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4.1.1 Introduction

Narrowband finite lifelength systems such as wireless communications can be well
modelled by smooth and compactly supported spreading functions. We show how
to exploit this fact to derive a fast algorithm for computing the matrix represen-
tation of such operators with respect to well time-frequency localized Gabor bases
(such as pulse shaped OFDM bases). Hereby we use a minimum of approximations,
simplifications, and assumptions on the channel.

The derived algorithm and software can be used, for example, for comparing how
different system settings and pulse shapes affect the diagonalization properties of an
OFDM system acting on a given channel.

4.1.2 The channel matrix G

A Gabor (or Weyl-Heisenberg) system with window g and lattice constants a and b
is the sequence (gq,r)q,r∈Zd of translated and modulated functions

gq,r
def
= TraMqbg = ei2π〈qb,x−ra〉g(x− ra).

For OFDM communications applications, information is stored in the coefficients of
the transmitted signal s =

∑
q,r∈Z cq,rgq,r. In order to guarantee that the coefficients

can be recovered from s in a numerically stable way, s and its coefficients should
be equivalent in the sense that for some nonzero and finite A,B independent of s,

A ‖s‖2 ≤ ‖c‖2 ≤ B ‖s‖2 with ‖c‖2 def
=

∑
q,r |cq,r|2 and ‖s‖2 def

=
∫
R |s(t)|2 dt. This

means that the sequence of functions (gq,r)q,r∈Z is a Riesz basis for the function

space L2(R) of square integrable functions (or an orthonormal basis in the special
case A = B = 1). This guarantees the existence of a dual basis (g̃q,r) that also is a
Gabor basis. Such bases are also called biorthogonal, or, in the special case g̃ = g,
orthonormal.

In communications applications, s is sent through a channel with linear channel
operator H and the receiver typically tries to reconstruct the transmitted coefficients
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cq,r = 〈s, g̃q,r〉 from the received signal Hs using some (possibly other) Gabor Riesz
basis (γq′,r′). A series expansion in this basis gives

Hs =
∑

q′,r′∈Z
〈Hs, γq′,r′〉 γ̃q′,r′ =

∑
q′,r′∈Z

〈
H

∑
q,r∈Z

cq,rgq,r , γq′,r′

〉
γ̃q′,r′

=
∑

q′,r′∈Z

⎛⎝ ∑
q,r∈Z

cq,r 〈Hgq,r, γq′,r′〉
⎞⎠ γ̃q′,r′,=

∑
q′,r′∈Z

(Gc)q′,r′ γ̃q′,r′,

where G is the coefficient mapping (cq,r)q,r �→
(∑

q,r∈Z cq,r 〈Hgq,r, γq′,r′〉
)

q′,r′
with

biinfinite matrix representation

Gq′,r′;q,r = 〈Hgq,r, γq′,r′〉 ,

and with indices (q′, r′) and (q, r) for rows and columns respectively. The matrix
elements are usually called intercarrier interference (ICI) for p = p′ and q �= q′.
Similarly, the matrix elements are called intersymbol interference (ISI) when p �=
p′. Recovering the transmitted coefficients corresponds to inverting G, which is
unreasonably time-consuming unless g and γ can be chosen so that G is diagonal or
at least has fast off-diagonal decay.

We call H time-invariant if it commutes with the time-shift operator Tt0
f(t) =

f(t − t0) for any t0, that is, if Tt0
H = HTt0

. Linear and time-invariant H are
convolution operators, for which it is well-known that the family of complex ex-
ponentials ei2πξt are “eigenfunctions” in the sense that for the restriction of such
functions to an interval [0, L], that is, s(·) = ei2π〈ξ,·〉χ[0,L](·), there is some complex
scalar λξ such that if h lives on [0, Lh], then Hs = λξs in the interval [Lh, L]. Thus
G is easily diagonalized by using Gabor windows g = χ[0,L], γ = χ[Lh,L] and lattice
constants such that the resulting Gabor systems (gk,l) and (γk,l) are biorthogonal
bases. This trick is used in wireline communications, where the smaller support of
γ is obtained by removing a guard interval (often called cyclic prefix) from g. See,
for example, [4, Section 2.3] for more details and further references.

In wireless communications, due to reflections on different structures in the envi-
ronment, the transmitted signal reaches the receiver via a possibly infinite number
of different wave propagation paths. Because of the highly time varying nature of
this setup of paths and the corresponding channel operator, we can at most hope
for approximate diagonalization of the channel operator. In fact, two different time-
varying operators do in general not commute, so both cannot be diagonalized with
the same choice of bases. Thus, diagonalization is usually only possible in the fol-
lowing sense: Typically, (Hgq,r) is a finite and linearly independent sequence, and

thus a Riesz basis with some dual basis
(
H̃gq,r

)
, so for true diagonalization of G, we

would have to set γq′,r′ = H̃gq,r, but then γq′,r′ would typically not be a Gabor basis
or have any other simple structure that enables efficient computation of all γq′,r′

and all the diagonal elements 〈Hgq,r, γq′,r′〉. Hence, for computational complexity
to meet practical restrictions we have to settle for “almost dual” Gabor bases (gq,r)
and (γq′,r′), such as the Gabor bases proposed in [7]. We are primarily interested in
bases that are good candidates for providing low intersymbol and interchannel in-
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terference (ISI and ICI). As proposed in [7], we expect excellent joint time-frequency
concentration of g and γ to be the most important requirement for achieving that
goal.

For such g and γ we propose a fast algorithm for computing G in Section 4.1.4,
based on a channel operator model described in Section 4.1.3. Our model is de-
terministic, so a typical example use is in coverage predictions for radio network
planning [1, Section 3.1.3]. The algorithm computes the ISI and ICI dependence on,
for example, pulse shaping and threshold choices from input data. It depends on
describing a particular channel, that we assume to be known, for example, from mea-
surements or computed from ray tracing, finite element or finite difference methods
(described with more references in [1]). Moreover, the performance of a communica-
tion system is usually evaluated by means of extensive Monte-Carlo simulations [1],
which also might be a potential future application where fast algorithms are required.

4.1.3 Common channel operator models

The channel operator H maps an input signal s to a weighted superposition of time
and frequency shifts of s:

Hs(·) =
∫

K×[A,∞)
SH(ν, t) ei2πν(t−t0)s( · − t) d(ν, t) , K compact.

This standard model is usually formulated for so-called Hilbert–Schmidt operators
with the spreading function SH in the space L2 of square integrable functions (e.g.,
in [8,9]) or for SH in some subspace of the tempered distributions S ′ (e.g., in [10,12]).
The weakest such assumption is that SH ∈ S ′, which restricts the input signal s to
be a Schwartz class function.

Alternatively, one can assume s to be in the Wiener amalgam space W (A, l1) =
S0(R

d) W (A, l1) = S0 (Feichtinger algebra) S0 (Feichtinger algebra) (also named the
Feichtinger algebra), which consists of all continuous f : Rd → C for which

∑
n∈Zd

‖(f(·)ψ(· − n))̂‖1 <∞, ‖g‖1
def
=

∫
R
|g(x)| dx

for some compactly supported1 ψ with integrable Fourier transform ψ̂ and satisfying∑
n∈Zd ψ(x− n) = 1. We write S ′0 for the space of linear bounded functionals on S0.

S0 is also a so-called modulation space, described at more depth and with notation
S0 = M1,1 = M1 and S ′0 = M∞,∞ = M∞ in [3, 6].

Since the space S ′0(R×R) includes Dirac delta distributions, this model includes
important idealized borderline cases such as the following:

Line-of-sight path transmission: SH = aδν0,t0
, a Dirac distribution at (ν0, t0) rep-

resenting a time- and Doppler-shift with attenuation a.

Time-invariant systems: h(x, t) = h(0, t) and SH(ν, t) = h(t)δ0(ν).

1A function is said to have compact support if it vanishes outside some finite length interval.
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Moreover, S ′0 excludes derivatives of Dirac distributions, which can be used to avoid
complex-valued Hs with no physical meaning [11, Sec. 3.1.1]. Further, S0 is the
smallest Banach space of test functions with some useful properties like invariance
under time-frequency shifts [6, p. 253], thus allowing for time-frequency analysis on
its dual S ′0 which is, in that particular sense, the largest possible Banach space of
tempered distributions that is useful for time-frequency analysis. One more motiva-
tion for considering spreading functions in S ′0 is that Hilbert–Schmidt operators are
compact, hence, they exclude invertible operators, such as the example SH = aδν0,t0

above, and small perturbations of invertible operators, which are useful in the theory
of radar identification and in some mobile communication applications. For results
using a Banach space setup, see for example [9, 12].

Nevertheless, for narrowband finite lifelength channels such as those typical for
radio communications, all analysis can be restricted to the time window and fre-
quency band of interest. We show in [5] that the full system behaviour within this
time-frequency window can be modelled with an infinitely many times differentiable
spreading function SH(ν, t) that vanishes for frequencies ν outside some finite inter-
val and which has subexponential decay as a function of t. That a function f has
subexponential decay means that for 0 < ε < 1 there is some Cε > 0 such that

|f(x)| ≤ Cεe
−|x|1−ε

for all x ∈ R.

Hence we can with negligible errors also do a smooth cutoff to a compactly supported
and infinitely many times differentiable spreading function. A big advantage of this
Hilbert–Schmidt model is that Fourier analysis can be applied without the need of
deviating into distribution theory.

4.1.4 Computing the channel matrix G

For ε > 0 we define the ε-essential support of a bounded function f : R→ C to be the
closure of the set {x : |f(x)| ≥ ε · ess supx |f(x)| }. For communications applications
with Q carrier frequencies, at least Q samples of every received symbol are needed
in the receiver. Thus a hasty and naive approach to computing the matrix elements
could start with a Q×Q matrix representation of H for computing the samples of
Hgq,r. If up to R neighbouring transmission symbols have overlapping ε-essential
support, then we need to compute (RQ)2 matrix elements 〈Hgq,r, γq′,r′〉, which, with
this approach, would require R2 · O(Q5) arithmetic operations with Q typically
being at least of the size 256–1024 in radio communications, and with R = 4 for
ε = 10−6 and the optimally well-localized Gaussian windows that we have used for
example applications described in [5]. This is a quite demanding task, so therefore
more efficient formulas and algorithms were derived in [5] for the Hilbert–Schmidt

channel models described in last section. With notation IC,B
def
=

[
C − B

2
, C + B

2

]
,

the resulting model is based on the following assumptions about supports and index
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sets for the involved functions:

supp ĝ ⊆IΩc,Ω, Tg
def
= 1

Ω
, Tγ

def
= 1

Ω+ω
,

suppSH ⊆Iωc,ω × IC,L, supp Ĥg ⊆ supp γ̂ ⊆ IΩc+ωc,Ω+ω,

K,M⊂Zd, |K| <∞, |M| <∞ and

g(mTg) =γ(kTγ) = (Hg)(kTγ) = 0 for k ∈ Zd \ K and m ∈ Zd \M.

The analysis takes place in an interval IC0+t0,L0
containing the support of all per-

turbed basis functions Hgq,r. We refer to [5] for details, but in short, the algorithm

is based on a smooth truncation of ŜH(ν, ·) to a band of width 1/T ′′ containing the
full transmission frequency band, in which SH(ν, ·) can be fully represented by sam-
ple values Sn,p, from which the spreading function Sq

H experienced by the functions
(gq,r)r can be computed:

Ŝq
H(·, t)(t0) = |ω0T

′′|χIC0,L0
(t−t0)

∑
p∈P

ei2πΩc,q(t−pT ′′) sincΩ(t−pT ′′) ∑
n∈N

Sn,pe
i2π

t−t0−pT ′′

L0 ,

(4.2)

with Ωc,q being the centerpoint of the support of ĝq,r and sincΩ(x)
def
= sin(πΩx)

πx
ex-

tended continuously to R. Using (4.2), we can compute the samples (Hgq,r)(kTγ) =
|Tg|∑m∈Zd f(mTg) (Sq

H(·, kTγ −mTg))̂(−mTg) and finally the matrix element 〈Hgq,r, γq′,r′〉
using the formula

〈u, v〉L2(Rd) = |T | ∑
k∈Iu

u(kT )vbpf(kT )

for functions with supports

supp û ⊆ ICu,B, supp v̂ ⊆ ICv ,B, ICuv ,Buv

def
= ICu,B ∩ ICv,B �= ∅, T = 1

B

and with vbpf being defined by its Fourier transform v̂bpf(ξ)
def
= v̂(ξ)χICuv,Buv

(ξ).

As explained in [5], this way the full matrix G can be computed in R2 ·O(M2 ·Q2)

arithmetic operations with M
def
= |M|, which can be compared to the R2 · O(Q5)

operations of the more naive and straightforward matrix computation approach
described above.
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