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Summary

We consider identification of operator families defined via a time-frequency series
expansion of the operator spreading function. The identification problem is trans-
formed into an infinite-dimensional linear algebra problem. Our aim is to establish
a connection between the identifiability of the operator family and a density mea-
sure of the time-frequency index set. In this way, the identification problem can
be compared to the classical density condition for existence of Gabor frames. The
conclusion is that the relationship between identifiability of such operator families
and the “critical” density is highly intricate because of the presence of additional
conditions. Criteria for identifiability are developed for families of time-frequency
localized operators defined via time-frequency series expansions of the spreading
function based on the Gaussian function.
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1 Introduction

The main purpose of this study is to explore identification of operators having a
time-frequency representation. The goal of operator identification is to recover an
incompletely known operator from a given operator family through observation of

a single input and output result. In general for normed linear spaces X,Y and
H C L(X,Y), we wish to find an element f € X such that the evaluation map
®;:H — Y is bounded and stable. Then H is said to be identifiable by f. Such
problems have been considered in mobile radio communications.

Hilbert-Schmidt operators can be represented as a superposition of time-frequency

shift operators T;M,,:

@) = [ [ )Tt pe)dte.n),

where 7y is the spreading function of the operator. The spreading function defines
the operator uniquely, and each Hilbert-Schmidt operator has a unique spreading
function [Gro01, KP06.

We study classes of operators defined via time-frequency (Gabor) represen-
tations of the operators’ spreading functions. Namely, our point of interest are
operator families of the following type

Ha = {H : ng € span {m(A)ny, A € A}},

with A a lattice in R*, 1y a window function in some subspace of L?(R??). We de-
note the operator having a spreading function w(\)ny by Hy,. The Gabor expansion
in L?(R%),
nr =Y exm(Mng
AEA
can be translated onto the Hilbert-Schmidt space into the following series repre-
sentation of a member of H
H = Z C)\H A-

AEA

Two important criteria for identification of ‘H are therefore: the structure of index
set A (parametrization in R*?); the properties of 1y and its associated prototype
operator H,.

Our approach to identification aims at recovering the coefficients {c,} of the
Gabor series expansion of ny. This is achieved by a discretization of the above
in terms of a linear system dependent on 79 and A. That is why it is important
that the coefficient {c,} must uniquely correspond to ng. In other words, we
require that (1, A) is a Riesz sequence inside L?(IR?>?). The meaningfulness of this
condition is illustrated in Section 4.1. It allows us to relate the Hilbert-Schmidt
norm of an operator H € H, to the £2-norm of the coefficients of the expansion



of ny in terms of {w(A)ny : A € A}, or to the coefficients of the expansion of H in
terms of H,. That is,

[H || s = ‘ = |lc/| 2.

ZC)\H)\
A

In order to show that the operator family H is identifiable, we must find f such
that the family {H,f : A € A} is a Riesz sequence in L?(R?). Such a requirement
will imply the validity of the norm equivalence

> e Hyf
A

Then the norm equivalence between the Hilbert-Schmidt norm of H and the L?-
norm of H f will prove identifiability with f.

For proving non-identifiability it is enough to show that the mapping ®: H —
H f is non-invertible for any f in a particular modulation space (the dual space of
the Feichtinger algebra Sy, M (R?), which contains the Dirac delta.)

We must stress that the operators act on distributions from d-dimensional
space, while the spreading functions of the operators are from a 2d-dimensional
space. Therefore, a single evaluation ®;(H) can not determine a general opera-
tor H (problem of ‘dimension-counting’), and we have to assume some a priori
knowledge of H. We shall assume that the index set A of the Gabor system (7, A)
is 2d-dimensional. Our main goal is to relate the identifiability of the respective
operator class to some measure of density of the index set A. In [KP06] identifia-
bility of a particular operator class is related to the measure (area) of the support
of the spreading function ng. Underspread operators are those where the area of
the support of ny is less than 1, and overspread else. This dichotomy is modeled
after the under- and oversampling in Gabor analysis.

By a nalogy we shall define a ‘Beurling-type’ 2-density for sets of points A lying
within general 2d-subspaces S of R - see Definition 4.2. We shall restrict our
attention to lattices which define a 2d-dimensional hyperplace of R*. For d = 1
they are defined by a strictly rectangular 4 x 2-matrix,

= ‘ Z e (A)mo
HS A 2

= lelle

IH fl2 :‘

2

a; ag am + asn

A= b b 77 = bim + byn :m,n € Z.
C1 C c1m + can
dy dy diym + don

Since such A are parametrized by 2 indices, the identification problem becomes
well-posed. The 2-density of A is then

Dy(A) =[(arbs — asb1)® + (a1c2 — ascr)® + (ards — aady)* + (bica — bocy)?
+ (bidy — bady)® + (c1dz — C2d1)2]_1/2-
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Some standard choices of matrix coefficients a;, b;, ¢;, d;, i = 1,2 are listed in Fig-
ures 2 and 3. For higher dimensions densities can be defined analogously.

A reasonable assumption for the criterion for identifiability of H, is the mag-
nitude of the 2-density of A (this criterion is given also in [KP06] in other terms
- critical spread of the operator). An underlying idea is that whenever the Dy(A)
is high, the information about the operator is densely packed in the coefficients of
its time-frequency representation, and identification is not possible. Our working
hypothesis is thus formulated as follows:

There exist constants ¢, C > 0 such that

Dy(A) > C = H, is not identifiable.
Dy(A) < ¢ = 'H, is identifiable.

Our approach to determining identifiability by means of discretization is the fol-
lowing. To prove that H, is identifiable, we search for an identifier (a distribution
f) such that any choice of coefficients ¢y from (some subclass of) ¢?(Z*), can be
computed from H f. Equivalently ¢, can be computed from the values of the inner
products v, = (H f, w(u)7), n € M, which are the Gabor coefficients of H f with
respect to a Gabor frame (v, M) for L?. Hence, we need to solve the system of
equations

va = (Hf 7 (w) = Y exHafor()n) = 3 exdn (1.3)

AEA AEA

The linear system (1.3) has a matrix-vector representation Ac = v, where

A= (Apn)uni Aun = (Hxf,m(p)7y)-

If there exists f such that the map A: Y — (*(Z?),Y C (*(Z*) is invertible, then
Hp is identifiable. On the other hand, if for every f belonging to a particular
space of distributions (for example, the modulation space M), the map A is not
invertible, then H, is not identifiable with identifiers from this space.

Numerical evidence is given in Section 4, where we explores the existence of
bounds ¢, C' as described above for different A. Numerical examples show that
the factors for identification (2-density, shape of A) have different importance in
determining whether H, is identifiable or not. Our results show that an lower
bound on 2-density of A is not always necessary. Membership of 7y in certain
modulation shapes is sometimes strong enough to show non-identifiability. For
instance, when 7y € M} (R?), there exists lattices A such that the operator family
Ha is never identifiable (Propositions 4.8 and 4.9).

In other cases bounds on 2-density of A are nonetheless an important factor.
If ny belongs to a certain modulation space, for different A, the constants ¢, C' do
play a role. Such examples are provided by Proposition 4.10 and 4.11. However,
in each of these cases the lower bound C' is different because the respective index
sets A are different.



To explore the behavior of upper bound ¢, we keep 7 fixed and vary A. Again
for some A, there exists ¢ such that Dy(A) < ¢ implies identifiability of H (Propo-
sition 4.14, 4.20 and Corollary 4.16). On the other hand, we note that a universal
upper bound ¢ does not exist; in some cases, as Proposition 4.12 illustrates, even
families with 2-density close to 0 are not identifiable. In fact, sometimes the set of
values of Dy(A) for which the respective H, is identifiable is not even connected
in R, namely for all ¢ > 0, the interval [0, ¢) contains infinitely many values such
that Hy, is not identifiable.

Furthermore, we provide examples (Proposition 4.15, 4.21, 4.22, 4.23, 4.24)
demonstrating that extra conditions on the parameters of A besides 2-density are
required in order for the identification problem to even make sense. These cannot
be formulated in terms of a single numerical criterion such as 2-density.

Since the interplay between all these factors is so difficult to grasp, Section 5
considers the identification problem from a different angle for d = 1. It explores the
admissible range of upper bounds C for Dy(A) such that the identification problem
is well-posed and makes sense. An example is provided of A with Dy(A) > 1 and
‘H identifiable, which shows that C' > 1.

Furthermore, we demonstrate that in the most general case in order for the
operator families parametrized by general lattices in R* to be identifiable, C' must
not exceed v/2 (Theorem 5.8). That is why we pose as universal bound for non-
identifiability of Hy, A - 2-dimensional index set, C' = v/2 (Theorem 5.9). Our
method of proof involves the theory of Gabor molecules [BCHLO06a], [BCHLOG6D].
This is to our knowledge first application of Gabor molecules beyond the problem
of measuring localization properties of the elements of the dual frame, which is
the main interest for the authors of [BCHLO06a], [BCHLO6b].

The examples considered show that the identification problem can not be for-
mulated in a straightforward way similar to that of a density condition in the
problem of existence of Gabor frames. Identification of operator families even
with severe restrictions on the spreading functions involves a lot more than simple
density estimates - as evident in the case of higher-dimensional Gabor systems
with Gaussian windows.

2 Preliminaries

In this section we make an overview of the theoretical background used in the
paper. First we do a brief overview of some general properties of Riesz bases and
frames for a separable Hilbert space H with norm || - || because these are essential
ingredients in our analysis. Then we define modulation spaces and present their
most important properties, as well as applications to Gabor analysis and define
Hilbert-Schmidt operators for L? as well as their extension to distribution spaces.



2.1 Gabor frames and Riesz bases

In the following paragraphs we recall the most important concepts from Riesz
basis and frame theory. A sequence {f;} C H is a Riesz sequence if and only
if there exist constants a,b > 0 such that for all finitely supported sequences of

scalars {¢;}jen,
2
ad lel” <D oefillT <> lgl (2.1)
jEN jEN jEN
A Riesz basis for H is a Riesz sequence whose linear span is complete in H. (2.1)
shows that Riesz sequences are more general type of bases than ONB.
A sequence F = {f;};en is a frame for H if there exist 0 < a < b such that for
all fe™H,
all FI7 < Y1 £ <BlIFIP (2.2)
jEN
A frame sequence is a frame for the closure of its linear span.
The constants 0 < a < b are called lower and upper frame bound respectively.
A frame is called tight if we can choose a = b. If a = b = 1, the frame is called a
Parseval tight frame.

Definition 2.1 Let A C R* be a discrete set. A Gabor system (g,A) for L*(R?)
is the set of all time-frequency shifts of the window function g by A = (z,w) € A,
i.€.

(9. A) == {gr: X € A},
for ga(t) = 7(\)g(t) = TuM,g = g(t — z)e*

We define the short-time Fourier transform with window g as
Vof(t,v) = [ flw)g(z — )e ™0 dg.

The map Vj, is central in Gabor analysis - for a discussion of its properties we refer
to [Gro01].
We outline the basic definitions:

e A Gabor system (g,A) is a Riesz basis sequence if there exist constants
0 < a < b such that for all ¢ € ¢*(A),

alelz < 1) ext(Ngllz < bllellf - (2:3)
AEA

e A Gabor Riesz basis is a Riesz basis for L?(R?) if it is also complete in
L*(RY).



e A Gabor system (g, A) is a frame for L?(RY) with frame bounds 0 < a < b
if such that for all f € L?(R%),

all fIIP < Y 1w (Ng)* < blIFIP (2.4)

AEA

e A Gabor frame sequence is a frame for the L?-closure of its linear span.

The operator
S s PRY) = LARY); - Sy fr ) Vef (W) m(N)g

is called a Gabor frame operator. It is a positive, bounded, invertible and self-
adjoint operator if (g, A) is a frame for L?(RY).

When A is a regular lattice, the frame operator S; o commutes with the time-
frequency shifts {m(\),\ € A} [Chr03]. This property of the frame operator
underlies the fundamental observation that the dual frame of a Gabor frame on a
regular lattice has the structure of a Gabor frame with the same lattice. Gabor
frames posses therefore a very useful reconstruction formula:

f= Vol )y =Y Vo f(N) (Vg (2.5)

AEA AEA

where 7 is the (canonical) dual window. For a detailed discussion of further
properties of Gabor frames, their duals and the Gabor frame operator we refer
to [FK98], [FZ98], [Chr03], [Gro01].

The following theorem shows that symplectic transformations of the lattice
leave the Gabor frame property ‘invariant’. It is an important tool for verifying
the frame or Riesz sequence property of a Gabor system from a known Gabor
frame or Riesz sequence.

Theorem 2.2 Let A be a full rank lattice in R*? and M € Sp(d). Then the
following are equivalent:

1. There exists a g € L*(R?) such that (g,A) is a Gabor frame for L*(R?)
(respectively Riesz sequence).

2. There ezists a g € L*(RY) such that (g, MA) is a Gabor frame for L*(R?)
(respectively Riesz sequence).

Remark: The window g = p(M)g, where u(M) is the metaplectic operator asso-
ciated to M.

In our analysis of the identification problem we shall make frequent use of
functions and distributions belonging to certain modulation spaces. We recall
briefly in Section 2.2 their basic properties.



2.2 Modulation spaces

Modulation spaces are useful tools in time-frequency analysis because they allow
characterization of time-frequency properties of functions via membership in cer-
tain Banach spaces. In particular we employ prototype spreading functions 7y from
weighted modulation spaces in order to define operators Hy with time-frequency
localization property (Lemma 4.4).

In this section we introduce the basic properties of modulation spaces, start-
ing from the definition of weight functions and Wiener amalgam spaces. These
describe the decay and growth of functions and will be applied to the definitions
of modulation spaces.

Definition 2.3 A weight function m is a non-negative, locally integrable function
on R, Two weight functions my, ms are called equivalent if there exists a constant
C > 0 such that Fmi(2) < ma(2) < Cmy(2) for all z€ R
The standard weight functions used in Gabor analysis are polynomial. They will
be denoted by vs(z) := (1 + |2])%. If 2 = (z,w) € R* then v, is equivalent to the
weights v/ = (1 + |z| + |w|)® and v” = (1 + 22 + w?)*/? [Gro01].

Wiener amalgam spaces allow ‘a separation of local and global properties of a
function or distribution’ [FZ98]. Here A(R?) = FL'(R?).

Definition 2.4 Let ¢ € A(RY) be compactly supported and generate a partition

of unity, that is
Z Y(x—n)=1.
neZd

Let X be a translation invariant Banach space of functions or distributions on RY
such that A(R?) - X C X with ||of||x < ||o||lallfllx- The Wiener amalgam space

WX ) = {f [ flwece = (3 IFTwelR)7 < oo}
nezd

Since {7T},¥} forms a partition of unity, f = >  _,4 fT,1). Then the Wiener
amalgam norm from Definition 2.4 states that the global decay of f measured via
the local X-norm of f is similar to that of a ¢P-sequence. The simplest Wiener
space is W = W(L*>®,('). In fact, W N FW is the largest space on which the
Poisson summation formula holds pointwise [Gro01].

Let ~(t) = e ™I be the Gaussian function on R?. Modulation spaces will be
defined by introducing a special norm for f, that is by imposing a norm on the
short-time Fourier transform of f.

Definition 2.5 The modulation space MP4(R?),1 < p,q < oo consists of all
tempered distributions f € S(R?) such that the norm

Il = ( / ( / v7f<x,w>pm<x,w>pdx)’q’dw); 2.6)

15 finite. If either p,q = oo, the integral is replaced by the L*°-norm as usual.

7



MP will denote MPP for the sake of shortness. If m = 1, we write just M?. For
a detailed treatment of the theory of modulation spaces we refer to Chapters 11
and 12 of [Gr601]. In our subsequent analysis we shall be interested in modulation
spaces with p = 1, c0. Here we recall only the most important properties of these
modulation spaces:

1.
2.

7.

MP:4(R?) is a Banach space [Gro01]: Proposition 11.3.5.

The definition of MP?%(R?) is independent of the choice of v € S(R?). Differ-
ent choices of 7y yield equivalent norms, i.e. for g1, go € S(RY), g1, g2 # 0, and
11 2= Vi F Lz [l 2= (Vi g there exists €, €, dependent on g, g
such that C||f|ly < [|flle < C'||f]]1 for all f € MP? [Gro01]: Proposition
11.3.2.

M} (R?) is invariant under time-frequency shifts (although they need not be
isometries!) [Gro01]: Proposition 11.3.5.

- Ifm(w, —z) < Cm(z,w), then M} (R?) is invariant under the Fourier trans-

form [Gro01]: Proposition 11.3.5.

. f € M} implies that f is continuous [Gro01]: Proposition 12.1.4.

. If m is a polynomial weight, then S(R?) is a dense subset of M} (R) [Gro01]:

Proposition 11.3.4.

The dual space of ML (R?) is MP(RY) [Gré01]: Proposition 11.3.6.

Furthermore, we have the following inclusion relations

Sc M, cM'c M®cC My, CS

for all polynomial weights vy(z) = (1 + |2])%,s > 0.
The modulation space M! has attracted a lot of attention and is now referred
to as Feichtinger’s algebra and denoted Sy. It has some additional properties:

1.

2.

3.

M?" is a Banach algebra under convolution [Gré01], Proposition 12.1.7:

f.ge M' = fxgec M".

M?" is a Banach algebra under pointwise multiplication [Gr601], Proposition
12.1.7:
fLgeM' = f-ge M.

Let B be a Banach space of tempered distributions such that B is invariant
under time-frequency shifts and M} N B # @. Then M}, is embedded in
B [Fei81].



4. Whenever f € M'(R?), Poisson’s summation formula

S k)= Y f)en (27)

kezd kezd

holds with absolute convergence of both sums for all z.

These properties point out the usefulness of M1(RY): it is a Banach algebra, it is
invariant under time-frequency shifts and the Fourier transform, it contains only
continuous functions, and is dense in L?(R?).

An alternative definition of the modulation space Sy using Wiener amalgam
spaces states that Sy(RY) = W(A(R?), ((Z)) [FZ98]: Proposition 3.2.6. Here
AR?) = FLYR?). Thus an equivalent norm on Sy would be induced by any
compactly supported ¢ € A(R?) with Y _,.T,¢ = 1 almost everywhere and is
given by

1llso = S IF - Tt 2.8)
nezs
The dual space S) = M*(RY) would then coincide with W (A'(R?), >(Z%)).
Thus, Sj(R?) contains the Dirac delta function &y and the delta train >, 40,
[FZ98],[KP06].

Definitions of modulation spaces carry over to sequence spaces (2:4(Z%) after a

change in (2.6) to counting measure.

Definition 2.6 Let m be a weight function. The weighted mized-norm sequence
space (P:9(Z%) s,

72 = {c: (Y (Y lewm(k, DIP)7)s < oo}

€74 kezd

2.3 Modulation spaces and Gabor analysis

Modulation spaces provide a very suitable class of window functions for Gabor
systems. For instance, the Gabor frame operator S, for ¢ € M! is a bounded
operator on L?(RY) [Gro01]: 12.1.12, 12.2.1.

The following three statements characterize the extreme usefulness of M* (R?)
for Gabor frame theory. Let A ~ Z2? be a lattice in R??.

Proposition 2.7 ([Gro01]: Proposition 12.2.3-4) Letg € M} (RY),1 <p,q <
oo. Then the Gabor analysis operator

Coop: [—=A{Vof(N), A€ A}
is bounded from MP4(R?) into (P4(Z*?) for all A. Furthermore, the Gabor synthe-

s18 operator
Cy:{aal =Y am(Ng
A

is bounded from (2:4(Z*%) into MP9(R?). If p,q < oo, the convergence of the sum
is unconditional in MPA(R?). Otherwise it is weak *-convergence in M (R?).

m



An obvious consequence of this statement is

Corollary 2.8 ([Gr601]: Proposition 12.2.5) If g,v € M} (R?), then the op-
erator Syt f = Y ycp Vo (N T(A)y is bounded on MEA(RY) for all1 < p,q < oco.
If g =y, then this is the Gabor frame operator S,.

The L2-frame theory extends naturally to frames for modulation spaces MP:?, as

stated by the following important result about Gabor frames with windows in
M, (RY),

Corollary 2.9 ([Gro01]: Proposition 12.2.6) If g,y € ML (R?), and S, =1
on L*(RY). Then
f=2_ Vaf(N)m(A)y (29)
AEA
with unconditional convergence in M21 if 1 < p,q < co. Also there exist A, B > 0
such that
Allfllazge < A{Vaf (V) = A € Adllae < Bl fllaage (2.10)

Equation (2.9) guarantees the existence of a reconstruction operator, while (2.10)
ensures the norm equivalence of functions and their Gabor coefficients. Thus, (2.9)
and (2.10) fulfil the requirement for a Banach frame for MP4(R%),1 < p,q < oo
in the sense of Grochenig [Gro01].

One important question from Gabor analysis is the quality of the canonical
dual window. The L2-theory states nothing more except that the dual window is
in L2(R%). A very important question about the properties of the canonical dual
window was answered by [GL03]:

Proposition 2.10 ([GLO03]) Let g € M} (R?) be such that (g, A) be a frame for
L*(RY). Then Sy is invertible on M,,(R?) and the canonical dual g = S, g belongs
also to M} (R%).

2.4 Hilbert-Schmidt operators

Definition 2.11 A bounded operator T : 'H — H 1is called a Hilbert-Schmidt
operator if Y po, | Tenll3;, < oo for some ONB {e, : n € N} of H. The Hilbert-
Schmidt norm of T is given by the £?-norm of the sequence {||Te,]||3 : n € N}.

The Hilbert-Schmidt norm of the operator is independent of the choice of
ONB [Con90].

If H: L*(R? — L?(RY) is an integral operator with kernel sy, then H is a
Hilbert-Schmidt operator if and only if kg € L?(RY).

10



Hilbert-Schmidt operators are integral operators that are completely described
by, for example, their spreading function ng, their kernel kg or their Kohn-
Nirenberg symbol og [Gro01]:

@ = [ e =@ty )
= /Rd kg(z,x —1t)f(x —t)dt
= [ ont@oFieemsas

The functions in the above system of equalities are related via Fourier transforms
as follows:

nu(t,v) ku(e,r—t) ——— ou(z,§),
Fav ‘an—rt

or with less compact notation,
mt) = [ o= e 0 do = [ gy(ee e e, o)
R4 R xRd

/{H(if, T — t) — / 77H(t, V)627ri<u,x> dv = / UH(x f) 2mi(€,t) d¢
Rd

R4
on(r,6) = / = e dt = / ()@ ),
X

Hilbert-Schmidt operators with spreading functions in L*(R??) map L*(RY) —
L?(R%). In our discussion of the identification problem we want to use distri-
butions as identifiers (in particular, the Dirac delta train), which belong to the
modulation space Sj = M>®(RY). Thus we will restrict our attention to opera-
tors with spreading functions belonging to the Feichtinger algebra M*(R%), or to
its proper subspaces, the weighted modulation spaces M! (R?). In this case the
Hilbert-Schmidt operators extend to M>°(R%). In our analysis we shall work with
operator families belonging to the space of bounded operators L(M>, L>°) [FZ98].

3 Identification by solving a linear system
3.1 Gabor discretization of Hilbert-Schmidt operators on
L*(R)

Hilbert-Schmidt operators on R?*® are exactly the ones for which (2.11) holds with
spreading function ny € L*(R??). Hence we can discretize these operators by a
Gabor Riesz basis or a Gabor frame decomposition of 7.

11



Proposition 3.1 (Operator discretization) Given that Hy is a Hilbert-Schmidt
operator with spreading function ng, the operator TAMgT _cHyTcMp has spread-
ing function

NTAMpT- o HoTeMp = LA, B+DMB Mo, VA,B,C,D € R% (3.1)

In particular, if an operator H has spreading function ny € L*(R*) with Gabor
frame series expansion

N = E Ck,l;m,nTam,bnMck,dIT/O (32)
k,l,mmn
and convergence in L*-norm, then
def
H= E ChtsmnLam Mo T_q HoT g My, —c, = E ChtsmnHp tymon- (3.3)
k,l,m,n k,l,m,n

Note: We note first that (3.3) holds with convergence in L*(R?) for sequences
¢ = {Ckimn} € ¢2. In our study we will be interested in expansions with window
no belonging to the modulation space M} (R?), which is a subset of L*(R?).

Proof. A change of variables t :== t — A,v := v — B — D and the relation
T, M, = e ?™=“ )M T, gives

//2dTA,B+DMB,C770(t7 V) f(z — )™ D d(t,v) =
R

— // 627ri(B(t—A)+C(V—B—D))nO(t . A, v— B — D)f(l‘ . t)€27riu(a:—t) d(t, l/)
_ // €2m(Bt+CV)770(t, l/)f(l‘ —t— A)€2m'(1/+B+D)(x7t7A) d(t, V)
= [[ et T M () )

=TyMgT ¢ // no(t,v)T,M, Tc Mp f(x)d(t,v)
= TAMBchHoTcMDf(I).

Hence, in particular,

HP@) = [[ )= 0 )
= Z Crk,lymn // Tam,bnMck,dan(ta V)f(l' - t)€2m'u(zft) d(ta I/)

k,l,m,n
= Z CrtimnLamMerT—a HoTa Mpn—ck f ().
k,lmm
O
Expansions based on different time-frequency lattices are listed in Table 2.
Expansion (3.2) corresponding to the most general diagonal matrix corresponds
to Case A from this Table. Case B2 has been solved in [KP05] for bandlimited
o € So(R)
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3.2 Solving the linear system

With H = Zk,l,m,n CktsmmHi izmn as 0 (3.3), the identification problem is to find
a function f € L? such that any choice of coefficients Cklimn from (some sub-
class of ) £2(Z*?), can be computed from H f, or equivalently, from the coefficients
v j = (Hf, M,;T,;7y) of a Gabor frame series expansion with window v and lattice
constants p, q. Hence, we need to solve the equation

(%% :<H.f7 Mpiqu7> = Z Ck,l;m,n<Hk,l;m,nf7 Mpiquﬁ)/>

k,l,m,n

= E Ck,l;m,nAi,j;k,l,m,n-

k,l,m,n

(3.4)

In other words, we need to choose f so that the mapping A: (2(Z*) — (?(Z>?)
with Z2@ x Z*-matrix representation A = (A, jk1mn) has an inverse, i.e. A is
invertible at least on some well-defined subset of ¢2(Z9).

The following lemma will be used for our computations.

Lemma 3.2 Let ng, f,g € L*(R?). Then

(Hf,g9) = Mu, Vig) 12(maxra) (3.5)

Proof. Fubini applied to (2.11) gives

g = [ [ s =0 g de

/ / nu(t,v) | flz—t)e? =g () dx dt dv
R JRd R¢
/ / nu(t,v) | flz —t)e 2milva=t g(z) do dt dv
Rd JRd Ré

77H7 Vfg>L2 (RAxRD)

We note that if ny € Sp(RY) and has compact support, then (3.5) holds for all
f € SH(R?) because V, f € L>(R*). Q.E.D. O
Now we return to the problem of discretization. We do the discretization in two
steps. First we do a parametrization (3.6) of f in Lemma 3.3. Then, in a list of
examples, summarized in Table 2 and Table 1, we consider different lattices and
subclasses of spreading functions and show in some cases how the coefficients a,. ;
in (3.7) can be chosen so that the mapping A is invertible (if this is possible).

The following lemma shows how the matrix coefficients of A can be computed
from the Gabor frame coefficients of f:

Lemma 3.3 Suppose that

f=> a.MyTsg. (3.6)

r,sCZ4
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Then the matriz elements in (3.4) are
Z ar75627ri(<ﬁs7bn—pi+ar)—(pi,ma)) «
r,8€Z4 (37)

<Tma—qj+ﬁs,bn—pi+ar Mck‘—pi,ld—i—ﬂsno y ‘(5}7) L2(R2d)

Aijikemmn =

Proof. Since f = Zr,sezd ar s Mo T35, we know from (3.4) that

ALj;k,l,m,n :<Hk,l;m,nf7 Mpiquﬁ)/>
= Z ar,s<Hk7l;m,nMo¢rTﬁs§a Mpiqu’7>

r,s€Z4

- Z ar’s<TamMCkT_dlHOleMbn—ckMarTﬂngpiqu’7>
r,s€Z%

— Z ar’s<T_qjM_piTamMCkT_leOleMbn—CkMarTBsg, 7)
r,s€Z4

= Z anse%ﬂ(*<pi’am>+<5370k*pi+bnfck+ar))X
r,s€Z4

X T gjam+ps M —piterT-ai—ps Ho T+ ps Mon—ch+ar: 7)

In combination with (3.5) and (3.1), this gives (3.7). O
After [KP06] we know that a certain class of operators with compactly sup-
ported spreading function is identifiable.
We illustrate the advantage of the method of solving a linear system by giving
an alternative proof of a result from [KP06].

Theorem 3.4 ([KPO06]) The set of operators H = {H : suppng C [0,a) X
[0,4),ni € M'} is identifiable.

Proof. The study [KP06] considers the operator family H = {H : suppny C
[0,a) x [0, %)ﬂ?H € M'}. This operator family can be alternatively defined as
consisting of operators H such that

i € M NSpan {7(A\)X(g.apxpo, 1), A € A},

for

as defined in this theorem.

It is well known that the family of exponentials {e?™(“a"ta™) . (z 1) € [0, a) x
[0,1),m,n € Z} form an orthonormal basis for the space L2([0,a) x [0, 1)). There-
fore, if we let ny = X[0,a]x[0, 1], We obtain the following expansion of the spreading

function of the operator H,

N = Z Ck,lMg,amo

k.l

15



We can set thus ¢xjmn = Cki0mn(0,0). Furthermore, we set v = X[0,a) and use
a Gabor frame (7, aZ x £Z) for a resolution of the coefficients v;; = (H f, M: T,;v).
We employ as identifier the Dirac delta-train f = § = 0,7, which belongs to S’ (R).

We use a canonical representation of the identifier f with a, s = doo(r, s).
After substitution in (3.7) (note here that 7 has compact support, so the inner
product (3.5) is still well-defined even though Vs v ¢ L?(R?)) we obtain

Aigirg = (Tgj - i Me_i o0, Vo2 7),

which we rewrite as follows: On one hand we use the following property of the
short-time Fourier transform Vj_,v = Z,v. This follows from the fact that Vj_,g =
Zag for g € Sp(RY), which can be extended by density for all ¢ € L?(R?). On
the other hand, Z,xo,q)(7,w) = e2mial e Rewriting 7y into a tensor product
0 = X[o.0) @ Xjo,1) will allow us to compute the integral of the inner product:

; (k—p)(z+aq) i mi(w+i)al —2mial L |w
Ai,j;k‘,l ://X[O,a)(x+a/q)€27m pa q X[Qé)((ﬂ_}_é)eQ ( +a) l@ 2 [a] dxdw

We make subsitution y = x +aj, £ = w + é and note that since the integrand is

nonzero for aj < x < aj + a, [%] =aj.

1
a 1
a . (k—1) -ra . T
Aga= [ [ en ot bayae
0 0

u _ 1

:62m‘(ij)/ ezm‘@dy % /“ e2riall=)¢ gg
0 0

:52,](k7 l)7

because the families of exponentials {€2™«¥ : n € Z} and {e*™% : m € Z} form
an orthonormal basis for L2[0,a) and L?[0, 1) respectively.

The matrix A = A, j.x,; is diagonal, and moreover, it is the identity, and thus,
the coefficients of the expansion of 7y are equal to the coefficients of the frame
expansion ¢y = Vg = (Hoaz, M TaX[0,0))- O

Case A from Table 2 shows more concretely the series expansion of the mapping
f— Hf in terms of the Gabor Riesz coefficients of ny.

4 Operator families associated with general lat-
tices

In the general case we will consider a collection of operators whose spreading
functions have a set, pre-determined Riesz basis expansion with respect to some
Gabor system or a subset of a Gabor system. Namely, we will look at

H = {H :ny €span{r(\)no: A € A}},
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’ Ref. H Lattice

\ Frame elements | Prototype operator

A (§ é’ § %) Z' | TaaMomsits | Tor M0 HoTo Moo
bt <2 g 8 B)TZQ TokiM0 TorHoMy,

B2 <8 8 2 g)TZQ Mg gimo Mok T g HoTig Mo,
B3 (2 8 8 g) ' Z* | Tor,0Mo gimo Tor-pHoTa

B4 (8 2 g 8) ' Z* | To .ok Mgaomo Mg HoMoak—p

B5 (8 2 8 g) ' Z2 | To oMo gimo T_ g HoTg Mg,

B6 <g 8 g 8) ' Z* | TokoMsiomo Tor Mg HoM g

ot (2 g 8 2>Tz2 TarpiMoero | HoTar M

D2 <g g 8 g)Tzz Tok. 56 Mo.ai0 To—1yHoToaMpy,
- (2 g 8 g)TZQ TakpiMoaimio | Tage—nHoTo Mg
D4 (2 g 2 8) ' 22 | Tok,siMar0mo ToxMar HoMpg; o
D5 (g g 0 8)T22 Tk sk Marotlo | TorMarHoMgy—o
D6 <2 g g 8) ' Z* | Toks1Maiomo Tk Mo HoMs—ay
El <g g g 8) ' Z* | TorsMpiomo To Mg Hy

E2 (g g g S)TZQ Tk, 5 Mpai.0mo Ter Mg HoMp 1)
E3 <2 g 2 8) ' Z* | Tok s Mpr0mo TorMprHoMp—r,)

Table 2: Expansions of operators based on Gabor Riesz expansions with window

1o of the spreading function 7.
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’ Ref. H Lattice

\ Frame elements | Prototype operator

E4 <2 g 8 g)TZQ Tork,p1 Mo gimo Tok—pHoTs Mg

E5 <g g 8 g)TZQ Tk s Mo gm0 Tok—piHoT s Mgy,

b0 (g g 8 g)TZQ TakpMoprno | Tia—prHoTpr Mg

H <2 g g 8>TZ2 TorstMpranto | €% Mg HoTo,

" (2 g g g)Tz2 TorstMprcatio | €278 * Mgy To oty HoToa Mpa—r)
" <2 g g g)TZQ Tk seMpratio | €270 Mg T o1y HoTea Mige-1)
e (g g 2 g)Tz2 TorstMarpno | €™ F Tyt Mo HoT o Mpi—a
ko (g g ((J; g)TZQ Tokp1Mot,pr7o e?if k'alT(oa—ﬁ)kMamHOTﬁkM(ﬁ—a)m
" (2 2 g g)TZQ Tk seMarpnio | €™ T g Mot Ho Tt Mpr— o
a1 (8 5 ‘g)TZ? TostMatantto | MarT-anHoTan

G2 <8 g g g)TZQ T0.8mMp1.0imo Mg T_oiHoToaMpa(m—i)

G3 (8 g g S)Tzz To,8mMpai1,amMo Mg T amHoTam Mgm-1)

G4 (8 g g E)TZQ To,6:Man im0 Mon T st Ho Ty Mp—an

G5 (8 g g g)TZQ TogmMargmo | MaT-sHoTpMpm-—o

G6 (8 g 2 g)TZQ TogmMamgmo | MamT—gHoTs M p—aym

i (2 8 g g>TZQ TaroMpramo | €™ oty M HoToa Mg
2 (2 8 2 g)TZQ ToroMpretto | €25 Ty gy Mpr HoToa My,
o (2 8 g 2)TZQ TokoMprakno | MpHoT- o M-_p

H4 (2 8 (S g)TZ2 Toke.0Mer gm0 X olBUT 4 Moy HoTa Mo
H5 (g 8 8‘ g)TW TokoMangeno | €™ T gy Moy HoT g Mo,
Ho <(o)z 8 g g>TZQ Tak,OMak,ﬁ}SO MO g Mes Ho Tt M o

Table 3: Expansions of operators based on Gabor Riesz expansions with window

n~ of the anreadine Finection 7,




with A a lattice in R*, 1y a window function in some fixed space. Due to the
form of equation (3.4), we see that the index set given by A must be determined
by two indices in order for the problem to be well-defined (dimension-counting).
Otherwise, the map defined by (3.4) sends variables from a space with 4 degrees of
freedom to variables with just 2 degrees of freedom. In particular we will work with
special A, namely a regularly spaced point set within a 2d-dimensional subspace of
R*_ Furthermore we shall examine identifiability of the respective operator class
depending on some measure of density of A as measured within the copy of R?? it
lies in.

Before we define the particular type of density to be used in the subsequent
analysis, we recall the definition of Beurling density. Let B,(R) denote a ball in
R? centered at 0 with radius R.

Definition 4.1 Let A be a set of points inside R?. Then the lower and upper
Beurling densities of A are given by

oo IAN{Ba(R) + 2}
PN R T e
D*(A) = lim sup sup AN {Bd(f) i Z}|.

R—oo zecR4 TR

Whenever D~ (A) = DT (A), we speak of the Beurling density of A, D(A).

Clearly, whenever A is a lattice, the Beurling density is the inverse of the area of
the fundamental domain of A.

For the purposes of studying operator families H,, where A is a point set
lying within a 2d-dimensional hyperplane S C R* we modify the definition of
density. The combinations listed in Table 2 and Table 3 correspond to standard
2d-dimensional lattices in standard hyperplanes inside R*¢.

Definition 4.2 Let A be a point set lying inside a 2d-dimensional subspace of R4,
denoted by S. The “2d-dimensional” Beurling densities (or for short 2d-density)
of A are given by

AN {Bs(R) + z}|

Dig)(A) = lim inf inf T ’ 4
. AN {Bya(R) + z}| '
D) = timsupsup =" pa;

We point out that in contrast to Definition 4.1 of the classical Beurling density, the
denominators in (4.2) contain the power R*¢, which corresponds to the dimension
of S O A. If the classical Beurling density (Definition 4.1) were used, the densities
of S and of A would equal 0.
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First of all in our analysis we consider a time-frequency lattice A parametrized
by a 4 x 2-matrix. We shall compute a formula for the 2-denisty of A as defined
by (4.2). Suppose we have the following parametrization:

a1 Qg a;m —+ asn

A= br by 7* = bim + byn :m,n €Z (4.3)
C1 Co c1m + con
di dy dim + dan

This is a two-dimensional set of points in R*. The 2-density will depend on all
four pairs of coefficients of the matrix.

In accordance with the formulae (4.2), the “2-dimensional” lower and upper
Beurling densities of A are given by

D_, (A) = lim inf inf (AN{BAR) + 2} DY

AN{B
(2)(A) = lim sup sup AN {BalR) + 2}

(2) R—oo z€S ’/TR2 ’ R—oo z€S 7TR2

The numerators are a count of the number of points of Z? that lie within the
ellipse E\"™ C S defined by the inequality

EXR) :(aym + agn)? + (bym + byn)? + (eym + con)? + (dym + dyn)? < R2.

When A is parametrized by a matrix, it is regularly spaced inside the hyper-
plane, so when R — oo, the expressions D, (A) and Dé) (A) converge to

Dy(A) = M,

T
where m(&€y) is area of the ellipse €. To find this area we rewrite the equation of
the ellipse as follows:
Er: (aym + agn)? + (bym + byn)?
+ (erm + con)* + (dym + don)® < 1 &
Ext (af+b]+ci+d)m’ + (a5 + b5+ c5 +d3)n”
+ 2(ajag + bibs + 109 + didy)mn < 1

The area of £, is computed to be

m(€n) =

\/wA’

where ) ) )
WA = (albg — agbl) + (alcg — a201) + (&1d2 — agdl)

+ (1)1C2 — b261)2 + (bldg — b2d1)2 + (Cldg — Cle)Q
Hence, we obtain that the ‘2-dimensional density’ of A equals
1
Vi

D@y(A) =

20



In the following we will focuses our attention at some of the cases illustrated
in Figures 2 and 3 under assumptions on 7y belonging to the modulation space
M}!(R?), for a polynomial weight v(z) = (1 + |2])",n > 2. We shall work with
operator classes where the spreading functions are given by Riesz basic expansions
with respect to a Gabor system (g, A), where g € M}!(R?) and A is a set of points
parametrized by Z? (a regular lattice lying in some plane within R?* - different
choices of parameters are listed in Table 2 and 3). The primary goal is to formulate
results on a relation between identifiability and non-identifiability and the measure
of the 2-density of A.

4.1 Necessity of the Riesz sequence condition on {7 (\)n, :
A€ A}

The following example illustrates the fact that by discretizing the operator in
terms of a Gabor expansion of its spreading function, we identify ‘coefficients’ and
not the operator itself. The fact that in our approach we work not with the oper-
ators themselves, but with the coefficients of their Gabor representations, requires
uniqueness of the coefficient representation. In other words, to the zero operator
we must in our framework associate only the zero sequence. Therefore, the Riesz
sequence condition is necessary for the method of our analysis of identification.

Our example demonstrates what happens if {M.zm0 : k,l € Z%} is not a
Riesz sequence in L?. Consider the collection of operators H = {H : suppny C
=59

It is well known that the family { My no : k,l € Z}, where ny = X[-1 3yx[-1 1), 18

not a Riesz sequence. To see this, it is enough to show that in the one-dimensional

case {ka[_%&) . k € Z} is not a Riesz basis for L?[—1, 1). The system

)(t)e27ri(2n)t ‘ne Z}

{X[—l i <t>627ri(2n+1)t ‘ne Z}

is an orthonormal basis for LQ[—}“ %1) We denote for sake of clarity, e, = x_

Therefore, any g € LQ[—}“ %) has the two representations

g = Z<g’ €2n>€2n

nel

g = Z<97 €2n+1>€2n+1

neL

) (t)627rint.

=

1
4

21



Therefore in L*[—1, )2, for a chosen e,,,

1 1
101
g ey = Z<97€2n>62n®6m

neL

g em = Z(% €2n+1>€2n+1 X em

nel

Thus { My ,no : k,n € Z} is not a Riesz sequence. Furthermore,

0= Z(ga 62n>62n ® €m — Z(g, 62n—|—1>62n—|—1 ® €m, (44)

nez nez

but the ¢2-norm of the coefficients in (4.4) equals QHQHLQ[—i%)' Thus we would
obtain that for the choice of sequence ¢ = {cx.m = (g,€x)dn} and any f, the

mapping
Sric— Hf =0,

would not be stable because ||c|| = 2[|g]| 21 1) # 0.

Nevertheless, the collection of operators H = {H : suppny C [—%, )%} is
identifiable according to [KP06]. However, we are dealing in reality with a non-
trivial representation of the zero operator. Of course, we must observe the fact
that there is a canonical ONB for H, with basis elements operators with spreading

functions corresponding to the basis elements of the tensor ONB {ey, ® g, m, 0 €
Z7}.

4.2 Preliminaries

In this section we consider operators H whose spreading function nybelongs to a
modulation space M!(R??). They behave like ‘time-frequency localization’ oper-
ators, in other words, for a distribution f € M*°(R?), Hf has a certain decay in
the time- and in frequency domains.

First we look at operators whose spreading function is a tensor product.

Lemma 4.3 ([KPO06]) Let p,q € C=(R?). Consider the operator P with spread-
ing function np = p ® q. Then there exist functions V1,1, € S(RY) such that for
all f € S()(Rd),

[P f ()] < f] sl (2)]

FPFE)| < | fllsy 1606 (45)
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Proof. We first estimate the decay of Pf and FPf

Pr@ = | [ [ plaw) e - e dgev)

- | o5 -0 ( Jaweman)ai

= | [0 s =t - o dt\
HfHS(’) : Hp : TxZ]\HSO‘ (46)

Since p - T,q € S(R?), the Sp-norm in (4.6) is finite. We need to show that there
exists 1 € S(R) such that |Pf(z)| < ¢1(z)]| fl|s;- Observe that |p - T.q||s, tends
to 0 at infinity (the support of p is compact, and ¢ has fast decay at co). We use
the alternative definition of Sy as a Wiener amalgam space W (A(R?), (*(Z%)), (2.8)
and the equivalent norm. We choose a 1) € S(R?), such that QZ C [~1,1]* and
{Tnzz : n € Z% form a partition of unity. Then for all k > 1, there exists a
constant C}, such that

IA

If - Totbllagey = |FF Tt = |F * M_olh
= /\VA ,y)|dy
< / (1 + [2] + ly]) " dy (47)
< Cp(1+ |z))** (4.8)

The estimate in (4.7) follows from [Gro01]: (11.2.5).

Thus we can now estimate directly ||p - T,.ql|s, using in turn the fact that
suppp C [—£, 51 for some fixed R in (4.9), the fact that A(RY) is a Banach
algebra in (4.10) and applying maximum estimates in (4.11).

Ip-Tedlls, = [T-2p-qlls

= Z | T - (T-ap - @HA(Rd)
nez

= > T+ (T-ap - @)l Aoy (4.9)
ne[—z— 177 7x+1+R]d

< | Tepllaw > T - Gll oy (4.10)

nel—z— 177 —r+1+5 }
< |pllagCi((2 + R) + 1)° max (1+ In])'"(4.11)

ne[—m—l—g,—x—l-l—&-g]
< Cp(2+min{[-z—-1-2] [-z+1+2]})""  (412)

Equation (4.12) provides the necessary decay of ||p - T.q||s, for any k& > 1 as
|z| — oco. Thus we can choose ¥; € S which dominates the expression in (4.12),
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such that
[P f(@)] < (I fllslen ()]

It remains to estimate the decay in the Fourier domain of P f:,

IFPFE = [pE) - (g* )( )l
< )| 1@ 1)
< PO llalls, - 1Tef s
= [P llalls, - [[fllsy

Since p € § and the Fourier transform is an isomorphism from the Schwarz space S
to itself [Kat76], then p € S and |p(&)| decays rapidly at infinity. Hence, |FPf()|
is bounded by ¥2(&)||f[|sy, where ¢2(§) = [p(§)] - llqlls, is a rapidly decaying
function. 0

Lemma 4.3 and Corollary 2.9 form the basis for the remaining statements in
Section 4. We consider separately the cases d =1, d > 1. In the following lemma
we consider the case d = 1.

Lemma 4.4 Let 1y be a function from MLR?), where v(z) = (1 + |2])?*° is a
polynomial weight. Then the Hilbert-Schmidt operator Hy associated to ng satisfies
the following

o There erists p1(x) = O(x727%) such that |Hof(2)| < @1(2)|fllar~ for all
f e M>(R).

o There exists py(&) = O(E7279) such that |FHof(€)] < 02| fllare for all
f € M>®(R).

Note: The decay estimates in fact show that Hyf € L*(R?), see [Fol99] (2.52).

Proof. We consider a spreading function np = p ® ¢ with Hilbert-Schmidt
operator P. With a careful choice of initial parameters a,b,c,d and functions
p,q € C°(R), we are able to obtain a Gabor frame (np,aZ X bZ x ¢Z x dZ) for
L*(R?). Because np € S(R?*) € M}(R?), in fact the Gabor system (np,aZ x bZ x
cZ x dZ) is a universal Banach frame according to the definition of Grochenig for
all modulation spaces M} (R?) ([Gro01], Chapter 13.6). Due to the inverse closure
of the Banach algebra (¢1(Z*), ) for polynomial weights v [GL03], the dual window
np € M} (R?). So the series expansion

9= {9 TukstMem.anip) Tkt Mem.antip, g € M, (R?) (4.13)

k,l,m,n
holds with convergence in the M!-norm and the inequality

A'llglla < 19, Tak i Mem.aniie) e, < B'[|gllar (4.14)
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holds for all g € M}(R?), see Definition 2.6 and [Gro01]: (12.2.6). Furthermore,
because the coefficients have decay stronger than ¢!, the convergence of the series
holds in L'(R?) and in L?(R?).

Since the operator H has spreading function ny € M} (R?), equations (4.13)
and (4.14) show that

N = E Ck,l,m,nTak,blMcm,dn/’?P

k,l,m,n

for some ¢ € £}, where v(z) = (1 + |2])*™ is a polynomial weight. This shows
that ny € M} C M!. Tt is legitimate to use as identifier distributions f € M,
because

SCM!cM'cM*®cM¥cCS,

a consequence of Lemma 11.3.6 and 12.1.10 from [Gr601] (the constant weight 1 is
(14 |2])*"-moderate - see Lemma 11.1.1 from [Gré01], which proves the inclusion
M} c MY).

Next, we estimate the decay of H f in the time and frequency domains. We
shall use the fact that translation and modulation are isometries on M* and hence
also on M and make the following estimates using the result from Lemma 4.3.

|Hf(£l?)‘ = ’ Z Ck,l,m,nTakMfcmdenPTanblfcmf(x>’

k,l,m,n

S Z ‘Ck,l,m,n‘ : Takfdn’PTanblfcmf(x)‘

k,l,m,n

S HfHMOO Z ’Ck,l,m,n| 'Takfdnwl(x) (415)

k,lmm

Since {|ckimnlteimn = ¢ € lo(Z*) C £1(Z*), we claim that the expression on the
right-hand side of (4.15), which for the sake of clarity we denote

Y1 (ZIZ’) - Z |Ck’,l,m,n| Tak—dnwl(gj) = Zék,nTak—dnd}l (:E)a
k,n

k,l,m,n

inherits the decay and is O(|x|~27?).
Namely let us make the change of variables 2270 = 2, for x > 0,y € R and
22+t = —42 for x < 0. Then

~ ~ _2
sup |x2+6 Z Ck,nTak—dnwl (I)| = sup ‘y2 Z Ck,nTak—dnqvbl (y 246 >|
k,n

x>0 , y>0 kn

Since y% is monotonic on R and due to our choice ¥; € S (i.e. 11 decays faster
~ 2
than the reciprocal of any polynomial on R), 11(y) = ¢;(y2+) also decays faster
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than the reciprocal of any polynomial. Then

sup |y/° Z G Tah—anth1 ()] < sup | Z CrnTak—an(P1(y) - 7)1+
v . v

k,n
+ 2sup | Z Cron(ak = dn) To—an (V1 (y) - )| (4.16)
Y k.n
+ sup | Z Crn(ak — dn)*Top—anthr ()]
Y k.n

We make the following estimate of the bounds of the sum in (4.16)

sup |Z/2 Z 6k,nTakfdn1/~}1 (y)’ <C (Z |ék,n’ sup |(1;1 (y) : y2>|
Y k.mn k.n Y

+ > |kl - lak — dn|sup | (1 (y) - y)] (4.17)
k.mn v

3 el ok — oo )]
k.n 4

In (4.17) C' is some positive constant coming from the estimates from Lemma 4.3.
We analyze separately these summands in (4.18). First because 151 T 1;1 -, &1
belong to the Schwarz class, they are bounded and decay faster than the reciprocal
of any polynomial. Second the inequalities

3 el < llelly < o0
k.mn

> ekl - lak = dnf* < C Y el (1 + alk] + dln))* < [|cflg < oo, (4.18)
k.mn k.n

> ekl - lak —dn| < Co > [l (1 + alk] + dln]) < [lcflg < oo
k.n k.n

hold for some constants Cy,Cy > 0 due to the choice ¢ € £1. Thus the whole
expression on the right-hand side of (4.17) is bounded, implying the desired decay
rate of H f for x > 0. In a similar fashion we prove the decay for x < 0. Thus,

sup |22 ¢, (z)] < C.

Then |H f(x)| < ||f||me1(x) has decay O(z~27%). In such a manner, we also
estimate the decay in of the Fourier transform of H f

’FHf<5)’ - ‘ Z Ck,l,m,nM—akT—cmMdnJTPTanbl—cmf(g)’

k,l,m,mn

< Z |Ck,l,m,n’ : chm|fPTanblfcmf(£)‘ (419)

k,l,m,n

< [ fllares Z |k pmnl - Temtb2(§)

k,l,m,mn
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Since 1, € S(R), and ¢ € (1(Z*), then the expression on the right-hand side of
(4.19), which we denote by

@2(1:) = Z ’Ck,l,m,n|T—cmw2(x)a

k,lmm

is proven in a similar fashion to have decay O(x=27°%). So |FH f(€)| < wa(E)|| fllar
also has decay O(]¢|727°). O
Thus we are able to cover the case 9 € M} (R?) for polynomial weight s of
degree strictly greater than 2.
For 7y defined on a higher dimensional space, the parameters of decay have to
be adjusted.

Lemma 4.5 Let 19 be a function from M} (R??), where vy(z) = (1 + |2])*, s >
2(d+ 1) is a polynomial weight. Then the Hilbert-Schmidt operator Hy associated
to ny satisfies the following

o There exists @1 (x) = O(|x| 72V such that |Hof (z)| < o1(2)|| || sz for all
f € M>=(R%).

o There exists 2(€) = O] D) such that |FHof(€)| < 2()ll fllar= for
all f € M>(R%).

Note: The decay estimates in fact show that Hyf € L%(R?) [Fol99] (2.52).
Proof. The line of proof is similar to that of the previous proposition. We use
a tensor Gabor window 7np to form an expansion of ny.

N = Z Ck,l,m,nTak,blMcm,dn/r’P
k,l,m,n
for some ¢ € £}, where v,(2) = (14 |2|)%%*V is a polynomial weight.
Next, we estimate the decay of Hf in the time and frequency domains as
before, using the result from Lemma 4.3.

|Hf(l’)| = | Z Ck,l,m,nTakM—cmT—anTanbl—cmf(x>|
k,,mmn
< Z |Ckmm| = Tak—dn| PTanMpi—cm f ()|
k,,mmn
S ||f||M°° Z |Ck:,l,m,n| : Tak—dnd)l ([E) (420)
k,l,m,mn

Up to this point, the proof is identical to that of Lemma 4.4 for d = 1. However,
the rest of the computation is somewhat different due to the higher dimensionality
and different restriction on s. We claim that the expression on the right-hand side
of (4.20), which for the sake of clarity we denote

p1(z) = Z |k tmn| Tak—antl1(z) = Z@Twl(x),
)

k,l,m,n
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inherits the decay of 1y and is O(|z|~(24+1).
Therefore, our aim is showing that the function

sup |z[* |y (z)]
zERY

is bounded on R?¢. Similar to the one given in the proof of Lemma 2.6, [Rie88]

we can rewrite this as a polynomial in the coordinates zi,...x4 of x because
2|2 = (22 + ... 22)%. Then the function
[2* V) pr(@)] = (aF + ..+ 1) o ()] (4.21)

can be bounded by a finite sum of terms of the type |#2@* Y, ()| (in multi-index
notation) - a consequence of the triangle inequality applied to (4.21). Then for
fixed x1,...x4 and a fixed d-tuple (i1, ...i4) we obtain

|28 a2 . 2l (2)] = | Zxﬁlx’; cxeb(zy — A, Ty — Aoy g — Aa)| (4.22)
AEA

For each A = (A1, Ag,...,\q), the monomial z%' 2% .. .mzd can be expanded as a
polynomial in terms of Af' ... A5 (zy — Ay)%+1 ... (zg — Ag)™¢. Observe that the
total power of the monomial is 2(d + 1). Thus (4.22) is bounded above by

>G> ety

ls=2d  XeA (4.23)
( xr1 — )\1)8‘”1 Ce (;Ed — )\d)smw(ﬂfl — )\1, To — )\2, ey Lg — )\d)‘

where the constants Cy come from the polynomial and are independent of X. To
illustrate this, consider the next two numerical examples. For example when d = 2,
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for a ‘cross-product’ the expansion looks like

[wieson (w1, )| = |2725 ) exTa(w, w0))|
A
< 1Y ealwn = M) (s = Aol Tai(an, w2)|
+ 2‘ Z >\ch($1 — )\1)2(332 - )\Q)T)\w(l'la xQ)’
A
+ 2| Z Aacx(z1 — M) (w2 — Ao)*Tat (21, 12))|
A

+ ].2| Z )\1)\2C)\<I1 - )\1)(%2 — >\2)T)\w($17 Ig)‘
A

2 (4.24)
+ | Z Aea(wa = Ag)*Taip(w, m3))|
A
+ | Z Agea(r — M)*Tay(a, w2))|
A
+121 ) " M aea(wy — M) ot (1, 22))|
A
+ 12| Z AAsea(@r — M) Tap(xy, )]
A
+ 13| Z AN T (a1, 22)],
A
while for a term z* we have
|zt1 (2)| = [ ZCATM/J
< |ZC>\ x— ATy (x |+4|Z)\‘3)\ z— A\)’Th(z)]
(4.25)

+6|Z)\20>\ (x = A)*Thy(x \+4|Z>\3CA z— N T(x)|
+]Z)\ exTaib(z))|
A

For each term of (4.23) we can apply similar estimates as those in (4.16)
and (4.17). That is,

sup | ZC,\ASI S (T = Ap)P (g — Ag) X
AEA

w(ﬂfl — A1, T2 — Ao, .., Tg — >\d)|
< et A sup (2 — M) (g — Ag) X
AEA z
1/1($1 — A, T2 — Aoy, Tg — )\d)|

(4.26)

29



Then, Z lex At .. A7 is convergent because ¢y € (1(Z*?) (as in (4.16) and (4.17),
AEA

the decay of (cy) absorbs all terms in A2*1 (in multi-index notation)). On the

other hand,

sup [(z1 — A1) (g — Aa) ™ (11 — A, T2 — A, .o Tg — Ad)|

is bounded on R? because ¢ € S(R?Y). Therefore, we obtain boundedness of each
summand in (4.23), which implies that sup,cga |7|>@+D|p;(7)| is bounded on R??.
Therefore, ¢;(z) = O(Jz|~24*D), and the boundedness estimate for H f(x) is
proven.
Similarly we show the boundedness estimate for FH f(§). O
The rates of decay of Hf and FH f obtained in Lemmas 4.4 and Lemma 4.5
together with Lemma 4.7 are necessary for applications in Section 4.4 and 4.5.

4.3 Two matrix lemmas

In this section we list two lemmas about non-existence of a left-inverse of bi-infinite
matrices.

Lemma 4.6 Let M = (m;y) : (*(Z*?) — (*(Z*%) be a bi-infinite matriz, whose
action on (a subset of) vectors in (*(Z*?) is bounded. If there exists a mono-
tonically decreasing function w such that w(x) = O(|z|~2%7%),§ > 0 such that
im; | < w(|j]), then M does not have a bounded left inverse.

Note: This matrix need not represent a compact operator.

Proof. The assumption essentially states that there exists a constant C' such
that the entries of the j-th matrix row m; are bounded uniformly by C|j|=2¢~°.
Therefore we fix € > 0, and choose K € N (depending on €) such that

€2

2 </ C 72(2+5)d -0 K72d <
Z Hkufg}li+1|m]’k| - 4 J ( ) (2K + 3)%’

. >
7llo0> K lyl2K+1

where we have used polar coordinates in the integral:
/ Cy P40 dy = / / R R sin 0d(R, 0) = O(K 7).
lyl>K+1

(R?1sin @ is a shorthand notation for the generalized Jacobian of the coordinate
change). Let us take a vector z € (*(Z?) such that |||y = 1, z, = 0 for [|k]|cc >
K +1and x L mj, ||jllec < K, where m; is the j-th matrix row. Such a vector
always exists because the submatrix M’ = (m;)|jj<k,k<x+1 of M has (2K + 1)¢
rows which cannot span a (2K + 3)%-dimensional vector space. We estimate the
(*-norm of M.

IMelz= Y Kemp)P< D l2l3 [ Renmyls, (4.27)

llilloo>K l5lloo>K
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where Ry 1m; is the restriction of the j-th row m; to the elements m; : ||k|leo <
K + 1. Hence,

IMalf< 3D [Reamlf< QK +3) 3 max |myft <
[17]lo0> K ljlloo>E+1" 7

Therefore, for = with ||z||s = 1, ||[Mz|l2 — 0 and M does not have a bounded left
inverse. o

The second lemma about invertibility of ‘skew-diagonal’ matrices is a subcase
of Theorem 2.1 [Pfa08], see also Lemma 3.5 [KP06].

Lemma 4.7 ([Pfa08]) Given M = (mjy,) : (*(Z*?) — (*(Z*%). If there exists a
monotonically decreasing function w : Ry — Ry with w(x) = O(x=2479),§ > 0
and constants A > 1 and Ky > 0 with |m; ;| < w(||k —Ajl|eo) for ||k —Ajlleo > Ko,
then M does not have a bounded left inverse.

The proof of the lemma can be found in [Pfa08] or [KP06].

In the following, we will consider different combinations of A in Figures 2
and 3 and spreading functions 7y belonging to the modulation space M} (R?), for
a polynomial weight v(z) = (1 + |z])%, s > 2.

In particular, we explore different combinations of ‘initial conditions’ for oper-
ator families H, where

Ha = {H : ng € span (no, A)}.

The choice of 79, A goes beyond the particular example considered in [KP06]. The
basis of the analysis of identification of operator families includes the following
constraints

(I) The structure of index set A is important for identification of Ha (the mea-
sure used is 2-density of A, as defined in Section 4)

(IT) The properties of 7y and its associated prototype operator Hy, especially
when 7y € M!(R?®) for certain s as presented in Section 4 also play an
important role.

(III) The requirement that {w(A\)no : A € A} is a Riesz basis sequence inside
L*(R??) assures well-posedness of the discretized identification problem.

The study [KP06] considers essentially A = 0x aZ x 7, 1, - characteristic function
of a fundamental domain of A. In the language of that study H, is denoted
operators with spreading symbol of area ab.

We want to test whether any of the following statements hold.

(IV) There exists a constant C' > 0 such that Dy(A) > C' = H, is not identifi-
able.
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(V) There exists a constants ¢ > 0 such that Dy(A) < ¢ = H, is identifiable.

In [KPO06] both statements are confirmed with constants C' = ¢ = 1.

In the following we illustrate some typical cases from Tables 2 and 3. The
primary goal is to formulate results on a relation between identifiability and non-
identifiability and the measure of the 2-density of A.

4.4 Operator families which are never identifiable

Here we list the examples of operators families from Tables 2 and 3, which are
not identifiable regardless of any density measure. Recall that ®; denotes the
evaluation operator

dr:H— L*(R), ®p(H)=Hf

Proposition 4.8 Let ny € M}(R?), where vy(z) = (1 +|z])%,s > 2. The operator
family H; = {H : ng € J; N M*(R?)}, where

1. Jy = span {Tokymno - k,m € Z}

2. Jo =span {TomMoagno : l,m € Z}

3. J3 = span {TomMsnono : m,n € Z}

4. Ty = span{TokpmMogr : k,m € Z}
1s not identifiable.

Proof. The operators in these classes have the following series expansions with
respect to the prototype operator Hy with spreading function 7),:

1. H= Ek,mezd Ck,mTockHOM’ym'
2. H=73%" ez mMprHo Moy
3. H = Zm,nezd cm,nT—§nH0T5nM’ym

4. H= Ek,mGZd Ck,mTakMﬂkHOM,B(m—k)

To demonstrate non-identifiability of H;, we consider a subfamily of H; and show
that it is not identifiable. This implies that the whole family is not identifiable.

Let us give a sketch of logic behind the proof. As we have seen before, the
operator H acts as a time-frequency localization operator, hence the information
carried by the 2-parameter coefficient sequence must be preserved in the respective
Gabor expression. However, there is only one parameter in the time-frequency shift
outside the action of Hy, which means that part of the information disappears (‘is
erased’) under the action of Hy and is unrecoverable.

Fix a natural number N > 0. Let {y = {(¢;) € (Z) : ¢; = 0,i > N}.
For the first family H; we consider only those operators with coefficients in the
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sequences Cxm, = 0o(k)Cm, (¢n) € €n. For the second family Hy - only those
operators with coefficients in the set of sequences ¢;,,, = 0o(1)Cpm, (¢) € Ly, for Hs
-1in ¢y = do(n)em, () € Uy, and for Hy - cium = 6o(k)cm, (cm) € €n. In fact in
all of these cases we obtain a subfamily of operators

H ={H= > cuHoMyy: (cn) € ly} CH.

Im|<N

We claim that H’ is not identifiable. For this purpose we construct a bounded
and invertible analysis operator C' : L?(R) — ¢?(Z?) and a bounded and invertible
synthesis operator D : (*(Z) — H such that the composition of maps

Co®;oD:lNZ)— (A(Z%, feSHR)

is not stable for any f € Sj(R). The stability of C, D would then imply that ®
is not stable for any f € Sj(R). The operator D will be defined as follows

D:Un(Z)—H, D:{cn}t— ZcmHonm

m

where H, is the prototype operator with spreading function 7. Since the collection
of function {Thk~mno : k,m € Z} is a Riesz sequence in L*(R), the associated
collection of operators {HoM.,, : m € Z} (which is a subsequence of a Riesz
sequence) forms a Riesz sequence in the space of operators H'. Hence D is well-
defined, bounded and invertible on ¢y(Z), so by density it can be extended to all
of (*(Z).

To define a bounded and invertible analysis operator C' : L*(R) — (*(Z?), we
use the normalized Gaussian v; and the fact that for 1 < (ab)~! the Gabor system
(71,aZ X VZ) is a frame for L*(R) [Lyu92]. Hence the analysis map

C:L*R) — (2% : C: f— {{f, Tax Mry1) }ro e

is well-defined, bounded and invertible.
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The action of the evaluation operator ®; is bounded on the subspace of oper-
ators H’, because

e (E)E=1 D enHoMmfl3

m| <N
= [1 2 cuttdtpofa

B m|<n
< [ (3 fenl - IHoMy )Pt

R ml<n

(4.28)

< [ lenl lorto)] - 175y

R m|<n
— 11y (S Jeml)?- / (o (1) 2t

|m|<N

=< C(N)]lellz
= C(N)|nullz = C(N)IH |l

where for the sake of shortness we denote ¢ = {¢,,,}. Therefore, the pseudo-inverse
of ®¢ is bounded on H'.
The composition of mappings C' o ;o0 D

{Cm} — D(Cm) — D(Cm)f — {(D(Cm)f7 Tak’Mbl"yl)} (429)

can be represented as a matrix acting on the sequence (c,,), More precisely, a
bi-infinite matrix M = (my y.,), where

My Vim = <H0M'ymfa Tak’Mbl’71> (430)

Having represented C'o ¢ o D as a matrix we use Lemma 4.6 to show that M is
not invertible on /. In other words the matrix action is,

(C © (I)f © D<Cm))k’,l’ = Z Con M 1V sm

We estimate the coefficients of M, applying the results from Lemma 4.4 in the
following computations.

‘mk/7l/§m| = ’<H0M'ymf7Tak’Mbl’71>’ (431)
<|H0Mvmf|7Tak’|'71|>

<
< o yiak) - | flls,

In a similar manner we can obtain an alternative estimate, by taking Fourier
transform on both sides of the inner product (4.30), and apply the estimate from
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Lemma 4.4.

mk/7l/;m| = |<fHOMfymf, Mak’bel"Y1>| (432)
< (|FHoMym f|, T-wr|71])
< () - || fllsy

Since 1, @y are positive and decay faster than 272, so do the respective convolu-
tions 1 * 7y and @9 * y1. So we can define

h(z) = max(py * v1(ax), 1 * y1(—az), o * 11 (bx), P2 * 71 (—bx) - ||f||53)~
Then it is clear that
M | < h(max{[K'],[I'|}) = 2([|z]|0),

where we label z = (K, 1').

A straightforward application of Lemma 4.6 shows that the matrix M = (my.,)
with |mg.,| = O(z727°) does not have a bounded left inverse on the subset
{c : ¢, = 0,|/m| > N}. This brings us to a contradiction. Therefore, we can
conclude that under the conditions of Proposition 4.8, the operator classes H; are
not identifiable. U
Next we look at other examples of operator families.

Proposition 4.9 Let ny € M} (R?), where vy(z) = (1 +|z])*,s > 2. The operator
class H; = {H : ng € J; N M (R?)}, where

1. Jy = span { T gmMakono - k,m € Z}

2. Jo =span{TorsMarp : k.l € Z}

3. J3 = span {Tok g Manono : k,n € Z}

4. T = span{Tuk gnManono - k,n € Z}
is not identifiable.

Proof. The operators in these classes have the following series expansions with
respect to the prototype operator Hy with spreading function 7,:

1. H= Zkz,meZd Ck,mHDTak:Mﬁm
2. H=73" 1cpa craMpHoTok
3. H = Zk,nEZd Ck,nTa(k—n)HOTcmMﬁk

4. H = Zk,nEZd Ck,nTa(kfn)HOTanMﬁn
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The idea of the proof again is to consider a subfamily of H; and show that the
subfamily is not identifiable. Then it will follow that the whole family H; is not
identifiable. This was used in Proposition 4.8.

Fix a natural number N > 0. For the first family H; we consider only those
operators with coefficients in the sequences ¢ € (*(Z) : cxm = do(m)cy : (cx) €
IN(Z), for Hy - in ¢ € (2(Z) : ¢y = do(1)cy : (cr) € Ln(Z). For the Hs, Hy we pick
only those operators with coefficients in the set of sequences ¢, = do(k — n)cy €
(*(Z) : (cx) € €n(Z). The resulting operators form the subfamilies

o= 1{H =" c.HyTuMp : () € In(Z)} C M,
kEZ

in the first and second cases and

ba={H =) cHoTu: (cx) € In(Z)} CH,

keZ

in the third and fourth. From here the proof follows the steps of the proof of
Proposition 4.8.
O

4.5 Identifiability depends on density

In the following cases we show that 2-density plays a role in determining whether
operator families are identifiable or not.

Proposition 4.10 Letny € M} (R?), where vy(z) = (14]z|)*, s > 2. The operator
class H; = {H : ng € J; N M'(R?)} where

1. Jy =span{Mukgino : k,l € Z}, arising from the index set Ay = (0,0, ak, 5) :
ke,

2. Jy =span{TuroMog : k,l € Z}, arising from the index set Ay = (ak, 0,0, Bl) :
kleZ

is not identifiable if the 2-density of A; is greater than 1.

These families are listed as B2, B6 in Table 2.
Proof. The condition on the 2-density for families H; and Hs

1
DQ(AZ) = |Og_ﬁ| > 1

implies that |af| < 1. We shall consider only family H; as the line of proof for
H, is analogous. Without loss of generality we may assume «, 8 > 0.
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We construct a bounded and invertible analysis operator C' : L*(R) — (?(Z?)
and a bounded and invertible synthesis operator D : (?(Z?) — 'H such that the
composition

Co®;oD: (7% — (*(Z*), f€SyR)

is not stable for any f € Sj(R). The stability of C, D would then imply that ®,
is not stable for any f € Sj(R).
The operator D will be defined as follows

D . £0<Z2) — H, D . {CkJ} = ch,lMakTﬂlHOT—,BlM—ak
kil

where H) is the prototype operator with spreading function 7. Since the collection
of function {Muxgmo : k,1 € Z} is a Riesz sequence in L?(R), the associated
collection of operators {MuoxTsHoT_sM_ok : k,1 € Z} forms a Riesz sequence
in the space of operators H. Hence D is well-defined, bounded and invertible on
0o(Z?), so by density it can be extended to all of ¢*(Z?).

To define a bounded and invertible analysis operator C' : L*(R?) — (*(Z?),
we use the normalized Gaussian y; and the fact that we can choose some A such
that 1 < A? < (aB)™! so that A\2af8 < 1. Then we know that the Gabor system
(71, ABZ x AaZ) is a frame. Hence the analysis map

C:LAR) — (2% : C: [ {{f, MaarTrgrya) bio e

is well-defined, bounded and invertible.
The combined result of these mappings

{eri} = D(crg) = D(crg) f = {{D(ckr) f, MrarTrsr1) } (4.33)

is in fact the result of the action of a bi-infinite matrix M = (my k), where
M k) = (MarTaHoT_ g M_ok fo Myar Togrr) (4.34)

on the sequence {cg,}. In other words,

(Co ;o D(Ck,l))k/,l/ = Z Ch 0T 1kl

k.l

This is a matrix representation of the map C' o ®; o D. We show that the ma-
trix coefficients of M satisfy the requirements of Lemma 4.7. We estimate the
coefficients of M, applying the bound on |HyT_ 5 M_, f| from Lemma 4.4 in the
following computations.

I gl = U MaxTaHT- s M_ar f, Maar Trsrn)| (4.35)
< (Ta|HoT-saM_orf], Trgr|m|)

| HoT_ M o f| ¥ 71(B(1 — AI'))

< @ xn(BU=A) - I fls,

N
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To obtain a bound involving k, k/, we take the Fourier transform on both sides
of the inner product in (4.34) and apply the estimate for |FHoT_gM_nxf] from
Lemma 4.4.

[mar v kgl = {TaxM_p(FHoT-sM_or f), Trarr M_xpry1)| (4.36)
S <Tak|fH0T_/@lM_akf|7TAak’|71|>

= |FHoT_gM_apf|*7i(a(k — AK))
@2 % y1(a(k = AE)) - || flls

Since @1,y are positive and have decay greater than |z|™*, s > 2, so do the
respective convolutions ¢ * y; and @9 * 1. So we can define

IN

h(z) = max{p1 * 11 (Bx), 1 * 11(—Bx), p2 * 1(ax), p2 * 1 (—azx)} - HfHS{)-
Then it is clear that
[ gl < h(max{|k — AK'[, [l = AI'|}),

so we are in a position to apply Lemma 4.7 and conclude that M is not left-
invertible. This brings us to a contradiction. 0

Proposition 4.11 Letny € M} (R?), where vy(z) = (1+]|2])*, s > 2. The operator
class H; = {H : ny € J; N M (R?)} where

1. 1 = span{TwkaMopno : k,l € Z}, arising from the index set Ay =
(ak,BL,0,80) : k.1 € Z.

2. Jo = span{TokpmMaompr = k,m € Z}, arising from the index set Ny =
(ak, Bm,am, k) : k,m € Z.

3. J3 =span {Tok g Mar g : k,l € Z}, arising from the index set A3 = (ak, Bk, al, 5l) :
k.l eZ.

4. Jy =span{To g Man g : l,n € Z}, arising from the index set Ay = (0, 5L, an, 5l) :
I,n €.

s not identifiable if the 2-density of \; is greater than \/Li

These families are listed as E1, F2, F3, G1 in Table 3.
Proof. The condition on the 2-density for families H; : i =1,2,3,4
1 1
= — > —
V20af] V2

implies that |a3| < 1. The proof is analogous to that of the Proposition 4.10. [

Proposition 4.12 Letny € M} (R?), where vy(z) = (1+]|2])*, s > 2. The operator
class H; = {H : ny € J; N M'(R?)} where
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1. Jy =span{Tak Mo : k,l € Z}, arising from the index set Ay = (ak, Bk, 0, 51) :

kleZ.

2. Jo = span{TopgmMomp : l,m € Z}, arising from the index set Ay =
(0, Bm,am, Bl) : l,m € Z.

3. J3 =span {ToroMa g : k,1 € Z}, arising from the index set A3 = (ak, 0, ad, Bl) :

k,leZ.

4. Ty = span{TopoMonpgr = k,n € Z}, arising from the index set Ay =
(ak,0,an, Bk) : k,n € Z.

is not identifiable if |af] < 1.

These are families E2, G3, H1, H2 from Table 3.
Proof. Essentially analogous to that of Propositions 4.10 and 4.11. However,

here we note that the condition || < 1 cannot be expressed in terms of 2-

density of the index set A;, which is Dy(A;) = m for i = 3,4 and Ds(A;) =

N2 —;2%2 for i = 1,2. In fact, for any € > 0, we can find «, 8 with |a| < 1 such

that Dy(A;) < € in the respective cases. For instance, choose o = 10, 3 = (10 +
1)~ Then |af| < 1, so the family H; is not identifiable by Proposition 4.12, but
the 2-density of its index set Dy(A1) &~ 102" is very small. O

Next we state a generalization of case B2 where the sampling set A = 0 x AZ?.

We consider sampling points in the modulation domain indexed by a general lattice
in R?? defined by a matrix A € GL(R, 2d).

Proposition 4.13 Let ny € M}(R??), where vy(z) = (1 + [z])%,s > 2(d = 1),
and s > 2(d+1)(d > 2). If |[det A| < 1, and {Myny : A\ € AZ*'} is a Riesz

sequence in L?, then the associated operator class H = {H : ng € Span Myn} is
not identifiable.

Proof. We set A\ = (z,w,) for A € AZ*. The condition {Myn, : X € A} is a
Riesz sequence in L? ensures that the operator

D : 6(7*) — H, (4.37)
D:{cx} = Y amNHor(N) ' =Y e\To, My, HoM_, T, (4.38)
AEA AEA

is bounded and invertible. We use the argument as already outlined in Proposi-
tion 4.10 but must make several changes.

To define a bounded and invertible analysis operator C : L*(R?) — *(Z*?), we
use the tensor product of normalized one-dimensional Gaussians v; and the fact
that we can choose some u such that 1 < u™2 < |det A|™' so that u* < 1. Then
we know that the Gabor system (y;,uZ¢ x uZ?) is a frame for L?(R?) [Lyu92].
Hence the analysis map

C: L2(Rd) — 62(Z2d) . C: f (g {<f, Mul’Tuk”71>}k’,l’€Zd

39



is well-defined, bounded and invertible. We let 2z’ = (K',1').
Then we shall examine the composition map

Co (I)f oD: {C)\} — {<D(C)\)f7 Mul’Tuk’71>}'

It can be represented as a matrix acting on ¢ = {c,} in the following way,

Mc:=(Co®roD(cy))y = Zc,\mzl;)\
A

where M has entry coefficients
Mg\ = <Mw>\Ta:>\HOT—x>\M—w>\fa Mul’Tuk'71> (439)

To make estimates in the matrix coefficients defined analogously to (4.34), we re-
label the lattice points A = (z,w) € AZ??, by a vector z € Z*?, where z := A1\,
Hence, after substituting in (4.35) we obtain

|mz'7z| = ‘<Mw>\TI>\ HOT_CE)\M—UJ)\JCJ Mul’Tuk’71>|
S <TI>\|H0T*IAM7wAf‘>Tuk’h/lD

= |HoT_ s, M_,, f| % 71 (x\ — uk’) (4.40)
< orxm(an — uk’) || To, My, flls;
and after substituting in (4.36)
1M a| = [(Toy My (FHT 2y, M, f), Totr M1 |
< (T | FHoT- oy, M, f], Turr | ) (4.41)

— ‘fHOszAMfwAf’ * fyl(w)\ - UZI)
< o (wr — ul)) - [ Top, Moy flls,

We can simplify the expressions for the Sp-norms in (4.40) and (4.41) because

[Ty M, fllsy = |l fllsy

Then we define
h(y) = max{ps * 71(y), 1 * 11 (=), 2 * 1Y), 2 * 1 (=y)} - | fllsy-
After combining the two bounds for |my ,|, we have
My 4| < h(max{|xy — uk'[, |wx — wl'[}) = h(]|z — uz'||)-

Now we are again able to apply Lemma 4.7 to obtain a contradiction that M does

not have a (bounded) inverse. Hence, we conclude that the operator family is not
identifiable. O
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4.6 Case study rg(z,w) = e 7@+

In this section we consider some of the operator families from Tables 2 and 3 when
the kernel of the prototype operator Hy is ko(z,w) = e~ (@ w?) (r,w) € Z% We
will vary the lattice A used in the construction of the operator family H,. For
every index set A we shall search for criteria such that H, becomes identifiable.
That will naturally include conditions which make the identification problem well-
posed.

In this case associated spreading function ny(t, v) is given by

no(t,v) = /mo(x,x—t)e_zm”xdx
— /ew(2122xt+t2)627ri1/xdx

_ e_th/e—w(m\/ﬁ—kfe—%m‘umdx

R e) (4.42)

= —6_

V2

In other words, 7 is the image of the standard 2-dimensional Gaussian (¢, ) =
e~™(*+%) ynder a symplectic transformation, which we write as

o = w(C) " u(B) .

Following [Fol89], the symplectic operators u(B) (a dilation), ;(C) (a chirp) are
associated respectively to the lattices

L 0 0 0

I . 6 100

B=|°%w2%) C=(o0L10].
0 020 Y2 001
0 0 0 V2 2

The spreading function 7y therefore belongs to S(R?) as well.

We shall consider different choices for the lattice A for the Gabor Riesz basis
sequence (1, A). The examples in this section follow the following pattern. Since
no is fixed and we vary the lattice A, we must observe that condition (III) holds
(namely (19, A) must be a Riesz basis sequence in L?(R?) in order for our approach
make sense). To verify this, we apply Theorem 2.2 to transform this question to
known results for Gabor Riesz basis sequences based on the standard Gaussian.
Thus we have to show in each case that (72, BC - A) is a Riesz basis sequence for
the lattices A’ = BC - A. The matrix BC' is

> 0 0 0
~ ~ 1
BC=|"wn"?

0 1 V20
1 0 0 V2



Table 4 lists some choices of A together with the lattice A’ = BC - A and
the 2-density of A, Dy(A). We examine each case separately. In the following
propositions we shall drop the subscript whenever it is clear which lattice we refer
to. To prove identifiability, all we have to show is that under the assumptions in
each case both sequences: (y2,A’) and {H,f : A € A} are Riesz basis sequences.

0
Proposition 4.14 (Case B2) Let 1y be given by (4.42), and A = | 3 ) 7?2 (see
0

0
0
5
Table 4). If Do(A) < 1, the operator family Hps = {H : ny € span (1o, A)} is
identifiable.

Proof. The condition Dy(A) < 1 is equivalent to |af| > 1, see Table 4. In case
B2 we verify the Riesz basis sequence condition for (1, A) on the set of spreading
functions by checking whether the Gabor system (7,, A’) is a Riesz basis sequence.

In this case
0 0
v=(30) ()
06va) \!

which is a tensor system with respect to vo. Furthermore (2, A’) is a Riesz basis
sequence, which can be deduced from Theorem 7.2.3, [Chr03]. We choose as
identifier f =9 z and see that

MBZT—anHOTanM—ﬁlf = MBIT—anHOTan(;%

Furthermore,
2 —m(L—an)?
HOTan5% — o T Ze m(5—an) ]

We denote the quantity

and check that the sequence {h;,, : [,n € Z}, where
hl,n = C(H)MBZT—M% ln e Z},

is a Riesz basis sequence if |Sa > 1.

We use the criterion for Riesz basis sequences given in Lemma 3.6.2, [Chr03].
The sequence (v1,aZ x B7Z) is a Riesz basis whenever |Sal > 1 [Lyu92], [SW92],
hence it is an unconditional basis'. Since each element of {hy; : k,l € Z} is a scalar
multiple of an element from an unconditional basis, not only does {hy; : k,l € Z}
span the same subspace of L*(R), but it is also an unconditional basis for this
subspace.

! An unconditional basis is a basis with the additional property that the convergence of the
basis expansion is unconditional (i.e. convergence does not depend on the order of summation).
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To complete the proof we must finds bounds on ||k |2, in other words, show

that 0 < in%C’(n) < supC(n) < oco. We observe that namely, for a fixed n,
ne nez

there exists an index j' such that % < an < j,TH, hence ]% —an| > % for all j.

22

Thus C(n) > e . To make the upper estimate we use the property that e™*" is
monotonic in (—oo,0) and (0,00). Without loss of generality, when > 0, for all

i<y,

and for all j > 5/ 4+ 1,

Therefore,

oy <Y e (5 4 > e (F) 2 0(0) < 0.

J<y’ Jjzj'+1
Thus the system {h;,, : [,n € Z} is an unconditional basis and

0 < inf [|hypll2 < sup ||hinll2 < oo,
LineZ Inez

hence it is a Riesz basis sequence.

Thus, by proving that (v, A’) and {C(n)MgT_an71 : 0,1 € Z} are Riesz basis
sequences, we have in fact shown that for f = 5%, and ®; : H — Hf, the norm
equivalence

|@H |2 =< || H] s,

holds. Therefore, the class of operators Hpy = {H : ng € span (1o, A)} is identifi-
able. O

a0
Proposition 4.15 (Case B6) Let 1y be given by (4.42), and Ags = (8 g) 72

00

(

(Table 4). If Da(Apg) < 1, then the operator family Hps = {H : ny € Span (no, Ape)},
15 identifiable.

Proof. The condition Dy(Apg) < 1 is equivalent to |af| > 1. We first verify
that (1o, Ape) is a Riesz basis sequence (condition (III)) for 7y given in (4.42).
By Theorem 2.2, (19, Apg) being a Riesz basis sequence is equivalent to (72, A’zg)
being a Riesz basis sequence, where

0
k «
I 0 —
A <Oﬁﬂ><1)c\/§2x0xﬁ\/§Zva.

a 0

ENE

If |af| > 1, then (71, \%Z X 3v/27) is a Riesz sequence. Hence, (72, Alzg) is a Riesz
sequence. The remainder of the proof follows the line of Proposition 4.14. 0

We give another example about the operator family Hpgg. For a different choice
of ng it is identifiable as well.
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Corollary 4.16 (Case B6) Let 1 = x 1, ® Xpo, 1) If |aB| > 1, then the opera-
tor family
Hps = {H : ny € span (ny, Agg) N M*}

is identifiable with f = d.7.

Proof. Observe that this identifier f = 0,z € M*. Due to a-periodicity
in fact T,,,f = f for all k € Z. The action of the prototype operator Hy,; =
e~ 2Bk N o T, HoM_g (see B6 in Table 2) on f can be rewritten as follows

Hiyf = e ™ My T HoM_g f
= e OOk N T HoM T o f
= Mg 1o HoT_ o M_gi f

Thus {Hy,f} is the same family of functions as in those in case B2, discussed in

detail in [KP06], but we have substituted a specific f, which is a periodic delta-

train. Furthermore, each spreading function 7y is supported on [0, é) x [0, 4) and

' B
has a canonical ONB series expansion

nH(ta V) _ Z cr l€2m’(akt+ﬂll/)
kl€Z

because
o = Xjo,4) ® Xjo,1)-

This ensures that every H € H has an ONB expansion in terms of Hj;. For the
rest, this case is equivalent to the one described in Theorem 3.1, [KP05]. O
For the examples that follow, we use a lemma about Gaussian Riesz basis se-
quences.

Lemma 4.17 Let a,b # 0. Then {Ty,My,v1,n € Z} is a Riesz basis sequence.

Proof. Note that if b = 0, the theory from [Chr03] (Theorem 7.2.3) applies
because the function

®.,(6) = > ()P (compare [Chr03] : (7.2))

neL

is bounded above and away from 0 on [0,1). If a = 0, then F M,y = Tpny1. To
prove our claim we note that A = {(an,bn),n € Z} is symplectically equivalent

to A" = {(an,0),n € Z} via M = Ly . Theorem 2.2 shows that (y1,A) is

b
|
a Riesz basis sequence if and only if (u(M )y, A’) is a Riesz basis sequence, where

p(M)m(t) = et e

e~
ot



We apply Theorem 7.2.3 from [Chr03] to the system of translates {T,,u(M )y, :
n € Z}. The associated function is

O () = D [Fu(M)y (522)],

nez

but

Fu(M)m(§) = /eﬁigtze_”tze_z’”tédt =

Hence

(4.43)

Since the Gaussian v, € S(R) N L'(R), the expression for @), (€) is bounded
above and away from zero on [0,1). Thus Theorem 7.2.3 from [Chr03] shows that

{Tonpt(M)vy, : n € Z} is a Riesz basis sequence. O
a0

Proposition 4.18 (Case D5) Let 1y be given by (4.42), and A = gg) 72
00

(Table 4). If |a| > 1, then the operator family Hps = {H : ng € span (no, Aps)}

is identifiable.

Proof. We follow the strategy of the previous examples. We begin the proof
by checking that (1o, A) is a Riesz basis sequence and use symplectic equivalence
(Theorem 2.2). The lattice A’ is given by

o
V2
N=| o (k)
B a2 !
0

Therefore, the Gabor system (7,, A’) is a tensor system (7, ( ‘gﬁ a\@) Z2)x (11, ( % ) 7),

which is a Riesz basis sequence if |a| > 1 (a criterion coming from the first com-
ponent); for the second component see Lemma 4.17.
We use as identifier f = dy. Thus

Hif = ToxMuHoMgi—ai f = TorMaum,
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because
HoMy ot () = (1) / 12— ) (Mpaao) (& — )t = 71(2).

Hence, the sequence {Hy,}riez is a Riesz basis sequence if and only if |a] >
1 [Lyu92]. O
Note: The 2-density of Aps equals L which is less than 1 if || > 1, but

laly/a2+8

not vice versa! For identification of Hps, the condition || > 1 is stronger than
the 2-density condition.

en the

oo o
o0 Wo

Proposition 4.19 (Case D6) Let 1y be given by (4.42), and A = (

(Table 4). If o, B are such that |o(B + av/?2)| > V2,08 > V2, |a] > 1, ¢
operator family Hps = {H : ng € Span (ny, A)} is identifiable.

>

Proof. This case is again similar to the previous ones. We have to check that
(no, A) is a Riesz basis sequence. We use symplectic equivalence (Theorem 2.2)
and consider instead the Gabor system (79, A’), where

)
NG
8
AN=|° & 72.
0 B+av2
a 0

The associated Gabor system (72, A') is a tensor Riesz sequence if |3 > /2 and
0+ av3)| > V3.

We choose as identifier f = dp. As in Proposition 4.18 we have that
Hy f = ToxMoHoMg_oy f = TarMa: .

Hence the sequence {Hy;}riez is a Riesz basis sequence if and only if |a >
1 [Lyu92]. O
Note: In case D6, the 2-density of A is Dy(A) = m We have three

conditions on the parameters a,3: |a(8 + av2)| > V2, |8 > V2,]a| > 1,
which are illustrated in Figure 1.

a0
Proposition 4.20 (Case E1) Let 1y be given by (4.42), and A = (8 g) 7?

00
(Table 4). If Do(A) < L (in other words |aB| > V/2), then the operator family

Hpr = {H : ny € 5pan (ny, Ag1)} is identifiable.

Proof. Essentially similar to the previous cases. We begin the proof by checking
that (no, A) is a Riesz basis sequence and use symplectic equivalence (Theorem 2.2).
The Gabor system (72, A') is a Riesz basis sequence if |a/3| > v/2, because

£ m v 0 > 2 < 0L ) 2
B(lf\/i) (’fl) < ( 0 ﬁ(1+\/§) Z % (e} \65 Z
0
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Figure 1: The set («a, ) fulfilling the conditions in case D6 lies in the blue region.

=2

0 5
ol 2 0 2 2y : :
and the system (7s, < o Bt \/§)> Y/ ( V2 ) Z?) is a tensor Riesz basis sequence

under the given assumptions (since |« |%§, la—\/g‘ > 1). Hence, (72, A’) is a Riesz
basis sequence, and furthermore, according to Theorem 2.2 (1o, A) is also a Riesz
basis sequence. We use as identifier f = 0z and check that {Hj;f} is a Riesz basis
sequence.
_ _ —ma? —mj2
Hk,lf = MﬂlTakHOf = Mngake Z e 3 (444)
jEL

{Hj,f} is also Riesz basis sequence if || > 1 because the expression on the right-
hand side of (4.44) is a constant multiple of the Riesz basis sequence (71, aZ X

BZ) [Lyu92], [SW92]. This is a consequence of the fact that Z e~™" is a nonzero

jezd
constant. Hence, the family {Mg T Hof : k,l € Z} is a Riesz basis sequence if
laf] > V2 > 1. O
a0
Proposition 4.21 (Case E2) Let g be given by (4.42), and A = /gg 7? (Ta-
00
ble 4). If |aB| > 1, then the operator family Hrpa = {H : ng € span (ny, Ag2)} is

identifiable.
Proof. The line follows the line of proof of Proposition 4.20. We first demon-

strate that (no,A) is a Riesz basis sequence with the help of Theorem 2.2. We
show equivalently that the Gabor system (,, A’) is a Riesz basis sequence. But

0
k % 0 20
) (1)< ()= (2 )=

0

N =

> ek
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The lattice
vi Y 72 x % 0) 72
3 BV2 a 0) 7

is tensor so its associated Gabor system is a tensor system

o L
v2 Z?) X V2o ) 72
(B aug) 2% (2 0) 2,
The last Gabor system is a Riesz basis sequence if and only if || > 1 (a condition
on the first term); for the second term, compare Lemma 4.17. Hence for those
values of («, 3) its subsequence (7y2,/A’) is also a Riesz basis sequence. Thus,

(o, A=) is a Riesz basis sequence.
As identifier we choose f = § %2. Then

Hyy | = TarMeiHo Mgty | = ToxMarHodz

We rewrite the expression Hyd z as
—mx? -l
Hodz = (03, ko(z, ")) = e e (4.45)

The sum of the series

on the right-hand side of (4.45) is some nonzero scalar depending on 3, so Hyd z

is a scalar multiple of the Gaussian 7, = e ™. If laB] > 1, then the Gabor
system (v;,aZ x BZ) is a Riesz basis sequence (as seen from previous examples).
Therefore, {Hy,f : k,l € Z} is also a Riesz basis sequence. Hence the operator
family Hgs with ko(z,w) = e ™" +%") is identifiable. O
Note: The 2-density of the time-frequency lattice in the case E2 (Table 4) is
m. The condition |3 > 1 is independent of the value of Dy(A). For

instance, |af| > 1 implies that Dy(A) < 1, but not vice versa! We saw that both
Do(A) and |a3| can be smaller than 1 (choose a@ = (101 + 1)~ 3 = 10'?), and
Proposition 4.12 implies that the operator family is not identifiable.

wdentifiable.

2 Another possibility would be f = .
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Proof. The procedure for solving this example is similar to those illustrated in
Propositions 4.14-4.21. We verify that the family of spreading functions (19, Ar2)
is a Riesz basis sequence with the help of Theorem 2.2. This is equivalent to
checking whether the Gabor system (72, A’) is a Riesz basis sequence. But we see
that the time-frequency index set factorizes,

A
o 0o = av2 0 2 0 6vV2 2
[0 a\/i

Therefore, (72, A’) is a Riesz basis sequence if |af] > 1 > \/Li
We choose as identifier f = ¢ z. Then

Hyomf = € 2%k Mot Tty HoT wn Mgm—r) f

— eizﬂ-iﬁk'akMﬂkTa(k—m) HOTamd% (446)

The quantity HoT,,0 Z in (4.46) can be easily estimated and approximated - we

refer to Proposition 4.23. The proof concludes as in Proposition 4.23. 0
Note: We observe again that in case F2 |a| > 1 implies that Dy(A) < \%, but
not vice versa!

a0
Proposition 4.23 (Case F3) Let 1y given by (4.42), and A = (g g) Z* (see
0 «a

Table 4). If |afB| > 1, then the operator family Hps = {H : ny € Span (no, A)} is
identifiable.

Proof. In case F3 we verify the Riesz sequence condition by using Theorem 2.2.
We have to check that the Gabor system (,, A’) is a Riesz basis sequence. But in

this case
0 8
0 k % 0) ) 7= 0 2
= 72 x | V2 72,
8vV2 (l> (ﬁ 6V2 a  av?2
av2

Hence (72, A’) is a tensor system with respect to v2. The criterion in [Lyu92] shows
that the above tensor system is a Riesz basis sequence if and only if |a3] > 1.
Hence by symplectic equivalence, (19, A) is also a Riesz basis sequence for such
lag| > 1.

If we choose as identifier f =0 Z then

N =

> w gk

Hif = e 2 Moo HoToa Mpgs—1y f

—2mipl-a 4.47
=e 2mifil kMﬁlTa(k_l)HoTalé% ( )
The expression in (4.47) can be further simplified because

HTa(5 _ —nx? —W(%—QZ)Q'
0 z% € Ze

JET
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The quantity given by Z e (570" il be denoted by C(1). We shall verify
J
that if @ > 1, then the sequence {hy, : k,l € Z}, where
hiy = C (e 2™ % Mo T,

is a Riesz basis sequence. We follow the steps outlined in Proposition 4.14 and
Lemma 3.6.2, [Chr03]. The sequence {e 2™ * M5 T, _nm : k,l € Z} is a Riesz
basis for || > 1 [Lyu92], [SW92], hence it is an unconditional basis for its closed
linear span. Since each element of {hy; : k,l € Z} is a scalar multiple of an
element from an unconditional basis, {hy; : k,l € Z} spans the same subspace of
L*(R). So {hg; : k,l € Z} is also an unconditional basis for its closed linear span.

To prove the Riesz basis property, we must demonstrate that 0 < iIllf ) <

sup C(l) < oo. Observe that for a fixed [, there exists an index j' such that

Thus C(I) > e for all [. For the upper

estimate we use the property that e~*" is monotone in each of the intervals (—oo, 0)
and (0,00). Without loss of generality, when g > 0, for all j < j',

'41 1
B<04[<j hence| —all = 3.

g

. N\ 2
6771'(%70[[)2 < efw(]ﬁj> 7

and for all j > 5" + 1,
i

e*”(a*“’)z < e‘”(

j’—j+1)2
3

Therefore,

c) < F) 1 3 o F) 2 00) < oo

J<g’ Jj=j'+1

Thus the sequence {hy; : k, | € Z} meets the requirements of Lemma 3.6.2, [Chr03],

hence it is a Riesz basis sequence.
We have thus shown that (y2, A') and {C(I) Mz Tam—ny71 : k1 € Z} are Riesz
basis sequences. Furthermore, for f = ¢ z, the norm equlvalence

|PsH |2 = |[H s,

holds. In conclusion, the operator family H g3 is identifiable. O
Note: Here Dy(A) = ——— (see Table 4). We observe again that in case F3, just

as in case F2, the condition |a/3| > 1 implies that Dy(A) < \%, but not vice versa!

Proposition 4.24 (Case G1) Let 1y be given by (4.42), and A = (

(Table 4). If Dy(A) < \%, then the operator family Hey = {H : ny € Span (o, A)}
15 identifiable.

(=)
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Proof. The proof follows the steps outlined in Propositions 4.21, 4.22 and 4.23.
The density condition on A implies that |a3| > 1 (see Table 4). We must check
that (1o, A) is a Riesz basis sequence. As we have seen already this is equivalent
to showing that the Gabor system (7, A’) is a Riesz basis sequence where

0

0
B 0 l
I __ V2
V=i o ) ()
0 a\/i

Observe that (72, A) is a tensor system which is a Riesz basis sequence if || > 1.
The rest of the proof follows the exposition of Proposition 4.23. U

00
Proposition 4.25 (Case G3) Let ny = X[o,1) ® X[0,1), and A = (g g) 72 (see
a0

Table 4). If |aB| > 1, then the operator family Hgs = {H : ng € span (1o, A)NM'}
1s identifiable.

Note: The 2-density of the time-frequency lattice A = (0, Sm, Bl,am) : I,m € Z2
is given by m The condition (a, 8) : |af| > 1,|5| > 1 implies that in case

G3, if the operator family is identifiable then Dsy(Ags) < \/LT but the converse is
not true - see Proposition 4.12.

Proof. First, we check that (1, A) is a Riesz basis sequence. However, this is
clear because because the sequence { Mg om0 : m,1 € Z} is an orthonormal basis

for L? ([0, %) x [0, é)) and the translates Tp g1y are pairwise orthogonal (because
the supports of the respective functions are pariwise disjoint due to the condition
8] > ﬁ) Thus, requirement (III) is fulfilled.

The family Hgs is identifiable with f = 6% if af > 1 and 6 > 1. Since
Mﬁmf = f>

Hl,mf = MBleamHOTamMﬁ(m—l)f = MﬁleamHOTameﬁlf-

The rest is solved according to the method from Theorem 3.1, [KP05]. O
When we change the spreading function to ny given by (4.42), the situation
changes radically.

00
Proposition 4.26 (Case G3) Let ny given by (4.42), and A = <€g) (see
a0

Table 4). Then the identification of the operator family Has = {H : ny €
span (ng, A)} is not a well-defined problem.

Proof. On one hand, we must show that the Gabor system (72, A’) is a Riesz
basis sequence. Here
0
s
o 2 m
A= BB ( l ) '
av2

N

OS o o
N
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(72, ") is a tensor Gabor system {Mgm+5ﬁl’71}m,lez X {T%Ma\/il%}m,mz- How-

ever, since the Beurling density of the set {3m + 8v/2I }m.ez is infinite, by Theo-
rem 7.4.1, [CBH99], {Mg,,, 5,371 }micz can never be a frame sequence, let alone
a Riesz basis sequence. Since (III) is violated, the problem is not well-posed.

O

)

0
0
0
(Table 4). If o, B satisfy |aB] > 1 and %ﬁ € Q, then the operator family Hgs =
{H : n € 5pan (no, A)} is identifiable.

Proposition 4.27 (Case G4) Let ny be given by (4.42), and A = (

oo

Proof. As in the previous examples we have to check that (1o, Ags) is a Riesz
basic sequence. We use symplectic equivalence and consider instead the Gabor
system (72, A’). This is a Gabor system with Gaussian window and time-frequency

shifts from the set A’ = {(0,\%[,(1\/511 + BL,BV20) : I,n € Z}. (75, A) is the
tensor system {T%lMﬁﬁﬁl}leZ X {Ma\/inwﬂl}l,nez- If %ﬁ ¢ Q, the set of

points {a\/§n + (Bl : n,l € Z} has an infinite upper Beurling density in R, and
{M, 3y g7 2 I,n € Z} can never be a frame sequence (see [CBH99], especially
Theorem 7.4.1, [Chr03]).

If {av2n 4 Bl : 1,n € Z} C {ck,k € Z} for some ¢ € R, then {Myv, : k € Z}
is a Riesz basis sequence, because the function

> (£ = Yo er ()

kEZ kEZ

is continuous, always positive and hence bounded above and below on [0, 1] (see
Theorem 7.2.3 (iii), [Chr03]).
Hence, besides the constraint |a5| > 1 (in order for {MgT_ o, HoTonf} to be a

Riesz basis sequence - see the previous propositions), the extra condition %ﬁ <0}

(equivalent to {av2n + Bl : I,n € Z} being relatively separated in R) must be
met to guarantee that (1o, A) is a Riesz basis sequence.

We use as identifier f = d3z. We check that the sequence {H;, f} is a Riesz
basis for its closed linear span.

Hl,nf = MaanﬁlHDTﬂlMﬂlfan(SBZ
= e 2" Ty Mo, Ho Mgt an T8z
= C(TL, l)TBlMom’ylv
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where

C(n, l) = G_QM(BZ)2H0M51_anTm(Sﬁz
— o 2mi(Bl)? Z e~ (B9)? 2mi(Bl—an)Bj
jez
_ —omi(Bn? L Z —m(§+(Bl-an)) (4.48)
=e e : :
s jez
In (4.48) we have used the Poisson summation formula for the Gaussian [Gro01].

The estimates for i?fZC(n,Z) and sup C(n,l) are carried out as in Proposi-
n,te n,lE€Z

tion 4.14. Therefore, whenever |af3| > 1, Ty M., is a Riesz basis sequence,
and so is {H; [} O

a0
Proposition 4.28 (Case H4) Let 1y be given by (4.42), and A = (8 3) (see
08

Table 4). If o, B are such that |« > 1 and %ﬁ € Q, then the operator family
Hps = {H : ng € span (no, A)}} is identifiable.

Proof. We repeat essentially the same line of reasoning as in the previous
cases. First, condition (III) must be verified. By Theorem 2.2 this is equivalent
to showing that the Gabor system (v, A’) is a Riesz basis sequence, where

9

0 av2 [

a V2
This is a lattice containing all points (%k,@,aﬂl,ak + BV20), k1 € Z. Tt
is similar to the system we had in Proposition 4.24. We make some remarks
about the density of the point set of the fourth coordinate of A’. If %ﬁ ¢ Q,
then {ak + $v2l : k,1 € Z} has an infinite upper Beurling density in R, and
{MypipymY ¢ k1 € Z} cannot be a frame sequence at all (compare the results
of [CBH99], [Chr03], especially Theorem 7.4.1). Hence, besides the constraint
|a| > 1 (which comes from the condition on the first and third coordinates of the
sampling points \% Cay/2 > 1), we have to keep in mind the extra condition that

{%ﬁ € Q, which guarantees that {ak + 3v/2l : k,1 € Z} is relatively separated in
R.

If {ak + BV2k : k1 € Z} C {em,m € Z} for some ¢ € R, then {M,,e ™" :
m € Z} is a Riesz basis sequence, because the function

> () = 3 e

MmEZ mEZ

is continuous, always positive and hence bounded above and below on [0, 1] (this
crietrion is given in [Chr03], Theorem 7.2.3). Therefore under the given conditions
(m0, A) is a Riesz basis sequence and condition (III) holds.
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We select as identifier f = d1,. We must show that {Hy,f} is a Riesz basis
sequence too. We obtain just like in case H1:

Hyf = 20 Moy HoTsM_ o f = Tak—ﬁlMalHOTﬁlfséz-

and

HoTuds, — / kol,t) S84 (¢ — Byt

jEz

= Z/io(ﬂf,é — pl)

JEZ
_ 677“):2 Z e*ﬂ*(éfﬁl)2
jez

(4.49)

Next we must show that the sequence {Hy,; : k,l € Z} associated to f = d,z is a
Riesz sequence. Its elements are

Hyf = C()Top—piMum = k, 1 € Z, (4.50)

where we denote o
C(1) = e2micdsl Ze*“(i’m) ‘
JEZ
The rest of the proof proceeds along the line of reasoning given in Proposition 4.26
since the sequence {T,,_sMum : k,1 € Z} = (m, ((g _aﬁ) Z?) is a Riesz sequence
if |a| > 1 [SW92], [Hei07] (Theorem 14). O
Note: The 2- ity of the time-f lattice in thi is —A——.
ote e 2-density of the time-frequency lattice in this case is aIarr 5 Our

assumptions show that Hpy; being identifiable implies Dy(A) < 1, but not vice

versa - see Proposition 4.12. The condition %ﬁ € @, which makes the problem
well-posed, is not even quantified in Dy(A).

a0
Proposition 4.29 (Case H5) Let ng be given by (4.42), and A = (8 g) (Ta-
50
ble 4). If o, B are such that || > 1,|af| > 1,|(a — B)a| > 1, then the operator

family Hys = {H : ny € Span (o, A)} is identifiable.

Proof. The first step of the proof is to verify the Riesz basis sequence condition
(III) for (mo,A). By symplectic equivalence (Theorem 2.2) this is equivalent to
checking that the Gabor system (79, A’) is a Riesz basis sequence, where

0

V2 2
atBv2 0
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Figure 2: The set («, () fulfilling the conditions in case H5 lies in the blue region.

This is a Gabor system with a time-frequency lattice, containing the points (\%k’, 0, ov/2n, (a+
Bv2)k), k,n € Z, which is similar to the systems we have encountered so far. If
la| > 1, (72, ) is a Riesz basis sequence, and consequently (III) holds.
We choose for the identifier f = d1,. Second, we must show that {Hj,, f} is a
Riesz basis sequence.

Hk,nf = T(a—ﬁ)kManHOTﬁkaanf = O(k)T(a—,B)kMom’yl

where we denote ] . ,
O(k) = = —m(Z-pk)"
m-Ly.
JEZ
From here on we pursue the same path as in Proposition 4.26. When |(a—0)a| > 1,
the sequence {Hj,,,f} is a Riesz basis for its closed linear span. This shows the
claim. O
Note: The 2-density of the time-f lattice in th H5, Do(A) = —A2—.
ote e 2-density of the time-frequency lattice in the case H5, Dy(A) e

Our assumptions show that Hpys identifiable implies Dy(A) < \/Li’ but not vice
versa - see Proposition 4.12 and Proposition 4.28. The set of values «, 3 which
satisfy the conditions of Proposition 4.29 are listed in Figure 2.

a0
Proposition 4.30 (Case H6) Let 1y be given by (4.42), and A = (2 8) (Ta-
03

ble 4). If o, 3 are such that %ﬁ € Q,|ap| > 1, then the operator family Hyuye =
{H : ny € span (ny,\)} is identifiable.

Proof. This is similar to Proposition 4.28. We note that in this particular case
(72, ) = {T%kMaﬂk%} x {M,., 53} 18 a Riesz sequence if %ﬁ € Q. The rest
is essentially identical to case H4. O
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4.7 Other spreading functions

In contrast to the previous section where 1y was fixed, and A was varying, in the
following examples we shall vary both 7y (requirement II) and A (requirement I)
to produce identifiable families H,. We discuss briefly some special 7y, which are
distributions, so that the prototype operator Hj is non-Hilbert-Schmidt, but of
a special type (convolution, multiplication, etc.). The forms of Hyf are listed in
Table 1. For the purpose of obtaining expansions for ng in terms of a Riesz basis
(1o, A) (requirement III), we pose various initial conditions on 7.

We start with the simplest case 1y(t, ) = doo(t, 7). In this case, the prototype
operator Hj is the identity. The family of operators generated by Gabor Riesz
basis sequence expansions of such Hy is not Hilbert-Schmidst.

A brief check of the different cases from Tables 2 and 3 we see that in cases
B2-B6, D5, E5, F6, G4-G6, H4-H6, the sequence (19, A) can never be a Riesz basis
sequence. So requirement (III) is violated. We summarize our conclusions about
the remaining cases B1, D1, D3, E1, E3, F1, F2 in

Proposition 4.31 Let ny(t,v) = doo(t,v). The set of spreading functions arising
from cases B1, D1, D3, F1, E3, F1, F2 from Table 2 and 3 contains only the
Gabor sysnthesis operator Dy 5 and is identifiable with any f € L* such that
(f,aZ x BZ) is a Riesz basis sequence.

Proof. The fact that the operator is Gabor synthesis results from the substi-
tution Hy = Id into the formulae of Table 2 and Table 3, namely.

®p:cr Dyspc, c€ (7%

The result follows. 0
A second special case of spreading function is 1g(¢,v) = p(t)do(v), whose asso-
ciated operator Hy is a convolution operator,

Hy: f—pxf, fe€L*R).

We consider the various time-frequency index sets A. Some formulas for a repre-
sentative operator H € H, are listed in column II of Table 1. We note that in
cases B2, B3, B5, D2, D4, E3, E5, F2, F4, G1, H2, H6 requirement (III) is not
fulfilled, so these can be excluded from our consideration.

For Hy being a convolution Hy : f — px f, we will consider lattices A listed
as B1, D1, D3, H1, F1. Note that p and conditions on A will be different in each
case to ensure that Hy is identifiable.

Note: We must ensure in each case that kg, f belong to a pair of dual spaces so
that the integral (2.11) for H f is well-defined. The kernel kg (x,t) = p(t) € L*(R),
and the identifier f must also belong to L*(R), so that H f is well-defined.

Cases B1, D1, D3 are quite similar to each other.
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Case | Prototype operator Operator representation

Bl [ = Tar(p*x My f) [ ka CronTok(p* My f)

B3 | f—=Ta(p*f) =22k enTa(p* f)

B5 f=px My f [ Zm,n CmnD * Moy f

D1 f = px* TakMﬂmf f = Zk,m CkmD * TakM,Bmf

D2 | f— Toup* Maf =2 i ChnToxp * Mgy f

D3 | f= Taxp * Mg, f =2 kn ChnTaxp * Mg, f

El | f MgTup* f [ ckaMaTorp * f

E3 | [ TarMprp * Mpm—ny | [ 24 m CeomTarMprp * Mpm—r) f
Fl1 = Mgip*Torf [ Zk 1 CkaMaip x Tox f

F2 f = TakMﬂmp * M,@(m—k)f f Zk Ck,m akMﬁmp * M,B(m k)f
F3 | f—= MgTowp* Mgg—tyf | fr Zk,l CraMaTorp * Mag—p) f

Gl | f— Mgpxf f= 22 anMpp* f

G2 | f Mgp* Mgy f f =2 CmiMpip * Mpg 1y f
G3 f — M,@lp k M,@(m—l)f f — val Cm,lM,Blp k Mﬁ(m—l)f
Hl | f = TuMpp* M_g f [T Mpp * Mg f

H2 | [ TaxMgrp x M_py. | [ =2 i ckaTanMprp x Mg f

Table 5: Different operator classes induced by 19 = p(t)d(v).

Proposition 4.32 (Case B1) Let ay > 1, p € L*(R) such that suppp C [0,7)
and {Tokp : k € Z} is a Riesz basis sequence. Then the operator class

H ={H :ny € span{TokmmMo}}
is identifiable with identifier f = X0 4)-

Proof. For this set-up, a typical representative of H is

H:f Y cim(Tarp* Mynf), c€ (2.

We denote for the sake of shortness Hy,, f := Torp * My, f. As usual, the proof
consists of 2 steps: first, verifying condition (III) for 79 and second, showing that
for this choice of identifier f, {Hy,.f} is a Riesz basis sequence.

First, we justify the condition ay > 1 in the light of condition (III). A
well-known condition for Riesz basis sequences of translates (cited, for example,
in [Chr03]) states that it is sufficient to have

Z‘ﬁ(ﬁ + f) |2 =1 almost everywhere on [0, é)
kez

If suppp C [0,7), whenever ay < 1, the above norm equivalence does not hold.
Hence, ay > 1 is a necessary requirement.
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Second, we show that for f = Xjo) the function sequence {Hy ., f : m,k € Z}
is a Riesz basis sequence. The Riesz basis property of a sequence {e;} carries over
to the sequence {€;} because the Fourier transform is a unitary map [Chr03]. So
we work in the Fourier domain. We take the inner product

<Hk1,m1f>Hk2,m2f> -
- <Tak1p * M'yml f7 Takgp * M'ymzf>
- <M—ak1ﬁ' T’ym1 fa M—akzﬁ' T’ymz f>

- / M-t PN ama B F(E — ) F(€ — )
= oy — ma) / Mo PO M (6 d (4.51)

The last equality holds because J?: X[0,7), Which implies that

~ —~

f(€—ymi)f(§ —yma) =0

when m; # ms. Hence we obtain that

~

F(€ = vmy) (€ = yma) = do(my — ma)xpo (€)

so we can pull that term outside the integral.
Due to the assumption supp p C [0, ), the last line of (4.51) is simply

50 (ml - m2) <Mfak1ﬁ7 Mfakgﬁ%

so we can take inverse Fourier transform of both sides of the inner product and
obtain the equality

<Hk1,m1f: HkQ,mzf> = 50(m1 - m2)<Tak1p’ Tak2p>'

Next we use the criterion for Riesz bases from (2.1). We take a finite sequence
¢ = {ckm : k,m € Z} and use the above equality to compute

1D chmHim iz =Y 1Y cemTarpllze = llclle
m k

because {Tpxp} is a Riesz basis sequence. Hence { Hy,, f } is a Riesz basis sequence.

Thus, the mapping ®; : ¢ — > ¢ mHimf is bounded and has a bounded
inverse, and H is identifiable under the assumptions of Proposition 4.32. 0
This method can be applied to the operator families in cases D1 and D3 with
small adjustments of the initial conditions.

Proposition 4.33 (case D1) Let |a8| > 1, p € L*(R) such that suppp C [0, 3)
and {Toxp : k € Z} is a Riesz basis sequence. Then the operator class

H= {H “MH € span {Tak,ﬁmMQakWO}}a
is identifiable with identifier f = X0 3.
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Proof. A typical representative of H is an operator of the form
H:f— ch,mp * ToxMpn f, ¢ € C(Z7).

We note that the condition || > 1 is necessary to ensure the existence of a
function p satisfying the conditions

1. suppp C [0, 5);

2. {ToxMykp : k € Z} is a Riesz basis sequence.
The rest of the proof follows that of Proposition 4.32 since
ch,mf =px* TakMﬁmf = Takp * Mﬁm.f
O

Proposition 4.34 (Case D3) Let|a8| > 1, p € L*(R) such that suppp C [0, 3),
and {Tokp : k € Z} is a Riesz basis sequence. Then the operator family

H ={H : ny € span {TursnManono : k,n € Z} }
is identifiable with identifier f = X0,
Proof. This example is similar to Proposition 4.32 and 4.33. A typical operator
from this class maps
H:fr chﬁn(Takp x Mg, f), ce€l*(Z?).
The rest follows the steps of Proposition 4.32 and 4.33. 0

Proposition 4.35 (Case H1) Let |af| > 1 and p € S(R) be such that (p, aZ x
B7Z) is a Gabor Riesz basis. Then the operator family
H= {H My € Spﬁ{Tak,OMal,BkUO : k,l € Z}}
is identifiable with f = dy.
Note: This identifier from S’'(R) is admissible because kg (z,t) = p(t) € S(R).
Proof. The initial condition on p coming from (III) is that {T,xp : k € Z} must
be a Riesz basis sequence. This is however satisfied automatically because this is

a subsequence of (p, aZ x (7).
A typical representative of this operator family is

H:fw— Z crhiToxMap x M_g f, ¢ € (*(Z%)
el
If f = 0o, then the evaluation map ®; is equivalent to
@f . C Dp,a,ﬁc7

which represents the synthesis operator of a Gabor system (p, aZ x 7). According

to the assumption that (p,aZ x BZ) is a Gabor Riesz basis, we obtain that @ is

bounded and has a bounded inverse. l
The final example for this choice of 1y considers the lattice from case F1.
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Proposition 4.36 (Case F1) Let p € S(R) such that (p,aZ x BZ) is a Riesz
basis sequence. Then the family of operators

H ={H :nu € span{TorsMpsiorno} }
is identifiable with f = dy.

Note: This identifier from S’(R) is admissible because kg(z,t) = p(t) € S(R).
We must therefore have in addition the condition a3 > 1.

Proof. The initial condition on p coming from (III) is the sequence {TprMpgp :
k,l € Z} to be a Riesz basis sequence.

A typical representative of ‘H is

H:fr ch,lMﬁl(p* T.f), cel*(Z?.

k.l

For the identifier f = §; we have the following

(p* Tordo)(z) = /p(x — t)0o(t — ak) dt = p(x — ak) = Toxp(x)
Therefore, the evaluation map is
O, 1 c— D)o pC,

which is bounded and invertible if (p, aZ x BZ) is a Riesz basis sequence in L*(R).
U
A third special case of generator is 1y = do(t)q(v). It corresponds to a multi-
plication operator ~
HO : f = f ’ /q\7

with operator kernel ko(x,t) = q(x)do(t). Hence we should always choose an
identifier in S(R) in order to have the integral (2.11) for H f well-defined.

An inspection of the conditions on the parameters of A from Table 2 and 3
imposed by the (III) shows us that for lattices in cases B2-4, B6, D2, E2, G1, G3
and H2 the problem is not well-defined. An inspection of Table 6 shows that the
operator class Hy in cases H3 are not identifiable.

We consider the time-frequency index sets A from case E3 and E1 (Table 2),
which being again very similar to each other, we will combine them into a single
proposition.

Proposition 4.37 Assume suppq C [—%,2) and that {Tprq : k € Z} is a Riesz

basis sequence (i.e. |afB| > 1). Then the operator classes
1. Hgs = {H ' My € span {Tak,ﬁmM,@k:,OnO}}
2. Hgr = {H : ng € span {TorsMpiomo} }
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Case

Prototype operator

Operator representation

B1
B4
B6
D1
D3
El
E2
E3
F1
F2
F3
G2
G3
H1
H3

f = TakM'ym_(f : Z]\)

f = Mvmf _Z]\

f— Tak(f'a) _

[ TaMpnf - q

f = Tag—n)q - TaxMpn f
f = @Tak(a f)

[ Ta_kqA TorMpy f
f— Ta_ka' TakMgmf

[ = Mgq-Touf

f = TakMﬁmf ' Ta(mfk)a

[ TaMpif - Tar-n)
f — T—alZ]\' Mﬁmf

f — T—amZ]\' Mﬁmf
J—=Tawf- Ta(k—z)a
=T afq

f Df Gan® _

[ Zm,l Cm,l me_zl\

f e ZkJ Ck,lTak(f : /q\) B

f = 2 km CemTanMpm [ -

[ anckn k=n)q * Tar Mgy f
f= 2k Ck,lMﬂlTak(q f)

f= 2 ekilon - Tox Mgy f
=2 m ko Tord - TorxMpn f
[ Zk,l Ck,lMﬂlq Torf

= 2k emTonMpm f - Tagn—k)q
fe= 2k criTaxMpyf - Tar—n)d
=Y cm T - M f

[ Zl,m cmT—am - Mg, f
f= 2 iciTanf  Tag-1)d
fod T anf @

Table 6: Different operator classes induced by 7y = do(t)q(v).

are identifiable with any f € S(R) such that f|

Proof. We consider first Case E3. The condition |a3| > 1 is required to satisfy
the requirement for Riesz basis sequences of translates [Chr03].

1.

&
72

l\'JlQ

that suppq C [~%, §). A typical representative of H is

We pick as identifier f € S(R) such that [},

H f = Z Ck,mTakZ]\' TakMﬁmf-

k,m

,QQ
22
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= 1. Then for a finitely sup-



ported sequence ¢ = {cj,,} we have

|| Z Ck,mTaka' TakMﬁmeg =

k,m

= Z Z Clke,mCr' . m/ <To¢ka' TakMﬁmf7 Tak/a' Tak’Mﬁm’f>

km k' m/

= Z Z Che,mCh/ m/ /TakZ]\(t)TakMBmf(t)Tak’E]\(t)Tak/Mﬁm’f(t)dt
k.m k' m/

= 3" cumeirtol = K) [ @0 Mo @ e T

km k' m’

wlR

= Z Z Ck,mClk,m’ Mﬂma\(t)Mﬂm’a(t)dt

k. mm/

= [lefle

The norm equivalence in the last line is due to {Mg,,q : m € Z} being a Riesz basis
sequence (2.1). The latter is the Fourier transform of a subsequence of the Riesz
basis sequence {1j,q} (follows from the initial condition on ¢ in the assumption
of the Proposition). Hence the evaluation map ®; is bounded and has a bounded
inverse.

A similar proof holds for case El. O
A fifth special case is 1y = V}, g2(t, 7). The operator corresponding to 1 is
Hof = g2(f, 91) (4.52)

We see that the operator classes resulting in cases B1, D1 and F for such 7, are
never identifiable.

Proposition 4.38 Let iy = V,, g2(t,v) for some g1, g2 € M'(RY). Then the oper-
ator class given by

1. Hp1 ={H :nu € span{TokmmMo} };

2. Hpr ={H : nu € 5pan{TuksmMakomo} }

3. Hpr = {H : nr € span {Tok,sMar,ao} }-
s not identifiable.

Proof.

1. The underlying lattice is listed as case Bl from Figure 2. A typical repre-
sentative of the associated operator family is

Hf = Z ck,m<f7 M'ymgl>Tak92-
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which can be rewritten as

Hf = Z <Z cem ([, M’ymgl>> Tokgs- (4.53)

The expression in brackets in (4.53) is the convolution of the sequences
ci(m) and {(f, Mymg1) }m. This representation shows immediately that the
coefficients ¢y ,,, are not recoverable, so this case is not identifiable.

2. The underlying lattice is from case D1 from Figure 2. The action of the
operator H on f we shall rewrite as follows

Hf = g2 <Z Ck,mTakMﬂmfa gl) = <Ca Cgl,oéﬂf>f292 (454)

because (ThrMpm f, g1) is basically the action of the analysis operator Cy, o 3
on f. It is easy to see that c, hence H is never recoverable from the value

on the right-hand side of (4.54).

3. This lattice is from case F1 from Figure 3. A typical representative of the
operator family is

Hf =Y cralf, Toargr) Maga,

and rewrite it as

Hf =Y (O (f Targ1)) Mage. (4.55)

The expression on the right-hand side of (4.55) is similar to (4.54). Similar
to 2. we conclude that the operator class is not identifiable.

O
Note: Overall for such ny it is more difficult to have initial conditions as
required by (III) for gy, go.
As a conclusion to Section 4 we summarize the results as

Theorem 4.39 There exists no universal constant ¢ such that the operator family

Ha is identifiable if Da(A) < c.

The examples cited show that identification of an operator class can not be
dependent on a single parameter such as 2-density. For different time-frequency
index sets A there exists different constants. Furthermore, there exist families
(Proposition 4.12) where identification can not be expressed in terms of a 2-density
at all. For other families, extra conditions must be imposed to make the problem
well-posed (Proposition 4.15)
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5 Localization, HAPs and Gabor molecules

Section 4 showed that the answer to the question: ‘Under which conditions is
identification of a given family H, possible?” depends very much on the inter-
play between the criteria listed as (I)-(V) in Section 4. Here we approach the
identification problem from a different angle. We shall use the assumptions

(I) A= AZ? e R*, Ais a 4 x 2-matrix;

)
(IT) ny € M}(R?), v a polynomial weight of degree strictly greater than 2;
(III) (no, A) is a Riesz basis sequence.

V)

(I

Our goal in Section 5 is to explore the admissible range of constants ¢ for (IV)
in order for the identification problem to be well-posed in the most general sense.
In other words, we search for the broadest range of constants C' such that the
requirement (III) holds.

Let ng € M}(R?) with associated Hilbert-Schmidt operator Hy. Let

ay ag

b1 b 2
A ( )z

dy da

{Ta1m+a2n,b1m+b2nMc1m+02n,d1m+d2n770 -m,n € Z} (51)

There exists ¢ > 0, such that Dy(A) < ¢ = H, is identifiable.

Assume (III), that is,

is a Riesz basis sequence in L?(IR?). Then the operators H with spreading functions
belonging to the closed linear span of the above family (5.1) have the following

series representation
H = E Cm,nHm,n
m,n

in terms of the Riesz basis of operators

Hm,n == T(a17d1)m+(a27d2)nMc1m+cznHOTd1m+d2nM(b1 —c1)m+(ba—c2)n-

We noted already that if H = {H € Span H,,,} is identifiable with f, then
{Hnf} is a Riesz basis sequence.

The numerical examples from Sections 4.4 and 4.5 showed that the relevant
density measure of the system, used in conjuction with Lemma 4.7, arises from

the density of lattice
A/ — a; — dl ag — dQ Z2 (5 2)
C1 Co ’ .
The lattice A’ parametrizes the time-frequency shifts T{q, —d,ym-+(as—do)n Mermt-con

which appear in H,, .
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Note: In fact, the quantities d(A) and D) (A) are not strictly correlated with
respect to 1, i.e. it might happen that d(A) < 1, Dip)(A) > 1 and vice versa. We
provide an example of this using (4.2). First, set a; = dy = 0.5,a9 = 0,dy = 1,¢; =
¢ =1+ ¢ with ¢ > 0. Then d(A) = b= < 1, and Dpy(A) = (0.25+ 852°) .
For e < \/3 =1, Diy(A) > 1

Second, set a; = 10,a3 = 9.5,dy = 1,d; = ¢; = ¢ = 0.5. Then d(A) =2 > 1,
but Dig)(A) = (5.25% 4+ 0.5 x 0.25)72 < 1.

The relevant 2-density for the study of the operator sequence {H,, ,} is there-
fore d(A) = |A’|!, which does not involve the coefficients by, by from the formula
for the 2-density of A. That is why, without loss of generality, we can assume that
by = by = 0 for the remainder of our discussion. Then the 2-density of the original
system of points according to (4.2) is given by

D(Q)(A) = ((a102 — CL2€1)2 + (a1d2 — a2d1)2 + (C1d2 — ngl)z)ié. (53)

In order to analyze operator families with spreading functions with expan-
sions in terms of the family like (5.1) we use the toolbox of Gabor molecules and
localization of function sequences [BCHLO06a], [BCHLO6D].

We recall the most important definitions from this theory. The first one will
be the notion of a density of a point set with respect to a map.

Let Z be a countable index set, and G = aZ¢ x BZ% and a : T — G a
map. For every n € N we denote the box with size n centered at j € G by
Sn(j) ={9€ G :|lg—jll < 5}. The cardinality of S,(j) is independent of j since

G is a group. In general lim |S;;(dj | = (a;)d (which is the Beurling density of G).
Let Z,,(j) be the pre-image of S, (j) under a, in other words Z,(j) = a='(S,(j)).
Definition 5.1 The lower and upper densities of T with respect to a are

(7Y — i ing ine 1 Zn()]
D, (Z) —llggf;gé 5.07)
|

()l

. Z,,(j)l

D}(Z) =limsup sup .
n—oo e |Sn ()]

These quantities can be 0 or infinite. When D, (Z) = D (Z), Z is said to have
uniform density.
When 7 is a lattice A C R?*® we set a : A — G to be the rounding function:

a(e,w) = (151 15D, @w) €A

In this case there is a relation between the a-density and the Beurling density (4.1)
of A, namely

Y

(5.4)

Dy = 1Y)
. u(v(i%)r (5:5)
D)= oy
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For the computation of the above formulas we refer to [BCHLO06a], p. 113.

Localization can be defined in terms of decay of the inner products of one
sequence G with members of another sequence £. In fact, these inner products
{{g,e.) : g € G,e € £} are entries of a cross-Grammian matrix associated to the
triple (G, a, ). Its rows and columns can be required to possess a certain decay.
Unlike [BCHLO6a], we will be interested only in row decay. Gabor molecules are
a particular example of this definition as we shall see in Definition 5.5.

Definition 5.2 (Localization, [BCHLO06a], Def. 3) LetG ={f,:i € I},& =
{ej : j € G} be sequences in a Hilbert space H, and a : T — G an associated map.
(G,a,€&) is (P-localized (1 < p < o0) if

> sup[(fi, €j1a0) [P < 00.
jeG i€

Equivalently, there must exist ¢ € (P(G) such that for alli € Z,j € G,

[(fisei)| < cagiy—j-

Furthermore, the cross-Grammian matriz of (G, a, &) has (P-row decay if for every
e > 0 there exists a non-negative integer N, such that for all i € T

S el <e.

JEG\Sn, (a(1))

Note: The localization of G as defined by Definition 5.2 depends on the choice of
&€ and a. In fact (P-localization implies ¢P-row decay of the the cross-Grammian
matrix associated to the triple (G, a, &), as shown by the following simple compu-
tation.

Let € > 0 be given. Assume (G,a,€) is P-localized. Fix i € Z. Choose N,

such that
Z o <e.
keG\Sn. (0)

Then a simple change of variables in the sum produces

S e > i,

JEG\SN, (a(1)) JEG\SnN, (a(?))

< ) d<e

kEG\Sn. (0)

Next comes a generalized version of Homogeneous Approximation Proper-
ties [CBH99], [RS95], which are characteristic of Gabor frames. The generalized
HAP does not involve the structure of Gabor frames.

Definition 5.3 (Dual HAP [BCHLOG6a], Def. 4) Let G = {f; : i € I},& =
{ej 1 j € G} be sequences in a Hilbert space H such that & is a frame for H with
dual frame € ={é; : j € G} and a : T — G an associated map.
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1. (G, a, &) has the weak dual HAP if for every e > 0 there ezists a non-negative
integer N, such that for allt € Z € > 0,

dist(f;,span{é; : j € Sn.(a(i))}) <e.

2. (G,a,&) has the strong dual HAP if for every € > 0 there exists a non-
negative integer N, such that for alli € T € > 0,

||fz - Z <fi,€j>éj||7—{ <E.

JESN, (a(d))

Note: If £ is a frame for H, then the strong dual HAP implies the weak HAP
([BCHLO6b], Theorem 10). If the reference system & is a frame for H, then (P-row
decay implies the strong dual HAP ([BCHLO6b], Theorem 10).

These Harmonic Approximation Properties will allow us to put bounds on
frame densities as stated in Theorem 3, [BCHL0G6a].

Theorem 5.4 ([BCHLO06a]) Assume G = {f;:1 €L} is a Riesz basis sequence
inH, and € ={e; : j € G} is a frame for H. If (G, a,E) has the weak dual HAP,
then

0<D,(Z)<DIIT) <1

These results recapture the fact that whenever the reference system £ is a frame for
H and (G, a, &) is (P-localized, then we can apply Theorem 5.4 to make estimates
about the a-density of the index set of the Riesz basis sequence G.

We have noted already that in order for the system of operators H,, where

T
[ by o di 2
A_(a2 b o d2> Z (5.6)

to be identifiable with f, the system of functions G = {H,,,.f : m,n € Z}, with

Hm,nf = T(a1—dl)m+(a2—dg)nMclm+62nH0Td1m+d2nM(b1—cl)m+(b2—cg)nf7 (57)

must constitute a Riesz basis sequence in L?*(R) as required by condition (IV).
Then a result such as Theorem 5.4 will allow us to put bounds on the quantity
d(A) =|A|7! (5.2), which is the index set of this G.

We are free to choose a reference system £ = (7y1,aZ x (7Z) generated by
the Gaussian ;. This system is a Gabor frame for L*(R) for any «, 3 > 0 with
aff < 1 [Lyu92], [SW92|. It remains to show that (G, a, &) is ¢P-localized for some
p. For that we will show that G is a set of Gabor molecules.

Definition 5.5 (Gabor molecules) Let J C R? and f; € L*(R),j € J be
gwen. Then {f; : j € J} is a set of Gabor molecules if there exists an envelope
function T € W(C, ¢?) (Definition 2.4) such that for allj € J,z € R?, |V, f;(2)| <
['(z—7).
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Properties of Gabor molecules are presented and discussed in [BCHL06a]. If the
set of functions is actually of the form 7 (j)f;, the following equivalent definition
may be used: {7(j)f; : j € J} is a set of Gabor molecules if there exists an
envelope function I' € W(C, ¢?) such that for all j € 7,z € R* |V,, f;(2)| < T(z).

The restriction ng € M} (R??) assures that the action of the operator H onto
distributions from M (R%) acts in a sense as a localizer. Among other things, the
study [BCHLO6b|, [BCHLO0G6a] lists criteria on determining the density of 7 if the
set of Gabor molecules {f; : j € J} is a frame, orthonormal basis or a Riesz basis
for L?(R?). To apply this resault we have to demonstrate that the set G in (5.7)
is actually a set of Gabor molecules. This is the purpose of

Lemma 5.6 Let Hy be a prototype operator with spreading function ny € M} (R?),
v a polynomial weight of degree strictly greater than 2, f € M*(R). Then

g = {T(a1fd1)er(agfdg)nMclm+cgnH0Td1m+d2nM(b17cl)m+(b2702)nf tm,n e Z}
is a set of Gabor molecules.

Proof. We shall show that for f € M>(R), the set G as given by (5.7) (whose
elements we denote for short T(a,—d,)m+(as—do)nMerm+confmn) consists of Gabor
molecules. Under the given assumptions Lemma (4.4) shows that

| fron ()| = |H0Td1m+d2nM(b1 —c1)m+(ba— 02)nf( z)| = O(|z]),

’ffmm(g)‘ = |fH0Td1m+d2nM(b1—61)m+(b2—02 nf( )| - O(|£|7S)

where s > 2. To prove our claim we must show that there exists I' € W (C, ¢?),
such that |V,, fin(z)| < I'(z) for all m,n € Z and all z € R? - see Definition 10

from [BCHLOGb]. Following the reasoning and computations from have shown in
Proposition 4.13, in particular (4.40), we see that

Var Fnn(2)] = [(fonns T M)
< @1 k(@) flare

\Var finn(2)] = [(F finns MaTomn)|
< @2 Y1 (W) flaree

where ¢1(z) = O(|z|7*), p2(w) = O(|w|~*), s > 2. Hence, if we set
h(y) = [fllare max{er #1(y), 61 % 11(=y), b2 % Y(y), b2 ¥ V(=) },

we obtain that

(5.8)

Vo fmn(2) < h(max{|z], |w[}) = A(]|z]|)
and |h(z)| = O(]z]~*),s > 2. This means that there exists a constant ¢ such that
Var fimn(2)] < ¢ - h(|2])

Then we can bound this function i by some ' € W(C, £?) (see Definition 2.4) and
obtain the necessary decay. Thus, the set G consists of Gabor molecules. U
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Lemma 5.7 Let Hy be a prototype operator with spreading function ny € M} (R?),
v a polynomial weight of degree greater than 2, f € M*(R). If the system

g = {T(al—d1)m—l—(ag—dg)nMclm—l—canOlem—l-dgnM(bl—cl)m—l—(bg—cg)nf tm,ne Z}
which is associated to the sampling set A is a Riesz basis sequence, then d(A) < 1.

Proof. Lemma 5.6 shows that G is a set of Gabor molecules. Assume that G
is a Riesz basis sequence. We choose a, 3 > 0 such that aff < 1 and employ as
a reference system £ = (y;,aZ x BZ), which is a Gabor frame for L?(R). The-
orem 8a from [BCHLO6b] shows that (G, a, (y1,aZ x ($Z)) is (*-localised. Hence,
(G, a, (71, 0Zx BZ)) has the weak dual HAP. Theorem 5.4 and (5.5) in combination
allow us to conclude that

1> D (A) = (aB) Dh(A). (5.10)

However, the upper Beurling density of the index set of G, D5(A), equals simply
d(A). Since (5.10) holds for any 0 < a8 < 1, then necessarily d(A) < 1. O
Lemma 5.7 is used to demonstrate the following:

Theorem 5.8 If the system of operators Hy arising from an index set A (5.6)
and prototype spreading function from M(R?), v a polynomial weight of degree
greater than 2 is identifiable, then the 2-density of A must be less than /2.

Proof. Lemma 5.7 shows that under the given assumptions, H, is identifiable
implies that d(A) < 1. This means in terms of the formula for d(A) that |(a; —
di)cy — (ag — dy)cr| > 1. In other words, |(ajce — asey) + (c1dy — cody)| > 1. Then
by Cauchy-Schwarz inequality:

[(a1cy — agey) + (crdy — cady)|? >

N | —

(ayco — azer)? + (crdy — cody)? >

DN | —

This implies by the formula for 2-density that Dy(A) < /2. The bound is attained
for coefficients satisfying for instance ciay = coaq, asc; — caay = dyco — dacy. O
In other words, we have demonstrated the existence of a lower bound C' in

Theorem 5.9 Let Hy = {H : ny € span(ny,A)}, where ny € ML(R?) is a
prototype spreading function, v a polynomial weight of degree greater than 2, and
A a 2-dimensional time-frequency index set inside RY. If Dy(A) > /2, then the
operator family Hy is not identifiable with f € M*(R).

Remark: This value of C' is a universal constant. For some A, C' may have a lower
value.
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