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Abstract. Boundedness results for multilinear pseudodifferential operators on products of
modulation spaces are derived based on ordered integrability conditions on the short-time
Fourier transform of the operators’ symbols. The flexibility and strength of the introduced
methods is demonstrated by their application to the bilinear and trilinear Hilbert transform.

1. Introduction and motivation

Pseudodifferential operators have long been studied in the context of partial differential equa-
tions [39, 40, 42, 57, 59, 67, 69]. Among the most investigated topics on such operators are
minimal smoothness and decay conditions on their symbols that guarantee their boundedness
on function spaces of interest. In recent years, results from time-frequency analysis have been
exploited to obtain boundedness results on so-called modulation spaces, which in turn yield
boundedness on Bessel potential spaces, Sobolev spaces, and Lebesgue spaces via well estab-
lished embedding results. In this paper, we develop time-frequency analysis based methods in
order to establish boundedness of classes multilinear pseudodifferential operators on products
of modulation spaces.

1.1. Pseudodifferential operators. A pseudodiffrential operator is an operator Tσ formally
defined through its symbol σ by

Tσf(x) =

∫
Rd
σ(x, ξ)f̂(ξ) e2πix·ξdξ,

where the Fourier transformation is formally given by (Ff) (ξ) = f̂(ξ) =
∫
Rd e

−2πix·ξf(x) dx.
Hörmander symbol classes are arguably the most used in investigating pseudodifferential op-
erators. In particular, the class of smooth symbols with bounded derivatives was shown to
yield bounded operator on L2 in the celebrated work of Calderón and Vaillancourt [11]. More
specifically, if σ ∈ S0

0,0, that is, for all non-negative integers α, β there exists Cα,β with

(1.1) |∂αx ∂
β
ξ σ(x, ξ)| ≤ Cα,β,

then Tσ maps L2 into itself.

1.2. Time-frequency analysis of pseudodifferential operators. In [55], J. Sjöstrand de-
fined a class of bounded operators on L2 whose symbols do not have to satisfy a differentiability
assumption and which contains those operators with symbol in S0

0,0. He proved that this class of

symbols forms an algebra under the so-called twisted convolution [30, 34, 55, 56]. Incidentally,
symbols of Sjöstrand’s class operators are characterized by their membership in the modulation
space M∞,1, a space of tempered distributions introduced by Feitchinger via integrability and
decay conditions on the distributions’ short-time Fourier transform [20]. Gröchenig and Heil
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then significantly extended Sjöstrands results by establishing the boundedness of his pseudodif-
ferential operators on all modulation spaces [35].

These and similar results on pseudodifferential operators were recently extended by Molaha-
jloo and Pfander through the introduction of ordered integrability conditions on the short-time
Fourier transform of the operators’ symbols [49]. Similar approaches have been used to derive
other boundedness results of pseudodifferential operators on modulation space like spaces [10].
The approach of varying integration orders of short-time Fourier transforms of, here, symbols
of multilinear operators lies at the center of this paper.

Today, the functional analytical tools developed to analyze pseudodifferential operators on
modulation spaces form an integral part of time-frequency analysis. They are used, for example,
to model time-varying filters prevalent in signal processing. By now, a robust body of work
stemming from this point of view has been developed [18, 35, 36, 37, 54, 60, 61, 63, 66], and has
lead to a number of applications to areas such as seismic imaging, and communication theory
[47, 58].

1.3. Multilinear pseudodifferential operators. A multilinear pseudo-differential operator
Tσ with distributional symbol σ on R(m+1)d, is formally given by

(1.2) (Tσf) (x) =

∫
Rmd

e2πix·(
∑d
i=1 ξi)σ(x, ξ)f̂1(ξ1)f̂2(ξ2) . . . f̂m(ξm) dξ.

Here and in the following we use boldface characters as ξ = (ξ1, . . . , ξm) to denote products of
m vectors ξi ∈ Rd, and it will not cause confusion to use the symbol f for both, a vector of m
functions or distributions f = (f1, . . . , fm), that is, a vector valued function or distribution on
Rd, and the rank one tensor f = f1⊗ . . .⊗ fm, a function or distribution on Rmd. For example,

we write f̂(ξ) = f̂1(ξ1) · . . . · f̂m(ξm), while f̂(ξ) = (f̂1(ξ), . . . , f̂m(ξ)).
A trivial example of a multilinear operator is given by the constant symbol σ ≡ 1. Clearly,

Tσ(f) is simply the product f1(x)f2(x) . . . fm(x). Thus, Hölder’s inequality determines bound-
edness on products of Lebesgue spaces. On the other hand, when the symbol is independent of
the space variable x, that is, when σ(x, ξ) ≡ τ(ξ), the Tσ = Tτ is a multilinear Fourier multipli-
ers. We refer to [2, 3, 17, 32, 48, 50] and the references therein for a small sample of the vast
literature on multilinear pseudodiffrential operators.

One of the questions that has been repeatedly investigated relates to (minimal) conditions
on the symbols σ that would guarantee the boundedness of (1.2) on products of certain func-
tion spaces, see [17, Theorem 34]. For example, one can ask if a multilinear version of (1.1)
exist. Bényi and Torres ([2]) proved that unless additional conditions are added, there exist
symbols which satisfy such multilinear estimates but for which the corresponding multilinear
pseudodifferential operators are unbounded on products of certain Lebesgue spaces. Indeed,
in the bilinear case, that is, when m = 2, the class of operators whose symbols satisfy for all
non-negative integers α, β, γ,

(1.3) |∂αx ∂
β
ξ ∂

γ
ησ(x, ξ, η)| ≤ Cα,β,γ

contains operators that do not map L2×L2 into L1.
Multilinear pseudodifferential operators in the context of their boundedness on modulation

spaces, were first investigated in [6, 7]. Results obtained in this setting have been used to
establish well posedness for a number of non-linear PDEs in these spaces [5, 9]. For example,
and as opposed to the classical analysis of multilinear pseudodifferential operators, it was proved
in [7] that symbols satisfying (1.3) yield boundedness from L2 × L2 into the modulation space
M1,∞, a space that contains L1. The current paper offers some new insights and results in this
line of investigation.
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1.4. Our contributions. Modulation spaces are defined by imposing integrability conditions
on the short-time Fourier transform of the distribution at hand. Following ideas from Mola-
hajloo and Pfander [49], we impose various ordered integrability conditions on the short-time

Fourier transform of a tempered distribution σ on R(m+1)d which is a symbol of a multilinear
pseudodifferential operator. By using this new setting, we establish new boundedness results for
multilinear pseudodifferential operators on products of modulations spaces. For example, the
following result follows from our main result, Theorem 4.1.

Theorem 1.1. If 1 ≤ p0, p1, p2, q1, q2, q3 ≤ ∞ satisfy
1
p0
≤ 1

p1
+ 1

p2
and 1 + 1

q3
≤ 1

q1
+ 1

q2
,

and if for some Schwartz class function ϕ, the symbol short-time Fourier transform

Vϕσ(x, t1, t2, ξ1, ξ2, ν) =

∫∫∫
σ(x̃, ξ̃1, ξ̃2)ϕ(x−x̃)ϕ(ξ1−ξ̃1)ϕ(ξ2−ξ̃2)) e−2πi(xν−t1ξ1−t2ξ2)dx̃ dξ̃1 dξ̃2

satisfies

‖σ‖M(∞,1,1);(∞,∞,1) =

∫
sup
ξ1,ξ2

∫∫
sup
x
|Vϕσ(x, t1, t2, ξ1, ξ2, ν)| dt1 dt2 dν <∞,(1.4)

then the pseudodifferential operator Tσ initially defined on S(Rd)× S(Rd) by

Tσ(f1, f2)(x) =

∫∫
e2πix·(ξ1+ξ2)σ(x, ξ1, ξ2)f̂1(ξ1)f̂2(ξ2) dξ2 dξ1

extends to a bounded bilinear operator from Mp1,q1 ×Mp2,q2 into Mp0,q3. Moreover, there exists
a constant C > 0 that only depends on d, the pi, and qi with

‖Tσ(f1, f2)‖Mp0,q3 ≤ C‖σ‖M(∞,1,1);(∞,∞,1) ‖f1‖Mp1,q1 ‖f2‖Mp2,q2 .

We note that the classical modulation space M∞,1(R3d) can be continuously embedded into

M(∞,1,1),(∞,∞,1)(R3d) implicitly defined by (1.4). Indeed,

‖σ‖M(∞,1,1);(∞,∞,1) =

∫
sup
ξ1,ξ2

∫∫
sup
x
|Vϕσ(x, t1, t2, ξ1, ξ2, ν)| dt1 dt2 dν

≤
∫∫∫

sup
x,ξ1,ξ2

|Vϕσ(x, t1, t2, ξ1, ξ2, ν)| dt1 dt2 dν = ‖σ‖M∞;1 .

As a consequence Theorem 1.1 already extends the main result, Theorem 3.1, in [7].
The herein presented new approach allows us to investigate the boundedness of the bilinear

Hilbert transform on products of modulation spaces. Indeed, in the one dimensional setting,
d = 1, it can be shown that the symbol of the bilinear Hilbert transform

σH ∈M(∞,1,r);(∞,∞,1) \M(∞,1,1);(∞,∞,1)

for all r > 1. Hence, σH 6∈ M∞,1 and existing methods to investigate multilinear pseudodif-
ferential operators on products of modulations spaces are not applicable. Using the techniques
developed below, we obtain novel and wide reaching boundedness results for the bilinear Hilbert
transform on the product of modulation spaces. For example, as a special case of our result, we
prove that the bilinear Hilbert transform is bounded from L2 × L2 into the modulation space
M1+ε,1 for any ε > 0.

The results established here aim at generality and differ in technique from the ground breaking
results about the bilinear Hilbert transformed as obtained by Lacey and Thiele [44, 43, 45, 46].
They are therefore not easily compared to those obtained using “hard analysis” techniques.
Nonetheless, using our results and some embeddings of modulation spaces into Lebesgue space,
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we discuss the relation of our results on the boundedness of the bilinear Hilbert transform to
the known classical results.

The herein given framework is flexible enough to allow an initial investigation of the trilinear
Hilbert transform. Here we did not try to optimize our results but just show through some
examples how one can tackle this more difficult operator in the context of modulation spaces.

1.5. Outline. We introduce our new class of symbols based on a modification of the short-
time Fourier transform in Section 2. We then prove a number of technical results including
some Young-type inequalities, that form the foundation of our main results. Section 3 contains
most of the key results needed to establish our results. This naturally leads to our main results
concerning the boundedness of multilinear pseudodifferential operators on product of modulation
spaces. Section 4 is devoted to applications of our results. In Section 4.1 we specialize our
results to the bilinear case, proving boundedness results of bilinear pseudodifferential operators
on products of modulation spaces. We then consider as example the bilinear Hilbert transform
in Section 4.2. In Section 4.3 we initiate an investigation of the boundedness of the trilinear
Hilbert transform on products of modulation spaces.

2. Symbol classes for multilinear pseudodifferential operators

2.1. Background on modulation spaces. Let r = (r1, r2, . . . , rm) where 1 ≤ ri < ∞, i =
1, 2, . . . ,m. The mixed norm space Lr(Rmd) is Banach space of measurable functions F on Rmd
with finite norm [1]

‖F‖Lr =
(∫

Rd
. . .
(∫

Rd

(∫
Rd
|F (x1, . . . , xm)|r1 dx1

)r2/r1
dx2 . . .

)rm/rm−1

dxm

)1/rm
.

Similarly, we define Lr(Rmd) where ri = ∞ for some indices i. For a nonnegative measurable
function w on Rmd wee define Lr

w(Rmd) to be the space all F on Rmd for which Fw is in Lr(Rmd),
that is, ‖F‖Lr

w
= ‖Fw‖Lr <∞.

For the purpose of this paper, we define a mixed norm space depending on a permutation that
determines the order of integration. For a permutation ρ on {1, 2, . . . , n}, the weighted mixed
norm space Lr;ρ

w (Rmd) is the set of all measurable functions F on Rmd for which

‖F‖Lr;ρ
w

=
(∫

Rd

(∫
Rd

(
. . .
(∫

Rd
|F (x1, x2, . . . , xn)w(x1, x2, . . . , xn)|rρ(1)

dxρ(1)

)rρ(2)/rρ(1)
dxρ(2)

)rρ(3)/rρ(2)
. . . dxρ(n)

)1/rρ(n)

is finite.
Let Mν denote modulation by ν ∈ Rd, namely, Mνf(x) = e2πit·νf(x), and let Tt be translation

by t ∈ Rd, that is, Ttf(x) = f(x− t). The short-time Fourier transform Vφf of f ∈ S ′(Rd) with

respect to the Gaussian window φ(x) = e−‖x‖
2

is given by

Vφf(t, ν) = F
(
f Ttφ

)
(ν) = (f,MνTtφ) =

∫
f(x) e−2πixνφ(x− t) dx .

The modulation space Mp,q(Rd), 1 ≤ p, q ≤ ∞, is a Banach space consisting of those f ∈ S ′(Rd)
with

‖f‖Mp,q = ‖Vφf‖Lp,q =
(∫ (∫

|Vφf(t, ν)|p dt
)q/p

dν
)1/q

<∞ ,

with usual adjustment of the mixed norm space if p = ∞ and/or q = ∞. We refer to [20, 34]
for background on modulation spaces.



SYMBOL CLASSES FOR MULTILINEAR PSEUDO-DIFFERENTIAL OPERTORS 5

In the sequel we consider weight functions w on R2(m+1)d. We assume that w is continuous
and sub-multiplicative, that is, w(x + y) ≤ Cw(x)w(y). Associated to w will be a family of w-
moderate weight functions v. That is v is positive, continuous and satisfies v(x+y) ≤ Cw(x)v(y).

2.2. A new class of symbols. The commonly used short-time Fourier transform analyzes
functions in time1; as symbols have time and frequency variables, we base the herein used short-
time Fourier transform on a Fourier transform that takes Fourier transforms in time variables
and inverse Fourier transforms in frequency variables. We then order the variables, first time,
then frequency. That is, we follow the idea of symplectic Fourier transforms Fs on phase space,

FsF (t, ν) =

∫∫
R(m+1)d

F (x, ξ) e2πi(ξt−xν)dξdx.

For F ∈ S ′(R(m+1)d) and φ ∈ S(R(m+1)d), we define the symbol short-time Fourier transform
VφF of F with respect to φ by

VφF (x, t, ξ, ν) = Fs
(
F T(x,ξ)φ

)
(t, ν) = 〈F,M(−ν,t)T(x,ξ)φ〉

=

∫
Rmd

∫
Rd
e−2πi(x̃ν−tξ̃)F (x̃, ξ̃, )φ(x̃− x, ξ̃ − ξ) dx̃ dξ̃

where x, ν ∈ Rd, and t, ξ ∈ Rmd. Note that the symbol short-time Fourier transform is related
to the ordinary short-time Fourier transform by

VφF (x, t, ξ, ν) = VφF (x, ξ, ν,−t).

Modulation spaces for symbols of multilinear operators are then defined by requiring the sym-
bol short-time Fourier transform of an operator to be in certain weighted Lp spaces. To describe
these, we fix decay parameters 1 ≤ p0, p1, . . . , pm, q1, q2, . . . , qm, qm+1 ≤ ∞, and permutations
κ on {0, 1, . . . ,m} and ρ on {1, . . . ,m,m + 1}. The latter indicate the integration order of the
time, respectively frequency, variables. Put, p = (p1, p2, . . . , pm), q = (q1, q2, . . . , qm) and let w

be a weight function on R2(m+1)d. Then L
(p0,p),κ;(q,qm+1),ρ
w (R2(m+1)d) is the mixed norm space

consisting of those measurable functions F for which the norm

‖F‖
L
(p0,p),κ;(q,qm+1),ρ
w

=
(∫

Rd

(∫
Rd

(
. . .
(∫

Rd

(∫
Rd

(
. . .
(∫

Rd

(∫
Rd

|w(t0, t1, . . . , tm, ξ1, . . . , ξm, ξm+1) F (t0, t1, . . . , tm, ξ1, . . . , ξm, ξm+1)|pκ(0)

dtκ(0)

)pκ(1)/pκ(0)
dtκ(1)

)pκ(2)/pκ(1)
. . . dtκ(m)

)qρ(1)/pκ(m)

dξρ(1)

)qρ(2)/qρ(1)
. . . dξρ(m+1)

)1/qρ(m+1)

is finite. The weighted symbol modulation space M(p0,p),κ;(q,qm+1),ρ
w (R(m+1)d) is composed of

those F ∈ S ′(R(m+1)d) with

‖F‖
M(p0,p),κ;(q,qm+1),ρ

w
= ‖VφF‖

L
(p0,p),κ;(q,qm+1),ρ
w

<∞ .

When κ and ρ are identity permutations, then we denote L
(p0,p),κ;(q,qm+1),ρ
w (R2(m+1)d) and

M(p0,p),κ;(q,qm+1),ρ
w (R2(m+1)d) by L

(p0,p);(q,q0)
w (R2(m+1)d) andM(p0,p);(q,q0)

w (R2(m+1)d), respectively.
The dependence of the norm on the choice of κ, ρ, as well as the advantage of choosing a par-
ticular order will be discussed in Section 2.4.

1For clarity, we always refer to the variables x,y,t as time variables, even though a physical interpretation of
time necessitates d = 1. Alternatively, one can consider multivariate x,y,t as spatial variables.
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For simplicity of notation, we set S(ξ) =
∑m

i=1 ξi. For functions g and components of f in

S(Rd), the Rihaczek transform R(f , g) of f and g is defined by

R (f , g) (x, ξ) = e2πix·(ξ1+...+ξm)f̂1(ξ1) · . . . · f̂m(ξm)g(x) = e2πix·S(ξ)f̂(ξ)g(x).

Multilinear pseudo-differential operators are related to Rihaczek transforms by

〈Tσf , g〉 = 〈σ,R(f , g)〉

a-priori for all functions fi and g in S(Rd) and symbols σ ∈ S(R(m+1)d).
With x± t = x± (t1, . . . , tm) = (x± t1, . . . , x± tm), it can be easily seen that

R (f , g) (x, ξ) = Ft→ξ (f(·+ x)) g(x)

where

Ft→ξ (f(·+ x)) (ξ) =

∫
Rmd

e−2πit·ξf(t+ x) dt.

Lemma 2.1. For ϕ real-valued, ϕ = (ϕ, . . . , ϕ),f = (f1, f2, . . . , fm) ∈ S(Rd)m, and g ∈ S(Rd),

VTA(ϕ⊗ϕ)TA(f ⊗ g)(x,−ξ, t, ν) = Vϕf1(x− t1, ξ1) . . . Vϕfm(x− tm, ξm) · Vϕg(x, ν − S(ξ)).

Moreover, (
V
R(ϕ,ϕ)

R(f , g)
)

(x, ξ, ν, t) = e−2πiξt
(
VTA(ϕ⊗ϕ)TA(f ⊗ g)

)
(x,−t, ν, ξ),

and in particular,

|
(
V
R(ϕ,ϕ)

R(f , g)
)

(x, ξ, ν, t)| = |VTA(ϕ⊗ϕ)TA(f ⊗ g)(x,−ξ,−t, ν)|

Proof. We compute(
VTA(ϕ⊗ϕ)TA(f ⊗ g)

)
(x,−ξ, t, ν)

=

∫
Rmd

∫
Rd
e−2πi(x̃ν+t̃ξ)TA

(
f ⊗ g

)
(x̃, t̃)TA (ϕ⊗ ϕ) (x̃− x, t̃− t) dx̃ dt̃

=

∫
Rd

(∫
Rmd

e−2πit̃ξf(x̃− t̃)ϕ(x̃− x− t̃+ t) dt̃

)
e−2πix̃νg(x̃)ϕ(x̃− x) dx̃

=

∫
Rd

∫
Rmd

f(s)g(x̃)e−2πi(νx̃+ξ(x̃−s))ϕ(s− (x− t))ϕ(x̃− x) dx̃ ds

=

{∫
Rmd

e−2πiξsf(s)ϕ(s− (x− t)) ds
}{∫

Rd
e−2πi(ν+S(ξ))x̃g(x̃)ϕ(x̃− x) dx̃

}
= (Vϕf) (x− t, ξ) (Vϕg) (x, ν + S(ξ)).

Further, (
V
R(ϕ,ϕ)

R(f , g)
)

(x, ξ, ν, t)

=

∫
Rmd

∫
Rd
e−2πi(νx̃+tξ̃)R(f , g)(x̃, ξ̃)R(ϕ, ϕ)(x̃− x, ξ̃ − ξ) dx̃ dξ̃

=

∫
Rmd

∫
Rd
e−2πi(νx̃+tξ̃)F

t̃→ξ̃
(
f(x̃− ·)

)
g(x̃)F

t̃→ξ̃−ξ (ϕ(x̃− x− ·))ϕ(x̃− x) dx̃ dξ̃

=

∫
Rmd

∫
Rd
e−2πi(νx̃+tξ̃)F

t̃→ξ̃
(
f(x̃− ·)

)
g(x̃)F

t̃→ξ−ξ̃ (ϕ(x̃− x− ·))ϕ(x̃− x) dx̃ dξ̃.
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On the other hand, by using Parseval identity we have(
VTA(ϕ⊗ϕ)TA(f ⊗ g)

)
(x, t, ν, ξ)

=

∫
Rd

∫
Rmd

e−2πi(x̃ν+t̃ξ)TA
(
f ⊗ g

)
(x̃, t̃)TA (ϕ⊗ ϕ) (x̃− x, t̃− t) dx̃ dt̃

=

∫
Rd

(∫
Rmd

e−2πit̃ξf(x̃− t̃)ϕ(x̃− x− t̃+ t) dt̃

)
e−2πix̃νg(x̃)ϕ(x̃− x) dx̃

=

∫
Rd

∫
Rmd
F
t̃→ξ̃

(
f(x̃− ·)

)
F−1

t̃→ξ̃

(
e−2πit̃ξϕ(x̃− x+ t− ·)

)
e−2πix̃νg(x̃)ϕ(x̃− x) dξ̃ dx̃.

But,

F−1

t̃→ξ̃

(
e−2πit̃ξϕ(x̃− x+ t− ·)

)
= e−2πit(ξ−ξ̃)F

γ→ξ−ξ̃ (ϕ(x̃− x− ·)) ,

therefore,(
VTA(ϕ⊗ϕ)TA(f ⊗ g)

)
(x, t, ν, ξ) =

e−2πitξ

∫
Rmd

∫
Rd
e2πi(tξ̃−vx̃)F

t̃→ξ̃
(
f(x̃− ·)

)
F
t̃→ξ−ξ̃ (ϕ(x̃− x− ·)) g(x̃)ϕ(x̃− x) dx̃ dξ̃. �

2.3. Young type results. The following results are consequences of Young’s inequality and
will be central in proving our main results. We use the convention that summation over the
empty set is equal to 0.

Lemma 2.2. Suppose that 1 ≤ pk, rk ≤ ∞ for k = 0, 1, . . . ,m and

(A1) pk ≤ rk, k = 1, . . . ,m;

(A2)
k∑
`=1

1

p`
− 1

r`
≤ 1

r0
− 1

pk+1
, k = 0, . . . ,m− 1;

(A3)
m∑
`=1

1

p`
− 1

r`
=

1

r0
− 1

p0
;

then F (x, t) = f(x− t)g(x) satisfies

‖F‖L(r0,r) ≤ ‖g‖Lp0 ‖f‖Lp .

Proof. For simplicity, we use capital letters for the reciprocals of pk, rk, that is, Pk = 1/pk,
Rk = 1/rk, k = 0, . . . ,m. Recalling that summation over the empty set is defined as 0, our
assumptions (A1) – (A3) are simply

(A1) Pk ≥ Rk, k = 1, . . . ,m;

(A2) R0 − Pk+1 ≥
k∑
`=1

P` −R`, k = 0, . . . ,m− 1;

(A3)
m∑
`=0

R` =
m∑
`=0

P`.

Define 1/b1 = B1 = R0 +R1 − P1, and for k = 2, . . . ,m,

1/bk = Bk = Bk−1 +Rk − Pk

= R0 +

k∑
`=1

R` − P`.
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The first application of Young’s inequality below requires that

p1/r0, r1/r0, b1/r0 ≥ 1 and 1/(p1/r0) + 1/(b1/r0) = 1 + 1/(r1/r0).

This translates to R0 ≥ R1, B1, P1 and P1 +B1 = R0 +R1 which is equivalent to

R0 ≥ R1, P1, R0 +R1 − P1.

But, condition (A1) of the hypothesis implies that P1 ≥ R1. Thus we have, R0 ≥ R1, P1 and
P1 ≥ R1, that is, R0 ≥ P1 ≥ R1. Similarly, the successive applications of Young’s inequality
follow by replacing p1, r1, b1, r0 by pk, rk, bk, bk−1, respectively. That is, we require

Bk−1 ≥ Rk, Bk−1 +Rk − Pk, Pk

which is equivalent to Bk−1 ≥ Pk ≥ Rk which follows from (A1).
We shall also use the standard fact that for 0 < α, β, γ, δ <∞,

‖|f |α‖γ
Lβ

= ‖|f |αδ‖
γ
δ

Lβ/δ
,

and set f̃(x) = f(−x). We compute

‖F‖rmLr0,r

=

∫
Rd

(∫
Rd
. . .
(∫

Rd

(∫
Rd
|f1(x− t1) . . . fm(x− tm) g(x)|r0dx

) r1
r0 dt1

) r2
r1 . . .

)rm
dtm

=

∫
Rd

(∫
Rd
. . .
(∫

Rd

(∫
Rd
|f̃1(t1 − x)

(
Tt2 f̃2(x) . . . Ttm f̃m(x) g(x)

)
|r0dx

) r1
r0 dt1

) r2
r1 . . .

)rm
dtm

=

∫
Rd

(∫
Rd
. . .
(∫

Rd

(
|f̃1|r0 ∗ |Tt2 f̃2 . . . Ttm f̃m g|r0(t1)

) r1
r0 dt1

) r2
r1 . . .

)rm
dtm

=

∫
Rd

(∫
Rd
. . .
(∫

Rd

∥∥∥|f̃1|r0 ∗ |Tt2 f̃2 . . . Ttm f̃m g|r0
∥∥∥ r1r0 r2r1
Lr1/r0

dt2

) r3
r2 . . .

)rm
dtm

≤
∫
Rd

(∫
Rd
. . .
(∫

Rd
‖|f̃1|r0‖

r2
r0

Lp1/r0
‖|Tt2 f̃2 . . . Ttm f̃m g|r0‖

r2
r0

Lb1/r0
dt2

) r3
r2 . . .

)rm
dtm

=

∫
Rd

(∫
Rd
. . .
(∫

Rd
‖f̃1‖r2Lp1 ‖|Tt2f2 . . . Ttmfm g|b1‖

r2
b1

L1dt2

) r3
r2 . . .

)rm
dtm

= ‖f1‖rmLp1
∫
Rd

(∫
Rd
. . .
(∫

Rd

(∫
Rd
|f2(x− t2) . . . fm(x− tm) g(x)|b1dx

) r2
b1 dt2

) r3
r2 . . .

)rm
dtm

. . .

≤ ‖f1‖rmLp1 . . . ‖fm−1‖rmLpm−1

∫
Rd

(∫
Rd
|fm(x− tm) g(x)|bm−1dx

) rm
bm−1 dtm

= ‖f1‖rmLp1 . . . ‖fm−1‖rmLpm−1‖|f̃m|bm−1 ∗ |g|bm−1‖
rm
bm−1

L
rm
bm−1

≤ ‖f1‖rmLp1 . . . ‖fm−1‖rmLpm−1‖fm‖rmLpm‖|g|
p0‖

rm
p0

L1

= ‖f1‖rmLp1 . . . ‖fm‖
rm
Lpm‖g‖

rm
Lp0 ,

where each inequality stems from an application of Young’s inequality for convolutions. In the
final step, we used bm = p0 which follows by combining the definition of bm with hypothesis
(A3). �
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Remark 2.3. Observe that if we would add the condition p0 ≤ r0 in hypothesis (A1) of
Lemma 2.2, then (A1) and (A3) would combine to imply pk = rk for k = 0, . . . ,m. Indeed, the
strength of Lemma 2.2 lies in the fact that p0 ≤ r0 and pk = rk for k = 0, . . . ,m are not implied
by the hypotheses. Setting ∆k = 1

pk
− 1
rk

for k = 0, . . . ,m, (A1) in Lemma 2.2 is ∆1, . . . ,∆m ≥ 0

and condition (A3) becomes ∆0 +
∑m

k=1 ∆k = 0, a condition that allows ∆0 to be negative, that
is p0 > r0. In short, all ∆k > 0 contribute to compensate for ∆0 = r0 − p0 being negative.

Let us now briefly discuss condition (A2) in Lemma 2.2. For k = 0, we have 0 ≤ 1
r0
− 1

p1
.

To satisfy condition (A2) for k = 1, we increase the left hand side by ∆1 = 1
p1
− 1

r1
≥ 0, add

to the right hand side the possibly negative term 1
p1
− 1

p2
, and require that the sum on the left

remains bounded above by the sum on the right. For k = 2, we increase the left hand side by
∆2 = 1

p2
− 1

r2
≥ 0 and add to the right hand side 1

p2
− 1

p3
, maintaining that the right hand side

dominates the left hand side. This is illustrated in Figure 1 below.
In the case m = 1, the conditions ∆1 ≥ 0 and ∆0 + ∆1 = 0 from Lemma 2.2 are amended

by the requirement r0 ≤ p1, and, for example, if r0 = 1, p0 = 2, then Lemma 2.2 is applicable
whenever 1 ≥ 1

p1
= 1

r1
+ 1

2 , that is, if 1 ≤ p1 = 2r1
r1+2 .

If m = 2, then ∆1,∆2 ≥ 0 and ∆0 + ∆1 + ∆2 = 0 from Lemma 2.2 are combined with the
condition r0 ≤ p1 and ∆1 ≤ 1

r0
− 1
p2

. It is crucial in what follows to observe that these conditions

are sensitive to the order of the pk and the rk. For example, the parameters r0 = 1, p0 = 2,
r1 = 1 = p1, p2 = 1, r2 = 2 satisfy the hypothesis, while r0 = 1, p0 = 2, r2 = 1 = p2, p1 = 1,
r1 = 2 do not.

Indeed, if for some k, ∆k = 1
pk
− 1

rk
is much smaller than 1

pk
− 1

pk+1
, then we would profit

more from this if k is a small index, that is, the respective summands play a role early on in the
summation.

Below, we shall use this idea and reorder the indices. This allows us to first choose κ(1) =
k1 ∈ {1, . . . , d} with ∆κ(1) = 1

pκ(1)
− 1

rκ(1)
small, and then κ(2) = k2 so that 1

pκ(1)
− 1

pκ(2)
is

large. Clearly, the feasibility of κ(2) also depends on the size of ∆κ(2) = 1
pκ(2)

− 1
rκ(2)

, so finding

an optimal order cannot be achieved with a greedy algorithm. Moreover, note that the spaces
M(p0,p),κ;(q,qm+1),σ and M(p0,p),id;(q,qm+1),id are not identical, hence, we cannot choose κ and ρ
arbitrarily.

0 .5 1 1.5 2 2.5 3 3.5

Figure 1. Depiction of condition (A2) in Lemma 2.2. After adding a pair of
colored fields, the top row must always exceed the lower row, with the lower row
finally catching up in the last step, see Remark 2.3.

Remark 2.4. Note that conditions (A1) and (A3) follow from (but are not equivalent to) the
simpler condition

(A4) 1 ≤ r0 ≤ p1 ≤ r1 ≤ p2 ≤ . . . ≤ rm−1 ≤ pm ≤ rm ≤ ∞.

Equality (A3) can then be satisfied by choosing an appropriate p0 ≥ 1.
The inequalities in (A1) imply that the LHS of (A2) is positive and, hence, always r0 ≤ pk ≤ rk

for all k. Also, (A1) and (A2) necessitate pk ≤ rk ≤ pm+1.
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Similarly to Lemma 2.2, we show the following.

Lemma 2.5. Suppose that 1 ≤ qk, sk ≤ ∞ for k = 1, . . . ,m+ 1 and

(B1) qk ≥ sk, k = 1, . . . ,m;

(B2)

m∑
`=k+1

1

q`
− 1

s`
≥ 1

sm+1
− 1

qk
, k = 1, . . . ,m;

(B3)
m∑
`=1

1

q`
− 1

s`
=

1

sm+1
− 1

qm+1
;

then for G(t, x) = f(t)g(x+ S(t)) we have

‖G‖Ls,sm+1 ≤ ‖f‖Lq ‖g‖Lqm+1 .

Proof. As before, our computations involve the introduction of an auxiliary parameter bk. We
start with a formal computation, namely,

‖G‖sm+1

Lr,sm+1

=

∫
Rd

(∫
Rd
. . .
(∫

Rd
|f1(t1) . . . fm(tm) g(x+ t1 + . . .+ tm)|s1dt1

) s2
s1 . . . dtm

) sm+1
sm dx

=

∫
Rd

(∫
Rd
|f̃m(tm)|sm

(
. . .

∫
Rd
|f̃2(t2)|s2

(∫
Rd
|f̃1(t1)g(x− t1−t2− . . .−tm)|s1dt1

) s2
s1 dt2

) s3
s2 . . .

) sm+1
sm dx

=

∫
Rd

(∫
Rd
|f̃m(tm)|sm

(
. . .

∫
Rd
|f̃2(t2)|s2

(
|f̃1|s1 ∗ |g|s1(x− t2−t3− . . .−tm)

) s2
s1 dt2

) s3
s2 dt3

) s4
s3 . . .

) sm+1
sm dx

. . .

=

∫
Rd

(
|f̃m|sm ∗

(
|f̃m−1|sm−1 ∗

(
. . .
(
|f̃2|s2 ∗

(
|f̃1|s1 ∗ |g(x)|s1

) s2
s1

) s3
s2 . . .

) sm
sm−1

) sm+1
sm dx

=
∥∥∥|f̃m|sm ∗ (|f̃m−1|sm−1 ∗

(
. . .
(
|f̃2|s2 ∗

(
|f̃1|s1 ∗ |g|s1

) s2
s1

) s3
s2 . . .

) sm
sm−1

∥∥∥ sm+1
sm

L
sm+1
sm

≤ ‖|f̃m|sm‖
sm+1
sm

Lqm/sm

∥∥∥(|f̃m−1|sm−1 ∗
(
. . .
(
|f̃2|s2 ∗

(
|f̃1|s1 ∗ |g|s1

) s2
s1

) s3
s2 . . .

) sm
sm−1 ‖

sm+1
sm

Lbm/sm

= ‖fm‖sm+1

Lqm

∥∥∥|f̃m−1|sm−1 ∗
(
. . .
(
|f̃2|s2 ∗

(
|f̃1|s1 ∗ |g|s1

) s2
s1

) s3
s2 . . .

) sm−1
sm−2 ‖

sm+1
sm−1

Lbm/sm−1

. . .

= ‖fm‖sm+1

Lqm . . . ‖f2‖sm+1

Lq2

∥∥∥|f̃1|s1 ∗ |g|s1‖
sm+1
s1

Lb2/s1

≤ ‖fm‖sm+1

Lqm . . . ‖f2‖sm+1

Lq2 ‖|f̃1|s1‖
sm+1
s1

Lq1/s1
‖|g|s1‖

sm+1
s1

Lqm+1/s1

= ‖fm‖sm+1

Lqm . . . ‖f1‖sm+1

Lq1 ‖g‖
sm+1

Lqm+1 .

To justify the first application of Young’s inequality, we require

1
qm
sm

+
1
bm
sm

= 1 +
1

sm+1

sm

,
qm
sm

,
bm
sm

,
sm+1

sm
≥ 1.

Using reciprocals, this is equivalent to

Qm +Bm = Sm + Sm+1, Sm ≥ Qm, Bm, Sm+1,

that is,
Bm = Sm −Qm + Sm+1, Sm ≥ Qm, Bm, Sm+1.
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The subsequent application of Young’s inequality requires

1
qm−1

sm−1

+
1

bm−1

sm−1

= 1 +
1
bm
sm−1

,
qm−1

sm−1
,
bm−1

sm−1
,
bm
sm−1

≥ 1.

Using reciprocals, this is equivalent to

Bm−1 = Sm−1 −Qm−1 +Bm = Sm+1 +

m∑
`=m−1

S` −Q`, Sm−1 ≥ Qm−1, Bm−1, Bm.

In general, for k = 1, . . . ,m− 2, we require

Bm−k = Sm−k −Qm−k +Bm−k+1 = Sm+1 +

m∑
`=m−k

S` −Q`, Sm−k ≥ Qm−k, Bm−k, Bm−k+1,

and finally, for the last application of Young’s inequality, we require

Qm+1 = S1 −Q1 +B2 = Sm+1 +
m∑

`=m−k
S` −Q`, S1 ≥ Q1, Qm+1, B2.

Now, Sk ≥ Qk for k = 1, . . . ,m implies

0 ≤ Sm+1 ≤ Bm ≤ Bm−1 ≤ . . . ≤ B3 ≤ B2 ≤ Qm+1,

hence, it suffices to postulate aside of Sk ≥ Qk for k = 1, . . . ,m the conditions Sk ≥ Bk for
k = 2, . . . ,m and S1 ≥ Qm+1, B2. For k = 2, . . . ,m, we use that

∑m+1
`=1 S` − Q` = 0 implies∑m

`=k S` −Q` = −Sm+1 +Qm+1 −
∑k−1

`=1 S` −Q` in order to rewrite Sk ≥ Bk in form of

Sk ≥ Bk = Sm+1 +

m∑
`=k

S` −Q` = Qm+1 −
k−1∑
`=1

S` −Q`

which is

Qm+1 − Sk ≤
k−1∑
`=1

S` −Q`.

For k = 1, the above covers the condition Qm+1 ≤ S1.
In summary, for k = 1, . . . ,m+ 1 we obtained the sufficient conditions

(B1’) qk ≥ sk, k = 1, . . . ,m

(B2’)
k∑
`=1

1

s`
− 1

q`
≥ 1

qm+1
− 1

sk+1
, k = 0, . . . ,m− 1;

(B3’)

m∑
`=1

1

s`
− 1

q`
=

1

qm+1
− 1

sm+1
.

Forming the difference of (B3’) and (B2’) gives

(B2”)

m∑
`=k+1

1

s`
− 1

q`
≤ 1

sk+1
− 1

sm+1
, k = 0, . . . ,m− 1.

Reindexing leads to

(B2”)

m∑
`=k

1

s`
− 1

q`
≤ 1

sk
− 1

sm+1
, k = 1, . . . ,m,

and adding 1
qk
− 1

sk
to both sides, and then multiplying both sides by -1 gives
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(B2)

m∑
`=k+1

1

q`
− 1

s`
≥ 1

sm+1
− 1

qk
, k = 1, . . . ,m.

�

Remark 2.6. The conditions (B1)–(B3) are similar to those in (A1)–(A3). Indeed, a change
of variable k → m + 1− k, that is, renaming qk = q̃m+1−k and sk = s̃m+1−k, k = 1, . . . ,m + 1,
turns (B2) into

m∑
`=k+1

1

q̃m+1−`
− 1

s̃m+1−`
≥ 1

s̃m+1−(m+1)
− 1

q̃m+1−k
=

1

s̃0
− 1

q̃m+1−k
, k = 1, . . . ,m.

We have
m∑

`=k+1

1

q̃m+1−`
− 1

s̃m+1−`
=

m−k∑
`′=1

1

q̃`′
− 1

s̃`′
,

hence, we obtain for k′ = m− k the conditions

k′∑
`′=1

1

q̃`′
− 1

s̃`′
≥ 1

s̃0
− 1

q̃k′+1
, k′ = 0, . . . ,m− 1.

We conclude that difference between the conditions in Lemma 2.2 and in Lemma 2.5 lies —
aside of naming the decay parameters — simply in replacing ≤ in (A1) and (A2) by ≥ in (B1)
and (B2). Hence, it comes to no surprise that (B1) and (B2) follow from, but are not equivalent
to

(B4) 1 ≤ s1 ≤ q1 ≤ s2 ≤ . . . ≤ qm−1 ≤ sm ≤ qm ≤ sm+1 ≤ ∞.

Moreover, (B1) implies
m∑

`=k+1

1

q`
− 1

s`
≤ 0, and, hence, qm+1 ≥ qk for k = 1, . . . ,m.

2.4. Young type results with permutations. As observed in Remark 2.3, condition (A2)
in Lemma 2.2 and, similarly, (B2) in Lemma 2.5 are sensitive to the order of the pk, rk, qk, and
sk.

To obtain a bound for operators as desired, we may have to reorder the parameters. This
motivates the introduction of permutations κ and ρ. In addition to the flexibility obtained at
cost of notational complexity, we observe that the permutation of the integration order will allow
us to pull out integration with respect to some variables. In fact, setting t0 = x and choosing
j = κ−1(0), we arrive at

‖F‖rκ(m)

L(r0,r);κ

=

∫
Rd

(∫
Rd
. . .
(∫

Rd

(∫
Rd
|f1(t0 − t1) . . . fm(t0 − tm) g(t0)|rκ(0)dtκ(0)

) rκ(1)
rκ(0) dtκ(1)

) rκ(2)
rκ(1) . . .

)rκ(m)

dtκ(m)

=

∫
Rd

(∫
Rd
. . .
(∫

Rd

(∫
Rd

m∏
`=0

|fκ(`)(t0 − tκ(`))g(t0)|rκ(0)dtκ(0)

) rκ(1)
rκ(0) dtκ(1)

) rκ(2)
rκ(1) . . .

)rκ(m)

dtκ(m)

= ‖fκ(0)‖
rκ(m)

L
pκ(0)‖fκ(1)‖

rκ(m)

L
pκ(1) . . . ‖fκ(j−1)‖

rκ(m)

L
pκ(j−1)×∫ (∫

. . .
(∫ (∫

|fκ(j+1)(x− tκ(j+1)) . . . fκ(m)(x− tκ(m)) g(x)|rκ(j)dx
) rκ(j+1)

rκ(j) dtκ(j+1)

) rκ(j+2)
rκ(j+1) . . .

)rκ(m)

dtκ(m).

We can then apply Lemma 2.2 to the iterated integral on the right hand side.
This observation leads us to the following result.



SYMBOL CLASSES FOR MULTILINEAR PSEUDO-DIFFERENTIAL OPERTORS 13

Lemma 2.7. Let κ be a permutation on {0, 1, . . . ,m}, z = κ−1(0), and let 1 ≤ pk, rk ≤ ∞,
k = 0, 1, . . . ,m, satisfy

(A0) pκ(`) = rκ(`), ` = 0, . . . , z − 1;
(A1) pκ(`) ≤ rκ(`), ` = z, . . . ,m;

(A2)
k∑

`=z+1

1

pκ(`)
− 1

rκ(`)
≤ 1

r0
− 1

pκ(k+1)
, k = z, . . . ,m− 1;

(A3)

m∑
`=z+1

1

pκ(`)
− 1

rκ(`)
=

1

r0
− 1

p0
.

Then for F (x, t) = f(x− t)g(x) it holds

‖F‖L(r0,r)κ ≤ ‖g‖Lp0 ‖f‖Lp .

Remark 2.8. Loosely speaking, the decay of a function F (x, t1, . . . , td) in the variables (x, t1, . . . , td)
is given by the parameters (p0, p1, . . . , pd), that is, Lp0-decay in x, Lp1-decay in t1, . . ., Lpd-decay
in td. As we then use the flexibility of order of integration, it is worth noting that Minkowski’s
inequality for integrals implies that integrating with respect to variables with large exponents
last, increases the size of the space.

For example, if q ≥ p, we have

‖F‖L(p,q);(0,1) =
(∫ (∫

|F (x, t1)|pdx
)q/p

dt1

)1/q
≤
(∫ (∫

|F (x, t1)|qdx
)p/q

dt1

)1/p
= ‖F‖L(p,q);(1,0) ,

which implies L(p,q);(0,1) ⊆ L(p,q);(1,0) if q ≥ p, for example, L(1,∞);(0,1) ⊆ L(1,∞);(1,0). This
inclusion is strict in general, for example, choose F (x, t1) = g(x− t1) ∈ L(1,∞);(1,0) \ L(1,∞);(0,1)

for any function g ∈ L1.

Similarly to Lemma 2.7, we formulate the following.

Lemma 2.9. Let ρ be a permutation on {1, . . . ,m + 1}, w = ρ−1(m + 1), and 1 ≤ qk, sk ≤ ∞
be k = 1, . . . ,m+ 1 satisfy

(B0) qκ(`) = sκ(`), ` = w, . . . ,m;
(B1) qρ(k) ≥ sρ(k), k = 1, . . . , w − 1;

(B2)
w−1∑
`=k+1

1

qρ(`)
− 1

sρ(`)
≥ 1

sm+1
− 1

qρ(k)
, k = 1, . . . , w − 1

(B3)
w−1∑
`=1

1

qρ(`)
− 1

sρ(`)
=

1

sm+1
− 1

qm+1
.

Then G(ξ, ν) = f(ξ)g(ν + S(ξ)) satisfies

‖G‖
L(s,sm+1),ρ ≤ ‖f‖Lq ‖g‖Lqm+1 .

3. Boundedness on modulation spaces

When applying Lemmas 2.2, 2.5, 2.7, and 2.9 in the context of modulation spaces, we can use
the property that Mp1,q1 embeds continuously in Mp2,q2 if p1 ≤ p2 and q1 ≤ q2. To exploit this
in full, the introduction of auxiliary parameters p̃ and s̃ is required as illustrated by Example 3.2
below.

Proposition 3.1. Given 1 ≤ p0,p, p̃, q, q̃, qm+1, r0, r, s, sm+1 ≤ ∞ with p ≤ p̃ ≤ r and s, q ≤ q̃.
Let κ be a permutation on {0, . . . ,m} and let z = κ−1(0). Similarly, let ρ be a permutation on
{1, 2, . . . ,m+ 1} and w = ρ−1(m+ 1). Assume
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(1)
k∑

`=z+1

1

p̃κ(`)
− 1

rκ(`)
≤ 1

r0
− 1

p̃κ(k+1)
, k = z, . . . ,m− 1;

(2)
m∑

`=z+1

1

p̃κ(`)
− 1

rκ(`)
≥ 1

r0
− 1

p0
;

(3)
w−1∑
`=k+1

1

q̃ρ(`)
− 1

sρ(`)
≥ 1

sm+1
− 1

q̃k
, k = 1, . . . , w − 1;

(4)
w−1∑
`=1

1

q̃ρ(`)
− 1

sρ(`)
≥ 1

sm+1
− 1

qm+1
.

Let v be a weight function on R2(m+1)d and assume that w0, w1, . . . , wm are weights on R2d such
that

(3.1) v(x, t, ξ, ν) ≤ w0(x, ν + S(ξ))w1(x− t1, ξ1) · . . . · wm(x− tm, ξm).

For ϕ ∈ S(Rd) real valued, f ∈Mp,κ;q,ρ
w (Rmd), and g ∈Mp0,qm+1

w0 (Rd), we have VTA(ϕ⊗ϕ)TA(f ⊗
g) ∈ L(r0,r)κ,(s,sm+1)ρ

v (R2(m+1)d) with

‖VTA(ϕ⊗ϕ)TA(f ⊗ g)‖
L
(r0,r),κ;(s,sm+1),ρ
v

≤ C ‖f1‖Mp1,q1
w1

. . . ‖fm‖Mpm,qm
wm

‖g‖
M
p0,qm+1
w0

,(3.2)

where the LHS is defined by integrating the variables in the index order

κ(0), κ(1), . . . , κ(m), ρ(1), . . . , ρ(m), ρ(m+ 1).

In particular,

‖TA(f ⊗ g)‖
M(r0,r)κ,(s,sm+1)ρ

v
≤ C ‖f1‖Mp1,q1

w1
. . . ‖fm‖Mpm,qm

wm
‖g‖

M
p0,qm+1
w0

.

Note that C depends only on the parameters pi, ri, qi, si and d.

Proof. For simplicity we assume ρ = κ = id and use Lemma 2.2 and Lemma 2.5. The general
case follows as Lemma 2.7 and Lemma 2.9 followed from Lemma 2.2 and Lemma 2.5.

Let f = (f1, f2, . . . , fm), φ = (φ, φ, . . . , φ) and w = (w1.w2. . . . .wm). Then

Vφf = Vφf1 ⊗ Vφf2 ⊗ · · · ⊗ Vφfm,

and by Lemma 2.1, we have

VTA(ϕ⊗ϕ)TA(f ⊗ g)(x,−ξ, t, ν) = Vϕf(x− t, ξ)Vϕg(x, ν − S(ξ)),

where x, ν ∈ Rd, and t, ξ ∈ Rmd.
So, if (3.1) and conditions (2) and (4) above hold with equality, then (A1)–(A3) in Lemma 2.2

and (B1)–(B3) in Lemma 2.5 will hold. Then

‖v(x, t, ξ, ν)VTA(ϕ⊗ϕ)TA(f ⊗ g)(x, t, ξ, ν)‖
L(r0,r),(s,sm+1)(x,t,ξ,ν)

≤
∥∥‖w(x− t, ξ) (Vϕf) (x− t, ξ)w0(x, ν + S(ξ)) (Vϕg) (x, ν + S(ξ))‖Lr0,r(x,t)

∥∥
Ls,sm+1 (ξ,ν)

≤
∥∥‖w(t, ξ) (Vϕf) (t, ξ)‖Lp(t)‖w0(x, ν + S(ξ)) (Vϕg) (x, ν + S(ξ))‖Lp0 (x)

∥∥
Ls,sm+1 (ξ,ν)

≤
∥∥‖w(t, ξ) (Vϕf) (t, ξ)‖Lp(t)

∥∥
Lq(ξ)∥∥‖w0(x, ν + S(ξ)) (Vϕg) (x, ν + S(ξ))‖Lp0 (x)

∥∥
Lqm+1 (ν)

= ‖Vϕf‖Lp,q
w
‖Vϕg‖Lp0qm+1

w0
.
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We now use that p ≤ p̃ and q ≤ q̃ implies ‖f‖M p̃,q̃ . ‖f‖Mp,q , a property that clearly carries
through to the class of weighted modulation spaces considered in this paper. If hypotheses
(2) and (4) hold with strict inequalities, then we can increase p0 to appropriate p̃0 and qm+1

to appropriate q̃m+1 so that (2) and (4) will hold with equalities. The resulting inequalities
involving p̃0 and q̃m+1 then again implies the weaker inequalities involving p0 and qm+1.

�

Example 3.2. The conditions r0 ≤ pk ≤ rk, k = 1, . . . ,m, and
∑m

`=1 1/p` − 1/r` ≥ 1/r0 − 1/p0

do not guarantee the existence of a permutation κ so that also
∑k

`=1 1/pκ(`) − 1/rκ(`) ≥ 1/r0 −
1/pκ(k+1), k = 0, . . . ,m − 1. Indeed, consider for m = 2 the case r0 = 1, p1 = p2 = 10/9,
r1 = r2 = 2, and p0 = 5. It is easy to see that no κ exist that allows us to apply Proposition 3.1
to obtain for these parameters (3.2). Using r0 = 1, p1 = p2 = 10/9, r1 = r2 = 2, r1 = r2 = 2,
we can choose κ(0) = 1, κ(1) = 0, κ(2) = 2, to obtain (3.2) for p0 ≤ 5/3.

Unfortunately, this is again not the best we can do. In fact, we can replace p2 by p̃2 =
15/9 ∈ [10/9, 18/9] = [p2, r2]. This choice allows us to choose for κ the identity which leads to
sufficiency for p0 ≤ 2, which by inclusion also gives boundedness with r0 = 1, p1 = p2 = 10/9,
r1 = r2 = 2, r1 = r2 = 2.

Remark 3.3. Observe those k with r0 > rk must satisfy κ−1(k) < z; possibly there are also k
with r0 ≤ rk and κ−1(k) < z. Importantly, only those k with pk < rk and κ−1(k) > z contribute
to filling the gap between p0 and r0, see Remark 2.3

As immediate consequence, we obtain our first main result.

Theorem 3.4. Given 1 ≤ p0,p, p̃, q, q̃, qm+1, r0, r, s, sm+1 ≤ ∞ with p ≤ p̃ ≤ r′ and q, s′ ≤ q̃.
Let κ be a permutation on {0, . . . ,m} and let z = κ−1(0). Similarly, let ρ be a permutation on
{1, 2, . . . ,m+ 1} and w = ρ−1(m+ 1) and

(1)
1

r0
+

1

p̃κ(k+1)
+

k∑
`=z+1

1

p̃κ(`)
+

1

rκ(`)
≤ k−z+1, k = z, . . . ,m−1;

(2)
1

r0
+

m∑
`=z+1

1

p̃κ(`)
+

1

rκ(`)
≥ m− z +

1

p0
;

(3)
1

sm+1
+

1

q̃ρ(k)
+

w−1∑
`=k+1

1

q̃ρ(`)
+

1

sρ(`)
≥ w − k, k = 1, . . . , w − 1;

(4)
1

sm+1
+
w−1∑
`=1

1

q̃ρ(`)
+

1

sρ(`)
≥ w − 1 +

1

qm+1
.

Let v be a weight function on R2(m+1)d and assume that w0, w1, . . . , wm are weights on R2d such
that

v(x, t,−ξ, ν)−1 ≤ w0(x, ν + S(ξ))−1w1(x− t1, ξ1) · . . . · wm(x− tm, ξm).

Assume that σ ∈ M(r0,r),κ;(s,sm+1),ρ
v . Then the multilinear pseudodifferential operator Tσ de-

fined initially for fk ∈ S(Rd) for k = 1, 2, . . . ,m by (1.2) extends to a bounded multilinear
operator from

Mp1,q1
w1

×Mp2,q2
w2

× . . .×Mpm,qm
wm into Mp0,qm+1

w0
.

Moreover, there exists a constant C so that for all f , we have

‖Tσf‖Mp0qm+1
w0

≤ C‖σ‖
M(r0,r),κ;(s,sm+1),ρ

v
‖f1‖Mp1,q1

w1
. . . ‖fm‖Mpm,qm

wm
.
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Proof. Let fk ∈Mpk,qk
wk , k = 1, . . .m, ϕ ∈ S(Rd), and denote ϕ = (ϕ, . . . , ϕ). Note that

sup{|〈·, g〉|, g ∈Mp′0,q
′
m+1

1/w0
}

defines a norm which is equivalent to ‖ · ‖
M
p0qm+1
w0

for p0, qm+1 ∈ [1,∞] (see, for example, [65,

Proposition 1.2(3)]). Hence, to complete our result on the basis of Lemma 2.1, we estimate for

g ∈Mp′0,q
′
m+1

1/w0
as follows

|〈Tσf , g〉| = |〈σ,R(f , g)〉| = |〈V
R(ϕ,ϕ)

σ, V
R(ϕ,ϕ)

R(f , g)〉
≤ ‖σ‖

M(r0,r),κ;(s,sm+1),ρ
v

‖R(f , g)‖
M

(r′0,r
′)κ,(s′,s′m+1)ρ

1/w

.

Using the conjugate indices r′0, r
′
κ, s
′
m+1, s

′
ρ, it is easy to see that the conditions on the indices

(1)–(4) are equivalent to those in Proposition 3.1. Therefore,

‖R(f , g)‖
M

(r′0,r
′)κ,(s′,s′m+1)ρ

1/w

≤ C‖f1‖Mp1,q1
w1

. . . ‖fm‖Mpm,qm
wm

‖g‖
M
p′0,q
′
m+1

w0

. �

Note that the criteria on time and frequency are separated. Even when it comes to order of
integration, we do not link these, that is, the permutations κ and ρ are not necessarily identical.

Corollary 3.5. If

1 ≤ r′0 ≤ p1 ≤ r′1 ≤ p2 ≤ . . . ≤ r′m−1 ≤ pm ≤ r′m ≤ ∞;

1 ≤ s′1 ≤ q1 ≤ s′2 ≤ q2 ≤ . . . ≤ qm−1 ≤ s′m ≤ qm ≤ s′m+1 ≤ ∞;

and

1

r0
+

m∑
`=1

1

p`
+

1

r`
≥ m+

1

p0
;

1

sm+1
+

m∑
`=1

1

q`
+

1

s`
≥ m+

1

qm+1
;

then the conclusion of Theorem 3.4 for any symbol σ ∈M(r0,r)κ,(s,s0)ρ
v , where κ, ρ are the identity

permutations.

Proof. Note that since κ, ρ are the identity permutations, then z = 0 and ω = m+ 1.

(1)
1

r0
+

1

pk+1
+

k∑
`=1

1

p`
+

1

r`
≤ k + 1, k = 0, . . . ,m−1;

(2)
1

sm+1
+

1

qk
+

m∑
`=k+1

1

q`
+

1

s`
≥ m− k + 1, k = 1, . . . ,m,

follow from the monotonicity conditions. �

4. Applications

In Section 4.1 we simplify the conditions of Theorem 3.4 in case of bilinear operators, that
is, m = 2. The focus of Section 4.2 lies on establishing boundedness of the bilinear Hilbert
transform on products of modulation spaces. We stress that these results are beyond the reach of
existing methods of time-frequency analysis of bilinear pseudodifferential operators as developed
in [7, 6, 8, 9]. Finally, in Section 4.3 we consider the trilinear Hilbert transform.
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4.1. Bilinear pseudodifferential operators. A bilinear pseudodifferential operator with sym-
bol σ is formally defined by

(4.1) Tσ(f, g)(x) =

∫∫
R×R

σ(x, ξ1, ξ2)f̂(ξ1)ĝ(ξ2) dξ1 dξ2.

For m = 2, Theorem 3.4 simplifies to the following.

Theorem 4.1. Let 1 ≤ p0, p1, p2, q1, q2, q3, r0, r1, r2, s1, s2, s3 ≤ ∞. If

1/p1 + 1/r1, 1/p2 + 1/r2 ≥ 1

and one of the following

1

p0
≤ 1

r0
, (using κ = (1, 2, 0) or (2, 1, 0));(1)

1 +
1

p0
≤ 1

r0
+

1

r1
+

1

p1
, r1 ≤ p0, r0, (κ = (2, 0, 1));(2)

1 +
1

p0
≤ 1

r0
+

1

r2
+

1

p2
, r2 ≤ p0, r0, (κ = (1, 0, 2));(3)

2 +
1

p0
≤ 1

r0
+

1

r1
+

1

r2
+

1

max{p1, r′0}
+

1

p2
, r2 ≤ p0, r1, r2 ≤ r0, (κ = (0, 1, 2));(4)

2 +
1

p0
≤ 1

r0
+

1

r1
+

1

r2
+

1

max{p2, r′0}
+

1

p1
, r1 ≤ p0, r1, r2 ≤ r0, (κ = (0, 2, 1));(5)

as well as one of

1

q3
≤ 1

s3
, (using ρ = (3, 1, 2) or (3, 2, 1));(1)

1 +
1

q3
≤ 1

q1
+

1

s1
+

1

s3
, s3 ≤ q3, s1, q

′
1, (ρ = (1, 3, 2));(2)

1 +
1

q3
≤ 1

q2
+

1

s2
+

1

s3
, s3 ≤ q3, s2, q

′
2, (ρ = (2, 3, 1));(3)

2 ≤ 1

max{q1, s′1}
+

1

max{q2, s′2}
+

1

s2
+

1

s3
, s3 ≤ q′2, s2,(4)

2 +
1

q3
≤ 1

max{q1, s′1}
+

1

max{q2, s′2}
+

1

s1
+

1

s2
+

1

s3
, (ρ = (1, 2, 3));

2 ≤ 1

max{q1, s′1}
+

1

max{q2, s′2}
+

1

s1
+

1

s3
, s3 ≤ q′1, s1,(5)

2 +
1

q3
≤ 1

max{q1, s′1}
+

1

max{q2, s′2}
+

1

s1
+

1

s2
+

1

s3
, (ρ = (1, 3, 2)),

hold. Assume that w0, w1, w2, and v are weight functions satisfying

v(x, t1, t2, ξ1, ξ2, ν)−1 ≤ w0(x, ν + ξ1 + ξ2)−1 · w1(x− t1, ξ1) · w2(x− t2, ξ2).

If σ ∈ M(r0,r1,r2),κ;(s1,s2,s3),ρ, the bilinear pseudodifferential operator Tσ initially defined on
S(Rd)×S(Rd) by (4.1) extends to a bounded bilinear operator from Mp1,q1

w1 ×Mp2,q2
w2 into Mp0,q3

w0 .
Moreover, there exists a constant C > 0, such that we have

‖Tσ(f1, f2)‖Mp0,q3
w0

≤ C‖σ‖M(r0,r1,r2),κ;(s1,s2,s3),ρ ‖f1‖Mp1,q1
w1

‖f2‖Mp2,q2
w2

with appropriately chosen order of integration κ, ρ.
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Proof. This result is derived from Theorem 3.4 for m = 2, namely, we establish conditions on the
p0, p1, p2, r0, r1, r2, q1, q2, q3, s1, s2, s3 for the existence of p̃1, p̃2, q̃1, q̃2 satisfying the conditions of
Theorem 3.4.

If κ = (1 2 0) or κ = (2 1 0), then z = 2 in Theorem 3.4 and we require in addition only
1
r0
≥ 1

p0
.

For the remaining cases, we have to show that the conditions above imply the existence of
p̃1 ≥ p1, p̃2 ≥ p2 which allow for the application of Theorem 3.4.

If κ = (1 0 2), we have z = 1, and we seek, with notation as before, P̃1 and P̃2 with

P̃1 ≤ P1; P̃2 ≤ P2;

P̃1 +R1 ≥ 1; P̃2 +R2 ≥ 1;

R0 + P̃2 ≤ 1;

R0 + P̃2 +R2 ≥ 1 + P0;

that is,

1−R1 ≤ P̃1 ≤ P1;

1−R0 −R2 + P0, 1−R2 ≤ P̃2 ≤ P2, 1−R0;(4.2)

which defines a non empty set if and only if P1 + R1 ≥ 1, P2 + R2 ≥ 1, R2 ≥ P0, R0, 1 + P0 ≤
R0 +R1 + P2.

For κ = (0 1 2) we have z = 0 in Theorem 3.4 and we require that some P̃1 and P̃2 satisfy

P̃1 ≤ P1; P̃2 ≤ P2;

P̃1 +R1 ≥ 1; P̃2 +R2 ≥ 1;

R0 + P̃2 ≤ 1; R0 + P̃2 + P̃1 +R1 ≤ 2;

R0 + P̃2 +R2 + P̃1 +R1 ≥ 2 + P0;

that is,

1−R1 ≤ P̃1 ≤ P1, 1−R0;(4.3)

1−R2 ≤ P̃2 ≤ P2;(4.4)

2 + P0 −R0 −R1 −R2 ≤ P̃1 + P̃2 ≤ 2−R0 −R1.(4.5)

Note that (4.3) defines a vertical strip in the (P̃1, P̃2) plane which is non-empty if and only
if P1 + R1 ≥ 1 and R0 ≤ R1. Similarly, (4.4) defines a horizontal strip which is not empty if
we assume P2 + R2 ≥ 1. Lastly, the diagonal strip given by (4.5) is nonempty if and only if
P0 ≤ R2.

To obtain a boundedness result, we still need to establish that the diagonal strip meats
the rectangle given by the intersection of horizontal and vertical strips. This is the case if

the upper right hand corner of the rectangle is above the lower diagonal given by P̃1 + P̃2 =
2 + P0 −R0 −R1 −R2, that is, if

min{P1, 1−R0}+ P2 ≥ 2 + P0 −R0 −R1 −R2,

and if the lower left corner of the rectangle lies below the upper diagonal, that is, if

1−R1 + 1−R2 ≤ 2−R0 −R1,
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which holds if R0 ≤ R2.
Let us now turn to the frequency side. If ρ = (3 2 1) or ρ = (3 1 2), we have w = 1 and an

application Theorem 3.4 requires the single but strong assumption Q3 ≤ S3.
For ρ = (1 3 2) we have w = 2 in Theorem 3.4. To satifiy the conditions, we need to establish

the existence of Q̃1 and Q̃2 satisfy

Q̃1 ≤ Q1; Q̃2 ≤ Q2;

Q̃1 + S1 ≤ 1; Q̃2 + S2 ≤ 1;

S3 + Q̃1 ≥ 1; S3 + Q̃1 + S1 ≥ 1 +Q3.

The existence of such Q̃2 is trivial, so we are left with

1 +Q3 − S1 − S3, 1− S3 ≤ Q̃1 ≤ Q1, 1− S1, .

Note that this inequality is exactly (4.2) with S3 replacing R2, S1 replacing R0 Q3 replacing P0,

and Q1, Q̃1 in place of P2, P̃2.

We conclude that for the existence of Q̃1, we require S3 ≥ S1, Q3, 1 − Q1, and 1 + Q3 ≤
Q1 + S1 + S3.

For ρ = (1 2 3) we have w = 3 in Theorem 3.4. We need to establish the existence of Q̃1 and

Q̃2 satisfy

Q̃1 ≤ Q1; Q̃2 ≤ Q2;

Q̃1 + S1 ≤ 1; Q̃2 + S2 ≤ 1;

S3 + Q̃2 ≥ 1; S3 + Q̃2 + Q̃1 + S2 ≥ 2;

S3 + Q̃1 + Q̃2 + S2 + S1 ≥ 2 +Q3;

that is, choosing

Q̃1 = min{Q1, 1− S1}, and Q̃2 = min{Q2, 1− S2},
we require

1 ≤ min{Q2, 1− S2}+ S3;

2 ≤ min{Q1, 1− S1}+ min{Q2, 1− S2}+ S2 + S3;

2 +Q3 ≤ min{Q1, 1− S1}+ min{Q2, 1− S2}+ S1 + S2 + S3. �

Proof. Proof of Theoremm 1.1 Theorem 1.1 now follows from choosing κ and ρ to be the
identity permutations, and r0 = s1 = s2 =∞, r1 = r2 = s3 = 1. �

Note that this result covers and extends Theorem 3.1 in [7].

Remark 4.2. Using Remark 2.8, we observe that M∞,1(R3d) (M(∞,1,1),(∞,∞,1)(R3d). Indeed,
in both cases we have the same decay parameters, but different integration orders, namely

M∞,1 x→∞, ξ1 →∞, ξ2 →∞, ν → 1, t1 → 1, t2 → 1;

M(∞,1,1),(∞,∞,1) x→∞, t1 → 1, t2 → 1, ξ1 →∞, ξ2 →∞, ν → 1.

Inclusion follows from the fact that we always moved a large exponent to the right of a small
exponent. Note that for any r ∈ M1,∞(R) \M∞,1(R), for example, a chirped signal r(ξ) =

e2πiξ2u(ξ) with u(ξ) ∈ L2 \ L1, we have

σ(x, ξ1, ξ2) = r(ξ1) ∈M(∞,1,1),(∞,∞,1) \M∞,1.
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Example 4.3. With κ and ρ are the identity, that is, κ = (0, 1, 2) and ρ = (1, 2, 3), we illustrate
the applicability of Theorem 4.1 for maps on L2 × L2 = M2,2 ×M2,2, that is, p1 = p2 = q1 =
q2 = 2.

On the time side, we require r1, r2 ≤ 2, r0 and r2 ≤ p0 as well as

3

2
+

1

p0
≤ 1

r0
+

1

r1
+

1

r2
+

1

max{2, r′0}
.

Our goal is to obtain results for r0 large, hence, we assume r0 ≥ 2. (In case of r0 ≤ 2, the last
inequality above does not depend on r0, and we can improve the result by fixing r0 = 2.) We
obtain the range of applicability r1, r2 ≤ 2 ≤ r0, and r2 ≤ p0, and

1 +
1

p0
≤ 1

r0
+

1

r1
+

1

r2
.

On the frequency side, we have to satisfy the conditions s3 ≤ 2, s2,

2 ≤ 1

max{2, s′1}
+

1

max{2, s′2}
+

1

s2
+

1

s3
,

2 +
1

q3
≤ 1

max{2, s′1}
+

1

max{2, s′2}
+

1

s1
+

1

s2
+

1

s3
.

Let us assume s1 ≤ 2 ≤ s2, then we have the range of applicability s1, s3 ≤ 2 ≤ s2,

1

2
+

1

s1
,
1

2
+

1

q3
≤ 1

s2
+

1

s3
.

The range of applicability gives exponents that guarantee that a bilinear pseudodifferential
operator maps boundedly L2 × L2 into Mp0,q3 if σ ∈M(r0,r1,r2),(s1,s2,s3).

In particular, when σ ∈ M(∞,1,1),(2,2,1) we can take p0 = q3 = 1. So we get that Tσ maps
L2 × L2 into M1,1 ⊂M1,∞.

4.2. The bilinear Hilbert transform. We now consider boundedness properties of the bilin-
ear Hilbert transform on modulation spaces. Recall that this operator is defined for f, g ∈ S(R)
by

BH(f, g)(x) = lim
ε→0

∫
|y|>ε

f(x+ y)g(x− y)
dy

y
.

Equivalently, this operator can be written as a Fourier multiplier, that is, a bilinear pseudodiffer-
ential operator whose symbol is independent of the space variable, with symbol σBH(x, ξ1, ξ2) =
σ(ξ1 − ξ2), where σ(x) = −πisign (x), x 6= 0.

Our first goal is to identify which of the (unweighted) spacesM(r0,r1,r2),κ;(s1,s2,s0),ρ the symbol
σBH belongs to. To this end consider the window function Ψ(x, ξ1, ξ2) = ψ(x)ψ(ξ2)ψ(ξ1 − ξ2),
where ψ ∈ S(R) such that ψ(x) = ψ1(x)−ψ1(−x) with ψ1 ∈ S(R), 0 ≤ ψ1(x) ≤ 1 for all x ∈ R.
In addition, we require that the support of ψ1 is strictly included in (0, 1). Then

VΨσBH(x, t1, t2, ξ1, ξ2, ν) = Vψ1(x, ν) Vψσ(ξ1 − ξ2, t1) Vψ1(ξ2, t1 + t2)

Assume that the two permutations κ of {0, 1, 2}, and ρ of {1, 2, 3} are identities. Moreover,
suppose that all the weights are identically equal to 1.

Proposition 4.4. For r > 1, we have that σBH ∈M(∞,1,r),(∞,∞,1).

Proof. Let r > 1. We shall integrate

VΨσBH(x, t, ξ, ν) = Vψ1(x, ν) Vψσ(ξ1 − ξ2, t1) Vψ1(ξ2, t1 + t2)
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in the order

x→ r0 =∞ t1 → r1 = 1 t2 → r2 = r > 1 ξ1 → s1 =∞ ξ2 → s2 =∞ ν → s0 = 1.

We estimate

‖σBH‖M(∞,∞,1),(∞,1,r) =

∫
R

sup
ξ1,ξ2

(∫
R

(∫
R

sup
x
|VΨσBH(x, t, ξ, ν)|dt1

)r
dt2

)1/r

dν

=

∫
R

sup
ξ1,ξ2

(∫
R

(∫
R

sup
x
|Vψ1(x, ν) Vψσ(ξ1 − ξ2, t1) Vψ1(ξ2, t1 + t2)|dt1

)r
dt2

)1/r

dν

= ‖ψ̂‖L1 sup
ξ1,ξ2

(∫
R

(∫
R
|Vψσ(ξ1 − ξ2, t1) Vψ1(ξ2, t1 + t2)|dt1

)r
dt2

)1/r

≤ ‖ψ̂‖L1 sup
ξ1,ξ2

‖|Vψσ(ξ1 − ξ2, ·)| ∗ |Vψ1(ξ2, ·)|‖Lr

≤ ‖ψ̂‖L1 sup
ξ1,ξ2

‖Vψσ(ξ1 − ξ2, ·)‖Lr‖Vψ1(ξ2, ·)‖L1

= ‖ψ̂‖2L1 sup
ξ1

‖Vψσ(ξ1·)‖Lr ,

where we have repeatedly used the fact that Vψ1(x, ν) = e2πixνψ̂(ν), and Vψ1 ∈ L∞(x)L1(ν),
that is ∫

R
sup
x
|Vψ1(x, ν)|dν = ‖ψ̂‖L1 <∞.

Thus, we are left to estimate
sup
ξ
‖Vψσ(ξ·)‖Lr .

Recall that ψ(x) = ψ1(x)− ψ1(−x), hence, we have

Vψσ(ξ, t) = e−2πiξt

[
−
∫ −ξ
−∞

e−2πiytψ(y)dy +

∫ ∞
−ξ

e−2πityψ(y)dy

]
.

A series of straightforward calculations yields

|Vψσ(ξ, t)| =


|ψ̂1(t)− ψ̂1(−t)| if |ξ| ≥ 1

|ψ̂1(−t)− χ̂[0,−ξ] ∗ ψ̂1(t) + χ̂[−ξ,1] ∗ ψ̂1(t)| if − 1 ≤ ξ ≤ 0

|ψ̂1(t)− χ̂[ξ,1] ∗ ψ̂1(−t) + χ̂[0,ξ] ∗ ψ̂1(−t)| if 0 ≤ ξ ≤ 1,

where χ[a,b] denotes the characteristic function of [a, b]. We note that that χ̂[0,−ξ], χ̂[−ξ,1], χ̂[ξ,1], χ̂[0,ξ] ∈
Lr uniformly for |ξ| ≤ 1 for each r > 1.

For |ξ| ≥ 1, we have

‖Vψσ(ξ, ·)‖Lq ≤ 2‖ψ̂1‖Lq
for any q ≥ 1. Now consider −1 ≤ ξ ≤ 0, then

‖Vψσ(ξ, ·)‖Lr ≤ ‖ψ̂1‖Lr + ‖χ̂[0,−ξ] ∗ ψ̂1‖Lr + ‖χ̂[−ξ,1] ∗ ψ̂1‖Lr

≤ ‖ψ̂1‖Lr + ‖ψ̂1‖L1(‖χ̂[0,−ξ]‖Lr + ‖χ̂[−ξ,1]‖Lr)

≤ ‖ψ̂1‖Lr + C‖ψ̂1‖L1

where C > 0 is a constant that depends only on r. Using a similar estimate for 0 ≤ ξ ≤ 1, we
conclude that

sup
ξ
‖Vψσ(ξ, ·)‖Lr ≤ C <∞



22 S. MOLAHAJLOO, K. A. OKOUDJOU, G. E. PFANDER

where C depends only on ψ1 and r. �

Observe that σBH ∈ M(∞,1,r),(∞,∞,1)(R3) \M(∞,1,1),(∞,∞,1)(R3) for all r > 1. Consequently,
to obtain a boundedness result for the bilinear Hilbert transform, we cannot apply any of the
existing results on bilinear pseudodifferential operators. However, using the symbol classes
introduced we obtain the following result:

Theorem 4.5. Let 1 ≤ p0, p1, p2, q1, q2, q3 ≤ ∞ satisfy 1
p1

+ 1
p2
> 1

p0
and that 1

q1
+ 1

q2
≥ 1 + 1

q3
.

Then the bilinear Hilbert transform extends to a bounded bilinear operator from Mp1,q1 ×Mp2,q2

into Mp0,q3. Moreover, there exists a constant C > 0 such that

‖BH(f, g)‖Mp0,q3 ≤ C‖f‖Mp1,q1‖g‖Mp2,q2 .

In particular, for any 1 ≤ p, q ≤ ∞, and ε > 0, the BH continuously maps Mp,q ×Mp′,q′ into
M1+ε,∞ and we have

‖BH(f, g)‖M1+ε,∞ ≤ C‖f‖Mp,q‖g‖Mp′,q′ .

Proof. Since the symbol σBH of BH satisfies σBH ∈ M(∞,1,r),(∞,∞,1), the proof follows from
Theorem 4.1. Indeed, on the time side, all simple inequalities hold and we are left to check

2 +
1

p0
≤ 1

r0
+

1

r1
+

1

r2
+

1

max{p1, r′0}
+

1

p2
,

which is with 1
r = 1− ε

2 +
1

p0
≤ 0 + 1 + 1− ε+

1

max{p1, 1}
+

1

p2
.

On the frequency side, the conditions

2 ≤ 1

max{q1, s′1}
+

1

max{q2, s′2}
+

1

s2
+

1

s3
, s3 ≤ q′2, s2,

2 +
1

q3
≤ 1

max{q1, s′1}
+

1

max{q2, s′2}
+

1

s1
+

1

s2
+

1

s3
,

are clearly satisfied whenever

2 +
1

q3
≤ 1

max{q1, 1}
+

1

max{q2, 1}
+ 0 + 0 + 0. �

Remark 4.6. It was proved in [44, 45] that the bilinear Hilbert transform BH continuously
maps Lp1 × Lp2 into Lp where 1

p = 1
p1

+ 1
p2

, 1 ≤ p1, p2 ≤ ∞ and 2/3 < p ≤ ∞. Our results give

that if 1 < p, q, p1 <∞ then H maps continuously Mp1,q ×Mp′1,q
′

into Mp,∞.
One can use embeddings between modulation spaces and Lebesgue spaces to get some “mixed”

boundedness results. For example, assume that q ≥ 2 and q′ ≤ p1 ≤ q, then it is known that
(see [60, Proposition 1.7])

Lp1 ⊂Mp1,q and Mp′1,q
′ ⊂ Lp′1 .

Consequently, it follows from Theorem 4.5 that BH continuously maps Lp1×Mp′1,q
′

into Mp,∞ ⊃
Lp.
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4.3. The trilinear Hilbert transform. In this final section we consider the trilinear Hilbert
transform TH given formally by

TH(f, g, h)(x) = lim
ε→0

∫
|t|>ε

f(x− t)g(x+ t)h(x+ 2t)
dt

t
.

The trilinear Hilbert transform can be written as a trilinear pseudodifferential operator, or
more specifically as a trilinear Fourier multiplier given by

TH(f, g, h)(x) =

∫∫∫
R×R×R

σTH(x, ξ1, ξ2, ξ3)f̂(ξ1)ĝ(ξ2)ĥ(ξ3)e2πix(ξ1+ξ2+ξ3)dξ1dξ2dξ3

where

σTH(x, ξ1, ξ2, ξ3) = σ(ξ1 − ξ2 − 2ξ3) = πisign(ξ1 − ξ2 − 2ξ3).

Recall from Section 4.2 that ψ ∈ S(R) is chosen such that ψ(x) = ψ1(x) − ψ1(−x) with
ψ1 ∈ S(R), 0 ≤ ψ1(x) ≤ 1 for all x ∈ R. Next we define Ψ(x, ξ1, ξ2, ξ3) = ψ(x)ψ(ξ2)ψ(ξ3)ψ(ξ1 −
ξ2−2ξ3). We can now compute the symbol window Fourier transform VΨσTH of σTH with respect
to Ψ and obtain

VΨσTH(x, t, ξ, ν) = Vψ1(x, ν)Vψ1(ξ2,−t1 − t2)Vψ1(ξ2,−2t1 − t3)Vψσ(ξ1 − ξ2 − 2ξ3,−t1)|.

Observe that |Vg1(x, η)| = |ĝ(η)|. Hence,

|VΨσTH(x, t, ξ, ν)| = |ψ̂(ν)||ψ̂(−t1 − t2)||ψ̂(−2t1 − t3)||Vψσ(ξ1 − ξ2 − 2ξ3,−t1)|.

But by the choice of ψ we see that ψ̂(−η) = −ψ̂(η).

Proposition 4.7. For r > 1, we have σTH ∈M(∞,1,r,r),(∞,∞,∞,1). In particular, this conclusion
holds when r = 1 + ε for all ε > 0.

Proof. Let r > 1. We proceed as in the proof of Proposition 4.4, and integrate

VΨσTH(x, t, ξ, ν)

in the following order:

x→ r0 =∞, t1 → r1 = 1, t2 → r2 = r > 1, t3 → r3 = r > 1,
ξ1 → s1 =∞, ξ2 → s2 =∞, ξ3 → s3 =∞, ν → s0 = 1.
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In particular, we estimate

‖σTH‖M(∞,1,r,r),(∞,∞,∞,1) =

∫
R
dν sup

ξ1,ξ2,ξ3

(∫
R
dt3

∫
R
dt2

∫
R
dt1 sup

x
|VΨσH(x, t, ξ, ν)|r

)1/r

=

∫
R
dν sup

ξ1,ξ2,ξ3

(∫
R
dt3

∫
R
dt2

∫
R
dt1 sup

x
|ψ̂(ν)|r|ψ̂(−t1 − t2)|r

|ψ̂(−2t1 − t3)|r|Vψσ(ξ1 − ξ2 − 2ξ3,−t1)|r
)1/r

= ‖ψ̂‖1 sup
ξ1,ξ2,ξ3

(∫
R
dt3

∫
R
dt2

∫
R
dt1|ψ̂(−t1 − t2)|r|ψ̂(−2t1 − t3)|r

|Vψσ(ξ1 − ξ2 − 2ξ3,−t1)|r
)1/r

= ‖ψ̂‖1 sup
ξ1,ξ2,ξ3

(∫
R
dt3

∫
R
dt2

∫
R
dt1|ψ̂(t2 + t1)|r|ψ̂(t3 + 2t1)|r

|Vψσ(ξ1 − ξ2 − 2ξ3,−t1)|r
)1/r

= ‖ψ̂‖1 sup
ξ1,ξ2,ξ3

(∫
R
dt3

∫
R
dt2

∫
R
dt1|ψ̂(t2 − t1)|r|ψ̂(2(t3 − t1))|r

|Vψσ(ξ1 − ξ2 − 2ξ3, t1)|r
)1/r

= ‖ψ̂‖1 sup
ξ1,ξ2,ξ3

(∫
R
dt3

∫
R
dt2

∫
R
dt1|ψ̂(t1)|r|ψ̂(2(t2 − t3 − t1))|r

|Vψσ(ξ1 − ξ2 − 2ξ3, t2 − t1)|r
)1/r

= ‖ψ̂‖1 sup
ξ1,ξ2,ξ3

(∫
R
dt3

∫
R
dt2|ψ̂|r ∗ (|Tt3ψ̂2|r|Ṽψσ(ξ1 − ξ2 − 2ξ3, ·)|r)(t2)

)1/r

where ψ̂2(ξ) = ψ̂(2ξ), and Ṽψσ(ξ1 − ξ2 − 2ξ3, η) = Vψσ(ξ1 − ξ2 − 2ξ3,−η). Consequently,

‖σTH‖M(∞,1,r,r),(∞,∞,∞,1) ≤ ‖ψ̂‖1‖ψ̂‖r sup
ξ1,ξ2,ξ3

(∫
R
dt3

∫
R
dt2|ψ̂2(t2 − t3)|r|Ṽψσ(ξ1 − ξ2 − 2ξ3, t2)|r)

)1/r

= ‖ψ̂‖1‖ψ̂‖r sup
ξ1,ξ2,ξ3

(∫
R
dt3|ψ̂2|r ∗ |Ṽψσ(ξ1 − ξ2 − 2ξ3, ·)|r(t3)

)1/r

≤ ‖ψ̂‖1‖ψ̂‖r‖ψ̂2‖r sup
ξ1,ξ2,ξ3

(∫
R
dt3|Ṽψσ(ξ1 − ξ2 − 2ξ3, t3)|r

)1/r

= ‖ψ̂‖1‖ψ̂‖r‖ψ̂2‖r sup
ξ1,ξ2,ξ3

(∫
R
dt3|Vψσ(ξ1 − ξ2 − 2ξ3, t3)|r

)1/r

.
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The proof is complete by observing that the proof of Proposition 4.4 implies that

sup
ξ1,ξ2,ξ3

(∫
R
dt3|Vψσ(ξ1 − ξ2 − 2ξ3, t3)|r

)1/r

<∞. �

Using this result and Theorem 3.4 for m = 3 we can give the following initial result on the
boundedness of TH on product of modulation spaces.

Theorem 4.8. For p, p0, p1 ∈ (1,∞) and 1 ≤ q ≤ ∞, the trilinear Hilbert transform TH is

bounded from Mp1,1 ×Mp,q ×Mp′,q′ into Mp0,∞ and we have the following estimate:

‖TH(f, g, h)‖Mp0,∞ ≤ C‖f‖Mp1,1‖g‖Mp,q‖h‖Mp′,q′

for all f, g, h ∈ S(R), where the constant C > 0 is independent of f, g, h.

Remark 4.9. Before proving this result we point out that the strongest results are obtained by
choosing p0 as close to 1 as possible and p1 as close to ∞ as possible.

As special case, we see that TH boundedly maps

M r,1 × L2 × L2 −→M1+ε,∞

for every r <∞ and ε > 0.

Proof. We set r = min{p0, p
′
1, p, p

′} > 1. The symbol of TH is in the symbol modulation space
with decay parameters r0 =∞, r1 = 1, r2 = r3 = r > 1 as used in Theorem 3.4. Note that here,
κ is the identity permutation, so z = 0. The boundedness conditions in Theorem 3.4 now read

k = 0 : 0 +
1

p̃1
≤ 1;

k = 1 : 0 +
1

p̃2
+

1

p̃1
+ 1 ≤ 2;

k = 2 : 0 +
1

p̃3
+

1

p̃1
+ 1 +

1

p̃2
+

1

r
≤ 3;

k = 3 : 0 +
1

p̃1
+ 1 +

1

p̃2
+

1

r
+

1

p̃3
+

1

r
≥ 3 +

1

p0
;

where

p1 ≤ p̃1 ≤ r′1 =∞, p2 ≤ p̃2 ≤ r′, p3 ≤ p̃3 ≤ r′.(4.6)

The four conditions above reduce to

k = 1 :
1

p̃1
+

1

p̃2
≤ 1;

k = 2 : 1
p̃1

+ 1
p̃2

+ 1
p̃3
≤ 2− 1

r ;

k = 3 : 1
p̃1

+ 1
p̃2

+ 1
p̃3
≥ 2− 2

r + 1
p0

;

For simplicity, we now set p2 = p̃2 = p′3 = p̃′3 ∈ [r, r′] and obtain

k = 1 :
1

p̃1
≤ 1

p̃3
;

k = 2 : 1
p̃1
≤ 1− 1

r ;

k = 3 : 1
p̃1
≥ 1− 2

r + 1
p0

;

that is

k = 1 : p̃1 ≥ p̃3;
k = 2 : p̃1 ≥ r′;
k = 3 : 1

p̃1
≥ 1− 2

r + 1
p0

;
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Note that the condition for k = 1 follows from the k = 2 condition since p′3 ≤ r′.
For the existence of p̃1 ≥ p1, satisfying the k = 2 and k = 3 conditions, we require 2 − 1

r ≥
2− 2

r + 1
p0

, which is r ≤ p0, a condition that is met. Some p̃1 ≥ p1 will satisfy all conditions if
1
p1
≥ 1− 2

r + 1
p0

. Indeed,

1− 2

r
+

1

p0
= 1− 1

r
+

1

p0
− 1

r
≤ 1− 1

r
≤ 1

p1
.

We now consider the conditions of Theorem 3.4 on the frequency side. We choose ρ to be
the identity permutation on {1, 2, 3, 4}, s1 = s2 = s3 = ∞, s4 = 1. We now have to consider
existence of q̃1 ≥ s′1 = 1, q̃2 ≥ s′2 = 1, and q̃3 ≥ s′3 = 1 with

k = 1 :
1

q̃1
+

1

q̃2
+

1

q̃3
≥ 2;

k = 2 :
1

q̃2
+

1

q̃3
≥ 1;

k = 3 :
1

q̃3
≥ 0 ;

k = 4 :
1

q̃1
+

1

q̃2
+

1

q̃3
≥ 2 +

1

q4
.

These conditions reduce to
1

q̃2
+

1

q̃3
≥ 1,

1

q̃1
+

1

q̃2
+

1

q̃3
≥ 2 +

1

q4
.

To assume optimally large q1, q2, q3, we choose q̃2 = q2 = q, q′3 = q̃′3 = q′ and 1
q1

= 1 + 1
q4

, the

latter only being satisfied if q1 = 1 and q4 =∞. �

In [50, Theorem 13] it is proved that the trilinear Hilbert transform is bounded from Lp×Lq×A
into Lr whenever 1 < p, q ≤ ∞, 2/3 < r <∞ and 1

p + 1
q = 1

r , where A is the Fourier algebra. In

particular, for p = q = 2, then r = 1 and the operator maps boundedly L2 × L2 ×A into L1.
From [60, Proposition 1.7] we know that when p ∈ (1, 2) and p < q′ < p′, then FLq′ ⊂Mp′,q′ .

We can then conclude that TH continuously maps Mp1,1 ×Mp,q ×FLq′ into Mp0,∞.
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[56] J. Sjöstrand, Wiender Type Algebras of Pseudodifferential Operators, in Séminaire Équations aux dérivées
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