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Abstract:
The classical sampling theorem states that a band-limited
function can be reconstructed by its values taken at suffi-
ciently dense grid. Recently, sampling theorem for func-
tions has been generalized to so-called operator sampling,
namely, operator identification in view of sampling theory.
We generalize the uniform operator sampling to irregular
version which shows that the sampling set is not necessar-
ily uniformly distributed. We also develop multi-channel
operator sampling for overspread operators.

1. Notations

The operator class considered here is the class of Hilbert-
Schmidt operators. Hilbert-Schmidt operator H is defined
by a bounded linear operator on L2(Rd) which can be rep-
resented as an integral operator

Hf(x) :=
∫

κH(x, t)f(t)dt

=
∫

κH(x, x− t)f(x− t)dt a.e.

with kernel κH ∈ L2(R2d). Then H is equivalently ex-
pressed by

Hf(x) =
∫

σH(x, ξ)f̂(ξ) e2πix·ξdξ

=
∫ ∫

ηH(t, ν)MνTtf(x)dtdν

=
∫

hH(t, x)f(x− t)dt a.e.

where σH , ηH and hH are Kohn-Nirenberg symbol,
spreading function and time-varying impulse response of
H , respectively, and Tt and Mν are translation and modu-
lation operators, respectively, that is, Ttf(x) = f(x − t)
and Mνf(x) = e2πixνf(x).
The linear space of Hilbert-Schmidt operators
HS(L2(Rd)) is a Hilbert space when it is given the
Hilbert space structure of L2(Rd) with

〈H1,H2〉HS := 〈κH1 , κH2〉L2 .

Note that

‖H‖HS = ‖κH‖L2 = ‖hH‖L2 = ‖σH‖L2 = ‖ηH‖L2 .

An operator class H ⊆ HS(L2(Rd)) is identifiable if all
H ∈ H extend to a domain containing some so–called
identifier f ∈ S′0(R) with

A‖H‖HS ≤ ‖Hf‖L2 ≤ B‖H‖HS for all H ∈ H.
(1..1)

If we can choose f in (1..1) to be a tempered distribution
supported on a discrete set, then we say that H permits
operator sampling.
For any compact set S ⊆ R2d, we define the operator
Paley-Wiener space by

OPW (S) := {H ∈ HS(L2(Rd)) : supp ηH ⊆ S}.
Note that any H ∈ OPW (S) with S compact extends to
a bounded linear operator H : S′0(Rd) −→ L2(Rd) [1],
[3]. Then our goal is to find the lower bound A in (1..1),
as an upper bound always exists given by B = ‖f‖S′0 . In
what follows, we use the notation A(f) ³ B(f) if there
exist c and C > 0 independent of the object f in a given
class such that

cA(f) ≤ B(f) ≤ CA(f).

2. Uniform sampling of Hilbert-Schmidt op-
erators

We recall a uniform sampling for operators in the operator
Paley-Wiener space [4].

Theorem 2..1 For Ω, T, T ′ > 0 and 0 < ΩT ′ ≤
ΩT ≤ 1, choose ϕ ∈ PW ([−( 1

T − Ω
2 ), 1

T − Ω
2 ]) with

ϕ̂ = 1 on [−Ω
2 , Ω

2 ] and r ∈ L∞(R) with supp r ⊂
[−T + T ′, T ] and r = 1 on [0, T ′]. Then any H ∈
OPW ([0, T ′]×[−Ω

2 , Ω
2 ]) permits operator sampling as

‖H‖HS =
√

T‖H
∑

n∈Z
δnT ‖L2

and operator reconstruction is possible by means of

hH(t, x) = r(t)T
∑

n∈Z
(H

∑

k∈Z
δkT )(t+nT )ϕ(x−t−nT ).

We remark that the results in [2] and [3] are based on the
uniform sampling and rely on the properties of the Zak
transform. Here, we consider orthonormal basis expan-
sions based on Fourier series for a generalization to irreg-
ular sampling.



3. Irregular sampling in Operator Paley-
Wiener spaces

Considering a frame expansion rather than orthonormal
basis expansion, we obtain more general irregular sam-
pling theorems for Hilbert-Schmidt operators.
Given an operator class H, a sequence Λ = {λk}k∈Z in R
is said to be a set of sampling forH, if for some {ck}k∈Z ∈
l∞(Z), we have

∑
k∈Z ckδλk

∈ S′0(R) and
∑

k∈Z ckδλk

identifies H.
In the following we let Λ = {λk}k∈Z, λk+1 > λk for all
k ∈ Z.

Theorem 3..1 If Λ is uniformly discrete, then a nec-
essary condition for Λ being a set of sampling for
OPW ([0, T ]×[−Ω

2 , Ω
2 ]) is D−(Λ) ≥ Ω and a sufficient

condition is D−(Λ) > Ω and λk+1 − λk ≥ T .

Theorem 3..2 Let Λ be a set of sampling for
OPW ([0, T ]×[−Ω

2 , Ω
2 ]) and let {e−2πiλkξ}k∈Z be a

Riesz basis for L2[−Ω
2 , Ω

2 ], then λk+1 − λk ≥ T .

Example 3..3 Let Λr = {λk}k∈Z be given by λk = k
for k 6= 0 and λ0 = r, r ∈ R. The set Λr is a set of
sampling for PW ([− 1

2 , 1
2 ]) if and only if r /∈ Z \ {0}.

To see this, note that as {e2πikξ}k∈Z is a Riesz basis for
L2[− 1

2 , 1
2 ], so is {e2πikξ}k 6=0 ∪ {e2πirξ} if r /∈ Z \ {0}.

By Theorem 3..2, Λr = {λk}k∈Z is a set of sampling for
OPW ([0, 1]×[− 1

2 , 1
2 ]) if and only if r = 0.

Note that the condition λk+1 − λk ≥ T for
OPW ([0, T ]×[−Ω

2 , Ω
2 ]) in Theorem 3..2 is not necessary

if {e−2πiλkξ}k∈Z is not a Riesz basis but a frame for
L2[−Ω

2 , Ω
2 ].

4. Multi-channel operator sampling

It has been shown that underspread operators can be iden-
tifiable by single channel output [2, 3]. In this section we
develop multi-channel sampling for overspread operators.
In other words, overspread operators can be measured by
multiple channel outputs.

Theorem 4..1 For H ∈ OPW (S) where S ⊆
[0, N ]×[−M

2 , M
2 ] for some M, N ∈ N, H is recovered

from the MN identifiers {∑n∈Z e2πijn/MNδ n
M
}MN−1

j=0 ,
that is,

‖H‖2HS =
1

M2N

MN−1∑

j=0

‖H(
∑

n∈Z
e2πijn/MNδ n

M
)‖2.

Alternatively, if we consider periodic nonuniform samples
for delta-trains, then we obtain the following theorem.

Theorem 4..2 For H ∈ OPW (S) where S ⊆
[0, N ]×[−M

2 , M
2 ] for some M, N ∈ N, H is recovered

from MN identifiers {∑n∈Z δnN+αj}MN
j=1 by

‖H‖2HS ³
MN∑

j=1

‖H(
∑

n∈Z
δnN+αj )‖2

where 0 ≤ αj < N for all 1 ≤ j ≤ MN and αi 6= αj for
i 6= j.
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