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Abstract This paper establishes the restricted isometry property for a Gabor
system generated by n

2 time–frequency shifts of a random window function in
n dimensions. The sth order restricted isometry constant of the associated n⇥
n

2 Gabor synthesis matrix is small provided that s  cn

2/3
/ log2

n. This bound
provides a qualitative improvement over previous estimates, which achieve only
quadratic scaling of the sparsity s with respect to n. The proof depends on an
estimate for the expected supremum of a second-order chaos.
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1 Introduction and statement of results

Sparsity has become a key concept in applied mathematics and engineering
because of the empirical observation that, in many real-world settings, the sig-
nal of interest can be approximated accurately by means of a sparse expansion
in an appropriately chosen system of basic signals. The theory of compressed
sensing [7,8,10,16,18,33] predicts that, to capture all the information in a
sparse signal, it su�ces to take a relatively small number of linear samples.
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Furthermore, we can identify the sparse signal from these samples using ef-
ficient algorithms. This discovery has a number of potential applications in
signal processing, as well as other areas of science and technology.

In compressed sensing, a measurement matrix is used to model the pro-
cess of linear data acquisition. The restricted isometry property (RIP) [9,10,
18,33] is a standard tool for studying how e�ciently the measurement matrix
captures information about sparse signals. The RIP also supports the analysis
of various signal reconstruction algorithms, including `1 minimization, greedy
pursuits, and other types of iterative algorithms. Many types of random matri-
ces, including Gaussian and Rademacher matrices, obey the RIP with optimal
scaling behavior [3,17,36,10]. In contrast, there are currently no deterministic
constructions that satisfy an optimal RIP; see the discussion in [33, Sec. 2.5]
or [18, Sec. 5.1].

In principle, Gaussian matrices are optimal for sparse recovery [16,19], but
they have limited appeal in practice because most applications impose struc-
ture on the measurement matrix. Furthermore, most recovery algorithms are
more e�cient when the measurement matrix admits a fast matrix–vector mul-
tiply. For instance, we can model the signal acquisition process in MRI imaging
by drawing a random set of rows from the discrete Fourier transform matrix.
These matrices permit us to design fast recovery algorithms based on the FFT.
With high probability, a random partial Fourier matrix satisfies the RIP with
near-optimal scaling [10,38,31,33]. See [33,37] for some generalizations.

In this paper, we study a random Gabor system, which is a structured n⇥n

2

matrix whose columns are obtained by taking all possible time–frequency shifts
of a fixed random vector. The random Gabor system has many potential appli-
cations, including channel identification [30], underwater communications [27,
39], high-resolution radar [23], as well as the matrix probing problem [12].

The literature contains some work on the random Gabor system. The pa-
per [30] uses coherence estimates to control the restricted isometry constants,
and it results in suboptimal bounds. The paper [34] obtains nonuniform recov-
ery bounds for `1 minimization. This analysis does not yield stable recovery
results, it does not provide uniform recovery for all sparse signals, and it does
not extend to other algorithms. The research in this paper makes some progress
toward addressing these concerns.

Our approach is related to a recent restricted isometry analysis of the
partial random circulant matrix [35]. Indeed, our argument requires us to
bound the expected supremum of a second-order chaos, which we accomplish
using a Dudley-type inequality due to Talagrand [42]. This approach involves
an estimate the covering numbers of the set of unit-norm s-sparse vectors
with respect to two metrics induced by the random process. In contrast to the
situation in [35], we cannot exploit the covering number estimates from [38],
and so we have been forced to perform a new analysis.

This paper is organized as follows. Section 1.1 introduces the random Ga-
bor system, and it contains our main result on the restricted isometry con-
stants. Section 1.2 includes some remarks that illustrate how time–frequency
structured measurement matrices arise in applications such as in wireless com-
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munications and radar. We survey previous work in Section 1.3. Sections 2, 3
and 4 present the proof of the main result.

1.1 Time–frequency structured measurement matrices

This paper provides probabilistic estimates for the restricted isometry con-
stants of a matrix whose columns consist of time–frequency shifts of a random
vector. Let T denote the cyclic shift on Cn, also known as the translation
operator, and let M denote the frequency shift on Cn, also known as the
modulation operator. These operators are defined by the rules

(Th)
q

:= h

q 1 and (Mh)
q

:= e

2⇡iq/n

h

q

= !

q

h

q

, (1)

where  is subtraction modulo n and ! := e

2⇡i/n. Note that

(T kh)
q

= h

q k

and (M `h)
q

= e

2⇡i`q/n

h

q

= !

`q

h

q

. (2)

We introduce the time–frequency shift operators ⇡(�) = M `T k, indexed by
pairs � = (k, `), where k and ` range over Z

n

:= {1, . . . , n}. The system
{⇡(�) : � 2 Z

n

⇥Z
n

} of all time–frequency shifts forms a basis for the matrix
space Cn⇥n [25,24].

Next, we construct the random Gabor measurement matrix. Let ✏ 2 Cn

be a random vector that follows one of the following two distributions:

– Each entry of ✏ is an independent Rademacher random variable, i.e., a
variable that takes values ±1 with equal probability.

– Each entry of ✏ is an independent Steinhaus random variable, i.e., a variable
that is uniformly distributed on the complex torus S

1 = {z 2 C : |z| = 1}.

Define a normalized window function

g =
1p
n

✏.

The family
{⇡(�)g : � 2 Z

n

⇥Z
n

} (3)

is called a full Gabor system with window g [21]. We can introduce a matrix
 

g

2 Cn⇥n

2
whose columns range over the full Gabor system. The matrix  

g

is referred to as the Gabor synthesis matrix [13,25,29]. Note that  
g

admits
a fast matrix–vector multiply by means of the FFT algorithm.

We say that a vector x is s-sparse when kxk0 := #{` : x

`

6= 0}  s.
Recall that, for an n⇥N matrix A and a positive integer s  n, the restricted
isometry constant �

s

is defined as the smallest positive number that satisfies

(1� �

s

)kxk22  kAxk22  (1 + �

s

)kxk22 for all x with kxk0  s. (4)

When the matrix A has a su�ciently small restricted isometry constant �2s

,
then we can recover every s-sparse vector x from the measurements y = Ay
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using a variety of algorithms, including `1 minimization and certain greedy
pursuits. See [18] and the reference therein for more details.

The main result of this paper concerns the restricted isometry constants of
the random Gabor system  

g

. In the sequel, we write E for expectation and
P for the probability of an event.

Theorem 1 Let  
g

2 Cn⇥n

2
be a draw of the random Gabor synthesis matrix

with normalized Rademacher or Steinhaus generating vector.

(a) For s  n, the expectation of the restricted isometry constant �

s

of  
g

satisfies

E �

s

 max
n

C1

r

s

3/2

n

log s

p

log n, C2
s

3/2 log3/2
n

n

o

, (5)

where C1, C2 > 0 are universal constants.
(b) For 0  �  1, we have the probability bound

P(�
s

� E[�
s

] + �)  e

��

2
/�

2
, where �

2 =
C3s

3
2 log n log2

s

n

(6)

with C3 > 0 being a universal constant.

In particular, the simplified condition

n � Cs

3/2 log3(n) log("�1)

implies that the matrix  
g

satisfies the RIP of order s with probability exceed-
ing 1� ". With slight variations of the proof one can show similar statements
for normalized Gaussian or subgaussian random windows g.

The paper [30] contains numerical tests that illustrate the performance of
the random Gabor system  

g

for compressed sensing. This empirical work
indicates that the behavior of the random Gabor system does not depend on
the choice of random window, and the performance in all cases is similar to
that of a fully Gaussian measurement matrix. Nevertheless, we must emphasize
that numerical tests cannot verify the RIP.

We do not believe that Theorem 1 is optimal. We suspect that any sig-
nificant improvement would demand more sophisticated techniques than the
ones that we apply in this paper. Indeed, the literature contains examples [26,
42] where the central tool in this paper, the Dudley-type inequality for chaos
processes (Theorem 3), is not sharp. We may well be facing one of these cases
here.

1.2 Application in wireless communications and radar

In wireless communications, an important task is to identify the properties
of the communication channel by probing it with a small number of known
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pilot signals. A common finite-dimensional model [4,14,20,28] for the channel
operator is given by the formula

� =
X

�2Zn⇥Zn

x

�

⇡(�).

This model includes digital-to-analog-conversion at the transmitter, the action
of the analog communications channel, and the analog-to-digital conversion at
the receiver. Time shifts model delay due to multipath-propagation, while fre-
quency shifts model Doppler e↵ects due to motion of the transmitter, receiver,
or scatterers. Physical considerations suggest that the vector x is rather sparse
because the number of scatterers is typically quite small. Similar models ap-
pear in sonar [27,39] and radar [23] problems.

Our goal is to identify the coe�cient vector x from a single input–output
pair (g,�g). In other words, we need to reconstruct � 2 Cn⇥n from its action
y = �g on a single vector g. Write

y = �g =
X

�2Zn⇥Zn

x

�

⇡(�)g =  
g

x, (7)

where x is sparse but unknown. This is a compressed sensing problem. In this
setting, the choice of pilot signal g remains at our discretion, so we may select
g to be a random Rademacher or Steinhaus sequence. Theorem 1 demonstrates
that  

g

has the RIP with high probability, so we can recover the coe�cient
vector x, provided that it is su�ciently sparse.

1.3 Relation with previous work

Matrices with time–frequency structure have played a role in the sparsity liter-
ature for many years. Recall that the coherence of a matrix A = (a1| . . . |aN

)
with normalized columns ka

`

k2 = 1 is defined as

µ := max
` 6=k

|ha
`

,a
k

i|.

Strohmer and Heath [40] considered a Gabor system  
g

based on the Alltop
window g 2 Cn, whose entries g

`

= n

�1/2
e

2⇡i`

3
/n where n � 5 is a prime [1].

The coherence of  
g

satisfies

µ =
1p
n

.

For any n⇥N matrix, the coherence satisfies the bound µ �
q

N�n

n(N�1) , so the
Gabor–Alltop matrix has near-optimal coherence [40]. The coherence can be
used to obtain a simple bound on the restricted isometry constant: �

s

 (s�
1)µ. Therefore, for the Gabor–Alltop matrix, the restricted isometry constants
satisfy

�

s

 s� 1p
n

.
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This bound requires that the sparsity s  c

p
n for a nontrivial RIP to hold.

Qualitatively, this estimate is somewhat worse than Theorem 1.
The paper [30] contains an estimate for the coherence µ of a random Gabor

system based on a Steinhaus window:

µ  c

r

log(n/")
n

,

with probability at least 1� ". As before, this bound only guarantees that the
RIP constant �

s

is small when the s scales like
p

n.
The paper [34] develops a nonuniform recovery result for compressed sens-

ing with a random Gabor system based on a Steinhaus window.

Theorem 2 Let x 2 Cn be an s-sparse vector, and assume that

s  cn

log(n/")
.

Draw a random Steinhaus sequence g, and form the random Gabor system  
g

.
Then, with probability at least 1 � ", the vector x can be recovered from the
measurements y =  

g

x using `1 minimization.

In this estimate, the sparsity s scales almost linearly with the dimension
n, which is optimal. Clearly, this bound is better than the RIP estimate in
our main result, Theorem 1. In many respects, the conclusion of Theorem 2
is weaker than what we obtain from a RIP bound. Indeed, Theorem 2 only
guarantees that we can recover a single sparse vector with high probability
on a random draw of the matrix  

g

. In contrast, a RIP bound allows us to
recover all sparse vectors with high probability on a single random draw of
the matrix. Furthermore, Theorem 2 cannot guarantee that `1 minimization
is stable for vectors that are not quite sparse or contain noise. The RIP allows
us to assert that both these properties hold [18,9].

Finally, we mention a closely related measurement system based on the par-
tial random circulant matrix [22,32,33,35]. This matrix models convolution by
a random filter, followed by subsampling at an arbitrary (deterministic) set of
outputs. At present, the best estimate for the restricted isometry constants of
an n⇥N partial random circulant matrix require n � c(s log N)3/2 for a non-
trivial bound [35]. This scaling is similar to what we achieve in this paper, in
part because both results depend on the Dudley-type inequality (Theorem 3).
We also mention that partial random circulant matrices satisfy nonuniform
recovery guarantees similar to Theorem 2 [32,33]. For this measurement en-
semble, the analysis is easier because we can use harmonic analysis to convert
the time-domain problem to an easier problem in the Fourier domain. For
Gabor synthesis matrices, this option is not available to us, so the arguments
become more involved.
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2 Expectation of the restricted isometry constants

We first estimate the expectation of the restricted isometry constants of the
random Gabor synthesis matrix, that is, we shall prove Theorem 1(a). To this
end, we first rewrite the restricted isometry constants �

s

. Let T = T

s

= {x 2
Cn

2
, kxk2 = 1, kxk0  s}. Introduce the following semi-norm on Hermitian

matrices A,
|||A|||

s

= sup
x2Ts

|x⇤Ax|.

Then the restricted isometry constants of  =  
g

can be written as

�

s

= ||| ⇤ � I|||
s

,

where I denotes the identity matrix. Observe that the Gabor synthesis matrix
 

g

takes the form

 
g

=

0

B

B

B

B

@

g0 gn�1 · · · g1 g0 · · · g1 · · · g1
g1 g0 · · · g2 !g1 · · · !g2 · · · !n�1g2

g2 g1 · · · g3 !2g2 · · · !2g3 · · · !2(n�1)g3

g3 g2 · · · g4 !3g3 · · · !3g4 · · · !3(n�1)g4
...

...
. . .

...
...

. . .
...

...
gn�1 gn�2 · · · g0 !n�1gn�1 · · · !n�1g0 · · · !(n�1)2g0

1

C

C

C

C

A

.

Our analysis in this section employs the representation

 
g

=
n�1
X

q=0

g

q

A
q

with

A0 =

0

B

B

@

1 0 0 · · · 0 1 0 0 · · · 0 · · · 0
0 1 0 · · · 0 0 ! 0 · · · 0 · · · 0
0 0 1 · · · 0 0 0 !2 · · · 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · 1 0 0 0 · · · !n�1 · · · !(n�1)2

1

C

C

A

=
�

I
�

�M
�

�M2
�

� · · ·
�

�Mn�1
�

,

A1 =

0

B

B

@

0 0 0 · · · 1 0 0 0 · · · 1 · · · 1
1 0 0 · · · 0 ! 0 0 · · · 0 · · · 0
0 1 0 · · · 0 0 !2 0 · · · 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · 0 0 0 0 · · · 0 · · · 0

1

C

C

A

=
�

T
�

�MT
�

�M2T
�

� · · ·
�

�Mn�1T
�

,

and so on. In short, for q 2 Z
n

,

A
q

=
�

T q

�

�MT q

�

�M2T q

�

� · · ·
�

�Mn�1T q

�

. (8)

Observe that

H :=  ⇤ � I = �I +
1
n

n�1
X

q,q

0=0

✏

q

0
✏

q

A⇤
q

0A
q

.
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Using (26) below, it follows that

H =
1
n

X

q

0 6=q

✏

q

0
✏

q

A⇤
q

0A
q

=
1
n

X

q

0
,q

✏

q

0
✏

q

W
q

0
,q

, (9)

where, for notational simplicity, we use here and in the following

W
q

0
,q

= A⇤
q

0A
q

for q 6= q

0 and W
q

0
,q

= 0 for q = q

0
. (10)

We shall use the matrix B(x) 2 Cn⇥n, x 2 T

s

, given by matrix entries

B(x)
q

0
,q

= x⇤W
q

0
,q

x. (11)

Then we have
n E�

s

= E sup
x2Ts

|Y
x

| = E sup
x2Ts

|Y
x

� Y0| , (12)

where
Y

x

= ✏⇤B(x)✏ =
X

q

0 6=q

✏

q

0
✏

q

x⇤A⇤
q

0A
q

x (13)

and x 2 T

s

= {x 2 Cn⇥n

, kxk2  1, kxk0  s}. A process of the type (13) is
called Rademacher or Steinhaus chaos process of order 2. In order to bound
such a process, we use the following Theorem, see for example, [26, Theorem
11.22] or [42, Theorem 2.5.2], where it is stated for Gaussian processes and
in terms of majorizing measure (generic chaining) conditions. The formulation
below requires the operator norm kAk2!2 = maxkxk2=1 kAxk2 and the Frobe-
nius norm kAk

F

= Tr(A⇤A)1/2 = (
P

j,k

|A
j,k

|2)1/2, where Tr(A) denotes the
trace of a matrix A.

Theorem 3 Let ✏ = (✏1, . . . , ✏n

)T be a Rademacher or Steinhaus sequence,
and let

Y

x

:= ✏⇤B(x)✏ =
n

X

q

0
,q=1

✏

q

0
✏

q

B(x)
q

0
,q

be an associated chaos process of order 2, indexed by x 2 T , where we addi-
tionally assume B(x) hermitian with zero diagonal, that is, B(x)

q,q

= 0 and
B(x)

q

0
,q

= B(x)
q,q

0 . We define two (pseudo-)metrics on T ,

d1(x,y) = kB(x)�B(y)k2!2,

d2(x,y) = kB(x)�B(y)k
F

.

Let N(T, d

i

, u) be the minimum number of balls of radius u in the metric d

i

needed to cover T . Then there exists a universal constant K > 0 such that, for
an arbitrary x0 2 T ,

E sup
x2T

|Y
x

�Y

x0 |  K max
n

Z 1

0
log N(T, d1, u) du ,

Z 1

0

p

log N(T, d2, u) du

o

.

(14)
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Proof For a Rademacher sequence, the theorem is stated in [35, Proposition
2.2]. If ✏ is a Steinhaus sequence and B a Hermitian matrix then

✏⇤B✏ = Re(✏⇤B✏) = Re(✏)⇤Re(B) Re(✏)� Re(✏)⇤ Im(B) Im(✏)
+ Im(✏)⇤ Im(B) Re(✏) + Im(✏)⇤Re(B) Im(✏).

By decoupling, see, for example, [15, Theorem 3.1.1], we have with ✏

0 denoting
an independent copy of ✏,

E sup
x2T

|Re(✏)⇤ Im(B(x)) Im(✏)|  8 E sup
x2T

|Re(✏)⇤ Im(B(x)) Im(✏0)|

 8 E sup
x2T

|⇠⇤ Im(B(x)) Im(✏0)|  8 E sup
x2T

|⇠⇤ Im(B(x))⇠0|,

where ⇠, ⇠0 denote independent Rademacher sequences. The second and third
inequalities follow from the contraction principle [26, Theorem 4.4] (and sym-
metry of Re(✏

`

), Im(✏
`

) ) first applied conditionally on ✏0 and then condition-
ally on ⇠ (note that |Re(✏

`

)|  1, | Im(✏
`

)|  1 for all realizations of ✏

`

). Using
the triangle inequality we get

E sup
x2T

|Y
x

� Y

x0 |  16 E sup
x2T

|⇠⇤(Re(B(x))� Re(B(x0))⇠0|

+ 16 E sup
x2T

|⇠⇤(Im(B(x))� Im(B(x0)))⇠0|. (15)

Further note that k Im(B(x)) � Im(B(y))k
F

, kRe(B(x)) � Re(B(y))k
F


kB(x)�B(y)k

F

and similarly, writing B(x)�B(y) as a 2n⇥2n real block ma-
trix acting on R2n we see that also k Im(B(x))�Im(B(y))k2!2, kRe(B(x))�
Re(B(y))k2!2  kB(x) �B(y)k2!2. Furthermore, the statement for Rade-
macher chaos processes holds as well for decoupled chaos processes of the form
above. (Indeed, its proof uses decoupling in a crucial way.) Therefore, the claim
for Steinhaus sequences follows. ut

Note that B(x) defined in (11) satisfies the hypotheses of Theorem 3 by
definition. The pseudo-metrics are given by

d2(x,y) = kB(x)�B(y)k
F

=
⇣

X

q

0 6=q

�

�x⇤A⇤
q

0A
q

x� y⇤A⇤
q

0A
q

y
�

�

2
⌘1/2

, (16)

and
d1(x,y) = kB(x)�B(y)k2!2.

The bound on the expected restricted isometry constant follows then from the
following estimates on the covering numbers of T

s

with respect to d1 and d2.
Corresponding proofs will be detailed in Section 3. We start with N(T

s

, d2, u).

Lemma 1 For u > 0, it holds

log(N(T
s

, d2, u))  s log(en2
/s) + s log(1 + 4

p
snu

�1).
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The above estimate is useful only for small u > 0. For large u we require the
following alternative bound.

Lemma 2 The diameter of T

s

with respect to d2 is bounded by 4
p

sn, and forp
n  u  4

p
sn, it holds

log(N(T
s

, d2, u))  cu

�2
ns

3/2 log(ns

5/2
u

�1),

where c > 0 is universal constant.

Covering number estimates with respect to d1 are provided in the following
lemma.

Lemma 3 The diameter of T

s

with respect to d1 is bounded by 4s, and for
u > 0

log(N(T
s

, d1, u))  min
�

s log(en2
/s) + s log(1 + 4su

�1),

cu

�2
s

2 log(2n) log(n2
/u)

 

, (17)

where c > 0 is a universal constant.

Moreover, we require the following elementary estimate of an integral, see
[33, Lemma 10.3].

Lemma 4 For ↵ > 0, we have
Z

↵

0

p

log(1 + u

�1)du  ↵

p

log(e(1 + ↵

�1)).

Based on these estimates and Theorem 3 we complete the proof of Theorem
1(a). By Lemmas 1 and 2, the subgaussian integral in (14) can be estimated
as

Z 1

0

p

log(N(T
s

, d2, u))du =
Z 4

p
sn

0

p

log(N(T
s

, d2, u))du

=
Z

p
n

0

p

log(N(T
s

, d2, u))du +
Z 4

p
sn

p
n

p

log(N(T
s

, d2, u))du


Z

p
n

0

p

s log(en2
/s)du +

Z

p
n

0

q

s log(1 + 4
p

snu

�1)du

+ c

p

ns

3/2

Z 4
p

sn

p
n

u

�1
q

log(ns

5/2
u

�1)du


p

sn log(en2
/s) + 4s

p
n

Z

s

�1/2

0

p

log(1 + u

�1)du

+ c

0
p

s

3/2
n

q

log(n1/2
s

5/2) log(
p

s)


p

sn log(en2
/s) + 4

p
sn

q

log(e(1 +
p

s)) + c

00
q

s

3/2
n log(n) log2(s)

 Ĉ1

q

s

3/2
n log(n) log2(s). (18)
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In the second inequality, we have used Lemma 4. Due to Lemma 3 the subex-
ponential integral obeys the estimate, for some  > 0 to be chosen below,
Z 1

0
log(N(T

s

, d1, u))du =
Z 4s

0
log(N(T

s

, d1, u))du

=
Z



0
log(N(T

s

, d1, u))du +
Z 4s



log(N(T
s

, d1, u))du

 s log(en2
/s) + s

Z



0
log(1 + 4su

�1)du + cs

2 log(2n)
Z 4s



u

�2 log(n2
/u)du

 s log(en2
/s) + s log(e(1 + 4s/)) + cs

2


�1 log(2n) log(n2
/).

Choose  =
p

s log(n) to reach
Z 1

0
log(N(T

s

, d1, u))du  Ĉ2s
3/2 log3/2(n). (19)

Combining the above integral estimates with (12) and Theorem 3 yields

E�

s

=
1
n

E sup
x2Ts

|Y
x

�Y0| 
1
n

max
⇢

C1

q

s

3/2
n log(n) log2(s), C2s

3/2 log3/2(n)
�

.

(20)
This is the statement of Theorem 1(a).

Remark 1 In analogy to the estimate of a subgaussian entropy integral arising
in the analysis of partial random circulant matrices in [35], we expect that
the exponent 3/2 in (18) can be improved to 1. However, we doubt that for
the subexponential integral (19) such improvement will be possible (indeed,
the estimate of the subexponential integral in [35] also exhibits an exponent
of 3/2 at the s-term), so that we did not pursue an improvement of (18) here
as this would not provide a significant overall improvement of (20). We expect
that an improvement of (20) would require more sophisticated tools than the
Dudley type estimate for chaos processes of Theorem 3.

3 Proof of covering number estimates

In this section we provide the covering number estimates of Lemma 1, 2 and 3,
which are crucial to the proof of our main result. We first introduce additional
notation. Let �(m, k) = �0,m�k

and �(m) = �0,m

be the Kronecker symbol as
usual. We denote by supp x = {`, x

`

6= 0} the support of a vector x. Let A be
a matrix with vector of singular values �(A). For 0 < q  1, the Schatten
S

q

-norm is defined by

kAk
Sq := k�(A)k

q

, (21)

where k · k
q

is the usual vector `

q

norm. For an integer p, the S2p

norm can be
expressed as

kAk
S2p = (Tr((A⇤A)p))1/(2p)

. (22)
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The S1-norm coincides with the operator norm, k · k
S1 = k · k2!2. By the

corresponding properties of `

q

-norms we have the inequalities

kAk2!2  kAkSq  rank(A)1/qkAk2!2. (23)

Moreover, we will require an extension of the quadratic form B(x) in (11) to
a bilinear form,

(B(x,z))
q

0
,q

=
nx⇤A⇤

q

0A
q

z if q

0 6= q,

0 if q

0 = q.

(24)

Then B(x) = B(x,x).

3.1 Time–frequency analysis on Cn

Before passing to the actual covering number estimates we provide some facts
and estimates related to time–frequency analysis on Cn. Observe that the
matrices A

q

introduced in (8) satisfy

A⇤
q

=

0

B

B

B

B

B

@

(T q)⇤
(MT q)⇤
(M2T q)⇤

...
(Mn�1T q)⇤

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

T�q

T�qM�1

T�qM�2

...
T�qM1

1

C

C

C

C

C

A

,

and, hence,
(A⇤

q

y)(k,`) = y

k+q

!

�`(k+q)
.

Clearly,

hA
q

z,yi = hz,A⇤
q

yi =
P

k,`

z(k,`)y
k+q

!

`(k+q) =
P

k,`

z(k�q,`)y
k

!

`k

=
P

k

�

P

`

z(k�q,`)!
`k

�

y

k

and, hence,
(A

q

z)
k

=
X

`

z(k�q,`)!
`k

.

In the following, F : Cn 7! Cn denotes the normalized Fourier transform, that
is,

(Fv)
`

= n

�1/2
n�1
X

q=0

!

�q`

v

q

.

For v 2 Cn⇥n, F2v denotes the Fourier transform in the second variable of v.
Let {e

�

}
�2Zn⇥Zn

and {e
q

}
q2Zn

denoting the Euclidean basis of Cn⇥n

respectively Cn, and, let P
�

denote the orthogonal projection onto the one
dimensional space span {e

�

}. The following relationships will be crucial for
the covering number estimates below.
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Lemma 5 Let A
q

be as given in (8). Then, for � 2 Z
n

⇥Z
n

, q 2 Z
n

,

A
q

e
�

= ⇡(�)e
q

, (25)
n�1
X

q=0

A⇤
q

A
q

= n I , (26)

n�1
X

q=0

A
q

P
�

A⇤
q

= I , (27)

n�1
X

q=0

n�1
X

q

0=0

�

�x⇤A⇤
q

0A
q

y
�

�

2  n kxk0 kxk22 kyk22. (28)

Proof For (25), observe that

(A
q

e(k0,`0))k

=
X

`

�(k � q � k0, `� `0)!`k = �(q � (k � k0))!`0k

= (⇡(k0, `0)eq

)
k

.

To see (26), choose z 2 Cn⇥n and compute

�

A⇤
q

0A
q

z
�

(k0,`0)
=
X

`

z(k0+q

0�q,`)!
`(k0+q

0)
!

�`

0(k0+q

0)

=
X

`

z(k0+q

0�q,`)!
(`�`

0)(k0+q

0)
.

Hence,

X

q

�

A⇤
q

A
q

z
�

(k0,`0)
=
X

q

X

`

z(k0,`)!
(`�`

0)(k0+q) =
X

`

z(k0,`)

X

q

!

(`�`

0)(k0+q)

=
X

`

z(k0,`)n �(`� `

0) = n z(k0,`0) .

Finally, observe that all but one column of A
q

P{(`0,k0)} are 0, the nonzero
column being column (`0, k0), and only its (k0 +q)th entry is nonzero, namely,
it is !

`0(k0+q). We have

A
q

P{(`0,k0)}A
⇤
q

= A
q

P{(`0,k0)}P{(`0,k0)}A
⇤
q

= A
q

P{(`0,k0)}(Aq

P{(`0,k0)})
⇤
,

and hence, A
q

P{(`0,k0)}A
⇤
q

= P{k0+q} and
P

q

A
q

P{(`0,k0)}A
⇤
q

= I.
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Let x 2 Cn⇥n and ⇤ = suppx, then
X

q

X

q

0

�

�x⇤A⇤
q

0A
q

y
�

�

2 =
X

q

X

q

0

�

�

X

(k0,`0)2⇤

x(k0,`0)

�

A⇤
q

0A
q

y
�

k

0
,`

0

�

�

2

 kxk22
X

q

X

q

0

X

(k0,`0)2⇤

�

�

�

A⇤
q

0A
q

y
�

k

0
,`

0

�

�

2

= kxk22
X

q

X

q

0

X

(k0,`0)2⇤

�

�

!

�`

0(k0+q

0)
X

`

!

`(k0+q

0)
y(k0�(q�q

0),`)

�

�

2

= kxk22
X

q

X

q

0

X

(k0,`0)2⇤

�

�

X

`

!

`(k0+q

0)
y(k0�(q�q

0),`)

�

�

2

= n kxk22
X

(k0,`0)2⇤

X

q

X

q

0

�

�

�

F2y
�

(k0�(q�q

0),k0+q

0)

�

�

2

= n kxk22
X

(k0,`0)2⇤

�

�F2y
�

�

2

2
= n |⇤| kxk22 kyk22 = n kxk0kxk22kyk22

by unitarity of F2. ut

3.2 Proof of Lemma 1

For x,y 2 Cn

2
,

d2(x,y) 
⇣

X

q

0 6=q

�

�

�

x⇤A⇤
q

0A
q

(x� y)
�

�

�

2⌘1/2
+
⇣

X

q

0 6=q

�

�

�

(x� y)⇤A⇤
q

0A
q

y
�

�

�

2⌘1/2
.

Inequality (28) implies that for x,y 2 T

s

,

⇣

X

q

0 6=q

�

�

�

x⇤A⇤
q

0A
q

(x� y)
�

�

�

2⌘1/2
,

⇣

X

q

0 6=q

�

�

�

(x� y)⇤A⇤
q

0A
q

y
�

�

�

2⌘1/2

p

sn kx� yk2

and, hence,

d2(x,y)  2
p

sn kx� yk2. (29)

Using the volumetric argument, see, for example, [33, Proposition 10.1], we
obtain

N(T
s

, k · k2, u) 
⇣

n

2

s

⌘

(1 + 2/u)s  (en2
/s)s(1 + 2/u)s

.

By a rescaling argument

N(T
s

, d2, u)  N(T
s

, 2
p

snk · k2, u) = N(T
s

, k · k2, u/(2
p

sn))

 (en2
/s)s(1 + 4

p
snu

�1)s

.

Taking the logarithm completes the proof. ut
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3.3 Proof of Lemma 2

Now, we seek a suitable estimate of the covering numbers N(T
s

, d1, u) for
u �

p
n. We use Maurey’s empirical method [11], similarly as done in [38]:

For a fixed vector x 2 T

s

, we introduce a discrete random vector Z with
expectation x. We form the empirical mean over m copies of Z to estimate
the deviation to x in the metric d1. This allows us to find a value of m which
leads to a prescribed distance u to x; since Z takes only a finite number of
values we are finally able to derive a bound on the covering numbers. Hereby
we use the fact that, by construction, the values attained by Z are independent
of the choice of x.

Since d1(x, y)  d2(x, y), inequality (29) implies that the diameter of T

s

with respect to d1 is at most 4
p

sn. Hence, it su�ces to consider N(T
s

, d1, u)
for p

n  u  4
p

sn, (30)

as stated in the lemma. We define the norm k · k⇤ on Cn⇥n by

kxk⇤ =
X

�

|Re x

�

| + | Im x

�

| . (31)

For x 2 T

s

we define a random vector Z, which takes kxk⇤ sgn(Re x

�

)e
�

with
probability |Re x�|

kxk⇤ , and the value ikxk⇤ sgn(Im x

�

)e
�

with probability | Im x�|
kxk⇤ .

Now, let Z1, . . . ,Zm

,Z 01, . . . ,Z
0
m

be independent copies of Z. We set y =
1
m

P

m

j=1 Z
j

and y0 = 1
m

P

m

j=1 Z 0
j

and attempt to approximate B(x) by

B := B(y,y0) =
1

m

2

m

X

j,j

0=1

B(Z
j

,Z 0
j

0) . (32)

First, compute

EkB �B(x)k2
F

= E
X

q,q

0

�

�x⇤W
q

0
,q

x� 1
m

2

m

X

j,j

0=1

Z⇤
j

W
q

0
,q

Z 0
j

0

�

�

2

=
X

q,q

0

⇣

|x⇤W
q

0
,q

x|2 � 2 Re
⇣

x⇤W
q

0
,q

x E
h 1
m

2

m

X

j,j

0=1

Z⇤
j

W
q,q

0Z 0
j

0

i⌘

+ E
h

�

�

�

1
m

2

m

X

j,j

0=1

Z⇤
j

W
q,q

0Z 0
j

0

�

�

�

2i⌘

=
X

q,q

0

⇣

� |x⇤W
q

0
,q

x|2 +
1

m

4

m

X

j,j

0
,j

00
,j

000=1

E
h

Z⇤
j

W
q,q

0Z 0
j

0(Z 0
j

00)⇤W ⇤
q,q

0Z
j

000

i⌘

,

where we used that E[Z⇤
j

W
q,q

0Z 0
j

0 ] = x⇤W
q,q

0x, j, j

0 = 1, . . . m, by indepen-
dence. Moreover, for j 6= j

000 and j

0 6= j

00, independence implies

E
h

Z⇤
j

W
q,q

0Z 0
j

0(Z 0
j

00)⇤W ⇤
q,q

0Z
j

000

i

= |x⇤W
q,q

0x|2.



16 Götz E. Pfander et al.

To estimate summands with j

0 = j

00, note that

Z⇤
j

W
q

0
,q

Z 0
j

0(Z 0
j

0)⇤W
q,q

0Z
j

000 = kxk2⇤Z⇤j A⇤
q

0A
q

P{�}A
⇤
q

A
q

0Z
j

000
,

where {�} = suppZ
j

0 is random. Hence, in this case, we compute using (27)
in Lemma 5

X

q

0 6=q

E
h

Z⇤
j

A⇤
q

0A
q

Z 0
j

0(Z 0
j

0)⇤A⇤
q

A
q

0Z
j

000

i

 kxk2⇤
X

q

0
,q

E
h

Z⇤
j

A⇤
q

0A
q

P{�}A
⇤
q

A
q

0Z
j

000

i

= kxk2⇤E
h

Z⇤
j

X

q

0

⇣

A⇤
q

0

⇣

X

q

A
q

P{�}A
⇤
q

⌘

A
q

0

⌘

Z
j

000

i

= kxk2⇤E
h

Z⇤
j

X

q

0

⇣

A⇤
q

0A
q

0

⌘

Z
j

000

i

= nkxk2⇤E[Z⇤
j

Z
j

000 ]

=
n

nkxk4⇤, if j = j

000
,

nkxk2⇤E[Z⇤
j

]E[Z
j

000 ] = nkxk2⇤kxk22  nkxk2⇤, else.

Symmetry implies an identical estimate for j = j

000, j

0 6= j

00. As x 2 T

s

is
s-sparse we have kxk⇤ 

p
2kxk1 

p
2skxk2 

p
2s. Using (10) we conclude

X

q

0
,q

m

X

j,j

0
,j

00
,j

000=1

E
h

Z⇤
j

W
q,q

0Z 0
j

0(Z 0
j

00)⇤W ⇤
q,q

0Z
j

000

i

 m

2(m� 1)2
X

q

0
,q

|x⇤W
q,q

0x|2 + m

2
n4s

2 + 2m

2(m� 1)n · 2s.

For m � 11ns

3
2

u

2 and u  4
p

sn, we finally obtain,

EkB �B(x)k2
F


X

q

0
,q

�|x⇤W
q

0
,q

x|2 +
m

2(m2 � 1)
m

4

X

q

0
,q

|x⇤W
q,q

0x|2

+
m

2
n4s

2

m

4
+

4m

2(m� 1)ns

m

4

 4ns

2

m

2
+

4ns

m

 4ns

2

121n

2
s

3
u

4 +
4ns

11ns

3
2
u

2  64ns

121ns

u

2 +
44

121
p

s

u

2  u

2
.

(33)

Since kxk⇤ can take any value in [1,

p
2s], we still have to discretize this

factor in the definition of the random variable Z. To this end, set

B
↵

:=
1

m

2

m

X

j=1,j

0=1

B(↵ sgn(x
�j )e�j , ↵ sgn(x

�

0
j0

)e
�

0
j0

) .
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Next, we observe that, for � = (k, `) and �

0 = (k0, `0),

B(e
�

0
, e

�

)
q

0
,q

= (A
q

0
e

�

0)⇤A
q

e
�

= h⇡(�)e
q

,⇡(�0)e
q

0i

=
n

!

(`�`

0)(k+q)
, if k

0 + q

0 = k + q ;
0, else, (34)

and, hence, kB(e
�

0
, e

�

)k2
F

= n. Now, assume ↵ is chosen such that |kxk2⇤ �
↵

2|  up
n

. Then

kB
↵

�Bkxk⇤kF

=
�

�

�

1
m

2

m

X

j=1,j

0=1

B(↵ sgn(x
�j )e�j , ↵ sgn(x

�

0
j0

)e
�

0
j0

)

� 1
m

2

m

X

j,j

0=1

B(kxk⇤ sgn(x
�j )e�j , kxk⇤ sgn(x

�

0
j0

)e
�

0
j0

)
�

�

�

F

= |kxk2⇤ � ↵

2|k 1
m

2

m

X

j,j

0=1

B(sgn(x
�j )e�j , sgn(x

�

0
j0

)e
k

0
j0

)k
F

 u

m

2
p

n

m

X

j,j

0=1

kB(e
�j , e�j0 )kF

= u. (35)

We conclude that it su�ces to choose

K :=
l2s� 1

up
n

m

 d2s

p
n/ue

values ↵

k

2 J

s

:= [1, 2s], k = 1, . . . ,K, such that for each � 2 J

s

there exists
k satisfying |� � ↵

k

|  u/

p
n.

Now, given x we can find z1, . . . ,zm

,z01, . . . ,z
0
m

of the form kxk⇤p�

e
�

, p

�

2
{1,�1, i,�i} such that kB �B(x)k

F

 u. Further, we can find k such that
|kxk2⇤ � ↵

2
k

|  u/

p
n. We replace the z1, . . . ,zm

,z01, . . . ,z
0
m

by the respective
z̃1, . . . , z̃m

, z̃01, . . . , z̃
0
m

of the form ↵

j

p

�

e
�

.
Then, using (33), (35) and the triangle inequality, we obtain

kB(x)� 1
m

2

m

X

j,j

0=1

B(z̃
j

, z̃0
j

0)k
F

 2u.

Now, each z̃
j

, z̃0
j

can take at most d2s

p
n/ue · 4 · n2 values, so that

1
m

2

m

X

j,j

0=1

B(z̃
j

, z̃0
j

0)

can take at most (4d 2s

p
n

u

en2)2m  (Csn

5
2
/u)2m values. Hence, we found a

2u-covering of the set of matrices B(x) with x 2 T

s

of cardinality at most
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(Csn

5
2
/u)2m. Unfortunately, the matrices of the covering are not necessar-

ily of the form B(x). Nevertheless, we may replace each matrix of the form
1

m

2

P

m

j,j

0=1 B(z̃
j

, z̃0
j

0) which is used to cover some B(x) by a matrix B(x̃)
with

kB(x̃)� 1
m

2

m

X

j,j

0=1

B(z̃
j

, z̃0
j

0)k
F

 2u.

Again, the set of such chosen x̃ has cardinality at most (Csn

5
2
/u)2m and, by

the triangle inequality, for each x we can find x̃ of the covering such that

d2(x, x̃)  4u.

For m � 11u

�2
ns

3
2 , we consequently get

log(N(T
s

, d2, 4u))  log((Csn

5
2
/u)2m) = 2m log(Cns

5/2
/u).

The choice m = d11u

�2
ns

3
2 e  27u

�2
ns

3
2 and rescaling gives

log(N(T
s

, d2, u))  27u

�2
ns

3
2 log(4Cns

5/2
/u)  cu

�2
ns

3
2 log(ns

5/2
/u).

The proof of Lemma 2 is completed. ut

3.4 Proof of Lemma 3, Part I

Now we show the estimate

log(N(T
s

, d1, u))  s log(en2
/s) + s log(1 + 4su

�1),

which will establish one part of (17). Before doing so, we note that one can
quickly obtain an estimate for N(T

s

, d1, u) for small u using that the Frobe-
nius norm dominates the operator norm, and, hence d1(x,y)  d2(x,y) 
2
p

snkx � yk2. In fact, this estimate would not deteriorate the estimate in
Theorem 1(a). But in the proof of Theorem 1(b), the more involved estimate
d1(x,y)  2skx� yk2 developed below is useful.

Let us first rewrite d1. Recall (25) in Lemma 5, namely, A
q

e
�

= ⇡(�)e
q

,
and, with � = (k, `) and �

0 = (k0, `0), we obtain

⇡(�0)⇤⇡(�) = !

k

0(`�`

00)⇡(�� �

0) ⌘ !(�, �

0)⇡(�� �

0).

Writing now x =
P

�2Zn⇥Zn
x

�

e
�

, the entries of the matrix B(x) in (24)
for q

0 6= q are given by

B(x)
q

0
q

=
X

�,�

0

x

�

x

�

0e⇤
�

0A⇤
q

0A
q

e
�

=
X

�,�

0

x

�

x

�

0e⇤
q

0⇡(�0)⇤⇡(�)e
q

=
X

�,�

0

x

�

x

�

0
!(�, �

0) e⇤
q

0⇡(�� �

0)e
q

=
X

�6=�

0

x

�

x

�

0
!(�, �

0) e⇤
q

0⇡(�� �

0)e
q

= e⇤
q

0

⇣

X

�6=�

0

x

�

x

�

0
!(�, �

0) ⇡(�� �

0)
⌘

e
q

.



The restricted isometry property for time–frequency structured random matrices 19

We used for the fourth inequality that e⇤
q

0⇡(`0, k0)eq

= 0 if q

0 6= q and k0 = 0.
This shows that

B(x) =
X

�6=�

0

x

�

x

�

0
!(�, �

0) ⇡(�� �

0).

The estimate (23) for the Schatten norms shows

d

2p

1 (x,y) = k
X

�6=�

0

(x
�

x

�

0 � y

�

y

�

0)!(�, �

0) ⇡(�� �

0)k2p

2!2

 k
X

�6=�

0

(x
�

x

�

0 � y

�

y

�

0)!(�, �

0) ⇡(�� �

0)k2p

S2p

=
X

�1 6=�

0
1,�2 6=�

0
2,...,�2p 6=�

0
2p

(x
�1x�

0
1
� y

�1y�

0
1
) · · · (x

�2px

�

0
2p
� y

�2py

�

0
2p

)⇥

⇥ !(�1, �
0
1) · · ·!(�2p

, �

0
2p

) Tr
⇣

⇡(�1 � �

0
1) · · ·⇡(�2p

� �

0
2p

)
⌘

.

Setting (`0, k0) = �1��

0
1 +�2��

0
2 + · · ·+�2p

��

0
2p

we observe that the trace
in the last expression sums over zero entries if k0 6= 0 and sums over roots of
unity to zero if `0 6= 0. We conclude that

�

�

�

Tr
⇣

⇡(�1 � �

0
1) · · ·⇡(�2p

� �

0
2p

)
⌘

�

�

�

 n �0,�1��

0
1+�2��

0
2+···+�2p��

0
2p

.

Hence,

d1(x,y)2p  n

X

�1 6=�

0
1

�

�

x

�1x�

0
1
� y

�1y�

0
1

�

�

X

�2 6=�

0
2

�

�

x

�2x�

0
2
� y

�2y�

0
2

�

� · · ·

· · ·
X

�2p�1 6=�

0
2p�1

�

�

x

�2p�1x�

0
2p�1

� y

�2p�1y�

0
2p�1

�

�

X

�2p

�

�

x

�2px

�1��

0
1+···+�2p

� y

�2py

�1��

0
1+···+�4p

�

�

.

Now observe that, setting t = �1 � �

0
1 + · · · + �2p�1 � �

0
2p�1, and using the

Cauchy-Schwarz inequality
X

�

|x
�

x

t+�

� y

�

y

t+�

| 
X

�

|x
�

||x
t+�

� y

t+�

| +
X

�

|x
�

� y

�

||y
�+t

|

 kxk2kx� yk2 + kx� yk2kyk2 = (kxk2 + kyk2)kx� yk2.

We obtain similarly
X

�,�

0

|x
�

x

�

0 � y

�

y

�

0 | =
X

�,�

0

|x
�

| |x
�

0 � y

�

0 | + |y
�

0 | |x
�

� y

�

|  (kxk1 + kyk1)kx� yk1.

For x,y with suppx = suppy = ⇤ for |⇤|  s and kxk2 = kyk2 = 1 we have
kxk1 

p
skxk2 =

p
s (and similarly for y) as well as kx�yk1 

p
skx�yk2.

Hence,
(kxk1 + kyk1)kx� yk1  2skx� yk2.
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This finally yields

d1(x,y)2p  22p

ns

2p�1kx� yk2p

2

for such x,y. As this holds for all p 2 N we conclude that

d1(x,y)  2skx� yk2. (36)

With the volumetric argument, see for example [33, Proposition 10.1], we
obtain the bound

log(N(T
s

, k · k2, u))  s log(en2
/s) + s log(1 + 2/u).

Rescaling yields

log(N(T
s

, d1, u))  log(N(T
s

, 2sk · k2, u)) = log(N(T
s

, k · k2, u/(2s)))

 s log(en2
/s) + s log(1 + 4su

�1),

which is the claimed inequality. ut

3.5 Proof of Lemma 3, Part II

Next we establish the remaining estimate of (17),

log(N(T
s

, d1, u))  cu

�2
s

2 log(2n) log(n2
/u).

To this end, we use again Maurey’s empirical method as in Section 3.3.
For x 2 T

s

, we define Z1, . . . ,Zm

and Z 01, . . . ,Z
0
m

as in Section 3.3, that is,
each takes independently the value kxk⇤ sgn(Re x

�

)e
�

with probability |Re x�|
kxk⇤ ,

and the value ikxk⇤ sgn(Im x

�

)e
�

with probability | Im x�|
kxk⇤ .

As before, we set

B(Z,Z 0) = (Z⇤W
q

0
q

Z 0)
q

0
,q

, (37)

where W
q

0
q

= A⇤
q

0A
q

for q

0 6= q and W
q,q

= 0, j = 1, . . . , N , and attempt to
approximate B(x) with

B :=
1
m

m

X

j=1

B(Z
j

,Z 0
j

). (38)

That is, we will estimate EkB �B(x)k22!2.
We will use symmetrization as formulated in the following lemma [33,

Lemma 6.7], see also [26, Lemma 6.3], [15, Lemma 1.2.6]. Note that we will
use this result with Y

j

= B(Z
j

,Z 0
j

).
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Lemma 6 (Symmetrization) Assume that (Y
j

)m

j=1 is a sequence of indepen-
dent random vectors in Cr equipped with a (semi-)norm k · k, having expecta-
tions �

j

= EY
j

. Then for 1  p <1

⇣

Ek
m

X

j=1

(Y
j

� �

j

)kp

⌘1/p

 2
⇣

Ek
m

X

j=1

✏

j

Y
j

kp

⌘1/p

, (39)

where (✏
j

)N

j=1 is a Rademacher series independent of (Y
j

)m

j=1.

To estimate the 2p-th moment of kB(x)�Bk2!2, we will use the noncommu-
tative Khintchine inequality [6,33] which makes use of the Schatten p-norms
introduced in (21).

Theorem 4 (Noncommutative Khintchine inequality) Let ✏ = (✏1, . . . , ✏m

) be
a Rademacher sequence, and let A

j

, j = 1, . . . ,m, be complex matrices of the
same dimension. Choose p 2 N. Then

Ek
m

X

j=1

✏

j

A
j

k2p

S2p
 (2p)!

2p

p!
max

n

�

�

�

⇣

m

X

j=1

A
j

A⇤
j

⌘1/2�
�

�

2p

S2p

,

�

�

�

⇣

m

X

j=1

A⇤
j

A
j

⌘1/2�
�

�

2p

S2p

o

.

(40)

Let p 2 N. We apply symmetrization with Y
j

= B(Z
j

,Z 0
j

), estimate the oper-
ator norm by the Schatten-2p-norm and apply the noncommutative Khintchine
inequality (after using Fubini’s theorem), to obtain

⇣

EkB �B(x)k2p

2!2

⌘

1
2p

=
⇣

Ek 1
m

m

X

j=1

(B(Z
j

,Z 0
j

)� EB(Z
j

,Z 0
j

))k2p

2!2

⌘

1
2p

 2
m

⇣

Ek
m

X

j=1

✏

j

B(Z
j

,Z 0
j

)k2p

2!2

⌘

1
2p  2

m

⇣

Ek
m

X

j=1

✏

j

B(Z
j

,Z 0
j

)k2p

S2p

⌘

1
2p

 2
m

⇣ (2p)!
2p

p!

⌘

1
2p
⇣

E max
n

�

�

�

⇣

m

X

j=1

B(Z
j

, Z

0
j

)⇤B(Z
j

,Z 0
j

)
⌘1/2�

�

�

2p

S2p

,

�

�

�

⇣

m

X

j=1

B(Z
j

,Z 0
j

)B(Z
j

,Z 0
j

)⇤
⌘1/2�

�

�

2p

S2p

o⌘

1
2p

. (41)

Now recall that the Z
j

,Z 0
j

may take the values kxk⇤p�

e
�

, with
p

�

2 {1,�1, i,�i}. Further, observe that B(e
�

0
, e

�

)⇤ = B(e
�

, e
�

0), and, for
q 6= q

0,

(B(e
�

0
, e

�

)⇤B(e
�

0
, e

�

))
q,q

00 =
X

q

0

e⇤
�

A⇤
q

A
q

0
e

�

0 e⇤
�

0A⇤
q

0A
q

00e
�

=
X

q

0

e⇤
�

A⇤
q

A
q

0P
�

0A⇤
q

0A
q

00e
�

= e⇤
�

A⇤
q

�

X

q

0

A
q

0P
�

0A⇤
q

0
�

A
q

00e
�

= e⇤
�

A⇤
q

A
q

00e
�

= h⇡(�)e
q

00
,⇡(�)e

q

i = he
q

00
, e

q

i = �(q00 � q).
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Therefore, B(e
�

0
, e

�

)⇤B(e
�

0
, e

�

) = I and

B(Z
`

,Z 0
`

)⇤B(Z
j

,Z 0
j

) = kxk4⇤I. (42)

Since kIk2p

S2p
= n, kxk⇤  2skxk2 = 2s, we obtain

k
⇣

m

X

j=1

B(Z
j

,Z 0
j

)⇤B(Z
j

,Z 0
j

)
⌘1/2

k2p

S2p
= k

⇣

m

X

j=1

kxk4⇤I
⌘1/2

k2p

S2p
= kxk4p

⇤ m

p

n

 (2s)2p

m

p

n . (43)

By symmetry this inequality applies also to the second term in the maximum
in (41). This yields

⇣

EkB �B(x)k2p

2!2

⌘

1
2p  2

m

⇣ (2p)!
2q

q!

⌘

1
2p

2sm

1
2
n

1
2p  4sp

m

n

1/(2p)
⇣ (2p)!

2p

p!

⌘

1
2p

.

Using Hölder’s inequality, we can interpolate between 2p and 2p + 2, and an
application of Stirling’s formula yields for arbitrary moments p � 2, see also
[33],

⇣

EkB �B(x)kp

2!2

⌘1/p

 23/(4p)
n

1/p

e

�1/2p
p

4sp
m

. (44)

Now we use the following lemma relating moments and tails [32,33].

Proposition 1 Suppose ⌅ is a random variable satisfying

(E|⌅|p)1/p  ↵�

1/p

p

1/� for all p � p0

for some constants ↵,�, �, p0 > 0. Then

P(|⌅| � e

1/�

↵v)  �e

�v

�
/�

for all v � p

1/�

0 .

Applying the lemma with p0 = 2, � = 2, � = 23/4
n, ↵ = e

�1/2 4sp
m

, and

v = u

e

�1/�

↵

= u

e

�1/2p
m

e

�1/24s

= u

p
m

4s

�
p

2

gives

P
⇣

kB �B(x)k2!2 � u

⌘

 23/4
ne

�mu2

32s2
, u � 4s

p

2/m.

In particular, if

m >

32s

2

u

2
log(23/4

n) (45)
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then there exists a matrix of the form 1
m

P

m

j=1 B(z
j

,z0
j

) with z
j

,z0
j

of the
given form kxk⇤p�

e
�

for some k such that
�

�

�

1
m

m

X

j=1

B(z
j

,z0
j

)�B(x)
�

�

�

 u.

As before, we still have to discretize the prefactor kxk⇤. Assume that ↵ is
chosen such that |kxk2⇤ � ↵

2|  u. Then, similarly as in (35),
�

�

�

1
m

m

X

j=1

B(↵ sgn(x
�j )e�j , ↵ sgn(x

�j0 )e�j0 )

� 1
m

m

X

j=1

B(kxk1 sgn(x
�j )e�j , kxk1 sgn(x

�j0 )e�j0 )
�

�

�

2!2

= |kxk21 � ↵

2|k 1
m

m

X

j=1

B(sgn(x
�j )e�j , sgn(x

�j0 )e�j0 )k2!2

 u

m

m

X

j=1

kB(sgn(x
�j )e�j , sgn(x

�j0 )e�j0 )k2!2 = u.

Hereby, we used kB(sgn(x
�j )e�j , sgn(x

�j0 )e�j0 )k2!2 = 1.
As in Section 3.3, we use a discretization of J

s

= [1, 2s] with about
K = d 2s

u

e elements, ↵1, . . . ,↵K

such that for any � in J

s

there exists k such |��
↵

2
k

|  u. Now, provided (45) holds, for given x we can find z̃1, . . . , z̃m

, z̃01, . . . , z̃
0
m

of the form ↵

k

sgn(x
�

)e
�

, p(�) 2 {1,�1, i,�i}, with

kB(x)� 1
m

m

X

j=1

B(z̃
j

, z̃0
j

)k2!2  2u.

Observe as in Section 3.3 that each z̃
j

can take 4d 2s

u

en2 values, so that
1
m

P

m

j=1 B(z̃
j

, z̃

0
j

) can take at most (4d 2s

u

en2)2m  (Cn

2
s/u)2m values. As

seen before, this establishes a 4u covering of the set of matrices B(x) with
x 2 T

s

of cardinality at most (Cn

2
s/u)2m, and we conclude

log(N(T
s

, d1, u))  log((Cn

2
s/u)2m)  C

0 s
2

u

2
log(23/4

n) log(Cn

2
s/u)

 C̃

s

2

u

2
log(2n) log(n2

/u).

This completes the proof of Lemma 3. ut

4 Probability estimate

To prove Theorem 1(b) will use the following concentration inequality, which
is a slight variant of Theorem 17 in [5], which in turn is an improved version of
a striking result due to Talagrand [41]. Note that with B(x) as defined above,
Y below satisfies EY = n E�

s

.
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Theorem 5 Let B = {B(x)}
x2T

be a countable collection of n ⇥ n com-
plex Hermitian matrices, and let ✏ = (✏1, . . . , ✏n

)T be a sequence of i.i.d.
Rademacher or Steinhaus random variables. Assume that B(x)

q,q

= 0 for
all x 2 T . Let Y be the random variable

Y = sup
x2T

�

�

�

✏⇤B(x)✏
�

�

�

= sup
x2T

�

�

�

n

X

q,q

0=1

✏

q

0
✏

q

B(x)
q

0
,q

�

�

�

.

Define U and V to be
U = sup

x2T

kB(x)k2!2

and

V = E sup
x2T

kB(x)✏k22 = E sup
x2T

n

X

q

0=1

�

�

�

n

X

q=1

✏

q

B(x)
q

0
,q

�

�

�

2
. (46)

Then, for � � 0,

P
⇣

Y � E[Y ] + �

⌘

 exp
⇣

� �

2

32V + 65U�/3

⌘

. (47)

Proof For Rademacher variables, the statement is exactly Theorem 17 in
[5]. For Steinhaus sequences, we provide a variation of its proof. For ✏ =
(✏1, . . . , ✏n

), let g

M

(✏) =
P

n

j,k=1 ✏

j

✏

k

M

j,k

and set

Y = f(✏) = sup
M2B

�

�

�

g

M

(✏)
�

�

�

.

Further, for an independent copy e✏
`

of ✏

`

, set ✏(`) = (✏1, . . . , ✏`�1, e✏`

, ✏

`+1, . . . , ✏n

)
and Y

(`) = f(✏(`)). Conditional on (✏1, . . . , ✏n

), let cM = cM(✏) be the matrix
giving the maximum in the definition of Y . (If the supremum is not attained,
then one has to consider finite subsets T ⇢ B. The derived estimate will not
depend on T , so that one can afterwards pass over to the possibly infinite, but
countable, set B.) Then we obtain, using cM⇤ = cM and c

M

kk

= 0 in the last
step,

E
h

(Y � Y

(`))21
Z>Z

(`) |✏
i

 E
h

|gc
M

(✏)� gc
M

(✏(`))|21
Z>Z

(`) |✏
i

= E
h

|(✏
`

� e✏

`

)
n

X

j=1,j 6=`

✏

j

c

M

j,`

+ (✏
`

� e✏

`

)
n

X

k=1,k 6=`

✏

k

c

M

`,k

|21
Z>Z

(`) |✏
i

 4Ee✏`
|✏

`

� e✏

`

|2
�

�

�

n

X

j=1,j 6=`

✏

j

c

M

j,`

�

�

�

2
= 8

�

�

�

n

X

j=1

✏

j

c

M

j,`

�

�

�

2
.

The remainder of the proof is analogous to the one in [5] and therefore omitted.
ut
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We first note that we may pass from T

s

to a dense countable subset T

�
s

without changing the supremum, hence Theorem 5 is applicable. Now, it re-
mains to estimate U and V . To this end, note that (36) implies

U = sup
x2Ts

kB(x)k2!2  sup
x2Ts

2skxk2 = 2s .

The remainder of this section develops an estimate of the quantity V in
(46). Hereby, we rely on a Dudley type inequality for Rademacher or Steinhaus
processes with values in `2, see below. First we note the following Hoe↵ding
type inequality.

Proposition 2 Let ✏ = (✏
q

)n

q=1 be a Steinhaus sequence and let B 2 Cm⇥n.
Then, for u � 0,

P
⇣

kB✏k2 � ukBk
F

⌘

 8e

�u

2
/16

. (48)

Proof In [35, Proposition B.1], it is shown that

P
⇣

kB✏k2 � ukBk
F

⌘

 2e

�u

2
/2

. (49)

for Rademacher sequences. We extend this result using the contraction prin-
ciple [26, Theorem 4.4], as in the proof of Theorem 3.

In fact, [26, Theorem 4.4] implies that for B 2 Cn⇥n and ✏ being a Stein-
haus sequence and ⇠ a Rademacher sequence, we have, for example

P(kRe(B) Re(✏)k2 � ukBk
F

)  2P(kRe B⇠k2 � ukBk
F

)  4e

�u

2
/2

.

Hence,

P(kB✏k2 � ukBk
F

) = P(kRe(B✏)k22 + k Im(B✏)k22 � u

2kBk2
F

)

 P(kRe(B✏)k22 �
u

2

p
2
) + P(k Im(B✏)k22 �

up
2
kBk2

F

)

 P(kRe B Re ✏)k2 �
up
8
kBk2

F

) + P(k Im B Im ✏)k2 �
up
8
kBk2

F

)

+ P(kRe B Im ✏)k2 �
up
8
kBk2

F

) + P(k Im B Re ✏)k2 �
up
8
kBk2

F

)

 8e

�u

2
/16

.

ut

With more e↵ort, one may also derive (48) with better constants. Let us now
estimate the quantity

V = E sup
x2Ts

kB(x)✏k22 = E sup
x2Ts

X

q

0=1

|
X

q=1

✏

q

B(x)
q

0
,q

|2.
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It follows immediately from Proposition 2 and (49) that the increments of the
process satisfy

P(kB(x)✏�B(x0)✏k2 � ukB(x)�B(x0)k
F

)  8e

�u

2
/16

. (50)

This allows to apply the following variant of Dudley’s inequality for vector-
valued processes in `2.

Theorem 6 Let R
x

, x 2 T , be a process with values in Cm indexed by a
metric space (T, d), with increments that satisfy the subgaussian tail estimate

P(kR
x

�R
x

0k2 � ud(x,x0))  8e

�u

2
/16

.

Then, for an arbitrary x0 2 T and a universal constant K > 0,

⇣

E sup
x2T

kR
x

�R
x0k22

⌘1/2
 K

Z 1

0

p

log(N(T, d, u))du, (51)

where N(T, d, u) denote the covering numbers of T with respect to d and radius
u > 0.

Proof The proof follows literally the lines of the standard proof of Dudley’s
inequalities for scalar-valued subgaussian processes, see for instance [33, The-
orem 6.23] or [2,26,42]. One only has to replace the triangle inequality for the
absolute value by the one for k · k2 in Cm. ut

We have d = d2 defined above, and, hence, (18) provides us with the right
hand side of (51). Using the fact that here, R

x

= B(x)✏, we conclude that

V = E sup
x2Ts

kB(x)✏k22 = E sup
x2Ts

kB(x)✏�B(0)✏k22


�

KC

p

ns

3/2
p

log(n) log(s)
�2  C

0
ns

3/2 log(n) log2(s).

Plugging these estimates into (47) and simplifying leads to our result, com-
pare with [35]. In particular, Theorem 1(b) follows.
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monic Analysis. Birkhäuser, Boston, MA, 2001.

22. J. Haupt, W. Bajwa, G. Raz, and R. Nowak. Toeplitz compressed sensing matrices with
applications to sparse channel estimation. IEEE Trans. Inform. Theory, 56(11):5862–
5875, 2010.

23. M. Herman and T. Strohmer. High-resolution radar via compressed sensing. IEEE
Trans. Signal Process., 57(6):2275–2284, 2009.

24. F. Krahmer, G. E. Pfander, and P. Rashkov. Uncertainty in time-frequency repre-
sentations on finite abelian groups and applications. Appl. Comput. Harmon. Anal.,
25(2):209–225, 2008.

25. J. Lawrence, G. Pfander, and D. Walnut. Linear independence of Gabor systems in
finite dimensional vector spaces. J. Fourier Anal. Appl., 11(6):715–726, 2005.

26. M. Ledoux and M. Talagrand. Probability in Banach spaces. Springer-Verlag, Berlin,
Heidelberg, NewYork, 1991.
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