1. {m(N)g} s eax@ are in general linear position.
2. Forall f € CE\{0} we have |V, f|| > |G|*—|G|+1.

3. Forall f € CC, V,f is completely determined by its
values on any set A with |A| = n.

4. {m(N) g} e g is maximally robust to erasures.

5. The |G| x |G|? matrix V, has the property that every
minor of order n is nonzero.

Corollary 2 [12] If {m(\)g},cwa are in general linear
position, then ||gllo = |G| and ||g]lo = |G|.

Unfortunately, not each finite Abelian groups G permits
the existence of a vector g € CY satisfying one and there-
fore all conditions listed in Proposition 1. For example,
for the group G = Zy X Zs, no such g exists [11]. The
situation is different for G = Z,. Recall that E is of full
measure if the Lebesgue measure of C¢ \ E is 0.

Theorem 3 [12] If |G| is prime, that is, G = Zy, p prime,
then there is a dense open set E of full measure in C® such
that for every g € E, the elements of the full Gabor system
{m(N)g} e« g are in general linear position. That is, for

almost all g we have ||V, f|| > |G|* —|G|+1forall f # 0.

Rudimentary numerical experiments encourage us to ask
the following question.

Question 4 [12] For G cyclic, that is, G = Z,, n € N,
exists g € CC so that the conclusions of Proposition 1,
and, therefore, |V, f|| > |G|* — |G| + 1, f € C, hold

In fact, for |G| prime, Theorem 3 can be strengthened.

Theorem S [11] Let G = Zy, p prime. For almost every
g € C%, we have

Vo fllo = IGI* = [I fllo +1 (1

forall f € C%\ {0}. Moreover, for 1 < k < |G| and
1 <1< |GPwithk +1>|GJ? + 1 there exists f with
[fllo = F and [[Vy fllo = L.

Proposition 6 [11] If |G| is not prime, then V, has zero
minors for all g € C. Hence, there is no g € C% such
that (1) holds for all f € CC.

Numerical experiments for Abelian groups of order less
than or equal to 8, as well as our result for all cyclic groups
of prime order, indicate that the following question might
have an affirmative answer.

Question 7 [11] For every cyclic group G and almost ev-
ery g € C%, does

{(I£llo, IVafllo), € CH\{0}}
= {(Ifllo, IFlo+IGP=IG]), | € C\{0}}

hold?

The following result improves on Theorem 5. It allows for
the construction of Gabor based equal norm tight frames
of p2 elements in C”, n < p. To our knowledge, the only
previously known equal norm tight frames that are max-
imally robust to erasures are so-called harmonic frames
(see Conclusions in [2]).

Proposition 8 [11] There exists a unimodular g € C%», p
prime, that is, a g with |g(x)| = 1 for all x € G satisfying
the conclusions of Theorem 5.

To construct an equal norm tight frame, we choose a
g € (SY)P satisfying the conclusions of Proposition 8.
We remove p — n components of the equal norm tight
frame {m(\)g}, .oy g The resulting frame remains an
equal norm tight frame which is maximally robust to era-
sure. Note that this frame is not a Gabor frame proper.
Reducing the number of vectors in the frame to m < p?
vectors leaves an equal norm frame which is maximally
robust to erasure but which might not be tight. With the
restriction to frames with p2 elements, p prime, we have
shown the existence of Gabor frames which share the use-
fulness of harmonic frames when it comes to transmission
of information through erasure channels.

Background and more details on frames and erasures can
be found in [2, 15] and the references cited therein.

Note that Theorem 5 has as direct consequence

Theorem 9 [11] Let g € C%», p prime, satisfy the conclu-
sion of Theorem 5. Then any f € C% with || f|lo < 3|A],

ACZ, xz\p, is uniquely determined by A and ryVy f.

Here, only the support size of f is known. No additional
information on the support of f is required to determine
f

In terms of sparse representations, we consider the ques-
tion whether any vector f = Z e m(A)g can be deter-

AEA
mined by a few entries of f in case that |A] is small.

Theorem 10 [11] Let g € C%», p prime, satisfy the con-
clusion of Theorem 5. Then any f € C% with f =
Yoreram(Ng, A C pri; is uniquely determined by
B and rg f whenever |B| > 2|A|.

Note that similar to before, the efficient recovery of f from
2|A| samples of f in Theorem 10 does not require knowl-
edge of A.

The question asking how to recover f from a small number
of entries of f efficiently will be briefly addressed with
Theorem 14



3. Coherence of Gabor systems

In the following we restrict our attention to cyclic groups
G = Zy,n € N. We consider the so-called Alltop window
hA [15] with entries
1 .
hA (CL‘) — ﬁew\'m?’/n’

and the randomly generated window h* with entries

z=0,....,n-1, (2

-1, A3)

where the €, are independent and uniformly distributed on
the torus {z € C, |z| = 1}.
For ||h||2 = 1, the coherence of a full Gabor systems is

= max

(&:p)#(p")
In [16] it is shown that the coherence of {m(A\)h? : X €
Zy X Ly} C C™ given in (2) satisfies

1
M—%

for n prime. This is close to optimal since as the lower

bound for the coherence of frames with n? elements in
n ; 1

Unfortunately, the coherence (4) of h* applies only for n

prime. For arbitrary n we now consider the random win-

dow At

[{(M¢Tph, MpTyh)|. “)

&)

Theorem 11 [14] Let n € N and choose a random win-
dow h' with entries

where the €, are independent and uniformly distributed on
the torus {z € C,|z| = 1}. Let u be the coherence of the
associated Gabor dictionary (4), then for o« > 0 and n
even,

P(u > %) < dn(n—1)e /%,
while for n odd,
B2 =) < 2nln1) (7T g )

(6)

Up to the constant factor «, the coherence in Theorem 11

1 . .
comes close to the lower bound p > NS with high
probability. (The probability depends on «).

4. Conditioning of submatrices of V,

For applications such as sparse signal recovery, not only
linear independence of subsets of Gabor systems is re-
quired. It is rather needed, that small subsets of Gabor
systems form well-conditioned matrices.

Throughout this section, we let ¥ =V, € C*"* with
g = h® being the randomly generated unimodular win-
dow described in (3). For A C GxG we denote by W
the matrix consisting only of those columns indexed by
AeA

Theorem 12 [13] Lete,é € (0,1) and |A| = S. Suppose
that )
0°n
S<—m ——————
~ de(log(S/e) + ¢)

with ¢ = log(e?/(4(e—1))) ~ 0.0724. Then | Iy —
UAWAll < & with probability at least 1 — €; in other
words the minimal and maximal eigenvalues of V3 W 5 sat-
isfy 1 — 0 < Amin < Amax < 1+ d with probability at
least1 — ¢.

)

Remark 13 [13] Assuming equality in condition (7) and

solving for € we deduce
e? 5%n
< -
S qeon) o ( 465)

2
= C(CSexp (—LZ)

Py — Uil > 6)

with C' = 1.075.

Theorem 12 allows us to guarantee the successful use of

efficient algorithms to determine f = Z exm(N)g from

A€EA
a few entries of f in case that |A| is small. Here, we will

concentrate on algorithms based on Basis Pursuit. Basis
Pursuit seeks the solution of the convex problem

min||z|; subjectto ¥,z =y, (3)

where ||z][1 = > ycz2 || is the £1-norm of z. Efficient
convex optimization techniques for Basis Pursuit can be
found in [1, 3, 5].

Theorem 14 [13] Assume x is an arbitrary S-sparse co-
efficient vector. Choose the random unimodular Gabor
window g = h' defined in (3), that is, with random en-
tries independently and uniformly distributed on the torus
{z € C,|z| = 1}. Assume that

n

S<C—————= 9

= “log(n/2) ®

for some constant C. Then with probability at least 1 — ¢
Basis Pursuit (8) recovers x fromy = Y = ¥ .

References:

[1] Stephen Boyd and Lieven Vandenberghe. Convex
Optimization. Cambridge Univ. Press, 2004.

[2] Peter G. Casazza and Jelena Kovacevi¢. Equal-norm
tight frames with erasures. Adv. Comput. Math.,
18(2-4):387-430, 2003. Frames.

[3] S.S. Chen, D.L. Donoho, and M.A. Saunders.
Atomic decomposition by Basis Pursuit. SIAM J.
Sci. Comput., 20(1):33-61, 1999.

[4] O. Christensen. An introduction to frames and Riesz
bases. Applied and Numerical Harmonic Analysis.
Birkhduser Boston Inc., Boston, MA, 2003.

[5] D.L. Donoho and Y. Tsaig. Fast solution of 11-norm
minimization problems when the solution may be
sparse. Preprint, 2000.



[6]

[7]

(8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

H.G. Feichtinger and T. Strohmer, editors. Gabor
Analysis and Algorithms: Theory and Applications.
Birkhiuser, Boston, MA, 1998.

H.G. Feichtinger and T. Strohmer, editors. Ad-
vances in Gabor Analysis. Applied and Numerical
Harmonic Analysis. Birkhduser Boston Inc., Boston,
MA, 2003.

K. Grochenig. Foundations of Time-Frequency Anal-
ysis. Applied and Numerical Harmonic Analysis.
Birkhiuser, Boston, MA, 2001.

A. Grossmann, J. Morlet, and T. Paul. Trans-
forms associated to square integrable group rep-
resentations. 1. General results. J. Math. Phys.,
26(10):2473-2479, 1985.

C. Heil, J. Ramanathan, and P. Topiwala. Linear
independence of time—frequency translates. Proc.
Amer. Math. Soc., 124(9), September 1996.

F. Krahmer, G.E. Pfander, and P. Rashkov. Uncer-
tainty principles for time—frequency representations
on finite abelian groups. Appl. Comp. Harm. Anal.,
2008. doi:10.1016/j.acha.2007.09.008.

J. Lawrence, G.E. Pfander, and D. Walnut. Linear
independence of Gabor systems in finite dimensional
vector spaces. J. Fourier Anal. Appl., 11(6):715-726,
2005.

G.E. Pfander and H. Rauhut. Sparsity in time-
frequency representations. 2008. Preprint.

G.E. Pfander, H. Rauhut, and J. Tanner. Identifica-
tion of matrices having a sparse representation. /[EEE
Trans. Signal Proc., 2008. to appear.

T. Strohmer and R.W. Heath, Jr. Grassmannian
frames with applications to coding and communica-
tion. Appl. Comput. Harmon. Anal., 14(3):257-275,
2003.

Thomas Strohmer and Robert W.jun. Heath. Grass-
mannian frames with applications to coding and
communication. Appl. Comput. Harmon. Anal.,
14(3):257-275, 2003.



