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Summary

We consider identification of operator families defined via a time-frequency series
expansion of the operator spreading function. The identification problem is trans-
formed into an infinite-dimensional linear algebra problem. Our aim is to establish
a connection between the identifiability of the operator family and a density mea-
sure of the time-frequency index set. In this way, the identification problem can
be compared to the classical density condition for existence of Gabor frames. The
conclusion is that the relationship between identifiability of such operator families
and the “critical” density is highly intricate because of the presence of additional
conditions. Criteria for identifiability are developed for families of time-frequency
localized operators defined via time-frequency series expansions of the spreading
function based on the Gaussian function.
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1 Introduction

The main purpose of this study is to explore identification of operators having a
time-frequency representation. The goal of operator identification is to recover an
incompletely known operator from a given operator family through observation of
a single input and output result. In general for normed linear spaces X, Y and
H ⊂ L(X, Y ), we wish to find an element f ∈ X such that the evaluation map
Φf : H → Y is bounded and stable. Then H is said to be identifiable by f . Such
problems have been considered in mobile radio communications.

Hilbert-Schmidt operators can be represented as a superposition of time-frequency
shift operators TtMν :

Hf(x) =

∫∫
ηH(t, ν)TtMνf(x)d(t, ν),

where ηH is the spreading function of the operator. The spreading function defines
the operator uniquely, and each Hilbert-Schmidt operator has a unique spreading
function [Grö01, KP06].

We study classes of operators defined via time-frequency (Gabor) represen-
tations of the operators’ spreading functions. Namely, our point of interest are
operator families of the following type

HΛ = {H : ηH ∈ span {π(λ)η0, λ ∈ Λ}},

with Λ a lattice in R4d, η0 a window function in some subspace of L2(R2d). We de-
note the operator having a spreading function π(λ)η0 by Hλ. The Gabor expansion
in L2(Rd),

ηH =
∑
λ∈Λ

cλπ(λ)η0

can be translated onto the Hilbert-Schmidt space into the following series repre-
sentation of a member of H

H =
∑
λ∈Λ

cλHλ.

Two important criteria for identification of H are therefore: the structure of index
set Λ (parametrization in R4d); the properties of η0 and its associated prototype
operator H0.

Our approach to identification aims at recovering the coefficients {cλ} of the
Gabor series expansion of ηH . This is achieved by a discretization of the above
in terms of a linear system dependent on η0 and Λ. That is why it is important
that the coefficient {cλ} must uniquely correspond to ηH . In other words, we
require that (η0,Λ) is a Riesz sequence inside L2(R2d). The meaningfulness of this
condition is illustrated in Section 4.1. It allows us to relate the Hilbert-Schmidt
norm of an operator H ∈ HΛ to the `2-norm of the coefficients of the expansion
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of ηH in terms of {π(λ)η0 : λ ∈ Λ}, or to the coefficients of the expansion of H in
terms of Hλ. That is,

‖H‖HS =

∥∥∥∥∥∑
λ

cλHλ

∥∥∥∥∥
HS

=

∥∥∥∥∥∑
λ

cλπ(λ)η0

∥∥∥∥∥
2

� ‖c‖`2 .

In order to show that the operator family H is identifiable, we must find f such
that the family {Hλf : λ ∈ Λ} is a Riesz sequence in L2(Rd). Such a requirement
will imply the validity of the norm equivalence

‖Hf‖2 =

∥∥∥∥∥∑
λ

cλHλf

∥∥∥∥∥
2

� ‖c‖`2

Then the norm equivalence between the Hilbert-Schmidt norm of H and the L2-
norm of Hf will prove identifiability with f .

For proving non-identifiability it is enough to show that the mapping Φf : H →
Hf is non-invertible for any f in a particular modulation space (the dual space of
the Feichtinger algebra S0, M∞(Rd), which contains the Dirac delta.)

We must stress that the operators act on distributions from d-dimensional
space, while the spreading functions of the operators are from a 2d-dimensional
space. Therefore, a single evaluation Φf (H) can not determine a general opera-
tor H (problem of ‘dimension-counting’), and we have to assume some a priori
knowledge of H. We shall assume that the index set Λ of the Gabor system (η0,Λ)
is 2d-dimensional. Our main goal is to relate the identifiability of the respective
operator class to some measure of density of the index set Λ. In [KP06] identifia-
bility of a particular operator class is related to the measure (area) of the support
of the spreading function ηH . Underspread operators are those where the area of
the support of ηH is less than 1, and overspread else. This dichotomy is modeled
after the under- and oversampling in Gabor analysis.

By a nalogy we shall define a ‘Beurling-type’ 2-density for sets of points Λ lying
within general 2d-subspaces S of R4d - see Definition 4.2. We shall restrict our
attention to lattices which define a 2d-dimensional hyperplace of R4d. For d = 1
they are defined by a strictly rectangular 4× 2-matrix,

Λ =


a1 a2

b1 b2

c1 c2

d1 d2

Z2 =


a1m+ a2n
b1m+ b2n
c1m+ c2n
d1m+ d2n

 : m,n ∈ Z.

Since such Λ are parametrized by 2 indices, the identification problem becomes
well-posed. The 2-density of Λ is then

D(2)(Λ) =[(a1b2 − a2b1)2 + (a1c2 − a2c1)2 + (a1d2 − a2d1)2 + (b1c2 − b2c1)2

+ (b1d2 − b2d1)2 + (c1d2 − c2d1)2]−1/2.
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Some standard choices of matrix coefficients ai, bi, ci, di, i = 1, 2 are listed in Fig-
ures 2 and 3. For higher dimensions densities can be defined analogously.

A reasonable assumption for the criterion for identifiability of HΛ is the mag-
nitude of the 2-density of Λ (this criterion is given also in [KP06] in other terms
- critical spread of the operator). An underlying idea is that whenever the D2(Λ)
is high, the information about the operator is densely packed in the coefficients of
its time-frequency representation, and identification is not possible. Our working
hypothesis is thus formulated as follows:

There exist constants c, C > 0 such that

D2(Λ) > C =⇒ HΛ is not identifiable. (1.1)

D2(Λ) < c =⇒ HΛ is identifiable. (1.2)

Our approach to determining identifiability by means of discretization is the fol-
lowing. To prove that HΛ is identifiable, we search for an identifier (a distribution
f) such that any choice of coefficients cλ from (some subclass of) `2(Z4), can be
computed from Hf . Equivalently cλ can be computed from the values of the inner
products vµ = 〈Hf, π(µ)γ〉, µ ∈ M, which are the Gabor coefficients of Hf with
respect to a Gabor frame (γ,M) for L2. Hence, we need to solve the system of
equations

vµ = 〈Hf, π(µ)γ〉 =
∑
λ∈Λ

cλ〈Hλf, π(µ)γ〉 =
∑
λ∈Λ

cλAµ;λ. (1.3)

The linear system (1.3) has a matrix-vector representation Ac = v, where

A = (Aµ;λ)µ;λ; Aµ;λ = 〈Hλf, π(µ)γ〉.

If there exists f such that the map A : Y → `2(Z2), Y ⊂ `2(Z4) is invertible, then
HΛ is identifiable. On the other hand, if for every f belonging to a particular
space of distributions (for example, the modulation space M∞), the map A is not
invertible, then HΛ is not identifiable with identifiers from this space.

Numerical evidence is given in Section 4, where we explores the existence of
bounds c, C as described above for different Λ. Numerical examples show that
the factors for identification (2-density, shape of Λ) have different importance in
determining whether HΛ is identifiable or not. Our results show that an lower
bound on 2-density of Λ is not always necessary. Membership of η0 in certain
modulation shapes is sometimes strong enough to show non-identifiability. For
instance, when η0 ∈M1

v (R2), there exists lattices Λ such that the operator family
HΛ is never identifiable (Propositions 4.8 and 4.9).

In other cases bounds on 2-density of Λ are nonetheless an important factor.
If η0 belongs to a certain modulation space, for different Λ, the constants c, C do
play a role. Such examples are provided by Proposition 4.10 and 4.11. However,
in each of these cases the lower bound C is different because the respective index
sets Λ are different.
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To explore the behavior of upper bound c, we keep η0 fixed and vary Λ. Again
for some Λ, there exists c such that D2(Λ) < c implies identifiability of H (Propo-
sition 4.14, 4.20 and Corollary 4.16). On the other hand, we note that a universal
upper bound c does not exist; in some cases, as Proposition 4.12 illustrates, even
families with 2-density close to 0 are not identifiable. In fact, sometimes the set of
values of D2(Λ) for which the respective HΛ is identifiable is not even connected
in R, namely for all c > 0, the interval [0, c) contains infinitely many values such
that HΛ is not identifiable.

Furthermore, we provide examples (Proposition 4.15, 4.21, 4.22, 4.23, 4.24)
demonstrating that extra conditions on the parameters of Λ besides 2-density are
required in order for the identification problem to even make sense. These cannot
be formulated in terms of a single numerical criterion such as 2-density.

Since the interplay between all these factors is so difficult to grasp, Section 5
considers the identification problem from a different angle for d = 1. It explores the
admissible range of upper bounds C for D2(Λ) such that the identification problem
is well-posed and makes sense. An example is provided of Λ with D2(Λ) > 1 and
HΛ identifiable, which shows that C ≥ 1.

Furthermore, we demonstrate that in the most general case in order for the
operator families parametrized by general lattices in R4 to be identifiable, C must
not exceed

√
2 (Theorem 5.8). That is why we pose as universal bound for non-

identifiability of HΛ, Λ - 2-dimensional index set, C =
√

2 (Theorem 5.9). Our
method of proof involves the theory of Gabor molecules [BCHL06a], [BCHL06b].
This is to our knowledge first application of Gabor molecules beyond the problem
of measuring localization properties of the elements of the dual frame, which is
the main interest for the authors of [BCHL06a], [BCHL06b].

The examples considered show that the identification problem can not be for-
mulated in a straightforward way similar to that of a density condition in the
problem of existence of Gabor frames. Identification of operator families even
with severe restrictions on the spreading functions involves a lot more than simple
density estimates - as evident in the case of higher-dimensional Gabor systems
with Gaussian windows.

2 Preliminaries

In this section we make an overview of the theoretical background used in the
paper. First we do a brief overview of some general properties of Riesz bases and
frames for a separable Hilbert space H with norm ‖ · ‖ because these are essential
ingredients in our analysis. Then we define modulation spaces and present their
most important properties, as well as applications to Gabor analysis and define
Hilbert-Schmidt operators for L2 as well as their extension to distribution spaces.
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2.1 Gabor frames and Riesz bases

In the following paragraphs we recall the most important concepts from Riesz
basis and frame theory. A sequence {fj} ⊂ H is a Riesz sequence if and only
if there exist constants a, b > 0 such that for all finitely supported sequences of
scalars {cj}j∈N,

a
∑
j∈N

|cj|2 ≤
∥∥∑
j∈N

cjfj
∥∥2 ≤ b

∑
j∈N

|cj|2 (2.1)

A Riesz basis for H is a Riesz sequence whose linear span is complete in H. (2.1)
shows that Riesz sequences are more general type of bases than ONB.

A sequence F = {fj}j∈N is a frame for H if there exist 0 < a ≤ b such that for
all f ∈ H,

a‖f‖2 ≤
∑
j∈N

|〈f, fj〉|2 ≤ b‖f‖2 . (2.2)

A frame sequence is a frame for the closure of its linear span.
The constants 0 < a ≤ b are called lower and upper frame bound respectively.

A frame is called tight if we can choose a = b. If a = b = 1, the frame is called a
Parseval tight frame.

Definition 2.1 Let Λ ⊂ R2d be a discrete set. A Gabor system (g,Λ) for L2(Rd)
is the set of all time-frequency shifts of the window function g by λ = (x, ω) ∈ Λ,
i.e.

(g,Λ) := {gλ : λ ∈ Λ},

for gλ(t) = π(λ)g(t) = TxMωg = g(t− x)e2πi〈ω,t〉

We define the short-time Fourier transform with window g as

Vgf(t, ν) =

∫
Rd
f(x)g(x− t)e−2πi〈ν,x−t〉 dx.

The map Vg is central in Gabor analysis - for a discussion of its properties we refer
to [Grö01].

We outline the basic definitions:

• A Gabor system (g,Λ) is a Riesz basis sequence if there exist constants
0 < a ≤ b such that for all c ∈ `2(Λ),

a‖c‖2
`2 ≤ ‖

∑
λ∈Λ

cλπ(λ)g‖2
2 ≤ b‖c‖2

`2 . (2.3)

• A Gabor Riesz basis is a Riesz basis for L2(Rd) if it is also complete in
L2(Rd).
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• A Gabor system (g,Λ) is a frame for L2(Rd) with frame bounds 0 < a ≤ b
if such that for all f ∈ L2(Rd),

a‖f‖2 ≤
∑
λ∈Λ

|〈f, π(λ)g〉|2 ≤ b‖f‖2 . (2.4)

• A Gabor frame sequence is a frame for the L2-closure of its linear span.

The operator

S(g,Λ) : L2(Rd)→ L2(Rd); S(g,Λ) : f 7→
∑

Vgf(λ) π(λ)g

is called a Gabor frame operator. It is a positive, bounded, invertible and self-
adjoint operator if (g,Λ) is a frame for L2(Rd).

When Λ is a regular lattice, the frame operator Sg,Λ commutes with the time-
frequency shifts {π(λ), λ ∈ Λ} [Chr03]. This property of the frame operator
underlies the fundamental observation that the dual frame of a Gabor frame on a
regular lattice has the structure of a Gabor frame with the same lattice. Gabor
frames posses therefore a very useful reconstruction formula:

f =
∑
λ∈Λ

Vgf(λ) π(λ)γ =
∑
λ∈Λ

Vγf(λ) π(λ)g, (2.5)

where γ is the (canonical) dual window. For a detailed discussion of further
properties of Gabor frames, their duals and the Gabor frame operator we refer
to [FK98], [FZ98], [Chr03], [Grö01].

The following theorem shows that symplectic transformations of the lattice
leave the Gabor frame property ‘invariant’. It is an important tool for verifying
the frame or Riesz sequence property of a Gabor system from a known Gabor
frame or Riesz sequence.

Theorem 2.2 Let Λ be a full rank lattice in R2d and M ∈ Sp(d). Then the
following are equivalent:

1. There exists a g ∈ L2(Rd) such that (g,Λ) is a Gabor frame for L2(Rd)
(respectively Riesz sequence).

2. There exists a g̃ ∈ L2(Rd) such that (g̃,MΛ) is a Gabor frame for L2(Rd)
(respectively Riesz sequence).

Remark: The window g̃ = µ(M)g, where µ(M) is the metaplectic operator asso-
ciated to M .

In our analysis of the identification problem we shall make frequent use of
functions and distributions belonging to certain modulation spaces. We recall
briefly in Section 2.2 their basic properties.
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2.2 Modulation spaces

Modulation spaces are useful tools in time-frequency analysis because they allow
characterization of time-frequency properties of functions via membership in cer-
tain Banach spaces. In particular we employ prototype spreading functions η0 from
weighted modulation spaces in order to define operators H0 with time-frequency
localization property (Lemma 4.4).

In this section we introduce the basic properties of modulation spaces, start-
ing from the definition of weight functions and Wiener amalgam spaces. These
describe the decay and growth of functions and will be applied to the definitions
of modulation spaces.

Definition 2.3 A weight function m is a non-negative, locally integrable function
on Rd. Two weight functions m1,m2 are called equivalent if there exists a constant
C > 0 such that 1

C
m1(z) ≤ m2(z) ≤ Cm1(z) for all z ∈ Rd.

The standard weight functions used in Gabor analysis are polynomial. They will
be denoted by vs(z) := (1 + |z|)s. If z = (x, ω) ∈ R2d, then vs is equivalent to the
weights v′s = (1 + |x|+ |ω|)s and v′′s = (1 + x2 + ω2)s/2 [Grö01].

Wiener amalgam spaces allow ‘a separation of local and global properties of a
function or distribution’ [FZ98]. Here A(Rd) = FL1(Rd).

Definition 2.4 Let ψ ∈ A(Rd) be compactly supported and generate a partition
of unity, that is ∑

n∈Zd
ψ(x− n) ≡ 1.

Let X be a translation invariant Banach space of functions or distributions on Rd

such that A(Rd) ·X ⊆ X with ‖φf‖X ≤ ‖φ‖A‖f‖X . The Wiener amalgam space

W (X, `p) = {f : ‖f‖W (X,`p) = (
∑
n∈Zd
‖fTnψ‖pX)

1
p <∞}.

Since {Tnψ} forms a partition of unity, f =
∑

n∈Zd fTnψ. Then the Wiener
amalgam norm from Definition 2.4 states that the global decay of f measured via
the local X-norm of f is similar to that of a `p-sequence. The simplest Wiener
space is W = W (L∞, `1). In fact, W ∩ FW is the largest space on which the
Poisson summation formula holds pointwise [Grö01].

Let γ(t) = e−π|t|
2

be the Gaussian function on Rd. Modulation spaces will be
defined by introducing a special norm for f , that is by imposing a norm on the
short-time Fourier transform of f .

Definition 2.5 The modulation space Mp,q
m (Rd), 1 ≤ p, q ≤ ∞ consists of all

tempered distributions f ∈ S(Rd) such that the norm

‖f‖Mp,q
m

:=

(∫ (∫
|Vγf(x, ω)|pm(x, ω)p dx

) q
p

dω

) 1
q

(2.6)

is finite. If either p, q =∞, the integral is replaced by the L∞-norm as usual.
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Mp
m will denote Mp,p

m for the sake of shortness. If m = 1, we write just Mp. For
a detailed treatment of the theory of modulation spaces we refer to Chapters 11
and 12 of [Grö01]. In our subsequent analysis we shall be interested in modulation
spaces with p = 1,∞. Here we recall only the most important properties of these
modulation spaces:

1. Mp,q
m (Rd) is a Banach space [Grö01]: Proposition 11.3.5.

2. The definition of Mp,q
m (Rd) is independent of the choice of γ ∈ S(Rd). Differ-

ent choices of γ yield equivalent norms, i.e. for g1, g2 ∈ S(Rd), g1, g2 6= 0, and
‖f‖1 := ‖Vg1f‖Lp,qm , ‖f‖2 := ‖Vg2f‖Lp,qm there exists C,C ′, dependent on g1, g2

such that C‖f‖1 ≤ ‖f‖2 ≤ C ′‖f‖1 for all f ∈ Mp,q
m . [Grö01]: Proposition

11.3.2.

3. M1
m(Rd) is invariant under time-frequency shifts (although they need not be

isometries!) [Grö01]: Proposition 11.3.5.

4. If m(ω,−x) ≤ Cm(x, ω), then M1
m(Rd) is invariant under the Fourier trans-

form [Grö01]: Proposition 11.3.5.

5. f ∈M1
m implies that f is continuous [Grö01]: Proposition 12.1.4.

6. If m is a polynomial weight, then S(Rd) is a dense subset of M1
m(Rd) [Grö01]:

Proposition 11.3.4.

7. The dual space of M1
m(Rd) is M∞

1
m

(Rd) [Grö01]: Proposition 11.3.6.

Furthermore, we have the following inclusion relations

S ⊂M1
vs ⊂M1 ⊂M∞ ⊂M∞

1/vs ⊂ S
′

for all polynomial weights vs(z) = (1 + |z|)s, s > 0.
The modulation space M1 has attracted a lot of attention and is now referred

to as Feichtinger’s algebra and denoted S0. It has some additional properties:

1. M1 is a Banach algebra under convolution [Grö01], Proposition 12.1.7:

f, g ∈M1 ⇒ f ∗ g ∈M1.

2. M1 is a Banach algebra under pointwise multiplication [Grö01], Proposition
12.1.7:

f, g ∈M1 ⇒ f · g ∈M1.

3. Let B be a Banach space of tempered distributions such that B is invariant
under time-frequency shifts and M1

m ∩ B 6= ∅. Then M1
m is embedded in

B [Fei81].
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4. Whenever f ∈M1(Rd), Poisson’s summation formula∑
k∈Zd

f(x+ k) =
∑
k∈Zd

f̂(k)e2πikx (2.7)

holds with absolute convergence of both sums for all x.

These properties point out the usefulness of M1(Rd): it is a Banach algebra, it is
invariant under time-frequency shifts and the Fourier transform, it contains only
continuous functions, and is dense in L2(Rd).

An alternative definition of the modulation space S0 using Wiener amalgam
spaces states that S0(Rd) = W (A(Rd), `1(Zd)) [FZ98]: Proposition 3.2.6. Here
A(Rd) = FL1(Rd). Thus an equivalent norm on S0 would be induced by any
compactly supported ψ ∈ A(Rd) with

∑
n∈Zd Tnψ = 1 almost everywhere and is

given by

‖f‖S0 :=
∑
n∈Zd
‖f · Tnψ‖A. (2.8)

The dual space S ′0 = M∞(Rd) would then coincide with W (A′(Rd), `∞(Zd)).
Thus, S ′0(Rd) contains the Dirac delta function δ0 and the delta train

∑
n∈Zd δn

[FZ98],[KP06].
Definitions of modulation spaces carry over to sequence spaces `p,qm (Zd) after a

change in (2.6) to counting measure.

Definition 2.6 Let m be a weight function. The weighted mixed-norm sequence
space `p,qm (Z2d) is,

`p,qm (Z2d) = {c : (
∑
l∈Zd

(
∑
k∈Zd
|ck,lm(k, l)|p)

q
p )

1
q <∞}

2.3 Modulation spaces and Gabor analysis

Modulation spaces provide a very suitable class of window functions for Gabor
systems. For instance, the Gabor frame operator Sg for g ∈ M1 is a bounded
operator on L2(Rd) [Grö01]: 12.1.12, 12.2.1.

The following three statements characterize the extreme usefulness of M1
m(Rd)

for Gabor frame theory. Let Λ ' Z2d be a lattice in R2d.

Proposition 2.7 ([Grö01]: Proposition 12.2.3-4) Let g ∈M1
m(Rd), 1 ≤ p, q ≤

∞. Then the Gabor analysis operator

Cg,α,β : f 7→ {Vgf(λ), λ ∈ Λ}

is bounded from Mp,q
m (Rd) into `p,qm (Z2d) for all Λ. Furthermore, the Gabor synthe-

sis operator

C∗g : {cλ} 7→
∑
λ

cλπ(λ)g

is bounded from `p,qm (Z2d) into Mp,q
m (Rd). If p, q < ∞, the convergence of the sum

is unconditional in Mp,q
m (Rd). Otherwise it is weak ∗-convergence in M∞

1
m

(Rd).
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An obvious consequence of this statement is

Corollary 2.8 ([Grö01]: Proposition 12.2.5) If g, γ ∈ M1
m(Rd), then the op-

erator Sg,γ : f 7→
∑

λ∈Λ Vgf(λ)π(λ)γ is bounded on Mp,q
m (Rd) for all 1 ≤ p, q ≤ ∞.

If g = γ, then this is the Gabor frame operator Sg.

The L2-frame theory extends naturally to frames for modulation spaces Mp,q
m , as

stated by the following important result about Gabor frames with windows in
M1

m(Rd),

Corollary 2.9 ([Grö01]: Proposition 12.2.6) If g, γ ∈M1
m(Rd), and Sg,γ = I

on L2(Rd). Then

f =
∑
λ∈Λ

Vgf(λ)π(λ)γ (2.9)

with unconditional convergence in Mp,q
m if 1 ≤ p, q <∞. Also there exist A,B > 0

such that
A‖f‖Mp,q

m
≤ ‖{Vgf(λ) : λ ∈ Λ}‖`p,qm ≤ B‖f‖Mp,q

m
. (2.10)

Equation (2.9) guarantees the existence of a reconstruction operator, while (2.10)
ensures the norm equivalence of functions and their Gabor coefficients. Thus, (2.9)
and (2.10) fulfil the requirement for a Banach frame for Mp,q

m (Rd), 1 ≤ p, q < ∞
in the sense of Gröchenig [Grö01].

One important question from Gabor analysis is the quality of the canonical
dual window. The L2-theory states nothing more except that the dual window is
in L2(Rd). A very important question about the properties of the canonical dual
window was answered by [GL03]:

Proposition 2.10 ([GL03]) Let g ∈ M1
m(Rd) be such that (g,Λ) be a frame for

L2(Rd). Then Sg is invertible on M1
m(Rd) and the canonical dual g̃ = S−1

g g belongs
also to M1

m(Rd).

2.4 Hilbert-Schmidt operators

Definition 2.11 A bounded operator T : H → H is called a Hilbert-Schmidt
operator if

∑∞
k=1 ‖Ten‖2

H < ∞ for some ONB {en : n ∈ N} of H. The Hilbert-
Schmidt norm of T is given by the `2-norm of the sequence {‖Ten‖H : n ∈ N}.

The Hilbert-Schmidt norm of the operator is independent of the choice of
ONB [Con90].

If H : L2(Rd) → L2(Rd) is an integral operator with kernel κH , then H is a
Hilbert-Schmidt operator if and only if κH ∈ L2(Rd).
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Hilbert-Schmidt operators are integral operators that are completely described
by, for example, their spreading function ηH , their kernel κH or their Kohn-
Nirenberg symbol σH [Grö01]:

(Hf)(x) =

∫
Rd×Rd

ηH(t, ν)f(x− t)e2πi〈ν,x−t〉d(t, ν) (2.11)

=

∫
Rd
κH(x, x− t)f(x− t) dt

=

∫
cRd σH(x, ξ)f̂(ξ)e2πi〈x,ξ〉dξ.

The functions in the above system of equalities are related via Fourier transforms
as follows:

ηH(t, ν)
F−1
ν 7→x−−−−→←−−−−
Fx 7→ν

κH(x, x− t)
Ft7→ξ−−−−→←−−−−
F−1
ξ 7→t

σH(x, ξ),

or with less compact notation,

ηH(t, ν) =

∫
Rd
κH(x, x− t)e−2πi〈ν,x〉 dx =

∫
Rd×Rd

σH(ξ)e−2πi(〈ξ,t〉+〈x,ν〉) d(ξ, x)

κH(x, x− t) =

∫
Rd
ηH(t, ν)e2πi〈ν,x〉 dν =

∫
Rd
σH(x, ξ)e2πi〈ξ,t〉 dξ

σH(x, ξ) =

∫
Rd
κH(x, x− t)e−2πi〈t,ξ〉 dt =

∫
Rd×Rd

ηH(t, ν)e2πi(〈ξ,t〉+〈x,ν〉) d(t, ν).

Hilbert-Schmidt operators with spreading functions in L2(R2d) map L2(Rd)→
L2(Rd). In our discussion of the identification problem we want to use distri-
butions as identifiers (in particular, the Dirac delta train), which belong to the
modulation space S ′0 = M∞(Rd). Thus we will restrict our attention to opera-
tors with spreading functions belonging to the Feichtinger algebra M1(Rd), or to
its proper subspaces, the weighted modulation spaces M1

m(Rd). In this case the
Hilbert-Schmidt operators extend to M∞(Rd). In our analysis we shall work with
operator families belonging to the space of bounded operators L(M∞, L∞) [FZ98].

3 Identification by solving a linear system

3.1 Gabor discretization of Hilbert-Schmidt operators on
L2(R)

Hilbert-Schmidt operators on R2d are exactly the ones for which (2.11) holds with
spreading function ηH ∈ L2(R2d). Hence we can discretize these operators by a
Gabor Riesz basis or a Gabor frame decomposition of ηH .
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Proposition 3.1 (Operator discretization) Given that H0 is a Hilbert-Schmidt
operator with spreading function η0, the operator TAMBT−CH0TCMD has spread-
ing function

ηTAMBT−CH0TCMD
= TA,B+DMB,Cη0, ∀A,B,C,D ∈ Rd. (3.1)

In particular, if an operator H has spreading function ηH ∈ L2(R2d) with Gabor
frame series expansion

ηH =
∑
k,l,m,n

ck,l;m,nTam,bnMck,dlη0 (3.2)

and convergence in L2-norm, then

H =
∑
k,l,m,n

ck,l;m,nTamMckT−dlH0TdlMbn−ck
def
=
∑
k,l,m,n

ck,l;m,nHk,l;m,n. (3.3)

Note: We note first that (3.3) holds with convergence in L2(Rd) for sequences
c = {ck,l;m,n} ∈ `2. In our study we will be interested in expansions with window
η0 belonging to the modulation space M1

v (Rd), which is a subset of L2(Rd).
Proof. A change of variables t := t − A, ν := ν − B − D and the relation

TxMω = e−2πixωMωTx gives∫∫
R2d

TA,B+DMB,Cη0(t, ν)f(x− t)e2πiν(x−t) d(t, ν) =

=

∫∫
e2πi(B(t−A)+C(ν−B−D))η0(t− A, ν −B −D)f(x− t)e2πiν(x−t) d(t, ν)

=

∫∫
e2πi(Bt+Cν)η0(t, ν)f(x− t− A)e2πi(ν+B+D)(x−t−A) d(t, ν)

=

∫∫
e2πi(Bt+Cν)η0(t, ν)Tt+AMν+B+Df(x) d(t, ν)

= TAMBT−C

∫∫
η0(t, ν)TtMνTCMDf(x) d(t, ν)

= TAMBT−CH0TCMDf(x).

Hence, in particular,

(Hf)(x) =

∫∫
R2d

ηH(t, ν)f(x− t)e2πiν(x−t) d(t, ν)

=
∑
k,l,m,n

ck,l;m,n

∫∫
Tam,bnMck,dlη0(t, ν)f(x− t)e2πiν(x−t) d(t, ν)

=
∑
k,l,m,n

ck,l;m,nTamMckT−dlH0TdlMbn−ckf(x).

�
Expansions based on different time-frequency lattices are listed in Table 2.

Expansion (3.2) corresponding to the most general diagonal matrix corresponds
to Case A from this Table. Case B2 has been solved in [KP05] for bandlimited
η0 ∈ S0(R).
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3.2 Solving the linear system

With H =
∑

k,l,m,n ck,l;m,nHk,l;m,n as in (3.3), the identification problem is to find

a function f ∈ L2 such that any choice of coefficients ck,l;m,n from (some sub-
class of) `2(Z4d), can be computed from Hf , or equivalently, from the coefficients
vi,j = 〈Hf,MpiTqjγ〉 of a Gabor frame series expansion with window γ and lattice
constants p, q. Hence, we need to solve the equation

vi,j =〈Hf,MpiTqjγ〉 =
∑
k,l,m,n

ck,l;m,n〈Hk,l;m,nf,MpiTqjγ〉

=
∑
k,l,m,n

ck,l;m,nAi,j;k,l,m,n.
(3.4)

In other words, we need to choose f so that the mapping A : `2(Z4d) → `2(Z2d)
with Z2d × Z4d-matrix representation A = (Ai,j;k,l,m,n) has an inverse, i.e. A is
invertible at least on some well-defined subset of `2(Z4d).

The following lemma will be used for our computations.

Lemma 3.2 Let ηH , f, g ∈ L2(Rd). Then

〈Hf, g〉 = 〈ηH , Vfg〉L2(Rd×Rd) (3.5)

Proof. Fubini applied to (2.11) gives

〈Hf, g〉 =

∫
Rd

∫
Rd×Rd

ηH(t, ν)f(x− t)e2πi〈ν,x−t〉 d(t, ν)g(x) dx

=

∫
Rd

∫
Rd
ηH(t, ν)

∫
Rd
f(x− t)e2πi〈ν,x−t〉g(x) dx dt dν

=

∫
Rd

∫
Rd
ηH(t, ν)

∫
Rd
f(x− t)e−2πi〈ν,x−t〉g(x) dx dt dν

=〈ηH , Vfg〉L2(Rd×Rd)

We note that if ηH ∈ S0(Rd) and has compact support, then (3.5) holds for all
f ∈ S ′0(Rd) because Vgf ∈ L∞(R2d). Q.E.D. �
Now we return to the problem of discretization. We do the discretization in two
steps. First we do a parametrization (3.6) of f in Lemma 3.3. Then, in a list of
examples, summarized in Table 2 and Table 1, we consider different lattices and
subclasses of spreading functions and show in some cases how the coefficients ar,s
in (3.7) can be chosen so that the mapping A is invertible (if this is possible).

The following lemma shows how the matrix coefficients of A can be computed
from the Gabor frame coefficients of f :

Lemma 3.3 Suppose that

f =
∑
r,s∈Zd

ar,sMαrTβsg̃. (3.6)
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Then the matrix elements in (3.4) are

Ai,j;k,l,m,n =
∑
r,s∈Zd

ar,se
2πi(〈βs,bn−pi+αr〉−〈pi,ma〉)×

〈Tma−qj+βs,bn−pi+αrMck−pi,ld+βsη0, Vg̃γ〉L2(R2d)

(3.7)

Proof. Since f =
∑

r,s∈Zd ar,sMαrTβsg̃, we know from (3.4) that

Ai,j;k,l,m,n =〈Hk,l;m,nf,MpiTqjγ〉

=
∑
r,s∈Zd

ar,s〈Hk,l;m,nMαrTβsg̃,MpiTqjγ〉

=
∑
r,s∈Zd

ar,s〈TamMckT−dlH0TdlMbn−ckMαrTβsg̃MpiTqjγ〉

=
∑
r,s∈Zd

ar,s〈T−qjM−piTamMckT−dlH0TdlMbn−ckMαrTβsg̃, γ〉

=
∑
r,s∈Zd

ar,se
2πi(−〈pi,am〉+〈βs,ck−pi+bn−ck+αr〉)×

× 〈T−qj+am+βsM−pi+ckT−dl−βsH0Tdl+βsMbn−ck+αrg̃, γ〉.

In combination with (3.5) and (3.1), this gives (3.7). �
After [KP06] we know that a certain class of operators with compactly sup-

ported spreading function is identifiable.
We illustrate the advantage of the method of solving a linear system by giving

an alternative proof of a result from [KP06].

Theorem 3.4 ([KP06]) The set of operators H = {H : supp ηH ⊆ [0, a) ×
[0, 1

a
), ηH ∈M1} is identifiable.

Proof. The study [KP06] considers the operator family H = {H : supp ηH ⊆
[0, a) × [0, 1

a
), ηH ∈ M1}. This operator family can be alternatively defined as

consisting of operators H such that

ηH ∈M1 ∩ span {π(λ)χ[0,a)×[0, 1
a

), λ ∈ Λ},

for

Λ =

(
0 0 0 1

a

0 0 a 0

)T
Z2d,

as defined in this theorem.
It is well known that the family of exponentials {e2πi(mx

a
+any) : (x, y) ∈ [0, a)×

[0, 1
a
),m, n ∈ Z} form an orthonormal basis for the space L2([0, a)× [0, 1

a
)). There-

fore, if we let η0 = χ[0,a]×[0, 1
a

], we obtain the following expansion of the spreading
function of the operator H,

ηH =
∑
k,l

ck,lM k
a
,alη0
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We can set thus ck,l,m,n = ck,lδm,n(0, 0). Furthermore, we set γ = χ[0,a) and use
a Gabor frame (γ, aZ× 1

a
Z) for a resolution of the coefficients vi,j = 〈Hf,M i

a
Tajγ〉.

We employ as identifier the Dirac delta-train f = g̃ = δaZ, which belongs to S ′(R).
We use a canonical representation of the identifier f with ar,s = δ0,0(r, s).

After substitution in (3.7) (note here that η0 has compact support, so the inner
product (3.5) is still well-defined even though VδaZγ /∈ L2(R2)) we obtain

Ai,j;k,l = 〈T−aj,− i
a
M k

a
− i
a
,alη0, VδaZγ〉,

which we rewrite as follows: On one hand we use the following property of the
short-time Fourier transform VδaZγ = Zaγ. This follows from the fact that VδaZg =
Zag for g ∈ S0(Rd), which can be extended by density for all g ∈ L2(Rd). On

the other hand, Zaχ[0,a)(x, ω) = e2πia[xa ]ω. Rewriting η0 into a tensor product
η0 = χ[0,a) ⊗ χ[0, 1

a
) will allow us to compute the integral of the inner product:

Ai,j;k,l =

∫∫
χ[0,a)(x+ aq)e2πi

(k−p)(x+aq)
a χ[0, 1

a
)(ω + i

a
)e2πi(ω+ i

a)ale−2πia[xa ]ωdxdω

We make subsitution y = x + aj, ξ = ω + i
a

and note that since the integrand is
nonzero for aj ≤ x < aj + a,

[
x
a

]
= aj.

Ai,j;k,l =

∫ a

0

∫ 1
a

0

e2πi
(k−i)y
a e2πi(a

l
ξ−2πiaj(ξ− i

a
)dydξ

=e2πi(ij)

∫ a

0

e2πi
(k−i)y
a dy ×

∫ 1
a

0

e2πia(l−j)ξdξ

=δi,j(k, l),

because the families of exponentials {e2πin
a
y : n ∈ Z} and {e2πimay : m ∈ Z} form

an orthonormal basis for L2[0, a) and L2[0, 1
a
) respectively.

The matrix A = Ai,j;k,l is diagonal, and moreover, it is the identity, and thus,
the coefficients of the expansion of η0 are equal to the coefficients of the frame
expansion ck,l = vk,l = 〈HδaZ,M k

a
Talχ[0,a)〉. �

Case A from Table 2 shows more concretely the series expansion of the mapping
f 7→ Hf in terms of the Gabor Riesz coefficients of ηH .

4 Operator families associated with general lat-

tices

In the general case we will consider a collection of operators whose spreading
functions have a set, pre-determined Riesz basis expansion with respect to some
Gabor system or a subset of a Gabor system. Namely, we will look at

H = {H : ηH ∈ span {π(λ)η0 : λ ∈ Λ}},
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Ref. Lattice Frame elements Prototype operator

A

(
α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 δ

)
Z4 Tαk,βlMγm,δnη0 TαkMγmT−δnH0TδnMβl−γm

B1

(
0 γ 0 0
α 0 0 0

)T
Z2 Tαk,γlη0 TαkH0Mγl

B2

(
0 0 0 β
0 0 α 0

)T
Z2 Mαk,βlη0 MαkT−βlH0TβlM−αk

B3

(
0 0 0 β
α 0 0 0

)T
Z2 Tαk,0M0,βlη0 Tαk−βlH0Tβl

B4

(
0 0 β 0
0 α 0 0

)T
Z2 T0,αkMβl,0η0 MβlH0Mαk−βl

B5

(
0 0 0 β
0 α 0 0

)T
Z2 T0,αkM0,βlη0 T−βlH0TβlMαk

B6

(
0 0 β 0
α 0 0 0

)T
Z2 Tαk,0Mβl,0η0 TαkMβlH0M−βl

D1

(
0 β 0 0
α 0 0 α

)T
Z2 Tαk,βlM0,αkη0 H0TαkMβl

D2

(
0 0 0 α
α β 0 0

)T
Z2 Tαk,βkM0,αlη0 Tα(k−l)H0TαlMβk

D3

(
0 β 0 α
α 0 0 0

)T
Z2 Tαk,βlM0,αlη0 Tα(k−l)H0TαlMβl

D4

(
0 β 0 0
α 0 α 0

)T
Z2 Tαk,βlMαk,0η0 TαkMαkH0Mβl−αk

D5

(
0 0 α 0
α β 0 0

)T
Z2 Tαk,βkMαl,0η0 TαkMαlH0Mβk−αl

D6

(
0 β α 0
α 0 0 0

)T
Z2 Tαk,βlMαl,0η0 TαkMαlH0M(β−α)l

E1

(
0 β β 0
α 0 0 0

)T
Z2 Tαk,βlMβl,0η0 TαkMβlH0

E2

(
0 0 β 0
α β 0 0

)T
Z2 Tαk,βkMβl,0η0 TαkMβlH0Mβ(k−l)

E3

(
0 β 0 0
α 0 β 0

)T
Z2 Tαk,βlMβk,0η0 TαkMβkH0Mβ(l−k)

Table 2: Expansions of operators based on Gabor Riesz expansions with window
η0 of the spreading function ηH .
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Ref. Lattice Frame elements Prototype operator

E4

(
0 β 0 β
α 0 0 0

)T
Z2 Tαk,βlM0,βlη0 Tαk−βlH0TβlMβl

E5

(
0 0 0 β
α β 0 0

)T
Z2 Tαk,βkM0,βlη0 Tαk−βlH0TβlMβk

E6

(
0 β 0 0
α 0 0 β

)T
Z2 Tαk,βlM0,βkη0 T(α−β)kH0TβkMβl

F1

(
0 β β 0
α 0 α 0

)T
Z2 Tαk,βlMβl,αkη0 e2πiαk·βlMβlH0Tαk

F2

(
0 β 0 α
α 0 β 0

)T
Z2 Tαk,βlMβk,αlη0 e−2πiβk·αkMβkTα(k−l)H0TαlMβ(l−k)

F3

(
0 0 β α
α β 0 0

)T
Z2 Tαk,βkMβl,αlη0 e−2πiβl·αkMβlTα(k−l)H0TαlMβ(k−l)

F4

(
0 β 0 β
α 0 α 0

)T
Z2 Tαk,βlMαk,βlη0 e2πiαk·βlTαk−βlMαkH0TβkMβl−αk

F5

(
0 β α 0
α 0 0 β

)T
Z2 Tαk,βlMαl,βkη0 e2πiβk·αlT(α−β)kMαmH0TβkM(β−α)m

F6

(
0 0 α β
α β 0 0

)T
Z2 Tαk,βkMαl,βlη0 e2πiβl·αlTαk−βlMαlH0TβlMβk−αl

G1

(
0 0 0 α
0 β β 0

)T
Z2 T0,βlMβl,αnη0 MβlT−αnH0Tαn

G2

(
0 0 β α
0 β 0 0

)T
Z2 T0,βmMβl,αlη0 MβlT−αlH0TαlMβ(m−l)

G3

(
0 0 β 0
0 β 0 α

)T
Z2 T0,βmMβl,αmη0 MβlT−αmH0TαmMβ(m−l)

G4

(
0 0 α 0
0 β 0 β

)T
Z2 T0,βlMαn,βlη0 MαnT−βlH0TβlMβl−αn

G5

(
0 0 α β
0 β 0 0

)T
Z2 T0,βmMαl,βlη0 MαlT−βlH0TβlMβm−αl

G6

(
0 0 0 β
0 β α 0

)T
Z2 T0,βmMαm,βlη0 MαmT−βlH0TβlM(β−α)m

H1

(
0 0 β α
α 0 0 0

)T
Z2 Tαk,0Mβl,αlη0 e2πiαlβlTα(k−l)MβlH0TαlM−βl

H2

(
0 0 0 α
α 0 β 0

)T
Z2 Tαk,0Mβk,αlη0 e2πiαlβkTα(k−l)MβkH0TαlM−βk

H3

(
0 0 β 0
α 0 0 α

)T
Z2 Tαk,0Mβl,αkη0 MβlH0T−αkM−βl

H4

(
0 0 α β
α 0 0 0

)T
Z2 Tαk,0Mαl,βlη0 e2πiαlβlTαk−βlMαlH0TβlM−αl

H5

(
0 0 α 0
α 0 0 β

)T
Z2 Tαk,0Mαn,βkη0 e2πiαnβkT(α−β)kMαnH0TβkM−αn

H6

(
0 0 0 β
α 0 α 0

)T
Z2 Tαk,0Mαk,βlη0 e2πiαkβlTαk−βlMαkH0TβlM−αk

Table 3: Expansions of operators based on Gabor Riesz expansions with window
η0 of the spreading function ηH .
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with Λ a lattice in R4d, η0 a window function in some fixed space. Due to the
form of equation (3.4), we see that the index set given by Λ must be determined
by two indices in order for the problem to be well-defined (dimension-counting).
Otherwise, the map defined by (3.4) sends variables from a space with 4 degrees of
freedom to variables with just 2 degrees of freedom. In particular we will work with
special Λ, namely a regularly spaced point set within a 2d-dimensional subspace of
R4d. Furthermore we shall examine identifiability of the respective operator class
depending on some measure of density of Λ as measured within the copy of R2d it
lies in.

Before we define the particular type of density to be used in the subsequent
analysis, we recall the definition of Beurling density. Let Bd(R) denote a ball in
Rd centered at 0 with radius R.

Definition 4.1 Let Λ be a set of points inside Rd. Then the lower and upper
Beurling densities of Λ are given by

D−(Λ) = lim inf
R→∞

inf
z∈Rd

|Λ ∩ {Bd(R) + z}|
πRd

,

D+(Λ) = lim sup
R→∞

sup
z∈Rd

|Λ ∩ {Bd(R) + z}|
πRd

.
(4.1)

Whenever D−(Λ) = D+(Λ), we speak of the Beurling density of Λ, D(Λ).

Clearly, whenever Λ is a lattice, the Beurling density is the inverse of the area of
the fundamental domain of Λ.

For the purposes of studying operator families HΛ, where Λ is a point set
lying within a 2d-dimensional hyperplane S ⊂ R4d we modify the definition of
density. The combinations listed in Table 2 and Table 3 correspond to standard
2d-dimensional lattices in standard hyperplanes inside R4d.

Definition 4.2 Let Λ be a point set lying inside a 2d-dimensional subspace of R4d,
denoted by S. The “2d-dimensional” Beurling densities (or for short 2d-density)
of Λ are given by

D−(2)(Λ) = lim inf
R→∞

inf
z∈S

|Λ ∩ {B4d(R) + z}|
πR2d

,

D+
(2)(Λ) = lim sup

R→∞
sup
z∈S

|Λ ∩ {B4d(R) + z}|
πR2d

(4.2)

We point out that in contrast to Definition 4.1 of the classical Beurling density, the
denominators in (4.2) contain the power R2d, which corresponds to the dimension
of S ⊃ Λ. If the classical Beurling density (Definition 4.1) were used, the densities
of S and of Λ would equal 0.
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First of all in our analysis we consider a time-frequency lattice Λ parametrized
by a 4 × 2-matrix. We shall compute a formula for the 2-denisty of Λ as defined
by (4.2). Suppose we have the following parametrization:

Λ =


a1 a2

b1 b2

c1 c2

d1 d2

Z2 =




a1m+ a2n
b1m+ b2n
c1m+ c2n
d1m+ d2n

 : m,n ∈ Z

 (4.3)

This is a two-dimensional set of points in R4. The 2-density will depend on all
four pairs of coefficients of the matrix.

In accordance with the formulae (4.2), the “2-dimensional” lower and upper
Beurling densities of Λ are given by

D−(2)(Λ) = lim inf
R→∞

inf
z∈S

|Λ ∩ {B4(R) + z}|
πR2

, D+
(2)(Λ) = lim sup

R→∞
sup
z∈S

|Λ ∩ {B4(R) + z}|
πR2

The numerators are a count of the number of points of Z2 that lie within the
ellipse E

(R)
Λ ⊂ S defined by the inequality

E (R)
Λ : (a1m+ a2n)2 + (b1m+ b2n)2 + (c1m+ c2n)2 + (d1m+ d2n)2 ≤ R2.

When Λ is parametrized by a matrix, it is regularly spaced inside the hyper-
plane, so when R→∞, the expressions D−(2)(Λ) and D+

(2)(Λ) converge to

D(2)(Λ) =
m(EΛ)

π
,

where m(EΛ) is area of the ellipse EΛ. To find this area we rewrite the equation of
the ellipse as follows:

EΛ : (a1m+ a2n)2 + (b1m+ b2n)2

+ (c1m+ c2n)2 + (d1m+ d2n)2 ≤ 1⇔
EΛ : (a2

1 + b2
1 + c2

1 + d2
1)m2 + (a2

2 + b2
2 + c2

2 + d2
2)n2

+ 2(a1a2 + b1b2 + c1c2 + d1d2)mn ≤ 1

The area of EΛ is computed to be

m(EΛ) =
π
√
wΛ

,

where
wΛ = (a1b2 − a2b1)2 + (a1c2 − a2c1)2 + (a1d2 − a2d1)2

+ (b1c2 − b2c1)2 + (b1d2 − b2d1)2 + (c1d2 − c2d1)2

Hence, we obtain that the ‘2-dimensional density’ of Λ equals

D(2)(Λ) =
1
√
wΛ

.
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In the following we will focuses our attention at some of the cases illustrated
in Figures 2 and 3 under assumptions on η0 belonging to the modulation space
M1

v (R2), for a polynomial weight v(z) = (1 + |z|)n, n > 2. We shall work with
operator classes where the spreading functions are given by Riesz basic expansions
with respect to a Gabor system (η0,Λ), where η0 ∈M1

v (R2) and Λ is a set of points
parametrized by Z2 (a regular lattice lying in some plane within R4 - different
choices of parameters are listed in Table 2 and 3). The primary goal is to formulate
results on a relation between identifiability and non-identifiability and the measure
of the 2-density of Λ.

4.1 Necessity of the Riesz sequence condition on {π(λ)η0 :
λ ∈ Λ}

The following example illustrates the fact that by discretizing the operator in
terms of a Gabor expansion of its spreading function, we identify ‘coefficients’ and
not the operator itself. The fact that in our approach we work not with the oper-
ators themselves, but with the coefficients of their Gabor representations, requires
uniqueness of the coefficient representation. In other words, to the zero operator
we must in our framework associate only the zero sequence. Therefore, the Riesz
sequence condition is necessary for the method of our analysis of identification.

Our example demonstrates what happens if {Mαk,βlη0 : k, l ∈ Zd} is not a
Riesz sequence in L2. Consider the collection of operators H = {H : supp ηH ⊂
[−1

4
, 1

4
)2}.

It is well known that the family {Mk,lη0 : k, l ∈ Z}, where η0 = χ[− 1
4
, 1
4

)×[− 1
4
, 1
4

), is
not a Riesz sequence. To see this, it is enough to show that in the one-dimensional
case {Mkχ[− 1

4
, 1
4

) : k ∈ Z} is not a Riesz basis for L2[−1
4
, 1

4
). The system

{χ[− 1
4
, 1
4

)(t)e
2πi(2n)t : n ∈ Z}

is an orthonormal basis for L2[−1
4
, 1

4
). Also

{χ[− 1
4
, 1
4

)(t)e
2πi(2n+1)t : n ∈ Z}

is an orthonormal basis for L2[−1
4
, 1

4
). We denote for sake of clarity, en = χ[− 1

4
, 1
4

)(t)e
2πint.

Therefore, any g ∈ L2[−1
4
, 1

4
) has the two representations

g =
∑
n∈Z

〈g, e2n〉e2n

g =
∑
n∈Z

〈g, e2n+1〉e2n+1
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Therefore in L2[−1
4
, 1

4
)2, for a chosen em,

g ⊗ em =
∑
n∈Z

〈g, e2n〉e2n ⊗ em

g ⊗ em =
∑
n∈Z

〈g, e2n+1〉e2n+1 ⊗ em

Thus {Mk,nη0 : k, n ∈ Z} is not a Riesz sequence. Furthermore,

0 =
∑
n∈Z

〈g, e2n〉e2n ⊗ em −
∑
n∈Z

〈g, e2n+1〉e2n+1 ⊗ em, (4.4)

but the `2-norm of the coefficients in (4.4) equals 2‖g‖L2[− 1
4
, 1
4

). Thus we would

obtain that for the choice of sequence c = {ck,m := 〈g, ek〉δm} and any f , the
mapping

Φf : c 7→ Hf = 0,

would not be stable because ‖c‖ = 2‖g‖L2[− 1
4
, 1
4

) 6= 0.

Nevertheless, the collection of operators H = {H : supp ηH ⊂ [−1
4
, 1

4
)2} is

identifiable according to [KP06]. However, we are dealing in reality with a non-
trivial representation of the zero operator. Of course, we must observe the fact
that there is a canonical ONB for H, with basis elements operators with spreading
functions corresponding to the basis elements of the tensor ONB {e2n⊗e2m,m, n ∈
Z}.

4.2 Preliminaries

In this section we consider operators H whose spreading function ηHbelongs to a
modulation space M1

s (R2d). They behave like ‘time-frequency localization’ oper-
ators, in other words, for a distribution f ∈ M∞(Rd), Hf has a certain decay in
the time- and in frequency domains.

First we look at operators whose spreading function is a tensor product.

Lemma 4.3 ([KP06]) Let p, q ∈ C∞c (Rd). Consider the operator P with spread-
ing function ηP = p ⊗ q. Then there exist functions ψ1, ψ2 ∈ S(Rd) such that for
all f ∈ S0(Rd),

|Pf(x)| ≤ ‖f‖S0|ψ1(x)|
|FPf(ξ)| ≤ ‖f‖S0|ψ2(ξ)|

(4.5)
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Proof. We first estimate the decay of Pf and FPf

|Pf(x)| =

∣∣∣∣∫∫ p(t)q(ν)f(x− t)e2πiν(x−t) d(t, ν)

∣∣∣∣
=

∣∣∣∣∫ p(t)f(x− t)
(∫

q(ν)e2πiν(x−t)dν

)
dt

∣∣∣∣
=

∣∣∣∣∫ p(t)f(x− t)q̂(t− x) dt

∣∣∣∣
≤ ‖f‖S′0 · ‖p · Txq̂‖S0 . (4.6)

Since p · Txq̂ ∈ S(Rd), the S0-norm in (4.6) is finite. We need to show that there
exists ψ1 ∈ S(R) such that |Pf(x)| ≤ ψ1(x)‖f‖S′0 . Observe that ‖p · Txq̂‖S0 tends
to 0 at infinity (the support of p is compact, and q̂ has fast decay at ∞). We use
the alternative definition of S0 as a Wiener amalgam space W (A(Rd), `1(Zd)), (2.8)

and the equivalent norm. We choose a ψ ∈ S(Rd), such that ψ̂ ⊂ [−1, 1]d and

{Tnψ̂ : n ∈ Zd} form a partition of unity. Then for all k > 1, there exists a
constant Ck such that

‖f · Txψ̂‖A(Rd) = ‖F(f · Txψ̂)‖1 = ‖f̂ ∗M−xψ‖1

=

∫
|V bψf(x, y)|dy

≤
∫
Ck(1 + |x|+ |y|)−kdy (4.7)

≤ C̃k(1 + |x|)1−k (4.8)

The estimate in (4.7) follows from [Grö01]: (11.2.5).
Thus we can now estimate directly ‖p · Txq̂‖S0 using in turn the fact that

supp p ⊂ [−R
2
, R

2
]d for some fixed R in (4.9), the fact that A(Rd) is a Banach

algebra in (4.10) and applying maximum estimates in (4.11).

‖p · Txq̂‖S0 = ‖T−xp · q̂‖S0

=
∑
n∈Z

‖Tnψ̂ · (T−xp · q̂)‖A(Rd)

=
∑

n∈[−x−1−R
2
,−x+1+R

2
]d

‖Tnψ̂ · (T−xp · q̂)‖A(Rd) (4.9)

≤ ‖Txp‖A(R)

∑
n∈[−x−1−R

2
,−x+1+R

2
]d

‖Tnψ̂ · q̂‖A(Rd) (4.10)

≤ ‖p‖A(R)Ck(b2 +Rc+ 1)d max
n∈[−x−1−R

2
,−x+1+R

2
]
(1 + |n|)1−k(4.11)

≤ C̃k
(
2 + min

{
b−x− 1− R

2
c, b−x+ 1 + R

2
c
})1−k

(4.12)

Equation (4.12) provides the necessary decay of ‖p · Txq̂‖S0 for any k > 1 as
|x| → ∞. Thus we can choose ψ1 ∈ S which dominates the expression in (4.12),
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such that
|Pf(x)| ≤ ‖f‖S′0|ψ1(x)|

It remains to estimate the decay in the Fourier domain of Pf :,

|FPf(ξ)| = |p̂(ξ) · (q ∗ f̂)(ξ)|

≤ |p̂(ξ)| · |〈q̂, Tξf̂〉|
≤ |p̂(ξ)| · ‖q‖S0 · ‖Tξf‖S′0
= |p̂(ξ)| · ‖q‖S0 · ‖f‖S′0

Since p ∈ S and the Fourier transform is an isomorphism from the Schwarz space S
to itself [Kat76], then p̂ ∈ S and |p̂(ξ)| decays rapidly at infinity. Hence, |FPf(ξ)|
is bounded by ψ2(ξ)‖f‖S′0 , where ψ2(ξ) = |p̂(ξ)| · ‖q‖S0 is a rapidly decaying
function. �

Lemma 4.3 and Corollary 2.9 form the basis for the remaining statements in
Section 4. We consider separately the cases d = 1, d > 1. In the following lemma
we consider the case d = 1.

Lemma 4.4 Let η0 be a function from M1
v (R2), where v(z) = (1 + |z|)2+δ is a

polynomial weight. Then the Hilbert-Schmidt operator H0 associated to η0 satisfies
the following

• There exists ϕ1(x) = O(x−2−δ) such that |H0f(x)| ≤ ϕ1(x)‖f‖M∞ for all
f ∈M∞(R).

• There exists ϕ2(ξ) = O(ξ−2−δ) such that |FH0f(ξ)| ≤ ϕ2(ξ)‖f‖M∞ for all
f ∈M∞(R).

Note: The decay estimates in fact show that H0f ∈ L2(R2), see [Fol99] (2.52).
Proof. We consider a spreading function ηP = p ⊗ q with Hilbert-Schmidt

operator P . With a careful choice of initial parameters a, b, c, d and functions
p, q ∈ C∞c (R), we are able to obtain a Gabor frame (ηP , aZ × bZ × cZ × dZ) for
L2(R2). Because ηP ∈ S(R2) ⊂M1

v (R2), in fact the Gabor system (ηP , aZ× bZ×
cZ× dZ) is a universal Banach frame according to the definition of Gröchenig for
all modulation spaces M1

v (R2) ([Grö01], Chapter 13.6). Due to the inverse closure
of the Banach algebra (`1

v(Z4), \) for polynomial weights v [GL03], the dual window
η̃P ∈M1

v (R2). So the series expansion

g =
∑
k,l,m,n

〈g, Tak,blMcm,dnη̃P 〉Tak,blMcm,dnηP , g ∈M1
v (R2) (4.13)

holds with convergence in the M1
v -norm and the inequality

A′‖g‖M1
v
≤ ‖{〈g, Tak,blMcm,dnη̃P 〉}‖`1v ≤ B′‖g‖M1

v
(4.14)
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holds for all g ∈ M1
v (R2), see Definition 2.6 and [Grö01]: (12.2.6). Furthermore,

because the coefficients have decay stronger than `1, the convergence of the series
holds in L1(R2) and in L2(R2).

Since the operator H has spreading function ηH ∈ M1
v (R2), equations (4.13)

and (4.14) show that

ηH =
∑
k,l,m,n

ck,l,m,nTak,blMcm,dnηP

for some c ∈ `1
v, where v(z) = (1 + |z|)2+δ is a polynomial weight. This shows

that ηH ∈ M1
v ⊂ M1. It is legitimate to use as identifier distributions f ∈ M∞,

because
S ⊂M1

v ⊂M1 ⊂M∞ ⊂M∞
1
v
⊂ S ′,

a consequence of Lemma 11.3.6 and 12.1.10 from [Grö01] (the constant weight 1 is
(1+ |z|)2+δ-moderate - see Lemma 11.1.1 from [Grö01], which proves the inclusion
M1

v ⊂M1).
Next, we estimate the decay of Hf in the time and frequency domains. We

shall use the fact that translation and modulation are isometries on M1 and hence
also on M∞ and make the following estimates using the result from Lemma 4.3.

|Hf(x)| = |
∑
k,l,m,n

ck,l,m,nTakM−cmT−dnPTdnMbl−cmf(x)|

≤
∑
k,l,m,n

|ck,l,m,n| · Tak−dn|PTdnMbl−cmf(x)|

≤ ‖f‖M∞
∑
k,l,m,n

|ck,l,m,n| · Tak−dnψ1(x) (4.15)

Since {|ck,l,m,n|}k,l,m,n := c ∈ `1
v(Z4) ⊂ `1(Z4), we claim that the expression on the

right-hand side of (4.15), which for the sake of clarity we denote

ϕ1(x) =
∑
k,l,m,n

|ck,l,m,n|Tak−dnψ1(x) =
∑
k,n

c̃k,nTak−dnψ1(x),

inherits the decay and is O(|x|−2−δ).
Namely let us make the change of variables x2+δ = y2, for x ≥ 0, y ∈ R and

x2+δ = −y2, for x < 0. Then

sup
x>0
|x2+δ

∑
k,n

c̃k,nTak−dnψ1(x)| = sup
y>0
|y2
∑
k,n

c̃k,nTak−dnψ1(y
2

2+δ )|

Since y
2

2+δ is monotonic on R and due to our choice ψ1 ∈ S (i.e. ψ1 decays faster

than the reciprocal of any polynomial on R), ψ̃1(y) = ψ1(y
2

2+δ ) also decays faster
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than the reciprocal of any polynomial. Then

sup
y
|y2
∑
k,n

c̃k,nTak−dnψ̃1(y)| ≤ sup
y
|
∑
k,n

c̃k,nTak−dn(ψ̃1(y) · y2)|+

+ 2 sup
y
|
∑
k,n

c̃k,n(ak − dn)Tak−dn(ψ̃1(y) · y)|

+ sup
y
|
∑
k,n

c̃k,n(ak − dn)2Tak−dnψ̃1(y)|

(4.16)

We make the following estimate of the bounds of the sum in (4.16)

sup
y
|y2
∑
k,n

c̃k,nTak−dnψ̃1(y)| ≤ C

(∑
k,n

|c̃k,n| sup
y
|(ψ̃1(y) · y2)|

+
∑
k,n

|c̃k,n| · |ak − dn| sup
y
|(ψ̃1(y) · y)|

+
∑
k,n

|c̃k,n| · |ak − dn|2 sup
y
|ψ̃1(y)|

) (4.17)

In (4.17) C is some positive constant coming from the estimates from Lemma 4.3.
We analyze separately these summands in (4.18). First because ψ̃1 · y2, ψ̃1 · y, ψ̃1

belong to the Schwarz class, they are bounded and decay faster than the reciprocal
of any polynomial. Second the inequalities∑

k,n

|c̃k,n| ≤ ‖c‖`1v <∞∑
k,n

|c̃k,n| · |ak − dn|2 ≤ C1

∑
k,n

|c̃k,n|(1 + a|k|+ d|n|)2 < ‖c‖`1v <∞,∑
k,n

|c̃k,n| · |ak − dn| ≤ C2

∑
k,n

|c̃k,n|(1 + a|k|+ d|n|) < ‖c‖`1v <∞

(4.18)

hold for some constants C1, C2 > 0 due to the choice c ∈ `1
v. Thus the whole

expression on the right-hand side of (4.17) is bounded, implying the desired decay
rate of Hf for x > 0. In a similar fashion we prove the decay for x < 0. Thus,

sup
x
|x2+δφ1(x)| < C.

Then |Hf(x)| ≤ ‖f‖M∞ϕ1(x) has decay O(x−2−δ). In such a manner, we also
estimate the decay in of the Fourier transform of Hf

|FHf(ξ)| = |
∑
k,l,m,n

ck,l,m,nM−akT−cmMdnFPTdnMbl−cmf(ξ)|

≤
∑
k,l,m,n

|ck,l,m,n| · T−cm|FPTdnMbl−cmf(ξ)|

≤ ‖f‖M∞
∑
k,l,m,n

|ck,l,m,n| · T−cmψ2(ξ)

(4.19)
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Since ψ2 ∈ S(R), and c ∈ `1
v(Z4), then the expression on the right-hand side of

(4.19), which we denote by

ϕ2(x) :=
∑
k,l,m,n

|ck,l,m,n|T−cmψ2(x),

is proven in a similar fashion to have decay O(x−2−δ). So |FHf(ξ)| ≤ ϕ2(ξ)‖f‖M∞
also has decay O(|ξ|−2−δ). �

Thus we are able to cover the case η0 ∈ M1
v (R2) for polynomial weight s of

degree strictly greater than 2.
For η0 defined on a higher dimensional space, the parameters of decay have to

be adjusted.

Lemma 4.5 Let η0 be a function from M1
v (R2d), where vs(z) = (1 + |z|)s, s ≥

2(d+ 1) is a polynomial weight. Then the Hilbert-Schmidt operator H0 associated
to η0 satisfies the following

• There exists ϕ1(x) = O(|x|−2(d+1)) such that |H0f(x)| ≤ ϕ1(x)‖f‖M∞ for all
f ∈M∞(Rd).

• There exists ϕ2(ξ) = O(|ξ|−2(d+1)) such that |FH0f(ξ)| ≤ ϕ2(ξ)‖f‖M∞ for
all f ∈M∞(Rd).

Note: The decay estimates in fact show that H0f ∈ L2(Rd) [Fol99] (2.52).
Proof. The line of proof is similar to that of the previous proposition. We use

a tensor Gabor window ηP to form an expansion of ηH .

ηH =
∑
k,l,m,n

ck,l,m,nTak,blMcm,dnηP

for some c ∈ `1
v, where vs(z) = (1 + |z|)2(d+1) is a polynomial weight.

Next, we estimate the decay of Hf in the time and frequency domains as
before, using the result from Lemma 4.3.

|Hf(x)| = |
∑
k,l,m,n

ck,l,m,nTakM−cmT−dnPTdnMbl−cmf(x)|

≤
∑
k,l,m,n

|ck,l,m,n| · Tak−dn|PTdnMbl−cmf(x)|

≤ ‖f‖M∞
∑
k,l,m,n

|ck,l,m,n| · Tak−dnψ1(x) (4.20)

Up to this point, the proof is identical to that of Lemma 4.4 for d = 1. However,
the rest of the computation is somewhat different due to the higher dimensionality
and different restriction on s. We claim that the expression on the right-hand side
of (4.20), which for the sake of clarity we denote

ϕ1(x) =
∑
k,l,m,n

|ck,l,m,n|Tak−dnψ1(x) =
∑
λ

c̃λTλψ1(x),

27



inherits the decay of η0 and is O(|x|−(2d+1)).
Therefore, our aim is showing that the function

sup
x∈Rd
|x|2(d+1)|ϕ1(x)|

is bounded on R2d. Similar to the one given in the proof of Lemma 2.6, [Rie88]
we can rewrite this as a polynomial in the coordinates x1, . . . xd of x because
|x|2(d+1) = (x2

1 + . . . x2
d)
d+1. Then the function

|x|2(d+1)|ϕ1(x)| = (x2
1 + . . .+ x2

d)
d+1|ϕ1(x)| (4.21)

can be bounded by a finite sum of terms of the type |x2(d+1)ϕ1(x)| (in multi-index
notation) - a consequence of the triangle inequality applied to (4.21). Then for
fixed x1, . . . xd and a fixed d-tuple (i1, . . . id) we obtain

|xi11 xi22 . . . x
id
d ϕ1(x)| = |

∑
λ∈Λ

xi11 x
i2
2 . . . x

id
d cλψ(x1 − λ1, x2 − λ2, . . . , xd − λd)| (4.22)

For each λ = (λ1, λ2, . . . , λd), the monomial xi11 x
i2
2 . . . x

id
d can be expanded as a

polynomial in terms of λs11 . . . λs
d

d (x1 − λ1)sd+1 . . . (xd − λd)
s2d . Observe that the

total power of the monomial is 2(d+ 1). Thus (4.22) is bounded above by∑
|s|=2d

Cs|
∑
λ∈Λ

cλλ
s1
1 . . . λsdd

(x1 − λ1)sd+1 . . . (xd − λd)s2dψ(x1 − λ1, x2 − λ2, . . . , xd − λd)|
(4.23)

where the constants Cs come from the polynomial and are independent of λ. To
illustrate this, consider the next two numerical examples. For example when d = 2,

28



for a ‘cross-product’ the expansion looks like

|x2
1x

2
2ϕ1(x1, x2)| = |x2

1x
2
2

∑
λ

cλTλψ(x1, x2)|

≤ |
∑
λ

cλ(x1 − λ1)2(x2 − λ2)2Tλψ(x1, x2)|

+ 2|
∑
λ

λ1cλ(x1 − λ1)2(x2 − λ2)Tλψ(x1, x2)|

+ 2|
∑
λ

λ2cλ(x1 − λ1)(x2 − λ2)2Tλψ(x1, x2)|

+ 12|
∑
λ

λ1λ2cλ(x1 − λ1)(x2 − λ2)Tλψ(x1, x2)|

+ |
∑
λ

λ2
1cλ(x2 − λ2)2Tλψ(x1, x2)|

+ |
∑
λ

λ2
2cλ(x1 − λ1)2Tλψ(x1, x2)|

+ 12|
∑
λ

λ2
1λ2cλ(x2 − λ2)Tλψ(x1, x2)|

+ 12|
∑
λ

λ1λ
2
2cλ(x1 − λ1)Tλψ(x1, x2)|

+ 13|
∑
λ

λ2
1λ

2
2cλTλψ(x1, x2)|,

(4.24)

while for a term x4 we have

|x4ϕ1(x)| = |x4
∑
λ

cλTλψ(x)|

≤ |
∑
λ

cλ(x− λ)4Tλψ(x)|+ 4|
∑
λ

λcλ(x− λ)3Tλψ(x)|

+ 6|
∑
λ

λ2cλ(x− λ)2Tλψ(x)|+ 4|
∑
λ

λ3cλ(x− λ)Tλψ(x)|

+ |
∑
λ

λ4cλTλψ(x)|

(4.25)

For each term of (4.23) we can apply similar estimates as those in (4.16)
and (4.17). That is,

sup
x
|
∑
λ∈Λ

cλλ
s1
1 . . . λsdd (x1 − λ1)sd+1 . . . (xd − λd)s2d×

ψ(x1 − λ1, x2 − λ2, . . . , xd − λd)|

≤
∑
λ∈Λ

|cλλs11 . . . λsdd | sup
x
|(x1 − λ1)sd+1 . . . (xd − λd)s2d×

ψ(x1 − λ1, x2 − λ2, . . . , xd − λd)|

(4.26)

29



Then,
∑
λ∈Λ

|cλλs11 . . . λsdd | is convergent because cλ ∈ `1
s(Z2d) (as in (4.16) and (4.17),

the decay of (cλ) absorbs all terms in λ2(d+1) (in multi-index notation)). On the
other hand,

sup
x
|(x1 − λ1)sd+1 . . . (xd − λd)s2dψ(x1 − λ1, x2 − λ2, . . . , xd − λd)|

is bounded on Rd because ψ ∈ S(Rd). Therefore, we obtain boundedness of each
summand in (4.23), which implies that supx∈Rd |x|2(d+1)|ϕ1(x)| is bounded on R2d.
Therefore, ϕ1(x) = O(|x|−2(d+1)), and the boundedness estimate for Hf(x) is
proven.

Similarly we show the boundedness estimate for FHf(ξ). �
The rates of decay of Hf and FHf obtained in Lemmas 4.4 and Lemma 4.5

together with Lemma 4.7 are necessary for applications in Section 4.4 and 4.5.

4.3 Two matrix lemmas

In this section we list two lemmas about non-existence of a left-inverse of bi-infinite
matrices.

Lemma 4.6 Let M = (mj,k) : `2(Z2d) 7→ `2(Z2d) be a bi-infinite matrix, whose
action on (a subset of) vectors in `2(Z2d) is bounded. If there exists a mono-
tonically decreasing function w such that w(x) = O(|x|−2d−δ), δ > 0 such that
|mj,k| ≤ w(|j|), then M does not have a bounded left inverse.

Note: This matrix need not represent a compact operator.
Proof. The assumption essentially states that there exists a constant C such

that the entries of the j-th matrix row mj are bounded uniformly by C|j|−2d−δ.
Therefore we fix ε > 0, and choose K ∈ N (depending on ε) such that∑

‖j‖∞>K

max
‖k‖∞≤K+1

|mj,k|2 ≤
∫
|y|≥K+1

Cy−2(2+δ)dy = O(K−2d) <
ε2

(2K + 3)d
,

where we have used polar coordinates in the integral:∫
|y|≥K+1

Cy−2(2d+δ)dy =

∫∫
R−4d−2δRd−1 sin θd(R, θ) = O(K−2d).

(Rd−1 sin θ is a shorthand notation for the generalized Jacobian of the coordinate
change). Let us take a vector x ∈ `2(Z2) such that ‖x‖2 = 1, xk = 0 for ‖k‖∞ >
K + 1 and x ⊥ mj, ‖j‖∞ ≤ K, where mj is the j-th matrix row. Such a vector
always exists because the submatrix M ′ = (mj,k)|j|≤K,|k|≤K+1 of M has (2K + 1)d

rows which cannot span a (2K + 3)d-dimensional vector space. We estimate the
`2-norm of Mx.

‖Mx‖2
2 =

∑
‖j‖∞>K

|〈x,mj〉|2 ≤
∑

‖j‖∞>K

‖x‖2
2 · ‖RK+1mj‖2

2, (4.27)
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where RK+1mj is the restriction of the j-th row mj to the elements mj,k : ‖k‖∞ ≤
K + 1. Hence,

‖Mx‖2
2 ≤

∑
‖j‖∞>K

‖RK+1mj‖2
2 ≤ (2K + 3)

∑
‖j‖∞>K+1

max
‖k‖∞≤K

|mj,k|2 ≤ ε2

Therefore, for x with ‖x‖2 = 1, ‖Mx‖2 → 0 and M does not have a bounded left
inverse. �

The second lemma about invertibility of ‘skew-diagonal’ matrices is a subcase
of Theorem 2.1 [Pfa08], see also Lemma 3.5 [KP06].

Lemma 4.7 ([Pfa08]) Given M = (mj,k) : `2(Z2d) 7→ `2(Z2d). If there exists a
monotonically decreasing function w : R+

0 7→ R+
0 with w(x) = O(x−2d−δ), δ > 0

and constants λ > 1 and K0 > 0 with |mj,k| < w(‖k−λj‖∞) for ‖k−λj‖∞ > K0,
then M does not have a bounded left inverse.

The proof of the lemma can be found in [Pfa08] or [KP06].
In the following, we will consider different combinations of Λ in Figures 2

and 3 and spreading functions η0 belonging to the modulation space M1
v (R2), for

a polynomial weight v(z) = (1 + |z|)s, s > 2.
In particular, we explore different combinations of ‘initial conditions’ for oper-

ator families HΛ, where

HΛ = {H : ηH ∈ span (η0,Λ)}.

The choice of η0,Λ goes beyond the particular example considered in [KP06]. The
basis of the analysis of identification of operator families includes the following
constraints

(I) The structure of index set Λ is important for identification of HΛ (the mea-
sure used is 2-density of Λ, as defined in Section 4)

(II) The properties of η0 and its associated prototype operator H0, especially
when η0 ∈ M1

s (R2d) for certain s as presented in Section 4 also play an
important role.

(III) The requirement that {π(λ)η0 : λ ∈ Λ} is a Riesz basis sequence inside
L2(R2d) assures well-posedness of the discretized identification problem.

The study [KP06] considers essentially Λ = 0×αZ×βZ, η0 - characteristic function
of a fundamental domain of Λ. In the language of that study HΛ is denoted
operators with spreading symbol of area ab.

We want to test whether any of the following statements hold.

(IV) There exists a constant C > 0 such that D2(Λ) > C =⇒ HΛ is not identifi-
able.
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(V) There exists a constants c > 0 such that D2(Λ) < c =⇒ HΛ is identifiable.

In [KP06] both statements are confirmed with constants C = c = 1.
In the following we illustrate some typical cases from Tables 2 and 3. The

primary goal is to formulate results on a relation between identifiability and non-
identifiability and the measure of the 2-density of Λ.

4.4 Operator families which are never identifiable

Here we list the examples of operators families from Tables 2 and 3, which are
not identifiable regardless of any density measure. Recall that Φf denotes the
evaluation operator

Φf : H → L2(R), Φf (H) = Hf

Proposition 4.8 Let η0 ∈M1
v (R2), where vs(z) = (1 + |z|)s, s > 2. The operator

family Hi = {H : ηH ∈ Ji ∩M1(R2)}, where

1. J1 = span {Tαk,γmη0 : k,m ∈ Z}

2. J2 = span {T0,γmM0,βlη0 : l,m ∈ Z}

3. J3 = span {T0,γmMδn,0η0 : m,n ∈ Z}

4. J4 = span {Tαk,βmM0,βk : k,m ∈ Z}

is not identifiable.

Proof. The operators in these classes have the following series expansions with
respect to the prototype operator H0 with spreading function η0:

1. H =
∑

k,m∈Zd ck,mTαkH0Mγm.

2. H =
∑

l,m∈Zd cl,mMβlH0Mγm−βl

3. H =
∑

m,n∈Zd cm,nT−δnH0TδnMγm

4. H =
∑

k,m∈Zd ck,mTαkMβkH0Mβ(m−k)

To demonstrate non-identifiability of Hi, we consider a subfamily of Hi and show
that it is not identifiable. This implies that the whole family is not identifiable.

Let us give a sketch of logic behind the proof. As we have seen before, the
operator H0 acts as a time-frequency localization operator, hence the information
carried by the 2-parameter coefficient sequence must be preserved in the respective
Gabor expression. However, there is only one parameter in the time-frequency shift
outside the action of H0, which means that part of the information disappears (‘is
erased’) under the action of H0 and is unrecoverable.

Fix a natural number N > 0. Let `N = {(ci) ∈ `0(Z) : ci = 0, i > N}.
For the first family H1 we consider only those operators with coefficients in the
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sequences ck,m = δ0(k)cm, (cm) ∈ `N . For the second family H2 - only those
operators with coefficients in the set of sequences cl,m = δ0(l)cm, (cm) ∈ `N , for H3

- in cm,n = δ0(n)cm, (cm) ∈ `N , and for H4 - ck,m = δ0(k)cm, (cm) ∈ `N . In fact in
all of these cases we obtain a subfamily of operators

H′ = {H =
∑
|m|≤N

cmH0Mγm : (cm) ∈ `N} ⊂ H.

We claim that H′ is not identifiable. For this purpose we construct a bounded
and invertible analysis operator C : L2(R)→ `2(Z2) and a bounded and invertible
synthesis operator D : `2(Z)→ H such that the composition of maps

C ◦ Φf ◦D : `N(Z)→ `2(Z2), f ∈ S ′0(R)

is not stable for any f ∈ S ′0(R). The stability of C,D would then imply that Φf

is not stable for any f ∈ S ′0(R). The operator D will be defined as follows

D : `N(Z)→ H′, D : {cm} 7→
∑
m

cmH0Mγm

where H0 is the prototype operator with spreading function η0. Since the collection
of function {Tαk,γmη0 : k,m ∈ Z} is a Riesz sequence in L2(R), the associated
collection of operators {H0Mγm : m ∈ Z} (which is a subsequence of a Riesz
sequence) forms a Riesz sequence in the space of operators H′. Hence D is well-
defined, bounded and invertible on `0(Z), so by density it can be extended to all
of `2(Z).

To define a bounded and invertible analysis operator C : L2(R) → `2(Z2), we
use the normalized Gaussian γ1 and the fact that for 1 < (ab)−1 the Gabor system
(γ1, aZ× bZ) is a frame for L2(R) [Lyu92]. Hence the analysis map

C : L2(R)→ `2(Z2) : C : f 7→ {〈f, Tak′Mbl′γ1〉}k′,l′

is well-defined, bounded and invertible.
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The action of the evaluation operator Φf is bounded on the subspace of oper-
ators H′, because

‖Φf (H)‖2
2 = ‖

∑
|m|≤N

cmH0Mγmf‖2
2

=

∫
R
|
∑
|m|≤N

cmH0Mγmf(t)|2dt

≤
∫

R
(
∑
|m|≤N

|cm| · |H0Mγmf(t)|)2dt

≤
∫

R
(
∑
|m|≤N

|cm| · |ϕ1(t)| · ‖f‖S′0)
2dt

= ‖f‖2
S′0
· (
∑
|m|≤N

|cm|)2 ·
∫
|ϕ1(t)|2dt

� C(N)‖c‖2
`2

� C(N)‖ηH‖2
2 = C(N)‖H‖2

HS,

(4.28)

where for the sake of shortness we denote c = {cm}. Therefore, the pseudo-inverse
of Φf is bounded on H′.

The composition of mappings C ◦ Φf ◦D

{cm} 7→ D(cm) 7→ D(cm)f 7→ {〈D(cm)f, Tak′Mbl′γ1〉} (4.29)

can be represented as a matrix acting on the sequence (cm), More precisely, a
bi-infinite matrix M = (mk′,l′;m), where

mk′,l′;m = 〈H0Mγmf, Tak′Mbl′γ1〉 (4.30)

Having represented C ◦ Φf ◦D as a matrix we use Lemma 4.6 to show that M is
not invertible on `N . In other words the matrix action is,

(C ◦ Φf ◦D(cm))k′,l′ =
∑
m

cmmk′,l′;m

We estimate the coefficients of M , applying the results from Lemma 4.4 in the
following computations.

|mk′,l′;m| = |〈H0Mγmf, Tak′Mbl′γ1〉| (4.31)

≤ 〈|H0Mγmf |, Tak′|γ1|〉
≤ ϕ1 ∗ γ1(ak′) · ‖f‖S′0

In a similar manner we can obtain an alternative estimate, by taking Fourier
transform on both sides of the inner product (4.30), and apply the estimate from
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Lemma 4.4.

|mk′,l′;m| = |〈FH0Mγmf,Mak′T−bl′γ1〉| (4.32)

≤ 〈|FH0Mγmf |, T−bl′ |γ1|〉
≤ ϕ2 ∗ γ1(bl′) · ‖f‖S′0

Since ϕ1, ϕ2 are positive and decay faster than x−2, so do the respective convolu-
tions ϕ1 ∗ γ1 and ϕ2 ∗ γ1. So we can define

h(x) = max(ϕ1 ∗ γ1(ax), ϕ1 ∗ γ1(−ax), ϕ2 ∗ γ1(bx), ϕ2 ∗ γ1(−bx) · ‖f‖S′0).

Then it is clear that

|mk′,l′;m| ≤ h(max{|k′|, |l′|}) = h(‖z‖∞),

where we label z = (k′, l′).
A straightforward application of Lemma 4.6 shows that the matrix M = (mz;m)

with |mz;m| = O(z−2−δ) does not have a bounded left inverse on the subset
{c : cm = 0, |m| > N}. This brings us to a contradiction. Therefore, we can
conclude that under the conditions of Proposition 4.8, the operator classes Hi are
not identifiable. �
Next we look at other examples of operator families.

Proposition 4.9 Let η0 ∈M1
v (R2), where vs(z) = (1 + |z|)s, s > 2. The operator

class Hi = {H : ηH ∈ Ji ∩M1(R2)}, where

1. J1 = span {Tαk,βmMαk,0η0 : k,m ∈ Z}

2. J2 = span {Tαk,βlMαk,βl : k, l ∈ Z}

3. J3 = span {Tαk,βkMαn,0η0 : k, n ∈ Z}

4. J4 = span {Tαk,βnMαn,0η0 : k, n ∈ Z}

is not identifiable.

Proof. The operators in these classes have the following series expansions with
respect to the prototype operator H0 with spreading function η0:

1. H =
∑

k,m∈Zd ck,mH0TαkMβm

2. H =
∑

k,l∈Zd ck,lMβlH0Tαk

3. H =
∑

k,n∈Zd ck,nTα(k−n)H0TαnMβk

4. H =
∑

k,n∈Zd ck,nTα(k−n)H0TαnMβn
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The idea of the proof again is to consider a subfamily of Hi and show that the
subfamily is not identifiable. Then it will follow that the whole family Hi is not
identifiable. This was used in Proposition 4.8.

Fix a natural number N > 0. For the first family H1 we consider only those
operators with coefficients in the sequences c ∈ `2(Z) : ck,m = δ0(m)ck : (ck) ∈
`N(Z), for H2 - in c ∈ `2(Z) : ck,l = δ0(l)ck : (ck) ∈ `N(Z). For the H3,H4 we pick
only those operators with coefficients in the set of sequences ck,n = δ0(k − n)ck ∈
`2(Z) : (ck) ∈ `N(Z). The resulting operators form the subfamilies

H′1,2 = {H =
∑
k∈Z

ckH0TαkMβk : (ck) ∈ `N(Z)} ⊂ H,

in the first and second cases and

H′3,4 = {H =
∑
k∈Z

ckH0Tαk : (ck) ∈ `N(Z)} ⊂ H,

in the third and fourth. From here the proof follows the steps of the proof of
Proposition 4.8.

�

4.5 Identifiability depends on density

In the following cases we show that 2-density plays a role in determining whether
operator families are identifiable or not.

Proposition 4.10 Let η0 ∈M1
v (R2), where vs(z) = (1+|z|)s, s > 2. The operator

class Hi = {H : ηH ∈ Ji ∩M1(R2)} where

1. J1 = span {Mαk,βlη0 : k, l ∈ Z}, arising from the index set Λ1 = (0, 0, αk, βl) :
k, l ∈ Z.

2. J2 = span {Tαk,0M0,βl : k, l ∈ Z}, arising from the index set Λ2 = (αk, 0, 0, βl) :
k, l ∈ Z

is not identifiable if the 2-density of Λi is greater than 1.

These families are listed as B2, B6 in Table 2.
Proof. The condition on the 2-density for families H1 and H2

D2(Λi) =
1

|αβ|
> 1

implies that |αβ| < 1. We shall consider only family H1 as the line of proof for
H2 is analogous. Without loss of generality we may assume α, β > 0.
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We construct a bounded and invertible analysis operator C : L2(R) → `2(Z2)
and a bounded and invertible synthesis operator D : `2(Z2) → H such that the
composition

C ◦ Φf ◦D : `2(Z2)→ `2(Z2), f ∈ S ′0(R)

is not stable for any f ∈ S ′0(R). The stability of C,D would then imply that Φf

is not stable for any f ∈ S ′0(R).
The operator D will be defined as follows

D : `0(Z2)→ H, D : {ck,l} 7→
∑
k,l

ck,lMαkTβlH0T−βlM−αk

where H0 is the prototype operator with spreading function η0. Since the collection
of function {Mαk,βlη0 : k, l ∈ Z} is a Riesz sequence in L2(R), the associated
collection of operators {MαkTβlH0T−βlM−αk : k, l ∈ Z} forms a Riesz sequence
in the space of operators H. Hence D is well-defined, bounded and invertible on
`0(Z2), so by density it can be extended to all of `2(Z2).

To define a bounded and invertible analysis operator C : L2(Rd) → `2(Z2),
we use the normalized Gaussian γ1 and the fact that we can choose some λ such
that 1 < λ2 < (αβ)−1 so that λ2αβ < 1. Then we know that the Gabor system
(γ1, λβZ× λαZ) is a frame. Hence the analysis map

C : L2(R)→ `2(Z2) : C : f 7→ {〈f,Mλαk′Tλβl′γ1〉}k′,l′

is well-defined, bounded and invertible.
The combined result of these mappings

{ck,l} 7→ D(ck,l) 7→ D(ck,l)f 7→ {〈D(ck,l)f,Mλαk′Tλβl′γ1〉} (4.33)

is in fact the result of the action of a bi-infinite matrix M = (mk′,l′;k,l), where

mk′,l′;k,l = 〈MαkTβlH0T−βlM−αkf,Mλαk′Tλβl′γ1〉 (4.34)

on the sequence {ck,l}. In other words,

(C ◦ Φf ◦D(ck,l))k′,l′ =
∑
k,l

ck,lmk′,l′;k,l

This is a matrix representation of the map C ◦ Φf ◦ D. We show that the ma-
trix coefficients of M satisfy the requirements of Lemma 4.7. We estimate the
coefficients of M , applying the bound on |H0T−βlM−αkf | from Lemma 4.4 in the
following computations.

|mk′,l′;k,l| = |〈MαkTβlH0T−βlM−αkf,Mλαk′Tλβl′γ1〉| (4.35)

≤ 〈Tβl|H0T−βlM−αkf |, Tλβl′|γ1|〉
= |H0T−βlM−αkf | ∗ γ1(β(l − λl′))
≤ ϕ1 ∗ γ1(β(l − λl′)) · ‖f‖S′0
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To obtain a bound involving k, k′, we take the Fourier transform on both sides
of the inner product in (4.34) and apply the estimate for |FH0T−βlM−αkf | from
Lemma 4.4.

|mk′,l′,k,l| = |〈TαkM−βl(FH0T−βlM−αkf), Tλαk′M−λβl′γ1〉| (4.36)

≤ 〈Tαk|FH0T−βlM−αkf |, Tλαk′ |γ1|〉
= |FH0T−βlM−αkf | ∗ γ1(α(k − λk′))
≤ ϕ2 ∗ γ1(α(k − λk′)) · ‖f‖S′0

Since ϕ1, ϕ2 are positive and have decay greater than |x|−s, s > 2, so do the
respective convolutions ϕ1 ∗ γ1 and ϕ2 ∗ γ1. So we can define

h(x) = max{ϕ1 ∗ γ1(βx), ϕ1 ∗ γ1(−βx), ϕ2 ∗ γ1(αx), ϕ2 ∗ γ1(−αx)} · ‖f‖S′0 .

Then it is clear that

|mk′,l′,k,l| ≤ h(max{|k − λk′|, |l − λl′|}),

so we are in a position to apply Lemma 4.7 and conclude that M is not left-
invertible. This brings us to a contradiction. �

Proposition 4.11 Let η0 ∈M1
v (R2), where vs(z) = (1+|z|)s, s > 2. The operator

class Hi = {H : ηH ∈ Ji ∩M1(R2)} where

1. J1 = span {Tαk,βlM0,βlη0 : k, l ∈ Z}, arising from the index set Λ1 =
(αk, βl, 0, βl) : k, l ∈ Z.

2. J2 = span {Tαk,βmMαm,βk : k,m ∈ Z}, arising from the index set Λ2 =
(αk, βm, αm, βk) : k,m ∈ Z.

3. J3 = span {Tαk,βkMαl,βl : k, l ∈ Z}, arising from the index set Λ3 = (αk, βk, αl, βl) :
k, l ∈ Z.

4. J4 = span {T0,βlMαn,βl : l, n ∈ Z}, arising from the index set Λ4 = (0, βl, αn, βl) :
l, n ∈ Z.

is not identifiable if the 2-density of Λi is greater than 1√
2
.

These families are listed as E1, F2, F3, G1 in Table 3.
Proof. The condition on the 2-density for families Hi : i = 1, 2, 3, 4

D2(Λi) =
1√

2|αβ|
>

1√
2

implies that |αβ| < 1. The proof is analogous to that of the Proposition 4.10. �

Proposition 4.12 Let η0 ∈M1
v (R2), where vs(z) = (1+|z|)s, s > 2. The operator

class Hi = {H : ηH ∈ Ji ∩M1(R2)} where
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1. J1 = span {Tαk,βkM0,βl : k, l ∈ Z}, arising from the index set Λ1 = (αk, βk, 0, βl) :
k, l ∈ Z.

2. J2 = span {T0,βmMαm,βl : l,m ∈ Z}, arising from the index set Λ2 =
(0, βm, αm, βl) : l,m ∈ Z.

3. J3 = span {Tαk,0Mαl,βl : k, l ∈ Z}, arising from the index set Λ3 = (αk, 0, αl, βl) :
k, l ∈ Z.

4. J4 = span {Tαk,0Mαn,βk : k, n ∈ Z}, arising from the index set Λ4 =
(αk, 0, αn, βk) : k, n ∈ Z.

is not identifiable if |αβ| < 1.

These are families E2, G3, H1, H2 from Table 3.
Proof. Essentially analogous to that of Propositions 4.10 and 4.11. However,

here we note that the condition |αβ| < 1 cannot be expressed in terms of 2-
density of the index set Λi, which is D2(Λi) = 1

|α|
√
α2+β2

for i = 3, 4 and D2(Λi) =

1

|β|
√
α2+β2

for i = 1, 2. In fact, for any ε > 0, we can find α, β with |αβ| < 1 such

that D2(Λi) < ε in the respective cases. For instance, choose α = 1010, β = (1010 +
1)−1. Then |αβ| < 1, so the family H1 is not identifiable by Proposition 4.12, but
the 2-density of its index set D2(Λ1) ≈ 10−20 is very small. �

Next we state a generalization of case B2 where the sampling set Λ = 0×AZ2d.
We consider sampling points in the modulation domain indexed by a general lattice
in R2d defined by a matrix A ∈ GL(R, 2d).

Proposition 4.13 Let η0 ∈ M1
v (R2d), where vs(z) = (1 + |z|)s, s > 2 (d = 1),

and s ≥ 2(d + 1) (d ≥ 2). If | detA| < 1, and {Mλη0 : λ ∈ AZ2d} is a Riesz
sequence in L2, then the associated operator class H = {H : ηH ∈ spanMλη0} is
not identifiable.

Proof. We set λ = (xλ, ωλ) for λ ∈ AZ2d. The condition {Mλη0 : λ ∈ Λ} is a
Riesz sequence in L2 ensures that the operator

D : `0(Z2d)→ H, (4.37)

D : {cλ} 7→
∑
λ∈Λ

cλπ(λ)H0π(λ)−1 =
∑
λ∈Λ

cλTxλMωλH0M−ωλT−xλ (4.38)

is bounded and invertible. We use the argument as already outlined in Proposi-
tion 4.10 but must make several changes.

To define a bounded and invertible analysis operator C : L2(Rd)→ `2(Z2d), we
use the tensor product of normalized one-dimensional Gaussians γ1 and the fact
that we can choose some u such that 1 < u−2 < | detA|−1 so that u2 < 1. Then
we know that the Gabor system (γ1, uZd × uZd) is a frame for L2(Rd) [Lyu92].
Hence the analysis map

C : L2(Rd)→ `2(Z2d) : C : f 7→ {〈f,Mul′Tuk′γ1〉}k′,l′∈Zd
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is well-defined, bounded and invertible. We let z′ = (k′, l′).
Then we shall examine the composition map

C ◦ Φf ◦D : {cλ} 7→ {〈D(cλ)f,Mul′Tuk′γ1〉}.

It can be represented as a matrix acting on c = {cλ} in the following way,

Mc := (C ◦ Φf ◦D(cλ))z′ =
∑
λ

cλmz′;λ

where M has entry coefficients

mz′;λ = 〈MωλTxλH0T−xλM−ωλf,Mul′Tuk′γ1〉 (4.39)

To make estimates in the matrix coefficients defined analogously to (4.34), we re-
label the lattice points λ = (x, ω) ∈ AZ2d, by a vector z ∈ Z2d, where z := A−1λ.
Hence, after substituting in (4.35) we obtain

|mz′,z| = |〈MωλTxλH0T−xλM−ωλf,Mul′Tuk′γ1〉|
≤ 〈Txλ|H0T−xλM−ωλf |, Tuk′ |γ1|〉
= |H0T−xλM−ωλf | ∗ γ1(xλ − uk′)
≤ ϕ1 ∗ γ1(xλ − uk′) · ‖T−xλM−ωλf‖S′0

(4.40)

and after substituting in (4.36)

|mz′,z| = |〈TωλM−xλ(FH0T−xλM−ωλf), Tul′M−uk′γ1〉|
≤ 〈Tωλ |FH0T−xλM−ωλf |, Tul′|γ1|〉
= |FH0T−xλM−ωλf | ∗ γ1(ωλ − ul′)
≤ ϕ2 ∗ γ1(ωλ − ul′) · ‖T−xλM−ωλf‖S′0

(4.41)

We can simplify the expressions for the S0-norms in (4.40) and (4.41) because

‖T−xλM−ωλf‖S′0 = ‖f‖S′0

Then we define

h(y) = max{ϕ1 ∗ γ1(y), ϕ1 ∗ γ1(−y), ϕ2 ∗ γ1(y), ϕ2 ∗ γ1(−y)} · ‖f‖S′0 .

After combining the two bounds for |mz′,z|, we have

|mz′,z| ≤ h(max{|xλ − uk′|, |ωλ − ul′|}) = h(‖z− uz′‖∞).

Now we are again able to apply Lemma 4.7 to obtain a contradiction that M does
not have a (bounded) inverse. Hence, we conclude that the operator family is not
identifiable. �
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Case Λ Λ′ = B̃C̃ · Λ D2(Λ)

B2

(
0 0
0 0
α 0
0 β

) (
0 0
0 0
α 0
0 β
√

2

)
1
|αβ|

B6

(
α 0
0 0
0 β
0 0

) (
α/
√

2 0
0 0
0 β

√
2

α 0

)
1
|αβ|

B10

(
α 0
0 0
0 0
0 β

) (
α/
√

2 0
0 0
0 0
α β

√
2

)
1
|αβ|

E1

(
α 0
0 β
0 β
0 0

) (
α/
√

2 0

0 β/
√

2

0 β(1+
√

2)
α 0

)
1

|αβ|
√

2

E2

(
α 0
β 0
0 β
0 0

) (
α/
√

2 0

β/
√

2 0

β β
√

2
α 0

)
1

|β|
√
α2+β2

E4

(
α 0
0 β
0 0
0 β

) (
α/
√

2 0

0 β/
√

2
0 β

α β
√

2

)
1

|αβ|
√

2

E5

(
α 0
β 0
0 0
0 β

) (
α/
√

2 0

β/
√

2 0
β 0

α β
√

2

)
1

|β|
√
α2+β2

F2

(
α 0
0 β
β 0
0 α

)  α/
√

2 0

0 β/
√

2

β
√

2 β

α α
√

2

 1√
α2+β2

F3

(
α 0
β 0
0 β
0 α

)  α/
√

2 0

β/
√

2 0

β β
√

2

α α
√

2

 1√
α2+β2

F5

(
α 0
0 β
0 α
β 0

)  α/
√

2 0

0 β/
√

2

0 β+α
√

2

α+β
√

2 0

 1√
α2+β2

F6

(
α 0
β 0
0 α
0 β

)  α/
√

2 0

β/
√

2 0

β α
√

2

α β
√

2

 1√
α2+β2

G1

(
0 0
β 0
β 0
0 α

) (
0 0

β/
√

2 0

β(1+
√

2) 0

0 α
√

2

)
1

|αβ|
√

2

G3

(
0 0
β 0
0 β
α 0

) (
0 0

β/
√

2 0

β β
√

2

α
√

2 0

)
1

|β|
√
α2+β2

G4

(
0 0
β 0
0 α
β 0

) (
0 0

β/
√

2 0

β α
√

2

β
√

2 0

)
1

|αβ|
√

2

G6

(
0 0
β 0
α 0
0 β

) (
0 0

β/
√

2 0

α
√

2+β 0

0 β
√

2

)
1

|β|
√
α2+β2

H1

(
α 0
0 0
0 β
0 α

) (
α/
√

2 0
0 0
0 β

√
2

α α
√

2

)
1

|α|
√
α2+β2

H2

(
α 0
0 0
β 0
0 α

) (
α/
√

2 0
0 0

β
√

2 0

α α
√

2

)
1

|α|
√
α2+β2

H5

(
α 0
0 0
0 α
β 0

) (
α/
√

2 0
0 0
0 α

√
2

α+β
√

2 0

)
1

|α|
√
α2+β2

Table 4: Table of the respective lattices.
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4.6 Case study κ0(x, ω) = e−π(x2+ω2)

In this section we consider some of the operator families from Tables 2 and 3 when
the kernel of the prototype operator H0 is κ0(x, ω) = e−π(x2+ω2), (x, ω) ∈ Z2. We
will vary the lattice Λ used in the construction of the operator family HΛ. For
every index set Λ we shall search for criteria such that HΛ becomes identifiable.
That will naturally include conditions which make the identification problem well-
posed.

In this case associated spreading function η0(t, ν) is given by

η0(t, ν) =

∫
κ0(x, x− t)e−2πiνxdx

=

∫
e−π(2x2−2xt+t2)e−2πiνxdx

= e−
π
2
t2
∫
e
−π(x

√
2− t√

2
)2
e−2πiνxdx

=
1√
2
e−

π
2
t2M− t√

2
(e−

π
2
ν2

)

=
1√
2
e−πi

√
2tνe−

π
2

(t2+ν2). (4.42)

In other words, η0 is the image of the standard 2-dimensional Gaussian γ2(t, ν) =
e−π(t2+ν2) under a symplectic transformation, which we write as

η0 = µ(C̃)−1µ(B̃)−1γ2.

Following [Fol89], the symplectic operators µ(B̃) (a dilation), µ(C̃) (a chirp) are
associated respectively to the lattices

B̃ =

 1√
2

0 0 0

0 1√
2

0 0

0 0
√

2 0

0 0 0
√

2

 , C̃ =

( 1 0 0 0
0 1 0 0

0
√

2
2

1 0
√

2
2

0 0 1

)
.

The spreading function η0 therefore belongs to S(R2) as well.
We shall consider different choices for the lattice Λ for the Gabor Riesz basis

sequence (η0,Λ). The examples in this section follow the following pattern. Since
η0 is fixed and we vary the lattice Λ, we must observe that condition (III) holds
(namely (η0,Λ) must be a Riesz basis sequence in L2(R2) in order for our approach
make sense). To verify this, we apply Theorem 2.2 to transform this question to
known results for Gabor Riesz basis sequences based on the standard Gaussian.
Thus we have to show in each case that (γ2, B̃C̃ · Λ) is a Riesz basis sequence for
the lattices Λ′ = B̃C̃ · Λ. The matrix B̃C̃ is

B̃C̃ =

 1√
2

0 0 0

0 1√
2

0 0

0 1
√

2 0

1 0 0
√

2

 .
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Table 4 lists some choices of Λ together with the lattice Λ′ = B̃C̃ · Λ and
the 2-density of Λ, D2(Λ). We examine each case separately. In the following
propositions we shall drop the subscript whenever it is clear which lattice we refer
to. To prove identifiability, all we have to show is that under the assumptions in
each case both sequences: (γ2,Λ

′) and {Hλf : λ ∈ Λ} are Riesz basis sequences.

Proposition 4.14 (Case B2) Let η0 be given by (4.42), and Λ =

(
0 0
0 0
α 0
0 β

)
Z2 (see

Table 4). If D2(Λ) < 1, the operator family HB2 = {H : ηH ∈ span (η0,Λ)} is
identifiable.

Proof. The condition D2(Λ) < 1 is equivalent to |αβ| > 1, see Table 4. In case
B2 we verify the Riesz basis sequence condition for (η0,Λ) on the set of spreading
functions by checking whether the Gabor system (γ2,Λ

′) is a Riesz basis sequence.
In this case

Λ′ =

(
0 0
0 0
α 0
0 β
√

2

)(
n
l

)
which is a tensor system with respect to γ2. Furthermore (γ2,Λ

′) is a Riesz basis
sequence, which can be deduced from Theorem 7.2.3, [Chr03]. We choose as
identifier f = δ Z

β
and see that

MβlT−αnH0TαnM−βlf = MβlT−αnH0Tαnδ Z
β

Furthermore,

H0Tαnδ Z
β

= e−πx
2
∑
j

e−π( j
β
−αn)2 .

We denote the quantity

C(n) =
∑
j

e−π( j
β
−αn)2 , C(n) > 0,∀n.

and check that the sequence {hl,n : l, n ∈ Z}, where

hl,n = C(n)MβlT−αnγ1 : l, n ∈ Z},

is a Riesz basis sequence if |βα| > 1.
We use the criterion for Riesz basis sequences given in Lemma 3.6.2, [Chr03].

The sequence (γ1, αZ × βZ) is a Riesz basis whenever |βα| > 1 [Lyu92], [SW92],
hence it is an unconditional basis1. Since each element of {hk,l : k, l ∈ Z} is a scalar
multiple of an element from an unconditional basis, not only does {hk,l : k, l ∈ Z}
span the same subspace of L2(R), but it is also an unconditional basis for this
subspace.

1An unconditional basis is a basis with the additional property that the convergence of the
basis expansion is unconditional (i.e. convergence does not depend on the order of summation).
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To complete the proof we must finds bounds on ‖hl,n‖2, in other words, show
that 0 < inf

n∈Z
C(n) ≤ sup

n∈Z
C(n) < ∞. We observe that namely, for a fixed n,

there exists an index j′ such that j′

β
≤ αn ≤ j′+1

β
, hence | j

β
− αn| ≥ 1

β
for all j.

Thus C(n) ≥ e
− π
β2 . To make the upper estimate we use the property that e−x

2
is

monotonic in (−∞, 0) and (0,∞). Without loss of generality, when β > 0, for all
j ≤ j′,

e−π(
j
β
−αn)

2

≤ e
−π
“
j′−j
β

”2

,

and for all j ≥ j′ + 1,

e−π(
j
β
−αn)

2

≤ e
−π
“
j′−j+1

β

”2

.

Therefore,

C(n) ≤
∑
j≤j′

e
−π
“
j′−j
β

”2

+
∑
j≥j′+1

e
−π
“
j′−j+1

β

”2

= C(0) <∞.

Thus the system {hl,n : l, n ∈ Z} is an unconditional basis and

0 < inf
l,n∈Z
‖hl,n‖2 ≤ sup

l,n∈Z
‖hl,n‖2 <∞,

hence it is a Riesz basis sequence.
Thus, by proving that (γ2,Λ

′) and {C(n)MβlT−αnγ1 : n, l ∈ Z} are Riesz basis
sequences, we have in fact shown that for f = δ Z

β
, and Φf : H 7→ Hf , the norm

equivalence
‖ΦfH‖L2 � ‖H‖HS,

holds. Therefore, the class of operators HB2 = {H : ηH ∈ span (η0,Λ)} is identifi-
able. �

Proposition 4.15 (Case B6) Let η0 be given by (4.42), and ΛB6 =

(
α 0
0 0
0 β
0 0

)
Z2

(Table 4). If D2(ΛB6) < 1, then the operator familyHB6 = {H : ηH ∈ span (η0,ΛB6)},
is identifiable.

Proof. The condition D2(ΛB6) < 1 is equivalent to |αβ| > 1. We first verify
that (η0,ΛB6) is a Riesz basis sequence (condition (III)) for η0 given in (4.42).
By Theorem 2.2, (η0,ΛB6) being a Riesz basis sequence is equivalent to (γ2,Λ

′
B6)

being a Riesz basis sequence, where

Λ′ =

( α√
2

0

0 0
0 β
√

2
α 0

)(
k
l

)
⊂ α√

2
Z× 0× β

√
2Z× αZ.

If |αβ| > 1, then (γ1,
α√
2
Z×β

√
2Z) is a Riesz sequence. Hence, (γ2,Λ

′
B6) is a Riesz

sequence. The remainder of the proof follows the line of Proposition 4.14. �
We give another example about the operator family HB6. For a different choice

of η0 it is identifiable as well.
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Corollary 4.16 (Case B6) Let η0 = χ[0, 1
α

) ⊗ χ[0, 1
β

). If |αβ| ≥ 1, then the opera-

tor family
HB6 = {H : ηH ∈ span (η0,ΛB6) ∩M1}

is identifiable with f = δαZ.

Proof. Observe that this identifier f = δαZ ∈ M∞. Due to α-periodicity
in fact Tαkf = f for all k ∈ Z. The action of the prototype operator Hk,l =
e−2πiβl·αkMβlTαkH0M−βl (see B6 in Table 2) on f can be rewritten as follows

Hk,lf = e−2πiβl·αkMβlTαkH0M−βlf

= e−2πiβl·αkMβlTαkH0M−βlT−αkf

= MβlTαkH0T−αkM−βlf

Thus {Hk,lf} is the same family of functions as in those in case B2, discussed in
detail in [KP06], but we have substituted a specific f , which is a periodic delta-
train. Furthermore, each spreading function ηH is supported on [0, 1

α
)× [0, 1

β
) and

has a canonical ONB series expansion

ηH(t, ν) =
∑
k,l∈Z

ck,le
2πi(αkt+βlν)

because
η0 = χ[0, 1

α
) ⊗ χ[0, 1

β
).

This ensures that every H ∈ H has an ONB expansion in terms of Hk,l. For the
rest, this case is equivalent to the one described in Theorem 3.1, [KP05]. �
For the examples that follow, we use a lemma about Gaussian Riesz basis se-
quences.

Lemma 4.17 Let a, b 6= 0. Then {TanMbnγ1, n ∈ Z} is a Riesz basis sequence.

Proof. Note that if b = 0, the theory from [Chr03] (Theorem 7.2.3) applies
because the function

Φγ1(ξ) =
∑
n∈Z

|γ̂1( ξ+n
a

)|2 (compare [Chr03] : (7.2))

is bounded above and away from 0 on [0, 1). If a = 0, then FMbnγ1 = Tbnγ1. To
prove our claim we note that Λ = {(an, bn), n ∈ Z} is symplectically equivalent

to Λ′ = {(an, 0), n ∈ Z} via M =

(
1 0
− b
a

1

)
. Theorem 2.2 shows that (γ1,Λ) is

a Riesz basis sequence if and only if (µ(M)γ1,Λ
′) is a Riesz basis sequence, where

µ(M)γ1(t) = eπi
b
a
t2e−πt

2

.
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We apply Theorem 7.2.3 from [Chr03] to the system of translates {Tanµ(M)γ1 :
n ∈ Z}. The associated function is

Φµ(M)γ1(ξ) =
∑
n∈Z

|Fµ(M)γ1( ξ+n
a

)|2,

but

Fµ(M)γ1(ξ) =

∫
eπi

b
a
t2e−πt

2

e−2πitξdt =
1

(1− i) 1
2

e−πξ
2( 1+i

2
).

Hence

Φµ(M)γ1(ξ) =
1

|1− i|
∑
n∈Z

|e
−π
„
ξ+n
a

«2

( 1+i
2 )|2

=
1√
2

∑
n∈Z

|e
−π
„
ξ+n
a

«2

( 1+i
2 )|2

=
1√
2

∑
n∈Z

|e
− 1

2
π

„
ξ+n
a

«2

|2 · |e
− i

2
π

„
ξ+n
a

«2

|2︸ ︷︷ ︸
1

=
1√
2

∑
n∈Z

|e
−π
„
ξ+n
a

«2

|2

(4.43)

Since the Gaussian γ1 ∈ S(R) ∩ L1(R), the expression for Φµ(M)γ1(ξ) is bounded
above and away from zero on [0, 1). Thus Theorem 7.2.3 from [Chr03] shows that
{Tanµ(M)γ1 : n ∈ Z} is a Riesz basis sequence. �

Proposition 4.18 (Case D5) Let η0 be given by (4.42), and Λ =

(
α 0
β 0
0 α
0 0

)
Z2

(Table 4). If |α| > 1, then the operator family HD5 = {H : ηH ∈ span (η0,ΛD5)}
is identifiable.

Proof. We follow the strategy of the previous examples. We begin the proof
by checking that (η0,Λ) is a Riesz basis sequence and use symplectic equivalence
(Theorem 2.2). The lattice Λ′ is given by

Λ′ =

 α√
2

0

β√
2

0

β α
√

2
α 0

(k
l

)
.

Therefore, the Gabor system (γ2,Λ
′) is a tensor system (γ1,

( α√
2

0

β α
√

2

)
Z2)×(γ1,

(
β√
2
α

)
Z),

which is a Riesz basis sequence if |α| > 1 (a criterion coming from the first com-
ponent); for the second component see Lemma 4.17.

We use as identifier f = δ0. Thus

Hk,lf = TαkMαlH0Mβk−αlf = TαkMαlγ1,
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because

H0Mβk−αlf(x) = γ1(x)

∫
R
γ1(x− t)(Mβk−αlδ0)(x− t)dt = γ1(x).

Hence, the sequence {Hk,l}k,l∈Z is a Riesz basis sequence if and only if |α| >
1 [Lyu92]. �
Note: The 2-density of ΛD5 equals 1

|α|
√
α2+β2

, which is less than 1 if |α| > 1, but

not vice versa! For identification of HD5, the condition |α| > 1 is stronger than
the 2-density condition.

Proposition 4.19 (Case D6) Let η0 be given by (4.42), and Λ =

(
α 0
0 β
0 α
0 0

)
Z2

(Table 4). If α, β are such that |α(β + α
√

2)| ≥
√

2, |αβ| >
√

2, |α| > 1, then the
operator family HD6 = {H : ηH ∈ span (η0,Λ)} is identifiable.

Proof. This case is again similar to the previous ones. We have to check that
(η0,Λ) is a Riesz basis sequence. We use symplectic equivalence (Theorem 2.2)
and consider instead the Gabor system (γ2,Λ

′), where

Λ′ =

 α√
2

0

0 β√
2

0 β+α
√

2
α 0

Z2.

The associated Gabor system (γ2,Λ
′) is a tensor Riesz sequence if |αβ| >

√
2 and

|α(β + α
√

2)| ≥
√

2.
We choose as identifier f = δ0. As in Proposition 4.18 we have that

Hk,lf = TαkMαlH0M(β−α)lf = TαkMαlγ1.

Hence the sequence {Hk,l}k,l∈Z is a Riesz basis sequence if and only if |α| >
1 [Lyu92]. �
Note: In case D6, the 2-density of Λ is D2(Λ) = 1

|α|
√
α2+β2

. We have three

conditions on the parameters α, β: |α(β + α
√

2)| ≥
√

2, |αβ| >
√

2, |α| > 1,
which are illustrated in Figure 1.

Proposition 4.20 (Case E1) Let η0 be given by (4.42), and Λ =

(
α 0
0 β
0 β
0 0

)
Z2

(Table 4). If D2(Λ) < 1
2

(in other words |αβ| >
√

2), then the operator family
HE1 = {H : ηH ∈ span (η0,ΛE1)} is identifiable.

Proof. Essentially similar to the previous cases. We begin the proof by checking
that (η0,Λ) is a Riesz basis sequence and use symplectic equivalence (Theorem 2.2).
The Gabor system (γ2,Λ

′) is a Riesz basis sequence if |αβ| >
√

2, because

Λ′ =

 α√
2

0

0 β√
2

0 β(1+
√

2)
α 0

(m
n

)
⊂
( α√

2
0

0 β(1+
√

2)

)
Z2 ×

(
0 β√

2

α 0

)
Z2
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Figure 1: The set (α, β) fulfilling the conditions in case D6 lies in the blue region.

and the system (γ2,
( α√

2
0

0 β(1+
√

2)

)
Z2×

(
0 β√

2

α 0

)
Z2) is a tensor Riesz basis sequence

under the given assumptions (since |αβ|1+
√

2√
2
, |αβ|√

2
> 1). Hence, (γ2,Λ

′) is a Riesz

basis sequence, and furthermore, according to Theorem 2.2 (η0,Λ) is also a Riesz
basis sequence. We use as identifier f = δZ and check that {Hk,lf} is a Riesz basis
sequence.

Hk,lf = MβlTαkH0f = MβlTαke
−πx2

∑
j∈Z

e−πj
2

, (4.44)

{Hk,lf} is also Riesz basis sequence if |αβ| > 1 because the expression on the right-
hand side of (4.44) is a constant multiple of the Riesz basis sequence (γ1, αZ ×
βZ) [Lyu92], [SW92]. This is a consequence of the fact that

∑
j∈Zd

e−πj
2

is a nonzero

constant. Hence, the family {MβlTαkH0f : k, l ∈ Z} is a Riesz basis sequence if
|αβ| >

√
2 > 1. �

Proposition 4.21 (Case E2) Let η0 be given by (4.42), and Λ =

(
α 0
β 0
0 β
0 0

)
Z2 (Ta-

ble 4). If |αβ| > 1, then the operator family HE2 = {H : ηH ∈ span (η0,ΛE2)} is
identifiable.

Proof. The line follows the line of proof of Proposition 4.20. We first demon-
strate that (η0,Λ) is a Riesz basis sequence with the help of Theorem 2.2. We
show equivalently that the Gabor system (γ2,Λ

′) is a Riesz basis sequence. But

Λ′ =

 α√
2

0

β√
2

0

β β
√

2
α 0

(k
l

)
⊂
( α√

2
0

β β
√

2

)
Z2 ×

( β√
2

0

α 0

)
Z2.
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The lattice ( α√
2

0

β β
√

2

)
Z2 ×

( β√
2

0

α 0

)
Z2,

is tensor so its associated Gabor system is a tensor system

(γ1,

( α√
2

0

β β
√

2

)
Z2)× (γ1,

( β√
2

0

α 0

)
Z2),

The last Gabor system is a Riesz basis sequence if and only if |αβ| > 1 (a condition
on the first term); for the second term, compare Lemma 4.17. Hence for those
values of (α, β) its subsequence (γ2,Λ

′) is also a Riesz basis sequence. Thus,
(η0,ΛE2) is a Riesz basis sequence.

As identifier we choose f = δ Z
β

2. Then

Hk,lf = TαkMβlH0Mβ(k−l)f = TαkMβlH0δ Z
β

We rewrite the expression H0δ Z
β

as

H0δ Z
β

= 〈δ Z
β
, κ0(x, ·)〉 = e−πx

2
∑
j∈Zd

e−π
j2

β (4.45)

The sum of the series ∑
j∈Zd

e−π
j2

β

on the right-hand side of (4.45) is some nonzero scalar depending on β, so H0δ Z
β

is a scalar multiple of the Gaussian γ1 = e−πx
2
. If |αβ| > 1, then the Gabor

system (γ1, αZ× βZ) is a Riesz basis sequence (as seen from previous examples).
Therefore, {Hk,lf : k, l ∈ Z} is also a Riesz basis sequence. Hence the operator
family HE2 with κ0(x, ω) = e−π(x2+ω2) is identifiable. �
Note: The 2-density of the time-frequency lattice in the case E2 (Table 4) is

1

|β|
√
α2+β2

. The condition |αβ| > 1 is independent of the value of D2(Λ). For

instance, |αβ| > 1 implies that D2(Λ) < 1, but not vice versa! We saw that both
D2(Λ) and |αβ| can be smaller than 1 (choose α = (1010 + 1)−1, β = 1010), and
Proposition 4.12 implies that the operator family is not identifiable.

Proposition 4.22 (Case F2) Let η0 be given by (4.42), and Λ =

(
α 0
0 β
β 0
0 α

)
Z2 (Ta-

ble 4). If |αβ| > 1, then the operator family HF2 = {H : ηH ∈ span (η0,ΛF2)} is
identifiable.

2Another possibility would be f = δ0.
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Proof. The procedure for solving this example is similar to those illustrated in
Propositions 4.14-4.21. We verify that the family of spreading functions (η0,ΛF2)
is a Riesz basis sequence with the help of Theorem 2.2. This is equivalent to
checking whether the Gabor system (γ2,Λ

′) is a Riesz basis sequence. But we see
that the time-frequency index set factorizes,

Λ′ =

 α√
2

0

0 β√
2

β
√

2 β

α α
√

2

(k
l

)
⊂
(
α
√

2 0

β
√

2 β

)
Z2 ×

(
0 β
√

2

α α
√

2

)
Z2.

Therefore, (γ2,Λ
′) is a Riesz basis sequence if |αβ| > 1 > 1√

2
.

We choose as identifier f = δ Z
β
. Then

Hk,mf = e−2πiβk·αkMβkTα(k−m)H0TαmMβ(m−k)f

= e−2πiβk·αkMβkTα(k−m)H0Tαmδ Z
β

(4.46)

The quantity H0Tαmδ Z
β

in (4.46) can be easily estimated and approximated - we

refer to Proposition 4.23. The proof concludes as in Proposition 4.23. �
Note: We observe again that in case F2 |αβ| > 1 implies that D2(Λ) < 1√

2
, but

not vice versa!

Proposition 4.23 (Case F3) Let η0 given by (4.42), and Λ =

(
α 0
β 0
0 β
0 α

)
Z2 (see

Table 4). If |αβ| > 1, then the operator family HF3 = {H : ηH ∈ span (η0,Λ)} is
identifiable.

Proof. In case F3 we verify the Riesz sequence condition by using Theorem 2.2.
We have to check that the Gabor system (γ2,Λ

′) is a Riesz basis sequence. But in
this case

Λ′ =

 α√
2

0

β√
2

0

β β
√

2

α α
√

2

(k
l

)
=

( α√
2

0

β β
√

2

)
Z2 ×

(
β√
2

0

α α
√

2

)
Z2.

Hence (γ2,Λ
′) is a tensor system with respect to γ2. The criterion in [Lyu92] shows

that the above tensor system is a Riesz basis sequence if and only if |αβ| > 1.
Hence by symplectic equivalence, (η0,Λ) is also a Riesz basis sequence for such
|αβ| > 1.

If we choose as identifier f = δ Z
β
, then

Hk,lf = e−2πiβl·αkMβlTα(k−l)H0TαlMβ(k−l)f

= e−2πiβl·αkMβlTα(k−l)H0Tαlδ Z
β

(4.47)

The expression in (4.47) can be further simplified because

H0Tαlδ Z
β

= e−πx
2
∑
j∈Z

e−π( j
β
−αl)2 .
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The quantity given by
∑
j

e−π( j
β
−αl)2 will be denoted by C(l). We shall verify

that if αβ > 1, then the sequence {hk,l : k, l ∈ Z}, where

hk,l = C(l)e−2πiβl·αkMβlTα(k−l)γ1,

is a Riesz basis sequence. We follow the steps outlined in Proposition 4.14 and
Lemma 3.6.2, [Chr03]. The sequence {e−2πiβl·αkMβlTα(k−l)γ1 : k, l ∈ Z} is a Riesz
basis for |αβ| > 1 [Lyu92], [SW92], hence it is an unconditional basis for its closed
linear span. Since each element of {hk,l : k, l ∈ Z} is a scalar multiple of an
element from an unconditional basis, {hk,l : k, l ∈ Z} spans the same subspace of
L2(R). So {hk,l : k, l ∈ Z} is also an unconditional basis for its closed linear span.

To prove the Riesz basis property, we must demonstrate that 0 < inf
l
C(l) ≤

sup
l
C(l) < ∞. Observe that for a fixed l, there exists an index j′ such that

j′

β
≤ αl ≤ j′+1

β
, hence | j

β
− αl| ≥ 1

β
. Thus C(l) ≥ e

− π
β2 for all l. For the upper

estimate we use the property that e−x
2

is monotone in each of the intervals (−∞, 0)
and (0,∞). Without loss of generality, when β > 0, for all j ≤ j′,

e−π(
j
β
−αl)

2

≤ e
−π
“
j′−j
β

”2

,

and for all j ≥ j′ + 1,

e−π(
j
β
−αl)

2

≤ e
−π
“
j′−j+1

β

”2

.

Therefore,

C(l) ≤
∑
j≤j′

e
−π
“
j′−j
β

”2

+
∑
j≥j′+1

e
−π
“
j′−j+1

β

”2

= C(0) <∞.

Thus the sequence {hk,l : k, l ∈ Z}meets the requirements of Lemma 3.6.2, [Chr03],
hence it is a Riesz basis sequence.

We have thus shown that (γ2,Λ
′) and {C(l)MβlTα(k−l)γ1 : k, l ∈ Z} are Riesz

basis sequences. Furthermore, for f = δ Z
β
, the norm equivalence

‖ΦfH‖L2 � ‖H‖HS,

holds. In conclusion, the operator family HF3 is identifiable. �
Note: Here D2(Λ) = 1√

α2+β2
(see Table 4). We observe again that in case F3, just

as in case F2, the condition |αβ| > 1 implies that D2(Λ) < 1√
2
, but not vice versa!

Proposition 4.24 (Case G1) Let η0 be given by (4.42), and Λ =

(
0 0
β 0
β 0
0 α

)
Z2

(Table 4). If D2(Λ) < 1√
2
, then the operator family HG1 = {H : ηH ∈ span (η0,Λ)}

is identifiable.
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Proof. The proof follows the steps outlined in Propositions 4.21, 4.22 and 4.23.
The density condition on Λ implies that |αβ| > 1 (see Table 4). We must check
that (η0,Λ) is a Riesz basis sequence. As we have seen already this is equivalent
to showing that the Gabor system (γ2,Λ

′) is a Riesz basis sequence where

Λ′ =

 0 0
β√
2

0

β(1+
√

2) 0

0 α
√

2

( l
n

)
.

Observe that (γ2,Λ
′) is a tensor system which is a Riesz basis sequence if |αβ| > 1.

The rest of the proof follows the exposition of Proposition 4.23. �

Proposition 4.25 (Case G3) Let η0 = χ[0, 1
β

) ⊗ χ[0, 1
α

), and Λ =

(
0 0
β 0
0 β
α 0

)
Z2 (see

Table 4). If |αβ| > 1, then the operator family HG3 = {H : ηH ∈ span (η0,Λ)∩M1}
is identifiable.

Note: The 2-density of the time-frequency lattice Λ = (0, βm, βl, αm) : l,m ∈ Zd

is given by 1

|β|
√
α2+β2

. The condition (α, β) : |αβ| > 1, |β| > 1 implies that in case

G3, if the operator family is identifiable then D2(ΛG3) < 1√
2
, but the converse is

not true - see Proposition 4.12.
Proof. First, we check that (η0,Λ) is a Riesz basis sequence. However, this is

clear because because the sequence {Mβl,αmη0 : m, l ∈ Z} is an orthonormal basis

for L2
(

[0, 1
β
)× [0, 1

α
)
)

and the translates T0,βmη0 are pairwise orthogonal (because

the supports of the respective functions are pariwise disjoint due to the condition
|β| ≥ 1

|α|). Thus, requirement (III) is fulfilled.
The family HG3 is identifiable with f = δ Z

β
if αβ ≥ 1 and β ≥ 1. Since

Mβmf = f ,

Hl,mf = MβlT−αmH0TαmMβ(m−l)f = MβlT−αmH0TαmM−βlf.

The rest is solved according to the method from Theorem 3.1, [KP05]. �
When we change the spreading function to η0 given by (4.42), the situation

changes radically.

Proposition 4.26 (Case G3) Let η0 given by (4.42), and Λ =

(
0 0
β 0
0 β
α 0

)
(see

Table 4). Then the identification of the operator family HG3 = {H : ηH ∈
span (η0,Λ)} is not a well-defined problem.

Proof. On one hand, we must show that the Gabor system (γ2,Λ
′) is a Riesz

basis sequence. Here

Λ′ =

 0 0
β√
2

0

β β
√

2

α
√

2 0

(m
l

)
.
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(γ2,Λ
′) is a tensor Gabor system {Mβm+β

√
2lγ1}m,l∈Z × {Tβm√

2

Mα
√

2lγ1}m,l∈Z. How-

ever, since the Beurling density of the set {βm+ β
√

2l}m,l∈Z is infinite, by Theo-
rem 7.4.1, [CBH99], {Mβm+β

√
2lγ1}m,l∈Z can never be a frame sequence, let alone

a Riesz basis sequence. Since (III) is violated, the problem is not well-posed.
�

Proposition 4.27 (Case G4) Let η0 be given by (4.42), and Λ =

(
0 0
β 0
0 α
β 0

)
Z2

(Table 4). If α, β satisfy |αβ| > 1 and α
√

2
β
∈ Q, then the operator family HG4 =

{H : ηH ∈ span (η0,Λ)} is identifiable.

Proof. As in the previous examples we have to check that (η0,ΛG4) is a Riesz
basic sequence. We use symplectic equivalence and consider instead the Gabor
system (γ2,Λ

′). This is a Gabor system with Gaussian window and time-frequency
shifts from the set Λ′ = {(0, β√

2
l, α
√

2n + βl, β
√

2l) : l, n ∈ Z}. (γ2,Λ) is the

tensor system {T β√
2
lMβ

√
2lγ1}l∈Z × {Mα

√
2n+βlγ1}l,n∈Z. If α

√
2

β
/∈ Q, the set of

points {α
√

2n + βl : n, l ∈ Z} has an infinite upper Beurling density in R, and
{Mα

√
2n+βlγ1 : l, n ∈ Z} can never be a frame sequence (see [CBH99], especially

Theorem 7.4.1, [Chr03]).
If {α

√
2n+ βl : l, n ∈ Z} ⊂ {ck, k ∈ Z} for some c ∈ R, then {Mckγ1 : k ∈ Z}

is a Riesz basis sequence, because the function∑
k∈Z

|γ1

(
ξ+k
c

)
|2 =

∑
k∈Z

e−2π( ξ+kc )
2

is continuous, always positive and hence bounded above and below on [0, 1] (see
Theorem 7.2.3 (iii), [Chr03]).

Hence, besides the constraint |αβ| > 1 (in order for {MβlT−αnH0Tαnf} to be a

Riesz basis sequence - see the previous propositions), the extra condition α
√

2
β
∈ Q

(equivalent to {α
√

2n + βl : l, n ∈ Z} being relatively separated in R) must be
met to guarantee that (η0,Λ) is a Riesz basis sequence.

We use as identifier f = δβZ. We check that the sequence {Hl,nf} is a Riesz
basis for its closed linear span.

Hl,nf = MαnT−βlH0TβlMβl−αnδβZ

= e−2πi(βl)2TβlMαnH0Mβl−αnTβlδβZ

= C(n, l)TβlMαnγ1,
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where

C(n, l) = e−2πi(βl)2H0Mβl−αnTβlδβZ

= e−2πi(βl)2
∑
j∈Z

e−π(βj)2e2πi(βl−αn)βj

= e−2πi(βl)2 1

β

∑
j∈Z

e−π( j
β

+(βl−αn)). (4.48)

In (4.48) we have used the Poisson summation formula for the Gaussian [Grö01].
The estimates for inf

n,l∈Z
C(n, l) and sup

n,l∈Z
C(n, l) are carried out as in Proposi-

tion 4.14. Therefore, whenever |αβ| > 1, TβlMαnγ1 is a Riesz basis sequence,
and so is {Hl,nf}. �

Proposition 4.28 (Case H4) Let η0 be given by (4.42), and Λ =

(
α 0
0 0
0 α
0 β

)
(see

Table 4). If α, β are such that |α| > 1 and β
√

2
α
∈ Q, then the operator family

HH4 = {H : ηH ∈ span (η0,Λ)}} is identifiable.

Proof. We repeat essentially the same line of reasoning as in the previous
cases. First, condition (III) must be verified. By Theorem 2.2 this is equivalent
to showing that the Gabor system (γ2,Λ

′) is a Riesz basis sequence, where

Λ′ =

( α√
2

0

0 0
0 α
√

2

α β
√

2

)(
k
l

)
.

This is a lattice containing all points ( α√
2
k, 0, α

√
2l, αk + β

√
2l), k, l ∈ Z. It

is similar to the system we had in Proposition 4.24. We make some remarks

about the density of the point set of the fourth coordinate of Λ′. If β
√

2
α

/∈ Q,

then {αk + β
√

2l : k, l ∈ Z} has an infinite upper Beurling density in R, and
{Mαk+β

√
2lγ : k, l ∈ Z} cannot be a frame sequence at all (compare the results

of [CBH99], [Chr03], especially Theorem 7.4.1). Hence, besides the constraint
|α| > 1 (which comes from the condition on the first and third coordinates of the
sampling points α√

2
· α
√

2 > 1), we have to keep in mind the extra condition that

{β
√

2
α
∈ Q, which guarantees that {αk + β

√
2l : k, l ∈ Z} is relatively separated in

R.
If {αk + β

√
2k : k, l ∈ Z} ⊂ {cm,m ∈ Z} for some c ∈ R, then {Mcme

−πx2
:

m ∈ Z} is a Riesz basis sequence, because the function∑
m∈Z

|γ
(
ξ+m
c

)
|2 =

∑
m∈Z

e−2π( ξ+mc )
2

is continuous, always positive and hence bounded above and below on [0, 1] (this
crietrion is given in [Chr03], Theorem 7.2.3). Therefore under the given conditions
(η0,Λ) is a Riesz basis sequence and condition (III) holds.
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We select as identifier f = δ 1
α

Z. We must show that {Hk,lf} is a Riesz basis
sequence too. We obtain just like in case H1:

Hk,lf = e2πiαlβlTαk−βlMαlH0TβlM−αlf = Tαk−βlMαlH0Tβlδ 1
α

Z.

and

H0Tβlδ 1
α

Z =

∫
κ0(x, t)

∑
j∈Z

δ 1
α
j(t− βl)dt

=
∑
j∈Z

κ0(x,
j

α
− βl)

= e−πx
2
∑
j∈Z

e−π( j
α
−βl)2

(4.49)

Next we must show that the sequence {Hk,l : k, l ∈ Z} associated to f = δαZ is a
Riesz sequence. Its elements are

Hk,lf = C(l)Tαk−βlMαlγ1 : k, l ∈ Z, (4.50)

where we denote

C(l) = e2πiαlβl
∑
j∈Z

e−π(
j
α
−βl)

2

.

The rest of the proof proceeds along the line of reasoning given in Proposition 4.26
since the sequence {Tαk−βlMαlγ1 : k, l ∈ Z} = (γ1,

(
α −β
0 α

)
Z2) is a Riesz sequence

if |α| > 1 [SW92], [Hei07] (Theorem 14). �
Note: The 2-density of the time-frequency lattice in this case is 1

|α|
√
α2+β2

. Our

assumptions show that HH1 being identifiable implies D2(Λ) < 1, but not vice

versa - see Proposition 4.12. The condition β
√

2
α
∈ Q, which makes the problem

well-posed, is not even quantified in D2(Λ).

Proposition 4.29 (Case H5) Let η0 be given by (4.42), and Λ =

(
α 0
0 0
0 α
β 0

)
(Ta-

ble 4). If α, β are such that |α| > 1, |αβ| > 1, |(α − β)α| > 1, then the operator
family HH5 = {H : ηH ∈ span (η0,Λ)} is identifiable.

Proof. The first step of the proof is to verify the Riesz basis sequence condition
(III) for (η0,Λ). By symplectic equivalence (Theorem 2.2) this is equivalent to
checking that the Gabor system (γ2,Λ

′) is a Riesz basis sequence, where

Λ′ =

( α√
2

0

0 0
0 α

√
2

α+β
√

2 0

)(
k
n

)
.
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Figure 2: The set (α, β) fulfilling the conditions in case H5 lies in the blue region.

This is a Gabor system with a time-frequency lattice, containing the points ( α√
2
k, 0, α

√
2n, (α+

β
√

2)k), k, n ∈ Z, which is similar to the systems we have encountered so far. If
|α| > 1, (γ2,Λ

′) is a Riesz basis sequence, and consequently (III) holds.
We choose for the identifier f = δ 1

α
Z. Second, we must show that {Hk,nf} is a

Riesz basis sequence.

Hk,nf = T(α−β)kMαnH0TβkM−αnf = C(k)T(α−β)kMαnγ1

where we denote

C(k) =
1

α

∑
j∈Z

e−π(
j
α
−βk)

2

.

From here on we pursue the same path as in Proposition 4.26. When |(α−β)α| > 1,
the sequence {Hk,nf} is a Riesz basis for its closed linear span. This shows the
claim. �
Note: The 2-density of the time-frequency lattice in the case H5, D2(Λ) = 1

|α|
√
α2+β2

.

Our assumptions show that HH5 identifiable implies D2(Λ) < 1√
2
, but not vice

versa - see Proposition 4.12 and Proposition 4.28. The set of values α, β which
satisfy the conditions of Proposition 4.29 are listed in Figure 2.

Proposition 4.30 (Case H6) Let η0 be given by (4.42), and Λ =

(
α 0
0 0
α 0
0 β

)
(Ta-

ble 4). If α, β are such that β
√

2
α
∈ Q, |αβ| > 1, then the operator family HH6 =

{H : ηH ∈ span (η0,Λ)} is identifiable.

Proof. This is similar to Proposition 4.28. We note that in this particular case

(γ2,Λ
′) = {T α√

2
kMα

√
2kγ1} × {Mαk+β

√
2l} is a Riesz sequence if β

√
2

α
∈ Q. The rest

is essentially identical to case H4. �
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4.7 Other spreading functions

In contrast to the previous section where η0 was fixed, and Λ was varying, in the
following examples we shall vary both η0 (requirement II) and Λ (requirement I)
to produce identifiable families HΛ. We discuss briefly some special η0, which are
distributions, so that the prototype operator H0 is non-Hilbert-Schmidt, but of
a special type (convolution, multiplication, etc.). The forms of H0f are listed in
Table 1. For the purpose of obtaining expansions for ηH in terms of a Riesz basis
(η0,Λ) (requirement III), we pose various initial conditions on η0.

We start with the simplest case η0(t, ν) = δ0,0(t, ν). In this case, the prototype
operator H0 is the identity. The family of operators generated by Gabor Riesz
basis sequence expansions of such H0 is not Hilbert-Schmidt.

A brief check of the different cases from Tables 2 and 3 we see that in cases
B2-B6, D5, E5, F6, G4-G6, H4-H6, the sequence (η0,Λ) can never be a Riesz basis
sequence. So requirement (III) is violated. We summarize our conclusions about
the remaining cases B1, D1, D3, E1, E3, F1, F2 in

Proposition 4.31 Let η0(t, ν) = δ0,0(t, ν). The set of spreading functions arising
from cases B1, D1, D3, E1, E3, F1, F2 from Table 2 and 3 contains only the
Gabor sysnthesis operator Df,α,β and is identifiable with any f ∈ L2 such that
(f, αZ× βZ) is a Riesz basis sequence.

Proof. The fact that the operator is Gabor synthesis results from the substi-
tution H0 = Id into the formulae of Table 2 and Table 3, namely.

Φf : c 7→ Df,α,βc, c ∈ `2(Z2)

The result follows. �
A second special case of spreading function is η0(t, ν) = p(t)δ0(ν), whose asso-

ciated operator H0 is a convolution operator,

H0 : f 7→ p ∗ f, f ∈ L2(R).

We consider the various time-frequency index sets Λ. Some formulas for a repre-
sentative operator H ∈ HΛ are listed in column II of Table 1. We note that in
cases B2, B3, B5, D2, D4, E3, E5, F2, F4, G1, H2, H6 requirement (III) is not
fulfilled, so these can be excluded from our consideration.

For H0 being a convolution H0 : f 7→ p ∗ f , we will consider lattices Λ listed
as B1, D1, D3, H1, F1. Note that p and conditions on Λ will be different in each
case to ensure that HΛ is identifiable.

Note: We must ensure in each case that κH , f belong to a pair of dual spaces so
that the integral (2.11) for Hf is well-defined. The kernel κH(x, t) = p(t) ∈ L2(R),
and the identifier f must also belong to L2(R), so that Hf is well-defined.

Cases B1, D1, D3 are quite similar to each other.
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Case Prototype operator Operator representation
B1 f 7→ Tαk(p ∗Mγmf) f 7→

∑
k,m ck,mTαk(p ∗Mγmf)

B3 f 7→ Tαk(p ∗ f) f 7→
∑

k,n ck,nTαk(p ∗ f)

B5 f 7→ p ∗Mγmf f 7→
∑

m,n cm,np ∗Mγmf

D1 f 7→ p ∗ TαkMβmf f 7→
∑

k,m ck,mp ∗ TαkMβmf

D2 f 7→ Tαkp ∗Mβkf f 7→
∑

k,n ck,nTαkp ∗Mβkf

D3 f 7→ Tαkp ∗Mβnf f 7→
∑

k,n ck,nTαkp ∗Mβnf

E1 f 7→MβlTαkp ∗ f f 7→
∑

k,l ck,lMβlTαkp ∗ f
E3 f 7→ TαkMβkp ∗Mβ(m−k)f f 7→

∑
k,m ck,mTαkMβkp ∗Mβ(m−k)f

F1 f 7→Mβlp ∗ Tαkf f 7→
∑

k,l ck,lMβlp ∗ Tαkf
F2 f 7→ TαkMβmp ∗Mβ(m−k)f f 7→

∑
k,m ck,mTαkMβmp ∗Mβ(m−k)f

F3 f 7→MβlTαkp ∗Mβ(k−l)f f 7→
∑

k,l ck,lMβlTαkp ∗Mβ(k−l)f

G1 f 7→Mβlp ∗ f f 7→
∑

l,n cl,nMβlp ∗ f
G2 f 7→Mβlp ∗Mβ(m−l)f f 7→

∑
m,l cm,lMβlp ∗Mβ(m−l)f

G3 f 7→Mβlp ∗Mβ(m−l)f f 7→
∑

m,l cm,lMβlp ∗Mβ(m−l)f

H1 f 7→ TαkMβlp ∗M−βlf f 7→
∑

k,l ck,lTαkMβlp ∗M−βlf
H2 f 7→ TαkMβkp ∗M−βkf f 7→

∑
k,l ck,lTαkMβkp ∗M−βkf

Table 5: Different operator classes induced by η0 = p(t)δ0(ν).

Proposition 4.32 (Case B1) Let αγ ≥ 1, p ∈ L2(R) such that supp p̂ ⊆ [0, γ)
and {Tαkp : k ∈ Z} is a Riesz basis sequence. Then the operator class

H = {H : ηH ∈ span {Tαk,γmη0}}

is identifiable with identifier f = χ̂[0,γ).

Proof. For this set-up, a typical representative of H is

H : f 7→
∑

ck,m(Tαkp ∗Mγmf), c ∈ `2(Z2).

We denote for the sake of shortness Hk,mf := Tαkp ∗Mγmf . As usual, the proof
consists of 2 steps: first, verifying condition (III) for η0 and second, showing that
for this choice of identifier f , {Hk,mf} is a Riesz basis sequence.

First, we justify the condition αγ ≥ 1 in the light of condition (III). A
well-known condition for Riesz basis sequences of translates (cited, for example,
in [Chr03]) states that it is sufficient to have∑

k∈Z

∣∣p̂(ξ + k
α

)∣∣2 � 1 almost everywhere on [0, 1
α

)

If supp p̂ ⊆ [0, γ), whenever αγ < 1, the above norm equivalence does not hold.
Hence, αγ ≥ 1 is a necessary requirement.
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Second, we show that for f = χ̂[0,γ) the function sequence {Hk,mf : m, k ∈ Z}
is a Riesz basis sequence. The Riesz basis property of a sequence {ej} carries over
to the sequence {êj} because the Fourier transform is a unitary map [Chr03]. So
we work in the Fourier domain. We take the inner product

〈Hk1,m1f,Hk2,m2f〉 =

= 〈Tαk1p ∗Mγm1f, Tαk2p ∗Mγm2f〉
= 〈M−αk1 p̂ · Tγm1 f̂ ,M−αk2 p̂ · Tγm2 f̂〉

=

∫
M−αk1 p̂(ξ)M−αk2 p̂(ξ)f̂(ξ − γm1)f̂(ξ − γm2) dξ

= δ0(m1 −m2)

∫ γ

0

M−αk1 p̂(ξ)M−αk2 p̂(ξ) dξ (4.51)

The last equality holds because f̂ = χ[0,γ), which implies that

f̂(ξ − γm1)f̂(ξ − γm2) = 0

when m1 6= m2. Hence we obtain that

f̂(ξ − γm1)f̂(ξ − γm2) = δ0(m1 −m2)χ[0,γ)(ξ)

so we can pull that term outside the integral.
Due to the assumption supp p̂ ⊆ [0, γ), the last line of (4.51) is simply

δ0(m1 −m2)〈M−αk1 p̂,M−αk2 p̂〉,

so we can take inverse Fourier transform of both sides of the inner product and
obtain the equality

〈Hk1,m1f,Hk2,m2f〉 = δ0(m1 −m2)〈Tαk1p, Tαk2p〉.

Next we use the criterion for Riesz bases from (2.1). We take a finite sequence
c = {ck,m : k,m ∈ Z} and use the above equality to compute

‖
∑

ck,mHk,mf‖2
L2 =

∑
m

‖
∑
k

ck,mTαkp‖2
L2 � ‖c‖`2

because {Tαkp} is a Riesz basis sequence. Hence {Hk,mf} is a Riesz basis sequence.
Thus, the mapping Φf : c 7→

∑
ck,mHk,mf is bounded and has a bounded

inverse, and H is identifiable under the assumptions of Proposition 4.32. �
This method can be applied to the operator families in cases D1 and D3 with
small adjustments of the initial conditions.

Proposition 4.33 (case D1) Let |αβ| ≥ 1, p ∈ L2(R) such that supp p̂ ⊆ [0, β)
and {Tαkp : k ∈ Z} is a Riesz basis sequence. Then the operator class

H = {H : ηH ∈ span {Tαk,βmM0,αkη0}},

is identifiable with identifier f = χ̂[0,β).
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Proof. A typical representative of H is an operator of the form

H : f 7→
∑

ck,mp ∗ TαkMβmf, c ∈ `2(Z2).

We note that the condition |αβ| ≥ 1 is necessary to ensure the existence of a
function p satisfying the conditions

1. supp p̂ ⊆ [0, β);

2. {TαkMαkp : k ∈ Z} is a Riesz basis sequence.

The rest of the proof follows that of Proposition 4.32 since

Hk,mf = p ∗ TαkMβmf = Tαkp ∗Mβmf.

�

Proposition 4.34 (Case D3) Let |αβ| ≥ 1, p ∈ L2(R) such that supp p̂ ⊆ [0, β),
and {Tαkp : k ∈ Z} is a Riesz basis sequence. Then the operator family

H = {H : ηH ∈ span {Tαk,βnMαn,0η0 : k, n ∈ Z} }

is identifiable with identifier f = χ̂[0,β).

Proof. This example is similar to Proposition 4.32 and 4.33. A typical operator
from this class maps

H : f 7→
∑

ck,n(Tαkp ∗Mβnf), c ∈ `2(Z2).

The rest follows the steps of Proposition 4.32 and 4.33. �

Proposition 4.35 (Case H1) Let |αβ| > 1 and p ∈ S(R) be such that (p, αZ×
βZ) is a Gabor Riesz basis. Then the operator family

H = {H : ηH ∈ span {Tαk,0Mαl,βkη0 : k, l ∈ Z}}

is identifiable with f = δ0.

Note: This identifier from S ′(R) is admissible because κH(x, t) = p(t) ∈ S(R).
Proof. The initial condition on p coming from (III) is that {Tαkp : k ∈ Z} must

be a Riesz basis sequence. This is however satisfied automatically because this is
a subsequence of (p, αZ× βZ).

A typical representative of this operator family is

H : f 7→
∑
k,l

ck,lTαkMβlp ∗M−βlf, c ∈ `2(Z2)

If f = δ0, then the evaluation map Φf is equivalent to

Φf : c 7→ Dp,α,βc,

which represents the synthesis operator of a Gabor system (p, αZ×βZ). According
to the assumption that (p, αZ× βZ) is a Gabor Riesz basis, we obtain that Φf is
bounded and has a bounded inverse. �

The final example for this choice of η0 considers the lattice from case F1.
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Proposition 4.36 (Case F1) Let p ∈ S(R) such that (p, αZ × βZ) is a Riesz
basis sequence. Then the family of operators

H = {H : ηH ∈ span {Tαk,βlMβl,αkη0} }

is identifiable with f = δ0.

Note: This identifier from S ′(R) is admissible because κH(x, t) = p(t) ∈ S(R).
We must therefore have in addition the condition αβ > 1.

Proof. The initial condition on p coming from (III) is the sequence {TαkMβlp :
k, l ∈ Z} to be a Riesz basis sequence.

A typical representative of H is

H : f 7→
∑
k,l

ck,lMβl(p ∗ Takf), c ∈ `2(Z2).

For the identifier f = δ0 we have the following

(p ∗ Tαkδ0)(x) =

∫
p(x− t)δ0(t− αk) dt = p(x− αk) = Tαkp(x)

Therefore, the evaluation map is

Φδ0 : c 7→ Dp,α,βc,

which is bounded and invertible if (p, αZ×βZ) is a Riesz basis sequence in L2(R).
�

A third special case of generator is η0 = δ0(t)q(ν). It corresponds to a multi-
plication operator

H0 : f 7→ f · ¯̂q,

with operator kernel k0(x, t) = q̂(x)δ0(t). Hence we should always choose an
identifier in S(R) in order to have the integral (2.11) for Hf well-defined.

An inspection of the conditions on the parameters of Λ from Table 2 and 3
imposed by the (III) shows us that for lattices in cases B2-4, B6, D2, E2, G1, G3
and H2 the problem is not well-defined. An inspection of Table 6 shows that the
operator class HΛ in cases H3 are not identifiable.

We consider the time-frequency index sets Λ from case E3 and E1 (Table 2),
which being again very similar to each other, we will combine them into a single
proposition.

Proposition 4.37 Assume supp q̂ ⊂
[
−α

2
, α

2

)
and that {Tβkq : k ∈ Z} is a Riesz

basis sequence (i.e. |αβ| > 1). Then the operator classes

1. HE3 = {H : ηH ∈ span {Tαk,βmMβk,0η0} }

2. HE1 = {H : ηH ∈ span {Tαk,βlMβl,0η0} }
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Case Prototype operator Operator representation

B1 f 7→ TαkMγm(f · q̂) f 7→ Df ·bq,α,γc
B4 f 7→Mγmf · q̂ f 7→

∑
m,l cm,lMγmf · q̂

B6 f 7→ Tαk(f · q̂) f 7→
∑

k,l ck,lTαk(f · q̂)
D1 f 7→ TαkMβmf · q̂ f 7→

∑
k,m ck,mTαkMβmf · q̂

D3 f 7→ Tα(k−n)q̂ · TαkMβnf f 7→
∑

k,n ck,nTα(k−n)q̂ · TαkMβnf

E1 f 7→MβlTαk(q̂ · f) f 7→
∑

k,l ck,lMβlTαk(q̂ · f)

E2 f 7→ Tαkq̂ · TαkMβkf f 7→
∑

k,l ck,lTαkq̂ · TαkMβkf

E3 f 7→ Tαkq̂ · TαkMβmf f 7→
∑

k,m ck,mTαkq̂ · TαkMβmf

F1 f 7→Mβlq̂ · Tαkf f 7→
∑

k,l ck,lMβlq̂ · Tαkf
F2 f 7→ TαkMβmf · Tα(m−k)q̂ f 7→

∑
k,m ck,mTαkMβmf · Tα(m−k)q̂

F3 f 7→ TαkMβlf · Tα(k−n)q̂ f 7→
∑

k,l ck,lTαkMβlf · Tα(k−n)q̂

G2 f 7→ T−αlq̂ ·Mβmf f 7→
∑

l,m cl,mT−αlq̂ ·Mβmf

G3 f 7→ T−αmq̂ ·Mβmf f 7→
∑

l,m cl,mT−αmq̂ ·Mβmf

H1 f 7→ Tαkf · Tα(k−l)q̂ f 7→
∑

k,l ck,lTαkf · Tα(k−l)q̂

H3 f 7→ T−αkf · q̂ f 7→
∑

k,l ck,lT−αkf · q̂

Table 6: Different operator classes induced by η0 = δ0(t)q(ν).

are identifiable with any f ∈ S(R) such that f |
[−α

2
,
α
2

)
= 1.

Proof. We consider first Case E3. The condition |αβ| > 1 is required to satisfy
the requirement for Riesz basis sequences of translates [Chr03]. Let us assume
that supp q̂ ⊂ [−α

2
, α

2
). A typical representative of H is

H : f 7→
∑
k,m

ck,mTαkq̂ · TαkMβmf.

We pick as identifier f ∈ S(R) such that f |
[−α

2
,
α
2

)
= 1. Then for a finitely sup-
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ported sequence c = {ck,m} we have

‖
∑
k,m

ck,mTαkq̂ · TαkMβmf‖2
2 =

=
∑
k,m

∑
k′,m′

ck,mck′,m′〈Tαkq̂ · TαkMβmf, Tαk′ q̂ · Tαk′Mβm′f〉

=
∑
k,m

∑
k′,m′

ck,mck′,m′

∫
Tαkq̂(t)TαkMβmf(t)Tαk′ q̂(t)Tαk′Mβm′f(t)dt

=
∑
k,m

∑
k′,m′

ck,mck′,m′δ0(k − k′)
∫ α

2

−α
2

|q̂(t)|2Mβmf(t)Mβm′f(t)dt

=
∑
k

∑
m,m′

ck,mck,m′

∫ α
2

−α
2

Mβmq̂(t)Mβm′ q̂(t)dt

� ‖c‖`2

The norm equivalence in the last line is due to {Mβmq̂ : m ∈ Z} being a Riesz basis
sequence (2.1). The latter is the Fourier transform of a subsequence of the Riesz
basis sequence {Tβmq} (follows from the initial condition on q in the assumption
of the Proposition). Hence the evaluation map Φf is bounded and has a bounded
inverse.

A similar proof holds for case E1. �
A fifth special case is η0 = Vg1g2(t, ν). The operator corresponding to η0 is

H0f = g2〈f, g1〉 (4.52)

We see that the operator classes resulting in cases B1, D1 and F for such η0 are
never identifiable.

Proposition 4.38 Let η0 = Vg1g2(t, ν) for some g1, g2 ∈M1(Rd). Then the oper-
ator class given by

1. HB1 = {H : ηH ∈ span {Tαk,γmη0} };

2. HD1 = {H : ηH ∈ span {Tαk,βmMαk,0η0} };

3. HF1 = {H : ηH ∈ span {Tαk,βlMαk,βlη0} }.

is not identifiable.

Proof.

1. The underlying lattice is listed as case B1 from Figure 2. A typical repre-
sentative of the associated operator family is

Hf =
∑

ck,m〈f,Mγmg1〉Tαkg2.
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which can be rewritten as

Hf =
∑
k

(∑
m

ck,m〈f,Mγmg1〉

)
Tαkg2. (4.53)

The expression in brackets in (4.53) is the convolution of the sequences
ck(m) and {〈f,Mγmg1〉}m. This representation shows immediately that the
coefficients ck,m are not recoverable, so this case is not identifiable.

2. The underlying lattice is from case D1 from Figure 2. The action of the
operator H on f we shall rewrite as follows

Hf = g2〈
∑

ck,mTαkMβmf, g1〉 = 〈c, Cg1,α,βf〉`2g2 (4.54)

because 〈TαkMβmf, g1〉 is basically the action of the analysis operator Cg1,α,β
on f . It is easy to see that c, hence H is never recoverable from the value
on the right-hand side of (4.54).

3. This lattice is from case F1 from Figure 3. A typical representative of the
operator family is

Hf =
∑

ck,l〈f, T−αkg1〉Mβlg2,

and rewrite it as
Hf =

∑
l

(∑
k

〈f, T−αkg1〉
)
Mβlg2. (4.55)

The expression on the right-hand side of (4.55) is similar to (4.54). Similar
to 2. we conclude that the operator class is not identifiable.

�
Note: Overall for such η0 it is more difficult to have initial conditions as

required by (III) for g1, g2.
As a conclusion to Section 4 we summarize the results as

Theorem 4.39 There exists no universal constant c such that the operator family
HΛ is identifiable if D2(Λ) < c.

The examples cited show that identification of an operator class can not be
dependent on a single parameter such as 2-density. For different time-frequency
index sets Λ there exists different constants. Furthermore, there exist families
(Proposition 4.12) where identification can not be expressed in terms of a 2-density
at all. For other families, extra conditions must be imposed to make the problem
well-posed (Proposition 4.15)
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5 Localization, HAPs and Gabor molecules

Section 4 showed that the answer to the question: ‘Under which conditions is
identification of a given family HΛ possible?’ depends very much on the inter-
play between the criteria listed as (I)-(V) in Section 4. Here we approach the
identification problem from a different angle. We shall use the assumptions

(I) Λ = AZ2 ∈ R4, A is a 4× 2-matrix;

(II) η0 ∈M1
v (R2), v a polynomial weight of degree strictly greater than 2;

(III) (η0,Λ) is a Riesz basis sequence.

(IV) There exists c > 0, such that D2(Λ) < c =⇒ HΛ is identifiable.

Our goal in Section 5 is to explore the admissible range of constants c for (IV)
in order for the identification problem to be well-posed in the most general sense.
In other words, we search for the broadest range of constants C such that the
requirement (III) holds.

Let η0 ∈M1
s (R2) with associated Hilbert-Schmidt operator H0. Let

Λ =

( a1 a2
b1 b2
c1 c2
d1 d2

)
Z2

Assume (III), that is,

{Ta1m+a2n,b1m+b2nMc1m+c2n,d1m+d2nη0 : m,n ∈ Z} (5.1)

is a Riesz basis sequence in L2(R2). Then the operators H with spreading functions
belonging to the closed linear span of the above family (5.1) have the following
series representation

H =
∑
m,n

cm,nHm,n

in terms of the Riesz basis of operators

Hm,n = T(a1−d1)m+(a2−d2)nMc1m+c2nH0Td1m+d2nM(b1−c1)m+(b2−c2)n.

We noted already that if H = {H ∈ spanHm,n} is identifiable with f , then
{Hm,nf} is a Riesz basis sequence.

The numerical examples from Sections 4.4 and 4.5 showed that the relevant
density measure of the system, used in conjuction with Lemma 4.7, arises from
the density of lattice

Λ′ =

(
a1 − d1 a2 − d2

c1 c2

)
Z2. (5.2)

The lattice Λ′ parametrizes the time-frequency shifts T(a1−d1)m+(a2−d2)nMc1m+c2n

which appear in Hm,n.
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Note: In fact, the quantities d(Λ) and D(2)(Λ) are not strictly correlated with
respect to 1, i.e. it might happen that d(Λ) < 1, D(2)(Λ) > 1 and vice versa. We
provide an example of this using (4.2). First, set a1 = d1 = 0.5, a2 = 0, d2 = 1, c1 =

c2 = 1 + ε, with ε > 0. Then d(Λ) = 1
1+ε

< 1, and D(2)(Λ) =
(

0.25 + (1+ε)2

2

)− 1
2
.

For ε <
√

3
2
− 1, D(2)(Λ) > 1.

Second, set a1 = 10, a2 = 9.5, d2 = 1, d1 = c1 = c2 = 0.5. Then d(Λ) = 2 > 1,

but D(2)(Λ) = (5.252 + 0.5× 0.25)−
1
2 < 1.

The relevant 2-density for the study of the operator sequence {Hm,n} is there-
fore d(Λ) = |Λ′|−1, which does not involve the coefficients b1, b2 from the formula
for the 2-density of Λ. That is why, without loss of generality, we can assume that
b1 = b2 = 0 for the remainder of our discussion. Then the 2-density of the original
system of points according to (4.2) is given by

D(2)(Λ) = ((a1c2 − a2c1)2 + (a1d2 − a2d1)2 + (c1d2 − c2d1)2)−
1
2 . (5.3)

In order to analyze operator families with spreading functions with expan-
sions in terms of the family like (5.1) we use the toolbox of Gabor molecules and
localization of function sequences [BCHL06a], [BCHL06b].

We recall the most important definitions from this theory. The first one will
be the notion of a density of a point set with respect to a map.

Let I be a countable index set, and G = αZd × βZd, and a : I → G a
map. For every n ∈ N we denote the box with size n centered at j ∈ G by
Sn(j) := {g ∈ G : ‖g−j‖∞ ≤ n

2
}. The cardinality of Sn(j) is independent of j since

G is a group. In general lim
n→∞

|Sn(j)|
nd

= 1
(αβ)d

(which is the Beurling density of G).

Let In(j) be the pre-image of Sn(j) under a, in other words In(j) = a−1(Sn(j)).

Definition 5.1 The lower and upper densities of I with respect to a are

D−a (I) = lim inf
n→∞

inf
j∈G

|In(j)|
|Sn(j)|

,

D+
a (I) = lim sup

n→∞
sup
j∈G

|In(j)|
|Sn(j)|

.

(5.4)

These quantities can be 0 or infinite. When D−a (I) = D+
a (I), I is said to have

uniform density.
When I is a lattice Λ ⊂ R2d we set a : Λ→ G to be the rounding function:

a(x, ω) = (bx
α
c, b y

β
c), (x, ω) ∈ Λ.

In this case there is a relation between the a-density and the Beurling density (4.1)
of Λ, namely

D−(Λ) =
|D−a (Λ)|
(αβ)d

D+(Λ) =
|D+

a (Λ)|
(αβ)d

(5.5)
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For the computation of the above formulas we refer to [BCHL06a], p. 113.
Localization can be defined in terms of decay of the inner products of one

sequence G with members of another sequence E . In fact, these inner products
{〈g, ea〉 : g ∈ G, e ∈ E} are entries of a cross-Grammian matrix associated to the
triple (G, a, E). Its rows and columns can be required to possess a certain decay.
Unlike [BCHL06a], we will be interested only in row decay. Gabor molecules are
a particular example of this definition as we shall see in Definition 5.5.

Definition 5.2 (Localization, [BCHL06a], Def. 3) Let G = {fi : i ∈ I}, E =
{ej : j ∈ G} be sequences in a Hilbert space H, and a : I → G an associated map.
(G, a, E) is `p-localized (1 ≤ p <∞) if∑

j∈G

sup
i∈I
|〈fi, ej+a(i)〉|p <∞.

Equivalently, there must exist c ∈ `p(G) such that for all i ∈ I, j ∈ G,

|〈fi, ej〉| ≤ ca(i)−j.

Furthermore, the cross-Grammian matrix of (G, a, E) has `p-row decay if for every
ε > 0 there exists a non-negative integer Nε such that for all i ∈ I∑

j∈G\SNε (a(i))

|〈fi, ej〉|p < ε.

Note: The localization of G as defined by Definition 5.2 depends on the choice of
E and a. In fact `p-localization implies `p-row decay of the the cross-Grammian
matrix associated to the triple (G, a, E), as shown by the following simple compu-
tation.

Let ε > 0 be given. Assume (G, a, E) is `p-localized. Fix i ∈ I. Choose Nε

such that ∑
k∈G\SNε (0)

cpk < ε.

Then a simple change of variables in the sum produces∑
j∈G\SNε (a(i))

|〈fi, ej〉|p ≤
∑

j∈G\SNε (a(i))

cpa(i)−j

≤
∑

k∈G\SNε (0)

cpk < ε

Next comes a generalized version of Homogeneous Approximation Proper-
ties [CBH99], [RS95], which are characteristic of Gabor frames. The generalized
HAP does not involve the structure of Gabor frames.

Definition 5.3 (Dual HAP [BCHL06a], Def. 4) Let G = {fi : i ∈ I}, E =
{ej : j ∈ G} be sequences in a Hilbert space H such that E is a frame for H with
dual frame Ẽ = {ẽj : j ∈ G} and a : I → G an associated map.

67



1. (G, a, E) has the weak dual HAP if for every ε > 0 there exists a non-negative
integer Nε such that for all i ∈ I ε > 0,

dist(fi, span {ẽj : j ∈ SNε(a(i))}) < ε.

2. (G, a, E) has the strong dual HAP if for every ε > 0 there exists a non-
negative integer Nε such that for all i ∈ I ε > 0,

‖fi −
∑

j∈SNε (a(i))

〈fi, ej〉ẽj‖H < ε.

Note: If E is a frame for H, then the strong dual HAP implies the weak HAP
([BCHL06b], Theorem 10). If the reference system E is a frame for H, then `p-row
decay implies the strong dual HAP ([BCHL06b], Theorem 10).

These Harmonic Approximation Properties will allow us to put bounds on
frame densities as stated in Theorem 3, [BCHL06a].

Theorem 5.4 ([BCHL06a]) Assume G = {fi : i ∈ I} is a Riesz basis sequence
in H, and E = {ej : j ∈ G} is a frame for H. If (G, a, E) has the weak dual HAP,
then

0 ≤ D−a (I) ≤ D+
a (I) ≤ 1.

These results recapture the fact that whenever the reference system E is a frame for
H and (G, a, E) is `p-localized, then we can apply Theorem 5.4 to make estimates
about the a-density of the index set of the Riesz basis sequence G.

We have noted already that in order for the system of operators HΛ, where

Λ =

(
a1 b1 c1 d1

a2 b2 c2 d2

)T
Z2 (5.6)

to be identifiable with f , the system of functions G = {Hm,nf : m,n ∈ Z}, with

Hm,nf = T(a1−d1)m+(a2−d2)nMc1m+c2nH0Td1m+d2nM(b1−c1)m+(b2−c2)nf, (5.7)

must constitute a Riesz basis sequence in L2(R) as required by condition (IV).
Then a result such as Theorem 5.4 will allow us to put bounds on the quantity
d(Λ) = |Λ′|−1 (5.2), which is the index set of this G.

We are free to choose a reference system E = (γ1, αZ × βZ) generated by
the Gaussian γ1. This system is a Gabor frame for L2(R) for any α, β > 0 with
αβ < 1 [Lyu92], [SW92]. It remains to show that (G, a, E) is `p-localized for some
p. For that we will show that G is a set of Gabor molecules.

Definition 5.5 (Gabor molecules) Let J ⊂ R2 and fj ∈ L2(R), j ∈ J be
given. Then {fj : j ∈ J } is a set of Gabor molecules if there exists an envelope
function Γ ∈ W (C, `2) (Definition 2.4) such that for all j ∈ J , z ∈ R2, |Vγ1fj(z)| ≤
Γ(z − j).
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Properties of Gabor molecules are presented and discussed in [BCHL06a]. If the
set of functions is actually of the form π(j)fj, the following equivalent definition
may be used: {π(j)fj : j ∈ J } is a set of Gabor molecules if there exists an
envelope function Γ ∈ W (C, `2) such that for all j ∈ J , z ∈ R2d, |Vγ1fj(z)| ≤ Γ(z).

The restriction ηH ∈ M1
m(R2d) assures that the action of the operator H onto

distributions from M∞(Rd) acts in a sense as a localizer. Among other things, the
study [BCHL06b], [BCHL06a] lists criteria on determining the density of J if the
set of Gabor molecules {fj : j ∈ J } is a frame, orthonormal basis or a Riesz basis
for L2(Rd). To apply this resault we have to demonstrate that the set G in (5.7)
is actually a set of Gabor molecules. This is the purpose of

Lemma 5.6 Let H0 be a prototype operator with spreading function η0 ∈M1
v (R2),

v a polynomial weight of degree strictly greater than 2, f ∈M∞(R). Then

G = {T(a1−d1)m+(a2−d2)nMc1m+c2nH0Td1m+d2nM(b1−c1)m+(b2−c2)nf : m,n ∈ Z}

is a set of Gabor molecules.

Proof. We shall show that for f ∈M∞(R), the set G as given by (5.7) (whose
elements we denote for short T(a1−d1)m+(a2−d2)nMc1m+c2nfm,n) consists of Gabor
molecules. Under the given assumptions Lemma (4.4) shows that

|fm,n(x)| = |H0Td1m+d2nM(b1−c1)m+(b2−c2)nf(x)| = O(|x|−s),
|Ffm,n(ξ)| = |FH0Td1m+d2nM(b1−c1)m+(b2−c2)nf(ξ)| = O(|ξ|−s)

(5.8)

where s > 2. To prove our claim we must show that there exists Γ ∈ W (C, `2),
such that |Vγ1fm,n(z)| < Γ(z) for all m,n ∈ Z and all z ∈ R2 - see Definition 10
from [BCHL06b]. Following the reasoning and computations from have shown in
Proposition 4.13, in particular (4.40), we see that

|Vγ1fm,n(z)| = |〈fm,n, TxMωγ1〉|
≤ φ1 ∗ γ1(x)‖f‖M∞

|Vγ1fm,n(z)| = |〈Ffm,n,MxTωγ1〉|
≤ φ2 ∗ γ1(ω)‖f‖M∞

(5.9)

where φ1(x) = O(|x|−s), φ2(ω) = O(|ω|−s), s > 2. Hence, if we set

h(y) = ‖f‖M∞ max{φ1 ∗ γ1(y), φ1 ∗ γ1(−y), φ2 ∗ γ(y), φ2 ∗ γ(−y)},

we obtain that
Vγ1fm,n(z) ≤ h(max{|x|, |ω|}) = h(‖z‖∞)

and |h(z)| = O(|z|−s), s > 2. This means that there exists a constant c such that

|Vγ1fm,n(z)| ≤ c · h(|z|)

Then we can bound this function h by some Γ ∈ W (C, `2) (see Definition 2.4) and
obtain the necessary decay. Thus, the set G consists of Gabor molecules. �
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Lemma 5.7 Let H0 be a prototype operator with spreading function η0 ∈M1
v (R2),

v a polynomial weight of degree greater than 2, f ∈M∞(R). If the system

G = {T(a1−d1)m+(a2−d2)nMc1m+c2nH0Td1m+d2nM(b1−c1)m+(b2−c2)nf : m,n ∈ Z}

which is associated to the sampling set Λ is a Riesz basis sequence, then d(Λ) ≤ 1.

Proof. Lemma 5.6 shows that G is a set of Gabor molecules. Assume that G
is a Riesz basis sequence. We choose α, β > 0 such that αβ < 1 and employ as
a reference system E = (γ1, αZ × βZ), which is a Gabor frame for L2(R). The-
orem 8a from [BCHL06b] shows that (G, a, (γ1, αZ × βZ)) is `2-localised. Hence,
(G, a, (γ1, αZ×βZ)) has the weak dual HAP. Theorem 5.4 and (5.5) in combination
allow us to conclude that

1 ≥ D+
a (Λ) = (αβ)D+

B(Λ). (5.10)

However, the upper Beurling density of the index set of G, D+
B(Λ), equals simply

d(Λ). Since (5.10) holds for any 0 < αβ < 1, then necessarily d(Λ) ≤ 1. �
Lemma 5.7 is used to demonstrate the following:

Theorem 5.8 If the system of operators HΛ arising from an index set Λ (5.6)
and prototype spreading function from M1

v (R2), v a polynomial weight of degree
greater than 2 is identifiable, then the 2-density of Λ must be less than

√
2.

Proof. Lemma 5.7 shows that under the given assumptions, HΛ is identifiable
implies that d(Λ) ≤ 1. This means in terms of the formula for d(Λ) that |(a1 −
d1)c2 − (a2 − d2)c1| ≥ 1. In other words, |(a1c2 − a2c1) + (c1d2 − c2d1)| ≥ 1. Then
by Cauchy-Schwarz inequality:

(a1c2 − a2c1)2 + (c1d2 − c2d1)2 ≥ 1

2
|(a1c2 − a2c1) + (c1d2 − c2d1)|2 ≥ 1

2
.

This implies by the formula for 2-density that D2(Λ) ≤
√

2. The bound is attained
for coefficients satisfying for instance c1a2 = c2a1, a2c1 − c2a1 = d1c2 − d2c1. �
In other words, we have demonstrated the existence of a lower bound C in

Theorem 5.9 Let HΛ = {H : ηH ∈ span (η0,Λ)}, where η0 ∈ M1
v (R2) is a

prototype spreading function, v a polynomial weight of degree greater than 2, and
Λ a 2-dimensional time-frequency index set inside R4. If D2(Λ) >

√
2, then the

operator family HΛ is not identifiable with f ∈M∞(R).

Remark : This value of C is a universal constant. For some Λ, C may have a lower
value.

70



References

[BCHL06a] R. Balan, P. Casazza, C. Heil, and Z. Landau. Density, overcom-
pleteness and localization of frames. I. Theory. J. Four. Anal. Appl.,
12(2):105–143, 2006.

[BCHL06b] R. Balan, P. Casazza, C. Heil, and Z. Landau. Density, overcomplete-
ness and localization of frames. II. Gabor systems. J. Four. Anal.
Appl., 12(3):309–344, 2006.

[CBH99] O. Christensen, Deng. B., and C. Heil. Density of gabor frames. Appl.
Comp. Harm. Anal., 7:292–304, 1999.

[Chr03] O. Christensen. An Introduction to Frames and Riesz bases.
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