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ABSTRACT

We derive a criterion on the measurability / identifiability of Multiple-Input Multiple-Output
(MIMO) channels based on the size of the so-called spreading support of its subchannels. Novel
MIMO transmission techniques provide high-capacity communication channels in time-varying en-
vironments and exact knowledge of the transmission channel operator is of key importance when

trying to transmit information at a rate close to channel capacity.

Keywords: Underspread operators, Multiple-Input Multiple-Output channels, spreading function,
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1. INTRODUCTION

The recovery of information from a signal that has traveled through a communications channel
requires knowledge of — or at least some information on — the transmission channel at hand.
In applications such as mobile telephony, neither the location of the subscriber nor the changing
environment through which information is transmitted is known a-priori. To combat this prob-
lem, a pilot signal is send prior to information transmission with the hope that the corresponding
channel output supplies the receiver with the measurements that are needed to invert the channel
operator. The inverse of the channel operator allows the receiver to recover the information from

the subsequently send information carrying signals.

In Single-Input Single-Output (SISO) channels, the channel input is considered to be a single
variable function, which, after being transmitted, is distorted by the unknown transmission channel
operator before arriving at the receiver (see [5, 13] and references within). In [14], the existence
of pilot signals which identify linear SISO channel operators was shown to depend on the size of

the spreading support of the channel operator. That is, it was shown that a channel operator is
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identifiable by the channel output corresponding to an appropriately chosen input signal if the a-
priori known spreading support has area (Jordan content) less than one, while a channel operator
cannot be identified by a single input/output pair if the area of the spreading support is larger than
one (and nothing else is known of the channel operator). Loosely speaking, the size of the spreading
support of an operator represents the amount of time—frequency dispersion that the channel inflicts
on the transmission signal. Too much time—frequency dispersion cannot be resolved by a single
channel output. Fortunately, channel operators with spreading support area much smaller than one,
often called slowly time—varying or underspread operators, are the norm in mobile communications.
The results in [14] described above were conjectured in the 1960s by Kailath [8] and Bello [1]. See
[9] and [14] for some historical background on the channel identification problem for slowly time—

varying channels and for further applications of identification theorems for underspread operators.

Multiple transmit and receive antenna methods have been developed to obtain high capacity
wireless channels (see [5, 12, 13, 18] and references within). Methods which achieve high capacities
often rely on the precise knowledge of the channel at the receiver and/or the transmitter (see [5],
pp 298).

In such MIMO channel setups, N signals are transmitted by N antennas simultaneously. On
the receiver side, M antennas record channel output signals that represent the superposition of the
N input signals, each individually distorted depending on the path the signal has travelled from
its transmitting antenna to the receiving antenna. Consequently, a linear MIMO channel operator
can be modelled by a matrix of N-M SISO channel operators. It maps a vector of N transmission

signals to M channel output signals.

In this paper, we extend the SISO results from [14] to linear MIMO channels. That is, we show
that MIMO channel operators permit identification by one vector of input signals if at each of the
receiving antennas the following condition holds: the sum of the areas of the N spreading supports
of the subchannels leading to the receiving antenna is less than one. Conversely, we show that if
the sum of the N spreading areas of the subchannels leading to one of the receiving antennas is

larger than one, then identification is not possible.

For simplicity, we assume throughout this paper that the N-M subchannels within a MIMO
channel are independent of each other. That is, information obtained on one of the N-M subchannels
does not carry any information on another subchannel in the MIMO setup. The realistic assumption
that the vicinity of the transmit antennas and the vicinity of the receive antennas lead to a dependent

channel ensemble should allow for a relaxation of the measurability criterion given here.



Modern methods in time—frequency analysis, such as those involving Feichtinger’s algebra and
modulation spaces, have been used in [9, 15, 14] to streamline the analysis of operators with com-
pactly supported spreading functions. Using these methods comes at the price of necessitating
non-standard terminology when formulating results. Here, we bypass these methods in order to
state results in terms of the better known Hilbert—Schmidt operators and tempered distributions.
Further, the approach chosen here leads to a generalization of the results in [14] in the SISO case

as well.

Section 2 is devoted to preliminaries and notation. We state our main result as Theorem 3.2 in

Section 3. The result is then proven in Section 4 and Section 5

2. PRELIMINARIES AND NOTATION

The space of complex valued Lebesgue integrable functions on d-dimensional Euclidean space R? is

denoted by L'(R?). The Fourier transform fof fe LY(RY) is the continuous function
for= [s@erdn, 5 eRe

where R is the dual group of R¢, which, aside of notation, is identical to R

The space of square integrable functions L?(IR?) consists of those Lebesgue measurable functions

Hmp:(ﬂﬂwwﬁé<m

L*(R?) is a Hilbert space with inner product

which satisfy

mw:/ﬂmﬁwafweﬁﬁﬂ

In case of vector valued functions f = (f1,..., fn) € L2(R%)Y we set accordingly

1Fllee =

N
> I fall2
n=1

For f € L*(RY)N L*(R?) we have ||f||L2 = || fllz2. In fact, the Fourier transform on L!(R?) N L?(R?)

extends to a unitary operator on the Hilbert space L?(R?).

The set of Schwartz class functions S(R) C L?(R) on R consists of all infinitely differentiable
functions which satisfy

P (f) = sup |xlf(k)(x)| <oo, k,/leN,
z€eR



where f*) denotes the k-th derivative of f. S(R) is a Frechét space whose metric is defined using the
seminorms py, k,l € N. Hence, f, — f in S(R) if and only if py,(f, — f) — 0 for all k,l € N. The

elements in the dual space S'(R) of bounded functionals on S(R) are called tempered distributions.

The usefulness of S(R) and S’(R) in harmonic analysis stems in part from the fact that the
Fourier transform defines a bijective isomorphism on S(R). Using duality, we can extend the
Fourier transform on S(R) to the space S'(R) of tempered distributions. Since S’(R) contains

constant functions, Dirac’s delta § : f — f(0), and Shah distributions 111, = > _, d4n, Where

neZ
Ona = Tnad and a > 0, it is justified to write 111, = L—llJ_I_L;.

a

Similarly to the Fourier transform, the time shift operator Ty, t € R?, given by T} f(x) = f(x —t)
and the modulation operator M,,, w € R%, M, f(x) = 2™ f(z) are unitary operators on L2(R%)
and bijective isomorphism on S(R) and §'(R) (equipped with the weak-* topology). Note that M,
is also called frequency shift operator since m = waA. Further, we refer to w(\) = n(t,v) = T M,
for A\ = (t,v) € RIxRY as time—frequency shift operator.

The set HS(L*(R)) of Hilbert-Schmidt operators on L*(R) consists of those linear operators on
L?(R) which satisfy

Hi(x) = / kn(e, ) f(y)dy, feSR), 1)

for kg € L*(R?) [3, 4]. In fact, the density of S(R) in L*(R) together with (Hf,g) = (kg,g ®
f) implies that (1) extends to a bounded operator on L?*(R). Note further, that HS(L?*(R)) is
a Hilbert space with inner product (Hy, Hy)ys = (kmu,,kn,) and corresponding norm. Hilbert—
Schmidt operators are compact operators on L?(R). Note that some Hilbert—Schmidt operators can

be extended to act on larger subsets of &'(R) than L*(R), a fact that will use later in this paper.

Every Hilbert—Schmidt operator can be expressed as a superposition of time and frequency shift
operators. In fact, for H with kg € L'(R?) N L?(R?), we set

nu(t,v) = //{H(x,x —t)e ™ dy,  a.e. v E R.
It is easy to see that in this case

el = llkulle = 1 H]ms, (2)

implying that the spreading function ng € L2(R><]1§) can be defined for any Hilbert—Schmidt op-

erator H, and thereby extending (2) to all Hilbert-Schmidt operators'. As mentioned above, we

!The spreading function of an Hilbert-Schmidt operator, or, more general, of a pseudodifferential operator, is the
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have

1= [tz avie = [ na(or(ay (3)

where the operator valued integral in (3) is understood weakly, that is, H is defined via

(Hf.g) = / / nir(t,v) / T f (o — ) g(@)de dtdy = (i, Vyg), (4)

where the short-time Fourier transform Vg of g € L*(R) with respect to f € L*(R) is given by
Vigltr) = [ glo)e e 0z = da

and satisfies Vg € L2(RxR) [7].

To avoid double indices, we shall write at times n(H) in place of ny and, similarly, x(H) in place

of Ryg.

We denote by HS(L?(R))M*N the space of N-input, M-output MIMO channels whose N-M
subchannels are Hilbert—Schmidt operators on L*(R) [6]. The operator space HS(L?*(R))"*V is

equipped with norm

M N ) Hyy -+ Hin
J#] e = oSS [ e H=(; | )eﬂsm»w?

m=1 n=1 Hpypy o+ Hun

Hyy -+ Hin

Further, the spreading function ng = n(H) of H = ( ) € HS(L*(R))M*N and the

Ha - Hun
spreading support of H are defined componentwise, that is, we have

n(Hi1) -~ n(Hin)
n(H) = : : € L*(RxR)M*¥,
n(Hyr) - n(HuN)

and
supp n(H11) - supp n(Hin)

supp 1(H) = : : C (RxR)M*N,

supp n(Has1) -+ supp n(Hy )

Our identifiability result for MIMO channels considers operator classes of the form

Hs = {H e HS(L*(R)M*N : supp n(H) C s}, S C (RxR)M*N

symplectic Fouriertransform of the operators Kohn—Nirenberg symbol. Consequently, the theory of pseudodifferential
operators with compactly supported spreading functions coincides with the theory of pseudodifferential operators

with bandlimited Kohn—Nirenberg symbols.
2Tt is easy to see that HS(L?(R))V*N = HS(L*(R)™N).
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To avoid pathological cases, we shall only consider Hg where S is the cartesian products of so called

Jordan domains.

DEFINITION 2.1. A Jordan domain M C RxR is a bounded set whose boundary s a Lebesgue zero

set.

Clearly, our restriction to Jordan domains is not relevant to applications such as those in com-
munications engineering. The following useful characterization of Jordan domains is well known.

It is discussed in detail in [10].

LEMMA 2.2. If M is a Jordan domain, then its Lebesgue measure u(M) satisfies

(M) = sup{u(U):U C M and U € Uiy, for some K,L € N, L prime }
inf{u(U) : U 2 M and U € Uk, for some K,L € N, L prime }.

where for K, L € N we set Ry = [0,

J
UKL:{U(RKL+ (2 n’LK)>: mj,anZ,JEN}.

x [0, &1 and

3. STATEMENT OF RESULTS

The domain of Hilbert—Schmidt operators with compactly supported spreading function can be
extended to include classes of tempered distributions (see Theorem 4.2 in [15]). For example, using
(4), it is easy to see that any Hilbert—Schmidt operator with compactly supported spreading function
maps Lil,, a € R", to a function in L*(R). In fact, a simple computation in [9] shows that for
S=[-33]x[-3,3] C RxR we have

272

|H1iiy|| 2wy = [[H|lzs, H € Hs.

DEFINITION 3.1. An operator class H C HS(L*(R))M*N is identifiable if there exists f € S'(R)Y
and positive A, B, with

AllH|lus < |Hf|lz2 < B||Hl|[us for H € H.

In short, an operator class H is identifiable if there is f with the property that the induced map
O H — L2<R)N, H— Hf
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is bounded and stable, that is, bounded above and below.

THEOREM 3.2. Let S = (S,) C (RXHA%)MXN be the cartesian product of Jordan domains in RxR
and let

Hg = {H e HS(L2(R)M*Y . supp n(H) C s}.

N
LIfY  p(Swn) <1 for allm € {1,..., M}, then Hs is identifiable.
=1

N
2. If Z p(Spn) > 1 for some m € {1,..., M}, then Hg is not identifiable.

n=1

4. PROOF OF THEOREM 3.2, PART !

Theorem 4.1 reduces Theorem 3.2, part 1, for SISO channels (M = N = 1) to a question on the

linear independence of columns of the following matrices: for any L-periodic sequence ¢ = {¢ }rez
we set A(c) = [Ag(c) Ai(c) -+ Ag_1(c)] € CEIXL with Ag(c) = (cppp ™ 1PTR/I)-1 e C7E,

THEOREM 4.1. Let ¢ = {ci}rez be a sequence with period L and f = Z ik € S'(R). Further,
k

set

U= O(RKL+ 73 =

J=1

where Ry, = [0, =] x [0, X].

)), mj,n; € Z,J €N,

Then f identifies Hy if and only if the columns in A(c) with column indices in {m;L+n;}; are

linearly independent.

Clearly, this result is only applicable if the cardinality |J| of J satisfies |J| < L since A(c) has

at most L linear independent columns. This requirement is equivalent to p(U) < |[J| 5 < 1.
If L is prime, then |J| < L is also sufficient for the existence of an identifier for a SISO Channel[lo]:

THEOREM 4.2. If L is prime then there exists ¢ € CL such that any set of L columns of A(c) is

linearly independent.

Proof of Theorem 3.2, Part 1.
N
We choose S = (S,,,) C (RXI/E\\E)MXN which satisfies Z,u(Smn) < 1. Since all S,,,, are assumed

n=1
to be Jordan domains, there exists K, L € N, L prime, so that for each \S,,, exists U,,, € Uk with
N

Sn € U,,n and Zu(Umn)<1f0rm:1,...,M.

n=1



Clearly, Hg C Hywith U = (U,,,) C (RXI@)M *N implies that the identifiability of Hg follows

from the identifiability of Hy which we shall prove now.

All U,,,,, are bounded, hence, we can choose W > 0 so that
Uy C B(0) = {||(t, V)||oo = max{[t],|v|} < W} form=1,...,M, n=1,...,N.

For L and K chosen above, Theorem 4.2 allows us to choose an L—periodic sequence c¢ so that any

set of L columns from A(c) is linearly independent. We set

fn=m(0, (n—1)2W) chmodLé% forn=1,...,N,

keZ
and claim that f = (f1,..., fv)? identifies Hy.

To see this, note that the choice of W implies that T(o,(n—1)20)Upn 0 Ti0,(n~1)200\ Uiy = 0
for all n # n" and m = 1,...,M. For U,, = U7]:7:1 To,n-12w)\Umn, m = 1,..., M, we have
w(Uy,) = i\f:u(Umn) < 1, and, by Theorem 4.1, f; identifies Hy,, € HS(R) for m =1,..., M, that
is, there eq;:iéts A, B > 0 such that for all H € Hy,,, m =1,..., M we have

AllH | rs = Allnullze < 1H fillz < Bl H| us. (5)

For H € Hy we set g = (g1,...,9m) = Hf andcomputeformzl,...,]\/[,

N
n=1

S / 0 (Ho 0 (0, (n—1)2W)) (A) w(A) 1 dA
— /(Zn(Hmn)()\—(O, (n—l)2W))> m(A) fidA.

Since supp T(O,(n71)2W)77(Hmn) - (O,(n71)2W)Umn - Um and

M( supp (0, (n—1)2w) 1 ( Hmn ) 0 SUpp Lo, (n'—1)2w) 7 ( Hrnt) ) =0

foralln #n' and all m =1,..., M, we can apply (5) to obtain

2
ZT (=120 (Hinn) _AZZ”?? ) |72

lgmllZ > A*

n=1 2
and
HQH%Q Z Hgm”L2 >A2ZZH77 mn HL2 —A2||H||HS
m=1n=1
The upper bound involving B follows in the same manner. 0

8



5. PROOF OF THEOREM 3.2, PART 2

N
We shall now show that the condition Z p1(Smn) <1, m=1... M, is necessary for the identifia-

n=1
bility of Hg, S = (Spmn)-
Without loss of generality, we assume a Multiple-Input Single-Output (MISO) scenario, that
is, we consider M = m = 1 and write S,, = Sy, and H,, = H,,. In fact, if there there exists S in
N
the MIMO case with Z,u(SmOn) > 1 for mg € {1,..., M} and Hg identifiable, then defining S’

n=1

by S/ = Sim.n would lead to a contradiction of Theorem 3.2, part 2, in the MISO case.

The proof of Theorem 3.2, part 2, is organized as the corresponding proof in [15]. The crux is to
N

show that operators in the class Hg with Z 1(Sy) > 1 carry to many, in time and frequency tightly

n=1
packed, degrees of freedom, that is, too much information to be embedded in a stable manner in a

single output signal.
N
To see this, we shall fix S with Z w1(S,) > 1. For this S, we construct a bounded and stable

n=1

synthesis (information embedding) map E : [o(Z?) — Hs where [o(Z?) is equipped with the [?(Z?)-
norm, and a bounded and stable analysis (information recovery) operator C' : L*(R) — [%(Z?) with

the property that all compositions
CodroE: h(Z*) — (2%, feSRY,

are not stable. The stability of £ and C' implies that the boxed-in operators ®5 : Hg — L*(R),

N
f € 8'(R)N, must not be stable, showing that Hg is not identifiable if Z wu(S,) > 1.

n=1

Before proving Theorem 3.2, part 2, we state three lemmas, some of whose proofs can be found
in [15]. Lemma 5.1 concerns the conjugation of Hilbert—Schmidt operators by time—frequency shifts.
In Lemma 5.2 we construct a prototype operator which is later used to construct a Riesz bases for
its closed linear span in Hg, that is, a family of Hilbert-Schmidt operators { Hy; }x ez for which the
map

E: *(2*) — HS(L*(R))
{cutriez = Dpiez ritry
is well defined, bounded, and stable. Lemma 5.3 generalizes the fact that m x n matrices with
m < n have a nontrivial kernel and, therefore, are not stable, to operators acting on [?(Z?). In

fact, the bi-infinite matrices M = (my j); jezz considered in Lemma 5.3 are not dominated by its



diagonal m;; — which would correspond to square matrices — but by a slanted diagonal m; ;,

j €72 with A > 1.

LEMMA 5.1. For P € HS(R) with spreading function np € LQ(RXI@) set P = M,T, . PT.M_,, €
HS. Then ns = €™ P M,y Tipe)np and P e HS(R).

LEMMA 5.2. Fiz A > 1 with 1 < M < u(S) and choose even functions ny,ns € S(R) with values in
[0,1] and

1 for|t| < 532 1 for|v| < &
771 (t) _ 20K and 7”2(V) _ 2\L
0 for|t| > % 0 for|v| > %

The operator P € Hp,, defined by np = n1 @ 12 has the properties:

a) The operator family

{MAKIC T%m—%l P T%l M%anKk } (6)

k1, m,n€EZ
is a Riesz basis for its closed linear span in the Hilbert space of Hilbert-Schmidt operators HS(R).

b) For f € S'(R), there exists Cy, Ly € N and dy,dy : R — R which decay rapidly at infinity with
|PT,M,f(x)| < Crdi(z)(1+ ||(y,w)])™, x€R,

and
\PT,Mof(€)] < Crda(€)(1+ [|(y,)]lo)™, € €R.

Proof. (a) See [9].

(b) For f € S(R), we compute
Pfz) = / / o ()1 ()27 F( — 4) v dt — / (s — £ (x — £) dt = my * (i f),

and, therefore, f’? (&) =m(&) - 7]2*]?(5). The rapid decay and smoothness of 7; together with the
fact that suppmn, compact and 7, smooth implies that ﬁtf and, therefore, Pf is well defined for
f € S'(R). In fact, we can conclude that ﬁf, and, therefore, Pf € S(R) for f € S'(R).

Further, we obtain for f € S(R) and £ € R that

(PT- AP = |5 [ mle ) ML)y

= RO [(F, M, Teeom)| = ()|

= ()] [(M, LT, Tem)
" "

Vi f(§ = w,y)
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The weak-* density of S(R) in S'(R) extends the equality above to f € S’(R). Theorem 11.2.3 in
7] provides us now with C%, L', € N and

[(PT_y Mo f) (&) RO Vi F (€ —w,w)| < C}\ﬁl( ONL+ lyl + 1€ — w)™r

< CHRE] (L + [yl + €] + o))
< CHREONI+IENT (L + [yl + |w)™F < da(€)(1 + 1y w)llee)™,

where dy = C' 211 |71(€)] (1 + €))% is rapidly decaying.

Similarly, we conclude that for f € S(R) and x € R we have

PEAMA@] = | s = ohe) T (5
- |<MwTy(ﬁ2Txnl>> f>| - |V;7V2Tm771f(y7w)|

Within the proof of Theorem 11.2.3 in [7], the existence of Cy, Ly € N are given with Cp > 7%,
Ly > L, and

PT_, M f(2)] = Vst f(9.0)] < Cp max sup |f"

Tm 1 ) oo Lf'
m,n<Lyg teR atan nl( )| ( + H(y w)H )

Note that since 72,71 € S(R), each sup,.g ]t"gt—:ﬁngm(t)], m,n < Ly, decays faster than any
polynomial. This implies that also dy(z) = maxun<r, Super " 2T (t)] also decays faster

than any polynomial. 0

LEMMA 5.3. Given M = (my ;) : I*(Z*) — [*(Z*). If there exists a polynomial p of degree L € N

and a monotonically decreasing function w : Rf — RS with w(z) = o (x*(L”)) satisfying

mye 1 < w3 = jllse) P(lillse)s A" = llee > Ko

for some constants A\ > 1 and Ky > 0, then M s not stable. The proof of Lemma 5.3 is included

in the appendix.
N
Now all pieces are in place to prove necessity of the condition Z 1(Sy) < 1 for the identifiability

n=1

of Hs, S = (Smn)-
Proof of Theorem 3.2, part 2.

Fix § = (S,) with 3" u(S,) > 1. Without restriction of generality, we shall assume that
S, € Uy for some K, L € Nand alln=1,..., N, and that S, NS,y = @) for n # n’. Hence, there
exists J = {0,1,2,...,J —1} € N so that S = |J_, S, = Uies (RKL—i— (%, ngLK))7 (mj,n;) #
(mj,nj) for j # j’. We have u(Rk1) = 1, and, since p(S) = 25:1 wu(S,) > 1, we have J > L.
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Fix f = (f1,..., fa) € S'(R)N. Choose \, 1, m2, P, Cy = max, Cy,, Ly = max, L;,, and to
Cy and Ly corresponding d; and dsy according to Lemma 5.2. For n =1,..., N define

Jn:{je{o,...,J—l}: RKL+(%,%)QSH}.

The synthesis operator E : [(Z?) — Hg mentioned above is given by

E Okl = Ok lj+j — E E Okilj+j U MAKkT1m+)\LlPT ALlMKn 0Kk
k,leZ j3=0

where
N th position if j € Jp,
W) HS(R) — HSR)Y, H o H-(1y,(), . 1y () =(0rr. 0. H.0, - 0) .

Since

Mg To an) PTos, M }
{ L S U AL P

is a Riesz basis for its closed linear span in Hg C HS(R), we have that

WJ) My T, o, PT oy, Mxk, }
{ ( ) KmJ+Kl Kl TN MKk k€T, jeT

is a Riesz basis for its closed linear span in HS(R)". We conclude that F is bounded and stable.

To construct a stable analysis operator C, we choose the Gaussian gy : R — Rt, z +— e~

Y

and note that Lyubarski [11] and Seip and Wallsten [16, 17] have shown that { My, Ty go} is a frame

. 2 4
whenever a'b’ < 1.2 Since )\2K’><—§ = )\4§ = u)(\S)

C: L2(R) — 2(72), f {(f, MAQK,CT%IQ@}M

is bounded and stable.

For simplicity of notation, set « = K and 3 = +=. Let us now consider the composition
)
W(z2) & mse P oxmr) S 12(72)

{one} — Eloww} — Elogw}f = {{(E{oww} Fo MyzawThepr o) by -

We set f; = f, whenever j € J,, and note that the bi-infinite matrix

M = (mk’,l’,kz,l”> = <mk:’,l’,k:,lJ+j> = << Myax Tm; gy P T s M%,Mk fis MyeawThegy go)) ,

3For background on frame theory see [2, 7].
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" =1J + j, represents the operator C' o ®¢ o F with respect to the canonical basis of [*(Z?), since
J—1
<C odpol {Uk,lJ+j}> = (DD orirss Maan T ngur £ Tonorr Mo fis Mizarw Thzpr go )

kU
’ k1l j=0
J—1

- Z Z( Mk Tmi 355 P T-xpis M%,,\ak fis MyeawTh2p0 90 )Okig+j
kil j=0

J—1
= Z Z M1t k1J+5 Ok lJ+j -
kil j=0
In order to use Lemma 5.3 to show that M, and, therefore, C'o ®; o E is not stable, we have to
obtain bounds on the matrix entries of M. Lemma 5.2, part b, together with the rapidly decaying

function

J-1
di=Cp Y Tri g
=0

will provide us with these bounds. In fact, for k,1,k",l' € Z, we have

|mk’,l',k,l”| = |mk/,l’,k,lJ+j|

= ‘<M,\akTm+,\51JPT—A55J M%,Mk I M)\Qak’T)\2ﬂl’gO>‘

< (Tagreq (T g ’P Toxsis Mg o i ) s Drprgo)
< i go AB = 1) (14 [|(ABL, @ — Aak)|l0)™,
and
mk/,l',k,l"| = ’mk’,l’,k,lJ-&-j‘

= ‘(T)\ak Mf"jTLmu (PT g M%,,\ak Fi ) ThaawM_x2p090)
(Toak | (P T-xp1s M”j er i1
< dy * goAa(AK — k) (1 + [[(ABLT, =2 — Aatk) o) 2

ﬁJ
In these calculations, we used that go > 0, go = go, and go(—z) = go(z), and the Parseval-Plancherel

IA

T)\2ak’90 >

identity. Since c?h do, and gy decay rapidly, the same holds for dy * go and ds * gg. We set
w(xr) = max {51 % go(ABx), dy * go(=AGBx), do* go(Aax), do * go(—)\ax)},
and choose a polynomial p of degree Ly which satisfies

(1 +H(A61Jﬁ—J—Aak>H>Lfép(!l(k,wuoo), j=1,....J,

and obtain [my p | < w(max{|A\K' — k|, [N’ —[}) p(|(k,])||) with w = o(z™") for n € N.
Lemma 5.3 implies that M is not stable, and therefore C'o @ o ¥ and thus ®; are not stable. [
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6. APPENDIX
Proof of Lemma 5.3
Without loss of generality, we may assume p(x) = (1+z)~. First, we show that if w : Ry — Ry

with w(z) = o (z7*?) is monotonically decreasing, then

K" Y KDY kw(k) — 0 as K — o (7)

K>Ki k>K

This limit is proven using the Riemann integral criterium for sums. To this end, we pick v € Cy(R™)

with w(z) < v(z) 2=+ and observe that

YK kwk)? < > K Y kw(k)?

K>K1+2 k>K K>K1+1  k>K+1

< / a:/ yw(y)? dy dx
K T

< / :c/ yo(y)’y > dy de
K

S / / —2L—-3 dy dl’
K
||U|[K1 00)”2 / —2L—2

< —= rT dx

2L + 2 K
< HU|[K1,OO)||?>O /OOI—2L—1 de
- 2L + 2 K

9]7c1,00)|I36 o2 —2L
< = =o(K .
S SLeLrolr Tl
Since ||v](k,,00)|[o0 — 0 as K7 — o0, (7) follows.

[Ml|,2

llzl;2

Now, we shall use (7) to show that inf ¢ (z2){ } = 0. To this end, fix € > 0 and note that

(7) provides us with a K; > K satisfying

(K143 Y K (ka 2) <27° (%)Me?.

K>K; k>K

Set N = [%W and N = (X7 + Ki. Then N < A(/\“;?), and N > M implies AN >
AT+ A+ N and

A
Therefore, (2N +1)2 < (2N + 1)? and the matrix

N N ~
N2K1+—+1>K1+’VX—‘:N

M — aN+1)2 C(2N+1)2

. . e . (
(mjr5) 3 loo <N, [IF]I<N C
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has a nontrivial kernel. We can therefore choose & € C?N*1 with ||Z||; = 1 and M7 = 0. Define

z € lp(Z?) according to x; = T; if [[jllcc < N and x; = 0 otherwise, so by construction we have
|2)iz = 1, and (Mz); = 0 for [|j']le < N.

To estimate (Mz); for ||j']| > N, we fix K > K and one of the 2*([¥] + K) indices j' € Z¢
with ]l = [2] + K. We have [[Af]loc = N + KA and |Af' — jllec = KA > K for all j € Z% with
|l7]lcc < N. Therefore

2

(Mz)[* = ‘ > my e

ll7llec <NV
< lelld D Imggl
[7llec <NV
< Y wlA =l )
7]l 00 <N
< DY (A - dl)?
[7llec <NV
< (VDS wlfll?
7lloc> K

= (N+1)*28 ) " kw(k)®.

k>K
Finally, we compute

1Mzl = ) [(Ma);l

j/ezd

=Y I

[13 o0 > 51+ K1

= 22 > (NP D) kw(k)

5 loo >[5 1+ K1 k217"l oo

< (NP DT KDY kw(k)?
KZ[%PrKl k2K
MKy +2) 2L
6 2

K>[Y+K, k2K

< 20 (ﬁ) (K1 +3)% > K> kwk)?<é

K>[M+K, k2K

and obtain [|[Mz||;2 < €. Since € was chosen arbitrarily and ||z||;2 = 1, we have inf, ¢ (z2){ Hﬁiﬂﬂ} =0
l

and M is not stable. O
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