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Abstract

We report on initial findings on Gabor systems with multivariate Gaus-
sian window. Unlike the existing characterisation for dimension one in terms
of lattice density, our results indicate that the behavior of Gaussians in
higher-dimensional Gabor systems is intricate and further exploration is a
valuable and challenging task.
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1 Introduction

Gabor’s seminal paper [Gab46] claimed that every function in L2(R) can be well
represented as a series of translated and modulated copies of the Gaussian g1(x) =
e−π|x|

2
. In detail, he suggested that for every f ∈ L2(R) there exists a sequence of

scalars ckl(f) such that

f(t) =
∑
k,l∈Z

ckl(f)e2πiltg1(t− k). (1)

But while its central role in analysis and its wide spectrum of nice analytic prop-
erties, for example, optimal time–frequency concentration, make the Gaussian a
natural candidate to be a window function for so-called Gabor systems, it is now
well established that any series representation of the form (1) only converges to
f in a distributional sense, and not in the L2-norm [Jan81]. Today, the spanning
properties of the Gabor system (g1, aZ × bZ) = {e2πibltg1(t − ak)}, a, b > 0, are
fully understood, for example, the system suggested by Gabor turns out to be
overcomplete ([Lyu92, SW92] and Theorem 6 below).

Multivariate Gaussian and general Gabor systems though are far from being
understood. While, for example, it is known that for any g, the Gabor system
(g,Λ) = {e2πiωtg(t − x) : (x, ω) ∈ Λ} is not a frame for L2(Rd) if the set Λ has
density less than 1, nontrivial positive results for given window functions such
as the Gaussian are scarce in the literature [Hei07]. Simultaneously to our work,
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Gröchenig has started to study of multivariate Gaussian Gabor systems. His focus
though is on so-called complex lattices [Grö10]. Here, we provide some results that
illustrate the intricate structure of Gaussian Gabor frames in higher dimensions
for real lattices.

2 Gabor frames

We denote by gd the d-dimensional normalized Gaussian 2
d
4 e−π‖x‖

2
. It is clear

that gd = ⊗d times g1. A translation or time shift is the operator (Txf)(t) =
f(t− x), x ∈ Rd, and a modulation or frequency shift is the operator (Mωf)(t) =

e2πi〈ω,t〉f(t), ω ∈ R̂d. A time-frequency shift is then

(π(λ)f)(t) = (MωTxf)(t) = e2πi〈ω,t〉f(t− x), λ = (x, ω) ∈ Rd × R̂d.

Definition 1 Let Λ ⊂ R2d be a discrete set. A Gabor system (g,Λ) for L2(Rd)
is the set of all time-frequency shifts of the window function g by λ = (x, ω) ∈ Λ,
that is, (g,Λ) = {π(λ)g : λ ∈ Λ}.

Note that it is an easy consequence from Fourier analysis that (χ[0,1),Z×Z) is
an orthonormal basis for L2(R). For (χ[0,1),Λ), with Λ 6= Z × Z, the situation is
already quite delicate as shown in [Jan03].

While Gabor orthonormal bases are useful, the so-called Balian-Low Theorem
implies that they have a crucial shortcoming. Namely, if (g,Λ) is an orthonormal
basis for L2(R), then g can not be well-localized in both time and frequency, in
fact, we then have ∫

|xg(x)|2 dx
∫
|ξĝ(ξ)|2 dξ =∞.

Consequently, in Gabor analysis we resort to consider frames and Riesz bases.

Definition 2 A family of functions {φk}k∈Z ⊂ L2(Rd) with

A‖f‖2
2 ≤

∑
k

|〈f, φk〉|2 ≤ B‖f‖2
2 , f ∈ L2(Rd), (2)

for positive A and B is called a frame for L2(Rd). The constants A and B are
called, respectively, a lower frame bound and an upper frame bound of the frame
{φk}.

Definition 3 A family of functions {ek}k∈Z ⊂ L2(Rd) with

A‖c‖2
2 ≤ ‖

∑
k

ckek‖2
2 ≤ B‖c‖2

2 , c ∈ `2
0(Rd),

for positive A and B is called a Riesz basis.
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For a detailed description of frame and Riesz basis theory we refer to [Grö01,
Chr03].

To consider lattices, or more general countable sets in R2d, we state the defi-
nition of density and summarize its role in Gabor analysis. Let Bd(R) denote the
l2-ball in Rd centered at 0 and with radius R.

Definition 4 The lower and upper Beurling densities of M ⊂ Rd are given by,
respectively,

D−(M) = lim inf
R→∞

inf
z∈Rd

|M ∩ {Bd(R) + z}|
πRd

,

D+(M) = lim sup
R→∞

sup
z∈Rd

|M ∩ {Bd(R) + z}|
πRd

.

Whenever D−(M) = D+(M), thenM is said to have a uniform Beurling density,
denoted by D(M) = D−(M) = D+(M). M is uniformly separated if inf{|λ−µ| :
λ 6= µ ∈ M} > 0. If M is a full-rank lattice, that is, M = AZd, detA 6= 0, then
M is uniformly separated and D(M) = 1

detA
.

Theorem 5 (Density theorem) Let g ∈ L2(Rd) and let Λ be a full-rank lattice.

1. If D(Λ) < 1, then (g,Λ) is incomplete in L2(Rd).

2. If (g,Λ) is a frame for L2(Rd), then D(Λ) ≥ 1.

3. If (g,Λ) is a Riesz basis for its closed linear span, then D(Λ) ≤ 1.

Thus, if (g,Λ) is an orthonormal basis, then D(Λ) = 1.

The results listed in Theorem 5 have roots in various papers; they are nicely
summarized in [Hei07]. In the one-dimensional case, Gaussian Gabor frames and
Riesz bases are well characterized [Lyu92, SW92].

Theorem 6 Let Λ ⊂ R2. The Gabor system (g1,Λ) is a frame if and only if there
exists a uniformly separated Λ′ ⊂ Λ such that 1 < D−(Λ′) ≤ D+(Λ) < ∞. If Λ
is uniformly separated and D+(Λ) < 1, then (g1,Λ) is a Riesz basis of a proper
subspace of L2(R).

In their proofs, Lyubarski and Seip-Wallsten used methods from complex analysis;
the connection between Gaussian Gabor frames and complex analysis is described
below.

The short-time Fourier transform, also called continuous Gabor transform or
windowed Fourier transform is defined formally by

Vgf(x, ω) =

∫
Rd
f(t)e−2πiωtg(t− x)dt = 〈f,MωTxg〉 = 〈f̂ , TωM−xĝ〉
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If ‖g‖2 = 1, for example, if g = gd, then the short-time Fourier transform is a uni-
tary operator, so ‖Vgf‖2

L2(R2d)
= ‖f‖2. In the Gabor case, the frame property (2)

becomes a sampling set condition: there exist constants A,B > 0 such that

A‖Vgf‖2
L2(R2d) ≤

∑
λ∈Λ

|Vgf(λ)|2 ≤ B‖Vgf‖2
L2(R2d), f ∈ L2(Rd).

The Bargmann-Fock space is defined by

F(Cd) =

{
F − entire with ‖F‖F =

(∫
Cd
|F (z)|2e−π|z|2dz

) 1
2

<∞

}
.

The Bargmann transform B maps L2(Rd) unitarily onto F(Cd) by

B : f 7→ Bf : z 7→ 2
1
4

∫
f(t)e2πitz−πt2−π z

2

2 dt, z ∈ Cd.

With this notation it is easy to see that

Vgdf(x,−ξ) = e2πixξBf(x+ iξ)e−
π
2
|x+iy|2 ,

[Lyu92, SW92]. This demonstrates that (gd,Λ) is a frame if and only if Λ is a
sampling set for F . In d = 1 this was used to prove Theorem 6 [SW92, Lyu92].
But in higher dimension it appears as if as little is known about sampling in
Bargmann-Fock spaces as is known about multivariate Gaussian Gabor frames
(see [Grö10] for a more detailed discussion of this).

3 Gaussian Gabor frames for L2(Rd)

The easiest way to create frames for L2(Rd), d ≥ 2, is to take tensor products of
lower-dimensional frame systems. For n lattices Λ1, . . . ,Λn of the same dimension,
we set �ni=1Λi = {(x1, . . . , xn)× (ω1, . . . , ωn) : (xi, ωi) ∈ Λi}.

Lemma 7 Let (g,Λ1) and (h,Λ2) be frames for L2(Rd). Then (g⊗ h,Λ1�Λ2) is
a frame for L2(R2d).

For a simple proof we refer to [PR10].

Proposition 8 Let Λ = Z2× ( a 0
0 b ) Z2. If a < 1 and b < 1, then (g2,Λ) is a frame

for L2(R2). If a = b = 1, (g2,Λ) is complete in L2(R2), but not a frame. If a > 1
or b > 1, then (g2,Λ) is incomplete.

Note that here D(Λ) = 1
ab

.Below we shall use the Zak transform which is defined
via the series

Zf(x, ω) =
∑
k∈Zd

f(x− k)e2πikω, (x, ω) ∈ R2d.
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For a detailed presentation of the properties of the Zak transform we refer to [Grö01,
Chr03].

Proof of Proposition 8. If a < 1, b < 1, then Theorem 6 implies (g1,Z × aZ)
and (g1,Z × bZ) are frames for L2(R). Lemma 7 implies that (g2,Λ) is a frame
for L2(R2).

To show completeness of the Gabor system for a = b = 1, we observe that for
(x, ω) = (x1, x2, ω1, ω2)

Zg2(x, ω) = Zg1(x1, ω1) · Zg1(x2, ω2)

Because (g1,Z×Z) is complete in L2(R), but not a frame, according to Proposition
9.4.3 in [Chr03], Zg1 vanishes on a set of measure zero in [0, 1)2. Hence, the
Zak transform Zg2 vanishes only on a set of zero measure in [0, 1)4. According
to Proposition 9.4.3 in [Chr03], (g2,Z2 × Z2) is complete. Furthermore, since
g2 ∈ S(R2), its Zak transform is continuous. Hence, it is not bounded away from
0 almost everywhere. Proposition 8.3.2 in [Grö01] implies that the Gabor system
(g2,Z2 × Z2) is not a frame for L2(R2).

If a > 1 or b > 1, say b > 1, then (g1,Z×bZ) is incomplete in L2(R). Hence we
can choose f1 ∈ L2(Rd), f1 6= 0 such that Vg1f1(m1, bm1) = 0 for all (m1, n1) ∈ Z2.
Then for any f2 ∈ L2(R), f2 6= 0, the STFT

Vg2(f1 ⊗ f2)(m1,m2, an1, bn2) = Vg1(m1, an1)Vg1(m2, bn2) = 0. (3)

But f1 ⊗ f2 6= 0, so (g2,Z× Z× aZ× bZ) is incomplete. �

Proposition 9 Let Λ = Z2×( a a
−b b ) Z2. Then the Gabor system (g2,Λ) is a frame

for L2(R2) if a, b < 1
2
. If a = b = 1

2
, then (g2,Λ) is complete but not a frame for

L2(R2). If a, b > 1
2
, then (g2,Λ) is incomplete.

Note that here D(Λ) = 1
2ab

, so (g2,Λ) is a-priori not a frame if 2ab > 1.
Proof. For Λ = Z2 × ( a a

−b b ) Z2, F = f1 ⊗ f2 ∈ L2(R2), we have

Vg2F (m1,m2, a(n1 +n2), b(n2−n1)) = Vg1f1(m1, a(n1 +n2)) ·Vg1f2(m2, b(n2−n1))

If n1, n2 are of the same parity, then n1 ± n2 is always even, otherwise, n1 ± n2

is odd. Hence, if a, b > 1
2
, then we can choose a nonzero f1 ∈ L2(R) such that

Vg1f1(m1, a(n1 + n2)) = 0, for all m1 and all (n1, n2) with n1 − n2 even, and a
nonzero f2 ∈ L2(R) such that Vg1f2(m2, b(n2−n1)) = 0, for all m2, and all (n1, n2)
with n1 − n2 odd, since the densities of the respective lattices in R2 are greater
than 1. Then F = f1 ⊗ f2 6= 0 but

Vg2F (m1,m2, a(n1 + n2), b(n2 − n1)) = 0, ∀m1,m2, n1, n2,

implying incompleteness of (g2,Λ) for all a, b > 1
2
.

We note further that

Λ = {(m1,m2, 2ak1, 2bk2)T : m1,m2, k1, k2 ∈ Z}
∪ {(m1,m2, 2ak1 + a, 2bk2 + b)T : m1,m2, k1, k2 ∈ Z}.
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If a, b = 1
2
, the system (g2,Λ) is complete, because it is the union of two complete

systems. However, it is not a frame for L2(R2): we can choose ε > 0 and f1, f2 ∈
L2(R) with unit norm such that∑

k,l∈Z

|Vg1f1(k, l)|2 < ε,
∑
k,l∈Z

|Vg1f2(k, l + 1
2
)|2 < ε.

Then letting F = f1 ⊗ f2, it is not difficult to see that∑
m1,m2,n1,n2

|Vg2F (m1,m2,
1
2
(n1 + n2), 1

2
(n2 − n1)|2

=
∑

m1,m2,n1, n2︸ ︷︷ ︸
2|n1−n2

|Vg2F (m1,m2,
1
2
(n1 + n2), 1

2
(n2 − n1)|2

+
∑

m1,m2,n1, n2︸ ︷︷ ︸
2-n1−n2

|Vg2F (m1,m2,
1
2
(n1 + n2), 1

2
(n2 − n1)|2

≤
∑
k,l∈Z

|Vg1f1(k, l)|2 ·
∑
k,l∈Z

|Vg1f2(k, l)|2

+
∑
k,l∈Z

|Vg1f1(k, l + 1
2
)|2 ·

∑
k,l∈Z

|Vg1f2(k, l + 1
2
)|2 ≤ 2Cε,

where C is the norm of the `2(Z2)-valued bounded analysis operator D : f 7→
{Vg1f(λ) : λ ∈ Z2}, see [Grö01], Proposition 12.2.5. This implies that no lower
frame bound exists for (g2,Λ).

If a, b < 1
2
, then (g2,Λ) is a frame for L2(R2), because it is the union of two

frames for L2(R2). �
Remark : Unfortunately, the cases a > 1

2
, b < 1

2
or a < 1

2
, b > 1

2
are not answered

by Proposition 9.
Generalizing the ideas underlying Proposition 9 leads to the following result

for lattices Λ with a particular subgroup structure:

Theorem 10 Let �di=1AiZ2 be a subgroup of Λ ⊂ R2d of index n. If there exist
natural numbers li, 1 ≤ i ≤ d, such that

∑d
i=1 li = n and li < detAi, then the

system (gd,Λ) is incomplete in L2(Rd).

Proof. We split the n cosets of �di=1AiZ2 into d groupings ∆1, . . . ,∆d such that
|∆i| = li. ∆i contains coset representatives denoted by [τ ]. We have

Λ =
d⋃
i=1

⋃
[τ ]∈∆i

{A1Z2 × . . .× AdZ2}+ [τ ],

The short-time Fourier transform of the tensor product ⊗di=1fi factorizes, namely

Vgd(⊗di=1fi)(x, ω) =
d∏
i=1

Vg1fi(xi, ωi),
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where (xi, ωi) ∈ AiZ2 + [τi], [τi] being the coset representative of AiZ2 in the
restriction of �di=1AiZ2 to AiZ2. As the density of the set

Ui =
⋃

[τ ]∈∆i

AiZd + [τi], 1 ≤ i ≤ d

is liD(Ai) < 1, Theorem 6 applies and non-zero functions fi ∈ L2(R) can be
chosen so that Vg1fi(xi, ωi) = 0, for all (xi, ωi) ∈ Ui. Then as in Proposition 9 we
conclude that Vgd(⊗di=1fi) vanishes on all of Λ, but ⊗di=1fi 6= 0. Hence, this Gabor
system is incomplete in L2(Rd). �

Remark : If Λ satisfies the hypothesis of Theorem 10, then the density theorem
implies incompleteness if D(Λ) = n

∏d
i=1

1
detAi

< 1, that is, if
∏d

i=1 detAi >
n. Hence, for Theorem 10 to be relevant, we need to combine the condition∏d

i=1 detAi ≤ n with the condition detAi > li and
∑d

i=1 li = n. This leads to

d∏
i=1

li <
d∑
i=1

li. (4)

Assuming without loss of generality the order l1 ≥ l2 ≥ . . . ≥ ld > 0, we divide
(4) by l1 and observe that then

∏d
i=2 li < d. As all li are positive integers, we

conclude that l2 = l3 = l4 = . . . = ld = 1 and l1 = n− d+ 1.
Note that Theorem 10 implies the incompleteness asserted in Proposition 9

for a, b > 1
2

because (Z × 2aZ) � (Z × 2bZ) is a subgroup of Λ of index 2 and
l1 = l2 = 1 < 2a, 2b. Similarly, we can deduce the following result.

Corollary 11 Let Λ = ( ak a0 b ) Z2 × Z2, k ∈ N. Then the Gabor system (g2,Λ) is
incomplete if there exists l ∈ N such that a > l

k
, b > k−l

k
.

Proof. The subgroup (akZ × Z) � (bkZ × Z) has index k in Λ. If there exist
l1, l2 such that l1 < ak, l2 < bk and l1 + l2 = k, the result follows by Theorem 10.
�
Remark: The range of parameters k, l, where the condition from Corollary 11 is
stronger than the density condition (abk > 1) is quite small if k ≥ 5: the only
values of l for which

1

k
> ab >

l

k
· k − l

k

are l = 1, k − 1 because always 2(k − 2) > k.
We can combine the results above to obtain further examples.

Proposition 12 Let Λ = Z3 ×
(

a a 0
−b b 0
0 0 c

)
Z3. Then the Gabor system (g3,Λ) is a

frame for L2(R3) if a, b < 1
2
, c < 1. If a = b ≤ 1

2
, c = 1, (g3,Λ) is complete, but

not a frame for L2(R3). If a, b > 1
2

or c > 1, (g3,Λ) is incomplete.

Proof. We choose F = f1 ⊗ f2 ⊗ f3 ∈ L2(R3) in order to apply a tensor
argument as (3). When a, b > 1

2
, the claim follows immediately from Proposition 9.
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When c > 1, it suffices to choose f3 which is in the orthogonal complement of
{TmMcng1 : m,n ∈ Z} and repeat the same line of reasoning.

Whenever a, b < 1
2
, c < 1, then (g3,Λ) is a frame, because it is the product of

two frames (see Lemma 7 and Proposition 9). �
Remark : The herein presented results extend to some (but not all) lattices which
are symplectically identical to those listed. For a symplectic transformation M
with associated metaplectic operator µ(M), the spanning properties of (µ(M)g,MΛ)
are equivalent to those of (g,Λ) [Fol89, Grö01]. Furthermore, the metaplectic
operators µ(M) associated to symplectic matrices M of the form

(
B 0
0 (B∗)−1

)
, B

unitary, respectively
(

0 Id
−Id 0

)
, are dilation by the unitary matrix B, respectively

the Fourier transform [Fol89, Grö01]. Both leave the Gaussian invariant, hence,
for such M , (gd,MΛ) is a frame if and only if (gd,Λ) is.

The results presented only scratch the surface of the theory of multivariate
Gaussian Gabor frames. But we hope that together with [Grö10], they will moti-
vate further study on the subject.
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