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Abstract

We report on initial findings on Gabor systems with multivariate Gaus-
sian window. Unlike the existing characterisation for dimension one in terms
of lattice density, our results indicate that the behavior of Gaussians in
higher-dimensional Gabor systems is intricate and further exploration is a
valuable and challenging task.
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1 Introduction

Gabor’s seminal paper [Gab46] claimed that every function in L?*(R) can be well
represented as a series of translated and modulated copies of the Gaussian g;(z) =
e~™7” In detail, he suggested that for every f € L?(R) there exists a sequence of
scalars ¢y (f) such that

F6) =" cnl(f)e™ gt — k). (1)

k€7

But while its central role in analysis and its wide spectrum of nice analytic prop-
erties, for example, optimal time—frequency concentration, make the Gaussian a
natural candidate to be a window function for so-called Gabor systems, it is now
well established that any series representation of the form (1) only converges to
f in a distributional sense, and not in the L?*norm [Jan81]. Today, the spanning
properties of the Gabor system (gy,aZ x bZ) = {e*™g,(t — ak)}, a,b > 0, are
fully understood, for example, the system suggested by Gabor turns out to be
overcomplete ([Lyu92, SW92] and Theorem 6 below).

Multivariate Gaussian and general Gabor systems though are far from being
understood. While, for example, it is known that for any g, the Gabor system
(g,\) = {e¥™lg(t — ) : (z,w) € A} is not a frame for L2(RY) if the set A has
density less than 1, nontrivial positive results for given window functions such
as the Gaussian are scarce in the literature [Hei07]. Simultaneously to our work,
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Grochenig has started to study of multivariate Gaussian Gabor systems. His focus
though is on so-called complex lattices [Gré10]. Here, we provide some results that
illustrate the intricate structure of Gaussian Gabor frames in higher dimensions
for real lattices.

2 Gabor frames

We denote by g4 the d-dimensional normalized Gaussian 29e~lzl® Tt is clear

that g4 = Qdtimes 1. A translation or time shift is the operator (T,f)(t) =
f(t —x), x € RY and a modulation or frequency shift is the operator (M, f)(t) =
2wt £(1), w € RY. A time-frequency shift is then

(TN = (MTLf)(E) = @0 f(t —2), A= (z,0) € R x R,

Definition 1 Let A C R be a discrete set. A Gabor system (g,A) for L*(R?)
is the set of all time-frequency shifts of the window function g by A = (z,w) € A,
that is, (g, A) = {m(N\)g : A € A}.

Note that it is an easy consequence from Fourier analysis that (xo,1), Z X Z) is
an orthonormal basis for L?(R). For (xp1),A), with A # Z x Z, the situation is
already quite delicate as shown in [Jan03].

While Gabor orthonormal bases are useful, the so-called Balian-Low Theorem
implies that they have a crucial shortcoming. Namely, if (g, A) is an orthonormal
basis for L?(R), then g can not be well-localized in both time and frequency, in
fact, we then have

gt de [igae) as = .
Consequently, in Gabor analysis we resort to consider frames and Riesz bases.

Definition 2 A family of functions {¢x }rez C L*(RY) with

AllFIE < D Ko < BIfl5,  feL*RY, (2)
k

for positive A and B is called a frame for L*(RY). The constants A and B are
called, respectively, a lower frame bound and an upper frame bound of the frame

{on}-

Definition 3 A family of functions {ex}rez C L*(R?) with

Allely < 1) eenlls < Bllellz, ¢ € G(R?),
k

for positive A and B is called a Riesz basis.



For a detailed description of frame and Riesz basis theory we refer to [Gro01,
Chr03].

To consider lattices, or more general countable sets in R??, we state the defi-
nition of density and summarize its role in Gabor analysis. Let B4(R) denote the
[2-ball in R? centered at 0 and with radius R.

Definition 4 The lower and upper Beurling densities of M C RY are given by,
respectively,

D™ (M) = liminf inf IMN{Ba(R) + z}\7
R—oo zeRd TR
(MO {Bu(R) + 2}

DT (M) = h;n_)sip ngﬂg —pi
Whenever D= (M) = DT (M), then M is said to have a uniform Beurling density,
denoted by D(M) = D~ (M) = DT(M). M is uniformly separated if inf{|\ — | :
N# e M} >0. If M is a full-rank lattice, that is, M = AZ? det A # 0, then
M is uniformly separated and D(M) = .

Theorem 5 (Density theorem) Let g € L?(R?) and let A be a full-rank lattice.
1. If D(A) < 1, then (g, A) is incomplete in L?(RY).
2. If (g, \) is a frame for L*(R?), then D(A) > 1.
3. If (g, \) is a Riesz basis for its closed linear span, then D(A) < 1.

Thus, if (g, \) is an orthonormal basis, then D(A) = 1.

The results listed in Theorem 5 have roots in various papers; they are nicely
summarized in [Hei07]. In the one-dimensional case, Gaussian Gabor frames and
Riesz bases are well characterized [Lyu92, SW92].

Theorem 6 Let A C R?. The Gabor system (g1, A) is a frame if and only if there
exists a uniformly separated ' C A such that 1 < D=(A') < DY(A) < co. If A
is uniformly separated and DT (A) < 1, then (g1, ) is a Riesz basis of a proper
subspace of L*(R).

In their proofs, Lyubarski and Seip-Wallsten used methods from complex analysis;
the connection between Gaussian Gabor frames and complex analysis is described
below.

The short-time Fourier transform, also called continuous Gabor transform or
windowed Fourier transform is defined formally by

‘/gf(xa w) = e .f(t)e_Qmwtg(t - x)dt = <f7 Mwag> = <J/C\7 TwM—a:/g\>



If ||g]|2 = 1, for example, if g = g4, then the short-time Fourier transform is a uni-
tary operator, so ||V, f[|75 a0y = [l f]|*. In the Gabor case, the frame property (2)
becomes a sampling set condition: there exist constants A, B > 0 such that

AV fl3ageay < Y IVaf VP < BlVyf 3220, f € L*(RY.
AEA

The Bargmann-Fock space is defined by

.\ 2
F(CY = {F — entire with ||[F||z = (/ |F(2)[?e ™A dz> < oo} .
Cd
The Bargmann transform B maps L?(R?) unitarily onto F(C?) by
1 ; 2 22
B:f—Bf:z— 21 /f(t)e%m”t rdt, zeCh

With this notation it is easy to see that
Vy f(x,—€) = ™ B f(x + if)e 51w+l

[Lyu92, SW92|. This demonstrates that (g4, A) is a frame if and only if A is a
sampling set for F. In d = 1 this was used to prove Theorem 6 [SW92, Lyu92|.
But in higher dimension it appears as if as little is known about sampling in
Bargmann-Fock spaces as is known about multivariate Gaussian Gabor frames
(see [Gro10] for a more detailed discussion of this).

3 Gaussian Gabor frames for L*(R%)

The easiest way to create frames for L?(R%),d > 2, is to take tensor products of
lower-dimensional frame systems. For n lattices Ay, ..., A, of the same dimension,
we set O A = {(1,...,xn) X (w1, ... wy) (T4, w;) € A}

Lemma 7 Let (g, A1) and (h, Ay) be frames for L*(RY). Then (g @ h, A1 ® Ay) is
a frame for L?(R??).
For a simple proof we refer to [PR10].

Proposition 8 Let A =7*x (89)Z*. Ifa <1 and b < 1, then (g, A) is a frame
for L*(R?). Ifa=b=1, (g2, \) is complete in L*(R?), but not a frame. If a > 1
orb> 1, then (g2, A) is incomplete.

Note that here D(A) = %.Below we shall use the Zak transform which is defined
via the series

Zf(r,w) = Z flz —Ek)e*™ ™ (z,w) € R*,

kezd



For a detailed presentation of the properties of the Zak transform we refer to [Gro01,
Chr03].

Proof of Proposition 8. If a < 1,b < 1, then Theorem 6 implies (g1,Z X aZ)
and (g1,Z x bZ) are frames for L?(R). Lemma 7 implies that (g, A) is a frame
for L*(R?).

To show completeness of the Gabor system for a = b = 1, we observe that for
(x,w) = (21, T3, w1, ws)

Zgo(x,w) = Zg1(x1,w1) - Zg1 (22, ws)

Because (g1, Z x Z) is complete in L?(R), but not a frame, according to Proposition
9.4.3 in [Chr03], Zg; vanishes on a set of measure zero in [0,1)%. Hence, the
Zak transform Zg, vanishes only on a set of zero measure in [0,1)*. According
to Proposition 9.4.3 in [Chr03], (g2, Z? x Z?) is complete. Furthermore, since
go € S(R?), its Zak transform is continuous. Hence, it is not bounded away from
0 almost everywhere. Proposition 8.3.2 in [Gro01] implies that the Gabor system
(g2, Z? x 7Z?) is not a frame for L?(R?).

Ifa>1orb>1,sayb> 1, then (g;,Z X bZ) is incomplete in L*(R). Hence we
can choose f1 € L*(R?), f1 # 0 such that Vi, fi(my,bmy) = 0 for all (my,n,) € Z2.
Then for any f, € L*(R), f» # 0, the STFT

Voo (f1 @ fo)(ma, my, any, bng) = Vg, (m1, any ) Vg, (ma, bng) = 0. (3)
But f1 ® fo # 0, s0 (g2, Z X Z X aZ x bZ) is incomplete. O

Proposition 9 Let A Z*x (%% ) . Then the Gabor system (ga, A) is a frame
for L*(R?) if a,b < s Ifa=0b= then (g2, A) is complete but not a frame for
L*(R?). Ifa,b> % then ( JA) s mcomplete

Note that here D(A) = 5.0 50 (g2, A) is a-priori not a frame if 2ab > 1.
Proof. For A = 72 x ( y0) 2%, F = fi @ fo € L*(R?), we have
Voo F'(m1, ma, a(ni +n2), b(ne —n1)) = Vg, fi(ma, a(ni +n2)) - Vg, f2(ma, b(nz — 1))

If nq,no are of the same parity, then ny; & nsy is always even, otherwise, n; £ ns
is odd. Hence, if a,b > %, then we can choose a nonzero f; € L*(R) such that
Va fi(my,a(ng + ng)) = 0, for all my and all (ny,ny) with ny — ny even, and a
nonzero fo € L*(R) such that Vi, fa(ma, b(na —ny)) = 0, for all ma, and all (nq,ns)
with n; — ny odd, since the densities of the respective lattices in R? are greater
than 1. Then F = f; ® fy # 0 but

Ve F(my,ma, a(ng +n2),b(ne —ny)) =0, VYmy,mg,ng,ne,

implying incompleteness of (go, A) for all a,b > %
We note further that

A= {(ml,mg, 2CLIC1, 2bl€2)T . ml,mg,kl,kg c Z}
U {(ml,mQ, 2ak; + (I,2b/{32 + b)T M, Ma, ]{31, ko € Z}
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Ifa, b= %, the system (go, A) is complete, because it is the union of two complete
systems. However, it is not a frame for L*(R?): we can choose € > 0 and fi, fo €
L?*(R) with unit norm such that

Z “/§l1f1<k7l)’2<67 Z |V91f2(k7l+%>|2<6‘
k,l€Z kl€Z
Then letting F' = fi ® f, it is not difficult to see that
Y VaF(myme, 5(n +no), (nz — )

mi,m2,ny,n2

= ) Ve F(mi,my, 3 +ns), (o — )

mi,mz2,T1, 19
——
2|n1—ng
+ Z Ve F'(my, ma, 5(n1 + n2), 3(ng — ny)|?
m1,mz2,T1, o
——
2fn1—ng
< WVafik P> Vi folk, D)
kleZ kleZ
+ D WVafilk L+ 5P Y Vi folk, L+ 3)F < 2Ce,
kleZ kleZ

where C' is the norm of the ¢*(Z?)-valued bounded analysis operator D : f
{Var f(A) : X € Z*}, see [Gro01], Proposition 12.2.5. This implies that no lower
frame bound exists for (gs, A).

If a,b < 3, then (g2, A) is a frame for L*(R?), because it is the union of two
frames for L*(R?). O

Remark: Unfortunately, the cases a > %, b < % ora < %, b > % are not answered
by Proposition 9.

Generalizing the ideas underlying Proposition 9 leads to the following result
for lattices A with a particular subgroup structure:

Theorem 10 Let ©% | A;Z* be a subgroup of A C R*® of index n. If there exist
natural numbers l;,1 < i < d, such that Zle l; = n and l; < det A;, then the
system (gq, \) is incomplete in L*(R?).

Proof. We split the n cosets of ®%_, A;Z? into d groupings Ay, ..., A4 such that
|A;| = ;. A; contains coset representatives denoted by [r]. We have

A= U {AZ x ... x Az} + 7],

i=1[r]eA;

The short-time Fourier transform of the tensor product ®{_, f; factorizes, namely

d
‘/Eld(®?:1fi)<x7w) = H ‘/g1fi($ia Wi)y

i=1



where (z;,w;) € AZ? + [7i], [r:] being the coset representative of A;Z? in the
restriction of ®©¢_ | 4;7Z% to A;Z?. As the density of the set

[T]EAZ‘

is [;D(A;) < 1, Theorem 6 applies and non-zero functions f; € L*(R) can be
chosen so that Vi, fi(z;,w;) = 0, for all (z;,w;) € U;. Then as in Proposition 9 we
conclude that Vi, (®%, f;) vanishes on all of A, but ®¢_, f; # 0. Hence, this Gabor
system is incomplete in L?(R?). O

Remark: If A satisfies the hypothesis of Theorem 10, then the density theorem
implies incompleteness if D(A) = n[]L, m < 1, that is, if J[, det 4, >
n. Hence, for Theorem 10 to be relevant, we need to combine the condition

1%, det A; < n with the condition det A; > I; and 3>° I; = n. This leads to

d d
=1 =1

Assuming without loss of generality the order Iy > Iy > ... >[5 > 0, we divide
(4) by l; and observe that then H?:2 li < d. As all [; are positive integers, we
conclude that sy =3 =4 =...=l;j=1and ; =n—d+ 1.

Note that Theorem 10 implies the incompleteness asserted in Proposition 9
for a,b > 5 because (Z x 2aZ) ® (Z x 2bZ) is a subgroup of A of index 2 and
l1 =1l =1 < 2a,2b. Similarly, we can deduce the following result.

Corollary 11 Let A = (% ¢)Z? x Z*,k € N. Then the Gabor system (g2, \) is
incomplete if there exists | € N such that a > é, b > %

Proof. The subgroup (akZ x Z) ® (bkZ x 7Z) has index k in A. If there exist
l1,15 such that I} < ak,ly < bk and [; + Iy = k, the result follows by Theorem 10.
0
Remark: The range of parameters k,[, where the condition from Corollary 11 is
stronger than the density condition (abk > 1) is quite small if & > 5: the only

values of { for which
1 b~ I k-1
T

are | = 1,k — 1 because always 2(k — 2) > k.
We can combine the results above to obtain further examples.

a a0

Proposition 12 Let A = 73 x <—Ob b 0) Z3. Then the Gabor system (g3, \) is a

frame for L*(R3) if a,b < %,c <1l Ifa=0b< %,c =1, (g3, ) is complete, but
not a frame for L*(R?). If a,b > 5 or ¢ > 1, (g3, A) is incomplete.

Proof. We choose F' = f1 ® fo @ f3 € L*(R?) in order to apply a tensor
argument as (3). When a, b > %, the claim follows immediately from Proposition 9.
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When ¢ > 1, it suffices to choose f3 which is in the orthogonal complement of
{T,,M_..g1 : m,n € Z} and repeat the same line of reasoning.

Whenever a,b < %, ¢ < 1, then (g3, A) is a frame, because it is the product of
two frames (see Lemma 7 and Proposition 9). O
Remark: The herein presented results extend to some (but not all) lattices which
are symplectically identical to those listed. For a symplectic transformation M
with associated metaplectic operator p( M), the spanning properties of (u(M)g, MA)
are equivalent to those of (g, A) [Fol89, Gro01]. Furthermore, the metaplectic
operators p(M) associated to symplectic matrices M of the form (]g (B*O)_1 ), B
unitary, respectively (_(}d Iod), are dilation by the unitary matrix B, respectively
the Fourier transform [Fol89, Gro01]. Both leave the Gaussian invariant, hence,
for such M, (g4, MA) is a frame if and only if (gg, A) is.

The results presented only scratch the surface of the theory of multivariate
Gaussian Gabor frames. But we hope that together with [Gr610], they will moti-
vate further study on the subject.
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