LOCAL SAMPLING AND APPROXIMATION OF OPERATORS WITH
BANDLIMITED KOHN-NIRENBERG SYMBOLS
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ABSTRACT. Recent sampling theorems allow for the recovery of operators with bandlimited
Kohn-Nirenberg symbols from their response to a single discretely supported identifier signal.
The available results are inherently non-local. For example, we show that in order to recover a
bandlimited operator precisely, the identifier cannot decay in time nor in frequency. Moreover, a
concept of local and discrete representation is missing from the theory. In this paper, we develop
tools that address these shortcomings.

We show that to obtain a local approximation of an operator, it is sufficient to test the
operator on a truncated and mollified delta train, that is, on a compactly supported Schwarz
class function. To compute the operator numerically, discrete measurements can be obtained
from the response function which are localized in the sense that a local selection of the values
yields a local approximation of the operator.

Central to our analysis is to conceptualize the meaning of localization for operators with
bandlimited Kohn-Nirenberg symbol.
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1. INTRODUCTION

In communications engineering, the effect of a slowly time-varying communication channel is
commonly modeled as superposition of translations (time shifts due to multipath propagation) and
modulations (frequency shifts caused by Doppler effects). In order to recover transmitted signals
from their channel outputs, precise knowledge of the nature of the channel is required. A common
procedure for channel identification in this sense is to periodically send short duration test signals.
The resulting outputs are then used to estimate channel parameters which allow for an inversion
of the operator [14, 2, 15, 25, 1, 13].

Kailath [14] and Bello [2] analyzed the identifiability of such channels. In mathematical terms,
the channels considered are characterized by bandlimited Kohn-Nirenberg symbols and the channel
identification problem becomes an operator identification problem: can an operator with bandlim-
ited Kohn-Nirenberg symbol be identified from the output corresponding to a given test input
signal?

Kozek and Pfander [15], and Pfander and Walnut [25] gave mathematical proof of the assertions
by Kailath and Bello that there exists a suitable test signal as long as the band support of the
symbol of the operator has outer Jordan content less than one. The suggested test signals are
periodically weighted regularly spaced Dirac-delta distributions as introduced in [25]. In [22],
Pfander coined the term operator sampling as the resulting theory has many direct parallels to
the sampling theory for bandlimited functions. For example, an operator sampling reconstruction
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formula was established which generalizes the reconstruction formula in the classical sampling
theorem for bandlimited functions (see [22] and Theorem 2.2 below).

As the test signals which appear in the results of [15, 25, 22, 24] decay neither in time nor
in frequency, they cannot be realized in practice. In this paper, we show that indeed, for stable
identification of operator classes defined by a bandlimitation of the Kohn-Nirenberg symbol, test
signals that lack decay in time and frequency are necessary. When seeking to recover only the
operator’s action on a time-frequency localized subspace, however, this ideal but impractical signal
can be replaced with a mollified and truncated copy; the test signal can thereby be chosen to be
a compactly supported Schwartz function as shown below.

Furthermore, an important difference to the sampling theory for bandlimited functions is that
the response to a test signal in operator sampling is a square-integrable function rather than a
discrete set of sample values. While there are many ways to discretely represent the response
function, the question remains which of the multitude of commonly considered representations
allow to recover the operator most efficiently. In the case of a bandlimited function, one feature
that distinguishes the representation by samples is locality: a sample is the function value at
a given location; due to the smoothness of bandlimited functions it represents the function in
the neighborhood of the sampling point. A key consequence of this feature is that it allows to
approximate the function in a given region using only samples taken in a fixed-size neighborhood
of it.

In this paper we develop discrete representations of operators with bandlimited Kohn-Nirenberg
symbols that, on the one hand, can be computed in a direct and simple way from the output
corresponding to a test signal and, on the other hand, have locality properties analogous to those
we appreciate in the classical sampling theory. We work with the same concept of locality as in
the localized sampling results mentioned above, namely, locality will be defined through the action
of the operator on time-frequency localized functions. Combining the two parts, we obtain that
time-frequency measurements of the output corresponding to a truncated and mollified weighted
sum of Dirac delta distributions yield a local discrete representation of a bandlimited operator.

The paper is organized as follows. In Section 2 we recall operator sampling terminology in some
detail and discuss previous results. We then summarize our main results in Section 3. Section 4
provides results on local approximations of operators; in Section 5 we discuss identification using
smooth and finite duration test signals, and Section 6 uses Gabor frames to derive our novel
discretization scheme for operators with bandlimited Kohn-Nirenberg symbols.

2. BACKGROUND

2.1. Symbolic calculus. The Schwartz kernel theorem states that every continuous linear oper-
ator H : S(R) — S'(R) is of the form

Hf(x) = /m(m,t)f(t)dt

for a unique kernel K € S'(R?), where S(RY) is the Schwartz space, and S’'(R?) is its dual, the
space of tempered distributions [10]. This integral representation is understood in the weak sense,
that is,

(Hf,g) = (k, fRg)

for all f,g € S(R), where f®g(z,y) = f(x)g(y) and (-, -) is the sesquilinear pairing between S(R)
and S'(R), and as S(R) continuously embeds into L?(R), Schwartz kernel representations exist in
particular for bounded operators on L?(R?).

Each such operator has consequently a spreading function representation

(2.1) H(x) = / / n(t,7)™ f(o— 1) dt dv,
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a time-varying impulse response representation

H(x) = [ ha.)f(o -t

and a Kohn-Nirenberg symbol representation

~

(22) (@) = [ ol F() e d.
where the Fourier transform fis normalized by

FrE) = le) = / F() €27 gt

for integrable f.

We write H, and oy, ng, kg when it is necessary to emphasize the correspondence between H
and o, 1, k. The symbols ¢ and n are related via the symplectic Fourier transform JF, which is
defined densely by

Feo(t,) = / / o(x, e ™0 de de

that is, o = Fgn.

For convenience, we use the notation 1 (t,v) = e2™ng(t,7) and o g for its symplectic Fourier
transform. A straightforward computation shows oy« = o g, where H* denotes the adjoint of H.
In our proofs, we shall frequently transition from ¢ to o. This does not cause a problem in our
analysis since inequality (2.4) below combined with || H||zz2®)) = [|H*||z(z2(®)) shows that for
M C R? compact there exist A, B > 0 with

(2.3) Allo|lze @) < ol @e) < BllollLe@2)
for all H, € OPW (M).

2.2. Sampling in operator Paley Wiener spaces.  Following [14, 2, 15, 24, 22], the operators
considered in this paper are assumed to have strictly bandlimited Kohn-Nirenberg symbols, that is,
they have compactly supported spreading function. Slowly time-varying mobile communications
channels may violate this assumption [?]; a more refined model is that the spreading function ex-
hibits rapid decay. Still this suffices to guarantee that truncating the spreading function introduces
a global error that can be controlled. For example, applying Theorem 2.2 to an operator H whose
spreading function has L? distance at most € to a function supported on a rectangle of area one
results in an operator which differs from H differs by at most 2¢ in operator norm (see [?] for
further details). This justifies to restrict to the simpler model of strictly bandlimited symbols.

The space of bounded operators whose Kohn-Nirenberg symbols are bandlimited to a given
set M — we will also use the shorthand terminology bandlimited operators — is called operator
Paley- Wiener space'; it is denoted by

OPW (M) ={H € L(L*(R)) : suppFsoyg C M}.

The Kohn-Nirenberg symbol of an L2-bounded operator with supp Fsop compact is bounded.
In fact, for some A, B > 0 we have,

(2.4) AHUHHL”(R) S ||HH£(L2(R)) §B||0'H||L°°(R)7 I’IEOPVV(]\f)7
where || H||£(z2(r)) is the operator norm of H (Proposition 4.1 below).

Certainly, if we have direct access to og, then some of our approximation theoretic goals can
be accomplished using classical two-dimensional sampling results applied to og. In the model
considered here, however, we do not have access to any of the values of the symbol oy of the

I general terms, operator Paley-Wiener spaces are defined by requiring its members to have bandlimited Kohn-
Nirenberg symbols which are in a prescribed weighted and mixed L? space [22]. For example, to restrict the attention
to bandlimited Hilbert-Schmidt operators, we would consider only operators with square integrable symbols. These
form a subset of the operators considered in this paper.
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operator H directly, but we must rely on the operator output Hw which results from applying H
to a single test input w. Due to stability consideration, we say that the linear space OPW (M) is
identifiable by w if for A, B > 0 we have

(2.5) AllH|| g2y < [Hwl| 2wy < BllH || £(L2(r)) 5

for all H € OPW (M) [15]. “Sampling” the operator means that the identifier w in (2.5) is a
weighted sequence of Dirac delta distributions, that is,

w = E CkOkT,

kEZ
where ¢, is an appropriately chosen periodic sequence [18, 25, 22].

A guiding paradigm in the sampling theory of operators is the direct analogy to sampling of
bandlimited functions. To illustrate this analogy, we compare the classical sampling theorem (often
credited to Cauchy, Kotelnikov, Shannon, and Whittaker, among others), Theorem 2.1, with the
corresponding result for operators, Theorem 2.2 [22]. Note that Theorem 2.1 formally follows
from Theorem 2.2 by choosing the operator H in Theorem 2.2 to be the pointwise multiplication
operator f — o - f [22].

The engineering intuition underlying sampling theorems is that reducing a function to periodic
samples at a rate of 1/T samples per unit interval corresponds to a periodization with shift 1/7 in

frequency space [20]. Thus, as long as T2 < 1, a function bandlimited to [—%, %] can be recovered
via a convolution with a low-pass kernel, that is, a function ¢ that satisfies
N 1 Q) if §| < Qa
(26) ) = {O/ e
) 1 ‘£| = 9T *

If T2 = 1, the only such function is the sinc kernel ¢(t) = sinc(nt/T) = % For TQ < 1,
there are many such functions; in particular ¢ in the Schwartz class is possible. With this notion,

the classical sampling theorem reads as follows.

(2.7) g() = 3 g(nT) é(x — nT)

with uniform convergence and convergence in L*(R). Here, ¢ is any low-pass kernel satisfying
(2.6).

Recall that every operator H on L?(R) is in one-to-one correspondence with its kernel s, that
is, for a unique tempered distribution kg, we have Hf(z) = [ku(z,y) f(y)dy weakly. In the
following, x 4 denotes the characteristic function of a set A.

Theorem 2.2.[22] For H : L>(R) — L*(R) with oy € L*(R?), supp Fson C [0, T]x[-%, ],
and TQ) < 1, we have

(2.8) k(r+t,2) = X0, (1) Z (H Z bnr) (t + kT) ¢z — kT),

k€Z neZ

with convergence in L*(R?) and uniform convergence in x for each t. Again, ¢ is any low-pass
kernel satisfying (2.6).

We point to an important difference between the applicability of Theorems 2.1 and 2.2: in

Theorem 2.1, a bandlimitation to a large set [—Q Q} can be resolved by choosing a small T'; on the

272
other side, Theorem 2.2 is not applicable if the bandlimiting set [O,T]x[—%, %

than one. Indeed, the the following is known.

Theorem 2.3. [25, 23] OPW (M) is identifiable in the sense of (2.5) with appropriate w =
> nez CnOnt if M is compact with measure less than 1. If M is open and has area greater than 1,
then there exists no tempered distribution w identifying OPW (M).

4
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Hence, it is necessary to restrict ourselves to operator Paley-Wiener spaces defined by compact
sets M with Lebesgue measure one. For such spaces, one can extend Theorem 2.2 to the following.

Theorem 2.4. [24] Let M be compact with Lebesque measure less than one. Then there exists
T,Q >0 withTQ = %, L prime, 6 > 0, and L-periodic sequences {cn}n, {bjq}q, 7 =0,1,...,n—1,
so that

L-1
(29) kp(x+t,x)=LT Z r(t — k;T)e?™ i Z bjq
j=0 q€Z

(HY  enbnr)(t = (kj — q)T) ¢ + (k; —)T), H € OPW(M),

where r, ¢ are Schwartz class functions that satisfy
r()o(7) = 0if (t.7) ¢ (=6,T +6) x (5,249,

and

(2.10) SNrt—kD) =12 ¢(v—nQ).

keZ nez

Moreover, (2.9) converges in L?>(R) and uniformly in x for each t.

3. MAIN RESULTS

3.1. Local representations of operators. In classical as well as in operator sampling, working
with Schwartz class kernels r,¢ is of advantage. Indeed, in the classical sampling theorem, the
slow decay of the sinc kernel in (2.7) implies that a small perturbation of just a few coefficients
g(nT) can lead to significant deviations of all values g(t) outside of the sampling grid TZ; this
includes values achieved at locations far from the sampling points n7. Hence to approximately
recover the function values locally, that is, on an compact interval, it does not suffice to know the
function samples in a constant size neighborhood of that interval. When working with Schwartz
class kernels, in contrast, such a local approximate reconstruction is possible; one can achieve

(3.1) l9(x) = D gT)d(z —nT)| <e,
nT€E[a,b]

for all x € [a+d(€),b— d(e)] where the neighborhood size d(¢) depends on the approximation level
€ but not on the interval [a, b].

A corresponding possibility of using local information for local reconstruction is not given in
Theorem 2.2. Moreover, the identifier w = ), d,7 neither decays in time or in frequency, clearly
showing that in practice this input signal is not usable. However, in the framework of Theorem 2.2,
this is unavoidable, as we show in the following theorem.

Theorem 3.1. If the tempered distribution w identifies OPW ([0, T]x[—8/2,Q/2]), T > 0, then
w decays weakly neither in time nor in frequency, that is, we have neither

(w, (- —2)) 250 nor  (@,¢(- —£))

for all Schwartz class functions .

250

We address this problem by developing a concept of “local recovery” of an operator, in analogy to
the local recovery of a function in (3.1). Indeed, the key to most results presented in this paper is to
aim only for the recovery of the operator restricted to a set of functions “localized” on a prescribed
set S in the time-frequency plane. This is indeed reasonable in communications where band and
time constraints on transmitted signals are frequently present. In [13], for example, operators that
map bandlimited input signals to finite duration output signals are considered. Bivariate Fourier
series expansions of such an operator’s compactly supported Kohn-Nirenberg symbol allow the
authors to discretize the a-priori continuous input-output relations (2.2) and (2.1).
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Our definition of function localization in time and frequency is based on Gabor frames. It
involves translation and modulation operators,

Tf : f— f(-—1) and M, i fs 20O g,

These operators are unitary on L?(R) and isomorphisms on all function and distribution spaces
considered in this paper.
For any g € L?(R) and a,b > 0, we say that the Gabor system

(9,0Z x VZ) = {TeaMevg}k,ccz
is a tight frame for L2(R?) if for some A > 0, the so-called frame bound, we have
F=A {f,Tra Mng) Tra Marg
k,LEL

for all f € L?(R%). Each coefficient in this expansion can be interpreted to reflect the local behavior
of the function near the indexing point in time-frequency space. Hence, a natural way to define
time-frequency localized functions is that all but certain expansion coefficients are small.

Definition 3.2. Let (g,aZ x bZ), g € S(R), be a tight frame for L*>(R) with frame bound 1. We
say that f € L3(R) is e~time-frequency localized on the set S if

S [ MaTrag)? =21 =€) > (- MaTrag).

(ka,tb)es (ka,tb)€R?

Our next result states that a sufficient condition for two operators to approximately agree
on functions e-time-frequency localized on a set S is that their Kohn-Nirenberg symbols almost
agree on a neighborhood of S. Below, B(r) denotes the Euclidean unit ball with radius r and
center 0; the dimension will always be clear from the context. For brevity of notation, we set

S —B(r) = (S°+ B(r))" for S C R2.
Theorem 3.3. Fix M compact and let (g,aZ x bZ), g € S(R), be a tight frame for L*(R) with
frame bound 1. Then any pair of operators H, H € OPW (M) for which one has

lomllLe®2), |loglleemey <p and |jog —ogllre(s) <ep
on a set S C R? satisfy
[Hf = HfllL2@® < Cepllfllrzm

for all f € L*(R) that are e-time-frequency localized on S — B(d(e)) in the sense of Definition 3.2.

Here C > 0 is an absolute constant and d : (0,1) — R satisfies d(¢) = o({/1/¢) for all k € N as
e — 0.

A generalization of Theorem 3.3 — labeled Theorem 4.2 — is proven in Section 4.

Our next main result concerns truncated and mollified versions of the identifier ) ¢,é,7 and
provides localized versions of Theorems 2.2 and 2.4. For S = R2, it reduces to Theorems 2.2 and
2.4.

Theorem 3.4. Fix M compact with Lebesque measure u(M) < 1 and let (g,aZ x bZ), g € S(R),
be a tight frame for LQ(R) with frame bound 1. Let S C I x Iy C R?, where I and Iy may coincide
with R. Furthermore, choose the tempered distribution ¢ such that ¢ >0 and =1 on Iy and let

w = Z en(- —nT).

nTely

Then for any H € OPW (M) with ||og|| 1o ®2) < p and H € OPW (M) defined via

L-1
(82) kgle+ta) = LTS r(t—kT)( Y bigHalt - (k — T)élw + (k; — @)T)) €25,
7=0 qEZ
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one has
|Hf — Hf||z2@m) < Cepllfllem

for all f € L*(R) that are e~time-frequency localized on S — B(d(e)) in the sense of Definition 3.2.
Here C > 0 is an absolute constant, v and ¢ are Schwartz class functions defined as in Theorem 2.4,
but for 6 > 0 such that u(M + [~38,36)%) < 1, and d : (0,1) — RT is a function independent of
S which satisfies d(€) = o(£/1/¢) for all k € N as € — 0.

For rectangular bandlimitation domains M = [0,7]x[—%, %] one can choose the identifier
> (- —nT) and define H via the formula
nTely

kple+ta)=T> (H Y  ¢(—nD))(t+nT)¢(x—nT).

nez nTel

Note that this theorem is completely analogous to the condition (3.1) for localized function
sampling. Due to the two-dimensional nature of the operator, however, localization is an issue
in both time (restricting to a finite number of deltas) and frequency (replacing the deltas by
approximate identities). If one is interested in localization only in time or only in frequency, one
can choose one of the I; to be R and thus consider

w z CcpOpT OF W= chcp(~ —nT),

nTely n

again with (¢,) =1 in case of rectangular domains M.

3.2. Local sampling of operators. An additional important structural difference between classi-
cal sampling and operator sampling remains: in Theorems 2.2 and 3.4, the reconstruction formulas
(2.8) and (2.9) involve as “coefficients” functions, not scalars. Among the many possibilities to
discretely represent the operator’s response to the identifier w, we consider Gabor representations
of this sample function. A time-frequency localized subset of the coefficients will then yield a cor-
responding local approximation of the operator. Theorem 3.5 below establishes a reconstruction
formula based on Gabor coefficients that allows for the exact recovery of the operator; Theorem 3.6
shows that a local subset of the coefficients yields a local approximation of the operator. Again,
one obtains considerably simpler formulas for rectangular domains, but for reasons of brevity, we
focus on the comprehensive setup of arbitrary domains.
For a Schwartz class function ¢ and a tempered distribution f on R we call

Vof(z,8) = (f, McTa¢), x,§€R,

the short-time Fourier transform of f with respect to the window function ¢. Throughout this
paper, all pairings (-, -) are taken to be linear in the first component and antilinear in the second.

Theorem 3.5. For M compact with Lebesgue measure p(M) < 1 there exists L prime, § > 0,
T, > 0 with TQY = 1/L, and L-periodic sequences {cn}tn, {bjqtq, j =0,...,L — 1, so that for
H e OPW (M),

LT L—-1
3.3 o x, — e—QWi(I’VLjQ-‘rfij)eQﬂ'injijT
(3.3) (@€ =32 ;
i L (L
> ol Var(a— (52 4+ k)T, €= (5 +n)Q),
ez b1 B2
where

o, =3 big 6((~q —k; —mL/B)T) (HS cabur, TarMgrs, 7,

qEZ



and r, ¢ are Schwartz class functions such that r and QAS are real valued and satisfy?

(3.4) r(t)=0if t¢ (=6,0+T), (5(7) =0if v¢ (-0 —9Q/2,6+Q/2),
and
(3.5) SNt +EDP =12 6(y +n)P,

keZ nez

with oversampling rates By > 1+ 25/T and 31 > 1 +25/Q.3

Observe that the reconstruction formulas given in Theorems 2.4 and 3.4 require the functions r
and ¢ to generate partitions of unity (3.5), while (2.10) above requires that the functions obtained
by taking the square of the modulus form partitions of unity.

Theorem 3.6. Fiz M compact with u(M) < 1, let T,Q, L and w,r, ¢ be defined in Theorem 2.4,
and let (g,aZ x bZ), g € S(R), be a tight frame for L*(R) with frame bound 1.
Then H € OPW (M) with ||op || ®2) < p, and H € OPW (M) defined via its symbol

L-1

~ LT —omi(xn., ) in ) ~ (7 mL (L
J(z,f):ﬂﬁ Ze 2mi(en; Qkeh; T) g2min, Qk; T Z 02?€V¢T(x—(?+kj)T, f*(ﬁ*Jrnj)Q)a
1P2 555 (mLT)B1,0LQ)B2)ES ! 2
where
552?@ = Z bjq (b((_q —kj — mL//Bl)T) (Hw, ETM@QL/% ),
qEZ
satisfy

1Hf = Hfllr2@ <Ceplfllzm

for all f € L?>(R) which are e~time-frequency localized on S — B(d(€)) with respect to (g,aZ x bZ)
in the sense of Definition 3.2. Again S C I x I, C R? is given, ¢ and w are defined as in
Theorem 3.4, C > 0, and d can again be chosen independent of S with d(e) = o(%/1/e) for all
keNase—0.

The discrete representations introduced in Theorems 3.5 and 3.6 resolve a fundamental concep-
tual difference between classical sampling and operator sampling. In contrast to classical sampling,
where the sampling values can be extracted individually, the contributions of the different Dirac-
deltas in the operator sampling formula are combined in a single function and cannot easily be
separated. Hence, while choosing a higher sampling rate in the function case yields more informa-
tion, in the operator case, this additional information is mixed in an inseparable way. These aliasing
effects [15] make it impossible to obtain redundant representations merely by oversampling in The-
orem 2.2 or Theorem 2.4. In reconstruction formula (3.3), however, the oversampling parameters
(i can be chosen arbitrarily, allowing for representations of arbitrarily large redundancy.

This interplay of large redundancy and good local representation properties of the discrete coef-
ficients can be exploited to coarsely quantize bandlimited operators, i.e., to represent these samples
by values from a finite alphabet which allow for approximate recovery via the same reconstruction
formulas as in Theorems 3.5 and 3.6. For such methods, as they have been studied in the math-
ematical literature for frame expansions over R™ [3, 4, 17] or the space of bounded bandlimited
functions on R [6, 12, 7], the possibility to oversample is of crucial importance. We will, however,
leave this to future work.

2For example, we can choose r = x|o 1) *¥s, where @5 is an approximate identity, that is, a non-negative function
with @5 € S(R), supp s C [-8/2,6/2], and [ 5 = 1.
3Then the Gabor systems {ry; = TerMy/gorTikeez, {ThaMmysia $}m,nez, and {®y,, _n,i,—k
TmTL/81,6L2)M(nQ,/82,kT) Yrm,n,k ecz are tight Gabor frames with A = f2/T, A = $1/Q, and A = p182/(TQ)
B1B2L, respectively, whenever 82 > 14 2§/T and 81 > 1+ 26/9.
8



4. LOCAL APPROXIMATION OF BANDLIMITED OPERATORS

In this section we show that a local approximation of an operator’s symbol always yields a local
approximation of the operator in the sense of Definition 3.2. The given results are of general interest
and will be stated in more general terms than other results in this paper. This does not increase the
difficulty of proof, but necessitates to recall additional terminology from time-frequency analysis.

For that, recall that for any full rank lattice A = AZ?? C R?¢ det A # 0, P(A) denotes the set
of sequences (cy)aea for which

v = (10 + D) <

AEA
A time-frequency shift by A = (¢,v) € A is denoted by 7(\) = M, T; and in the following we will
consider Gabor systems of the form (g, A) = {m(\)g}area-
Among the many equivalent definitions of modulation spaces, we choose the following. Let
go(z) = e 7l 1 < p < oo and s € R. Then

(4.1) MERY) = {f € S'®RY) : || fllarz ey = I((Fs m(N)go))aller (3720 < 00},

where we generally omit the subscript s = 0. For details on modulations paces, see, for example,
[11, 8]. In the following we shall use the fact that whenever (g, A) is a tight L?2-Gabor frame (see
below for a precise definition) with g € M*(R?) then replacing the L2-Gabor frame (g, %ZQd) in
(4.1) with (g, A) leads to an equivalent norm on MP?(R?) [11]. That is, there exist positive constants
A and B with

(4.2) AN ey < STIEANGDP < B gy f € MP(RY
AEA

if 1 <p< oo and
Al fll proe (may < iul/'i|<fa7f()\)g>| < B||fllprray,  f € M®(RY)
€

if p = oo. In either case, we call (g, A) an P-frame with lower frame bound A and upper frame
bound B. If we can choose A = B in case of p = 2 then we call (g,A) a tight Gabor frame.
The norm equivalence (2.4) follows from the following result since M?(R) = L?(R).

Theorem 4.1. Let 1 < p < 0o and M compact. Then there exist positiv constants A = A(M,p)
and B = B(M, p) with

Allonllp=®) < | Hllcoar@) < BllonlLe®), HeOPW(M).

Proof. Theorem 2.7 in [22] (see for example the proof of Theorem 3.3 in [22]) provides C' = C(M, p)
with

I H fllare vy < Cllow||lo @2y |1 fllarew)

for all H € OPW (M). This establishes the existence of B = B(M, p) above.

In addition, we shall use the following facts. In [9, 11] it is shown that the operator norm
of an operator mapping the modulation space M*(R) into its dual M°°(R) is equivalent to the
M>(R?) norm of its kernel x, which can easily shown to be equivalent to the M°°(R?) norm of
the time-varying impulse response h. Moreover, we use the fact that M°°(R?) is invariant under
Fourier transforms (in some or all variables) and that the M°°(R?) norm can be replaced by the
L°°(R?) norm if we restrict ourselves to functions bandlimited to a fixed set M [19, 22]. Last but
not least, we use that the identity map embedding MP(R) into M4(R), p < g, is bounded.

Writing < to express that A < C'B for some constant C depending only on the support M and
A = B to denote equivalence in norms, i.e., A < B and B < A, we obtain for all H € OPW (M)

lom e ®2) < l|om s~ @) X 1hullare@2) < [|5m |0 @2) < T H || 2o @),m0 @) S TH || 20 ®))
and the result follows. O



We proceed to prove the following generalization of Theorem 3.3. Indeed, the earlier stated
result follows again from the fact that L?(R) = M?(R) and g € S(R) implies g € M}(R) for all
s > 1. We focus on the case of arbitrary domains; a simpler proof for rectangular domains can be
obtained using Theorem 2.2 instead of Theorem 2.4.

Theorem 4.2. Fiz M compact and p € [1,00]. Let (g,A), g € MX(R), s > 1, be a tight frame for
L?(R) with frame bound 1.Then any H € OPW (M) with

lomlle@ey < and  |og||pesy < €py

satisfies
IH fllarry < Cepllfllare )

for all f € MP(R) time-frequency localized on S — B(d(e)) = (SC + B(d(e)))C in the sense that,
for p < 0,
> [(FmNgP = (1 =) D[ fm(Ng)l”,
AEAN(S—B(d(e))) XeA
or, for p = oo,
sup {|(f,7(N)g)l, A€ AN (S—B(d(e))} = (1 —e)sup {|(f, 7(N)g)|, A€ A}.

Here C > 0 is an absolute constant and d : (0,1) — R is a function independent of S which
satisfies d(¢) = o(e~'/*) as ¢ — 0.

Proof. Step 1. Preliminary observations and choice of auzxiliary objects. Choose a nonnegative
¢ € S(R?) with [ ¢(z)dzr =1 and supp ¢ C [—3, 1]2. Recall that

At ={peR?: ¥N =1 forall A e A}

is called dual lattice of the lattice A in R2. Let A be a lattice containing A with the property that

there exists a compact and convex fundamental domain D of A+ which contains M + [—3, ] Set

op = |xp * <1>H23(Rz) F(xp * ¢)
and, using the sampling theorem for lattices in R™ [21, 11], we obtain for all H € OPW (M)
og = ZO’H()\) 7-)\0'13
el
and hence

(4.3) H= ZO’H()\) m(A)Pr(N)*.

As explained above, the fact that (g, A) is a Gabor frame in L?(R) with ¢ € M*(R), implies
that it is also an ¢P-frame for MP(R) and there exists Cy, Cy > 0 with

(4.4) [fllare @y < Crl{{f, (N g) reallera) < C102 || fllarrr),  f € MP(R).
As the synthesis map is the adjoint of the analysis map, we also have
(4.5) | Z CAW(/\)QHMP(R) < Co [{eatrenller(ay-

AEA

Since A is a subgroup of K, we have A = Up—q (A + pe) for some gy, po, ..., p,. Here n is
finite, as otherwise the set would be dense, hence not a discrete lattice, and depends only on M
and (g,A). Tt is easily seen that (g, A + pe), £ = 1,...,n, also satisfies (4.4) and (4.5). Setting
g =n"12g e MY(R), we conclude that the Gabor system (g, A) is a tight frame for L2(R) with
frame bounds equal 1 and an ¢P-frame with for MP?(R) with

1 lar ey < Crnd 5 I 7N sexllonci)
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<Cyntr Cont | fllar e = CiCo |y, f € MP(R).
We claim that
(4.6) {(Pr(N5.7(Ng) } € CLR x K).

To see this, recall that op € S(R?) C M!(R?), and, hence, 6p given by op(x, ) e2™*¢ is in M} (R?)
as €22 ig a Fourier multiplier and hence also a time multiplier for M!(R?) (Lemma 2.1 in [?],
related results can be found in [5, ?, ?, ?]). A direct computation implies that for A = (¢,v) and
= (%v, V) we have

(Pr(t)3.n @09 = | [[ orl@,€) = M Togl M T w) de daf
= / / 0, €) 2T M T, (€)M T ) de de|

= (G, M@0 T7,)399)|.
Equation (4.2) implies that the right hand side defines an (A x A) sequence since op € ML (R?)

and (g@?7 A x A) is a Gabor frame with window G®g in M2(R?). Hence, (4.6) holds and for
{Sk}ren, defined by

Se= Y [(Pr(NG (V7).

TN oo =k

we have {(k-+1)*S).} € £*(N). That is, {Si} = o(k~*Y) and for some C' > 0 we have Y p - Sk, <
CK* KeN
For € > 0 set d(¢) = (C/e)'/* and observe that then

> [rasa| = X se<c(crt) =

XeA AeAnB(d(e))e k=d(e)

Now, set A\, A) = (Pr(A\)g, 7(A\)§) if A € AN B(d(e))® and 0 else.

Step 2. Decomposing Hf as Hf = Hiy, fin + Hout fin + H fout - We set
Ain = AN (S —B(d(e)), Am=AN(S—Bd()), Aout =A\Aim, Aou = A\ Ajn.

and

fo= Y (FmNg)7Ng = D exmNG,  four = F = fin,

AEAL /\eKin
where ¢y = /n (f,7(\)g) if A € A and 0 else. Similarly, inspired by (4.3), we set for H € OPW (M)

Hin = Z UH()\) W(A)PW()‘)*7 Hyw = H — Hiy
AEANS
and note that Hi,, Hou € OPW (D + [_%’ %]2)

Step 3. Bounding || Hous fin || v (r) - We use the separation of Ay, and AN S¢ by d(e) to compute

(Houfin V9) = [ 32 oumn)Pr)* Y exn(Ng, 7(N)g)]

veAnSe PY=Y N

< Y loul Y leal (= () Pr(v) = (NG, 7(N)|
vEANSe AEAin

< Y leuwl Y laal [(Pr(x = »)g, 7(X — v)3)|

veAnse AEAin
11



< Y Jon) Y lel AN - rA- )

veAnse AEAin
<llorllpe@n > Y leal AX = v, X = v).
veX Ael

For every sequence {dy} € ¢9(A), 1/p+1/q = 1, we conclude
[({(Hout fins TV Y5ero 15 55 |

<lonllpem) YD D leal A= v, A = v) |ds]

XeAveA reA

= lonlle@m y Y D lextol ANV Id5 |

AeA XeA vel
< lowlze @) [{ex @ 1wz D Y AN
AeA XeA
and
11 Ty
[ Hout finllarr(r) < 1277 Chl{I(Hout fin, m(A) ) [}l g (5,
1_1 ~
<n277 Cillow| ez {ea lwm) D D AN
AeA XeA
11 1 _1
<n277 Crp||{n? (f, (N} eraye <n' 77 Cr Coepu | fllarrmy-
Step 4. Bounding || H fout| are w) - By Proposition 4.1 we have

1 H foutllarrr) < B(M, p) l|ow || oo (r2) | fout | vrv (w) -
By hypothesis, for p < co we have

fout By =1 D (FrmNOTNglhpmm < C5 Y [{fim(Ng)P

A€Aout A€AGut
2
<A fr D <O
AEA

and for p = oo we have

I foutllare@ =1 D (£ 7N TN gllar @y < Ca [{f,7(N)g) e (Aons)

>\€Aout
< Coell{f, m(AN)g)lless (a) < C3ellfllm=w)-

We conclude

1 foutl|ae®) < B(M,p) Ca€ |lomllre|fllar@ < B(M,p) Cy el fllarr -

Step 5. Bounding || Hin finll pre (r) - Since op € S(R?), the operator
(2°(A) — L®(R?), {ca} Z ex Thaop

A€k
is bounded, say with operator norm bound C5. Then, Proposition 4.1 implies
| Hin finll e r) < B(D+[—%, 31%,0) 1o 5, | o 2) || fin a0 )
< B(D+[~3%,51%0) C3 [{ou (M) g zng) (1 + Ol f llaze )
<2B(D+[-3,5]%,p) Cs e[| fll v m)-
12




Since all constants are independent of €, u, H, and f, we summarize
”Hf”MP(R) = HHinfin + Houtfin + Hfout”MP(]R) S CG,U Hf”MP(R) . O
5. OPERATOR IDENTIFICATION USING LOCALIZED IDENTIFIERS

This section analyzes identifiers that are localized in time and frequency. Theorem 3.1 shows
that such functions cannot serve as an identifier for the entire Paley-Wiener.

Proof of Theorem 3.1. Let r # 0 be a Schwartz function with suppr C [0,7] and ¢ # 0
be a Schwartz function with supp$ C [—€/2,9/2]. Let H, be defined via its kernel r,(z,y) =
¢z —n)r(x —y), so hy(z,t) = ¢(xz — n)r(t) and n,(t,v) = [ hp(z,t)e 2™ dy = r(t)ezWi"”a(V),
so H, € OPW ([0, T]x [~ Q/2 Q/2]) with [log, || Lo ®2) = [Pl () H¢||L°°(R)~

If w identifies OPW ([0, T]x[—£2/2,Q/2]), then by definition H,w € L?(R). Then

[t |2dx—/mxy )2 do = [ 166 =) (r(a ~ ). wlo), P do

Clearly, (r(z—y), w(y) )y “25° 0 would imply ||Hnwl|p2m®) " 25 0 and contradict identifiability
(2.5) since by (2.4) we have ||Hy,||zz2mw)) > Allom, |L=m2) = A7l Lo ®) [|@l| L= (r) for all n € Z.

To show that an identifier w cannot decay in frequency, we choose H,, € OPW ([0, T]x [f%, %])
to have spreading functions 7, (t,v) = r(t)ezﬂi"ta(u)e_%””. Let g be a Schwartz function and
compute using Fubini’s Theorem and, for notational simplicity, using bilinear pairings in place of
sesquilinear ones,

<Hnw(x)7g(x)>z =

P
3
—
\'@F
S
~—
—~
[ )
3
<
8
N
S
—~
8
I
~+
~—
<
—~
~—
~
~
o+
N

Hence,

1w gy = | Hpw]2a2) = / F(€ —n)[2 {@B(E — v), d(v)),|? de,

and we can conclude as above. 0

We proceed by showing that local identification of operators is possible with identifiers localized
both in time and frequency, Theorem 3.4.

Proof of Theorem 8.4. The proof proceeds in two steps. First we show that replacing each
Dirac-delta by a suitable smoothed out version locally introduces only a small error and identifi-
cation using the resulting smooth identifier can be interpreted as sampling a modified bandlimited
operator. Second we show that reducing to a finite number of samples also locally yields only
a small error. Applying this to the modified operator arising in the first part proves that both
reductions together also yield only a small error.

For the first part, choose ¢ € § with suppy C [=6,6], [|@]|z~®) = 1, and |@(§) — 1| < e for
& €Iy Define Cy : f— f*¢ and set Ho = H o C,. Observe that

Hef(x //nHtu 2™ f x oz — t) dt dv

B /// N (t,v)e*™ ™ f(z —t — y)p(y) dy dt dv

- /// i (t =y, v)e™ ™ f(az = t)p(y) dy dt dv

S s
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that is, nu. (t,v) = nu(-,v) * ©(t) and
supp N C suppny + [—6, 6] x{0}.

We can apply Theorem 2.4 for the operator Ho with My := M + [—4,]x{0} in place of M. As
by assumption M; + [—6,6]? still has measure less than one, this can be done with §, r and ¢ as
given in the theorem. Defining w; := ¢ * w, we obtain

L—1
(5.1) kp,(x+t,x)=LT Z r(t— ij)(Z bigHwy (t — (k; — )T)d(x + (kj — q)T)) p2min; Q.
j=0 q€Z

Observe that

one (2,8) = Fsnue (2,8) = on(,§) (),

and, by hypothesis, we have ||og. ||L®?) < [|om|Le®2) < pand |[og — ome || nee(s) < €.

Note that for I; = R, (5.1) agrees with (3.2) and we have He = H, so this establishes the result.

For the second part, let us assume S C I; x R and My C [¢,d] x R. Let ¢ € S(R) be
nonnegative and satisfy > 1(x —nT) = 1 and supqu C [-1/T,1/T). Such a function can be
obtained by choosing an arbitrary bandlimited, nonnegative ¢y € S with ||t)g||: = 1 and defining
Y= X[o,1] * Yo-

Set Pa(x) = >, pea ¥(x—nT),s0 P_n n) — 1 and P_y nje — 0 uniformly on compact subsets
as N — oo. Moreover, |P4(z)| < 1 for all A. Choose N (e) so that | Py, 4—n(e),n(e) (%) — 1| < € for
x € I + [¢,d] and choose R(e) with

(5.2) Z 11, + (-~ (o), N () (%) Vorr (2 — q,§) || 1 re) < €(1 —¢€)D.
qT¢I+[—R(e),R(e)]

where the nature of D is derived by the computations below. The existence of such R(e) follows
from the fact that Pr,[_n(e),n(e))(z) and Vi-r decay faster than any polynomial. Furthermore,
as ¥ € S, a similar argument to the one given in the proof of 4.2 shows that for both R(e) and
N (e), the growth rate is again bounded by o( {/1/e for arbitrarily large kN.

Let wy = ZkTeh+[_R(€),R(E)]+[_5’T+5] ¢, and observe that H as defined in the theorem
satisfies

hig(x+tt) = kg(x+t,x)

L-1

LT Z r(t —k;T) < Z bjoHows(t — (kj — q)T)o(x + (kj — q)T)) 2min Q.
J=0 qEZ

Since M; C [e,d] x R, we have supp Hcdy C [c+y,d + y], and therefore,

Hew(z) = He ch(SkT(x) = He Z cropr(2) = Hows(z),
kEZ KT €L +[—R(e),R(e)]+[~T—8,8]+[c,d]

x€ K=l +[-R(e),R(e)] + [-T — 6,9]..

Note that H € OPW (My), where My = M; + [—6,6]2 (for details, see, for example, [24]). As
My + [, 6)? still has measure less than one, this implies that we can apply Theorem 2.4 again
with the same J. We obtain

th(l’ +t,t) - hﬁ(x + t,ﬁ)

L-1
=LT Y r(t—kT) ( > bigHe (w —we) (t — (k; — )T) ¢(a + (k; — q)T)) (2ming Oa
j=0 q€Z

L—-1
=LT Z T(t - ij)( Z quHC (w - ’wg)(t — (kJ — q)T) Qj)(ﬁﬁ' + (k;j _ (])T)) e2min; Qu
Jj=0 qT ¢ K —(t—k;T)
14



L—-1
LT etk Y bigHo(w—wa)(t— (b — )T) 6w + (k; — T))
j=0 qT ¢ +[—R(e),R(e)]

Setting K = K¢ 4 [—6,T + 6] and using that (ore(2,8) —0g(x,8)) Pr4(—n(e),N (o)) () is ban-
dlimited to M + {0}x[—1/T,1/T]), we compute

lose = ogllzmis) <1/ = (10 (2,€) = 77(2,6) Prisiono. ) (@) =)
= 1/(1 — 6) H(O—Hc(xy ) - Uﬁ(xag)) PII"F[—N(G),N(C)](I)HMDC(R?)
=1/ =€) [[(hao (2,t) = hg (2, ) Pr, (- v (). @) (€)= 22)
L-1
= 1/(1 - 6) HLT P11+[*N(6)7N(e)] (x) Z T'(t _ k]T) 6271'1'77._7'52(:2715)

7=0
bjoHe (w = w2)(t = (k; = )T) oz — t + (k; — )T

qT¢I1+[—R(e),R(e)] M
L—-1 .
< LT/(1—¢) Z Z H P11+[—N(e),N(e)]($) r(t — ij) e2min; Uz —1)
J=0 qT¢I1+[—R(e),R(e)]
quHc(w — ’LUQ)(t - (k] - Q)T) ¢('T —t+ (k] - q)T)HMW(Rz)

L-1
<ur/i-9Y Y [Hotw—w) -G —aD)
7=0 ¢T¢I,+[—R(e),R(e)]
| Provivown(@)r(t = kT) 2200y, (o — ¢+ (k; = 7))

LT
1—c¢

M1 (R?)

< |Hell g ®y) lw — wallare (w)

Lz:_l > 1bjq| HPI1+[—N(6),N(E)] (z)r(t) gz —t — qT)H

. M1(R2)
J=0 qT &I, +[—R(e),R(e)]

where we used the invariance of the M and M' norm under translation and modulation and,
for the last inequality, Theorem 4.1 — noting that, for functions constant in one of the coordinate
directions, the M>°(R) and M*>°(R?) norms agree. The second to last inequality is based on M*(R?)
being a Banach algebra, namely on [|g1g2(a(r2) < [|91]lar1 2 |92/l a1 (R2) for g1,92 € M'(R?).
Indeed, for f € M (R?) and g € M*(R?), we have

1fgll=@ey = sap  [(fg,f)l= sap  [f,fRI < sup | fllmoew) £l w2
HfHMl(R2):1 Hf”Ml(RZ):l ”fHMl(RZ):l
< sup ||f||M°°(R)||f||M1(R2)||§||M1(R2) = Hf||M°°(R2)||g”M1(R2) .

11l gt g2y =1
Note that with ¢*(t) = ¢(—t), we have
/ r(t)d(@ — e dt = Vyr(z, €),
which is a bandlimited function since
// Vger(z, £)e2™ = dy d¢ = /r(t)qﬁ(az — ) e IV dy = (1) P(v) e 2T,
Using that the M'-norm is invariant under partial Fourier transforms and the equivalence between

the M' and L' norms which is implied by the bandlimitation of Pr =N, N (T + q) Vger(z,§)
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to (=1/T,1/T)x{0} 4+ (6,2 + 0)x(—0,T + J), we obtain

HPth[*N(E),N(e)] (Jf + Q) ’I"(t) ¢’($ - t)HMl(RQ) = HPHJF[*N(E)»N(G)] (J? + q) V¢*T(x’€)HM1(R2)

= HPHH—N(E),N(E)] (z +4q) V¢”(x’5)’ Li(R?)

Fix g € S(R) and observe that ||V, f[|1»(r2) defines a norm on MP(R) equivalent to the MP(R)
norm given in (4.1) [11]. For any A C R we obtain the uniform bound

1> enburllre@ =< 1Va Y enbnrllie@ =11 > eng(nT — )™ || g

nTeA nTeA nTeA
<Y lenllg(nT = )@ < 1Y leal lg(nT = )] ooy < 00
nT€eA neZ

The first norm inequality stems from the fact that for all g € M*(R), ||V f| 1+ (r2) defines a norm
on MP(R) equivalent to the MP?(R) norm given in (4.1).

Combining this upper bound on ||w — wz||are(r) With the above estimate for ||og. — ozl L (s)
and (5.2), we conclude

lome — Uﬁ”Le@(S)

LT
S DIHGl cu=@nr— lbialle= Y. |[Prsioveavan(@+0) V(. €)|
qT ¢ +[—R(€),R(e)]

< De||Hell g ) = Dellonc ||z r2) < Dellon||Ler2) < Dep.

L1(R2)

Choosing R(e) above large to yield D small enough to compensate all the multiplicative constants,
we obtain
lobe = oglle(s) < ep.
As a meaningful statement is only obtained for € < 1, this bound directly implies that

logllLoe ®2) < 24
Combining this with the bound
lor = oglle@e) < llor — oncllLe®e) + lloae — ol ®e) < 2ep,

Theorem 3.3 directly yields the result with a constant of twice the size as in Theorem 3.3. 0

6. RECONSTRUCTION OF BANDLIMITED OPERATORS FROM DISCRETE MEASUREMENTS

This section concerns the discrete representation given in Theorem 3.5. First, we prove this
theorem, hence establishing that indeed this representation is globally exact.

Proof of Theorem 3.5: The proof is similar to the proof of Theorem 2.4 given in [24]. The main
idea is to use a Jordan domain argument to cover a fixed compact set M of size less than one by
shifts of a rectangle that still have combined area less than one and then to combine identifiability
results for each of them to obtain identifiability for the whole set. Indeed, there exist L prime and

T, >0 with TQ = % such that

L—1
supp(n) € |J R+ (;T,n;Q) C [—(L — 1)T/2, (L +1)T/2] x [-L/2, LQ/2]
§=0
= [~1/(2Q) + T/2,1/(2Q) + T/2] x [=1/(2T), 1/(2T)]

where R = [0,7) x [-£/2,8/2), and the sequence (k;,n;) € Z? consists of distinct pairs. For § > 0
small enough (and possibly slightly smaller T', €2, and a larger prime L), one can even achieve
L—1
Ms € | R+ (k;T,n;Q) C [—(L — )T/2, (L + 1)T/2] x [~L9/2, LQ/2]
=0
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where Mj is the d-neighborhood of M.
Fix such ¢ and let r, ¢ € S(R) satisfy (3.4) and (3.5) for this 0. Clearly,

(6.1) (k,n) # (k;,n;) for all j implies Sgﬂ(R—i—(k’T, nQ)) = () and n(t,y)r(t—kT)d(y—ns) =0,

a fact that we shall use below.

Define the identifier w =Y ¢n On1, Where {c,} is L-periodic and observe that

neZ

= //n(tﬂ Zmiye (*7" - t) dtdry = // t ’Y e2riv(@—t) chékT CL' - t) dt dy

kEZ
_ Z Ck/ 7 — kT, ,.Y 27rz'yde,y
kEZ

- Z Z Ck+p / n(z — (mL+k+p)T,7) 2TV (mL+k+p)T gy
meZ k=0
for any p € Z. We shall use the non-normalized Zak transform Zpr : L*(R) L2([0,LT) "
[—€/2,Q/2)) defined by —

ZLTf t ,Y Z f t _ TLLT) 27TanT'y
nez

We compute using the Poisson summation formula and the fact that @ = 1/LT

(ZLT o H) Z HU/ t— nLT) 2minLTv
neL
— Z 627TZT7’LLV Z ck+p/ t— (nL +mL+k +p)T, ’Y) e27ri'y(mL+k+P)Td,y
m,nez
= Z Chtp Z 627”T”L’// (t _ (mL +k +p)T, 'Y) e?ﬂi’YT((m—n)L-Hc-l‘P)d,y
m,n€”L
= Z Ck+p Z / t — mL +k+ p)T7 ’Y) 2miy(mL+k+p)T Z 627'(7,71L(1/ ’Y)Td"y
k=0 mEZ neEL
1
_ Z i S / (= (nL + -+ p)T,) 70T S 6, (o
meZ nGZ

= Z Chtp Z (t — (ML + k + p)T, v + nQ) 2™ (v+on) (mlthtp)T

m,n€z

By (6.1) we get for p=0,...,L—1,

r(t)dW)(Zpy o H)w(t +pT,v)

=0 Z Chip D T O)p()n(t — (ML + k)T, v + n§Y)e>™ T Hn(mLthtp)

m,ne€z
_QZCerkT )0t + kT, v 4 n;Q) 2™ DT w+ky)
L—-1 N
— Qe2mivpT Z(Tk] Mnjc)p (627riuijT(t)¢(I/) n(t + ij, v+ an)) ’
7=0
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where here and in the following, T : (co,c¢1,...,¢n—2,¢1—1) — (cL—1,C0y...,CL—3,Cr—2) and

M : (co ¢y cp_n,cp1) = (20 Leg 2/ ey 2miUL=2)/Lep o 2mUL=1)/Lep ) that
nj(ptkj)

is, (T% M"ic), = ™ S Cp+k;- Equivalently, we obtain the matrix equation

(6.2) ™2™ P L () p(v)(Zrr o H)w(t +pT,v)]; 5

= QAN TP () G(v)m(t + kT, v +n; Q)] 2]

where A is a L x L matrix, whose jth column is T*i M™ic € CF. A is a submatrix of the L x L?
marix G, whose columns are {T*M'c}E7 Ki= ', It was shown in [16] that if L is prime, then we can

choose ¢ € CF such that every L x L submatrix of G is invertible. In fact, the set of such ¢ € CF
is a dense open subset of C* [16]. Hence we can apply the matrix A~ =: [b;,]* _, on both sides
of Equation (6.2) to obtain
L—1
(6.3) 2R Tr()d(v)n(t + kiT,v+n;Q)=LT Z bjpe”””pTr(t)quS(z/)(ZLT o H)yw(t + pT,v)
p=0
for every j =0,1,...,L — 1.
In fact, until this point the proof agrees with the proof of (2.9) in Theorem 2.4. Indeed, if we
extend {b;,}, to a L-periodic sequence by setting b; ,4+mr = bjp, replace the so far unused property
(3.5) by (2.10) then further computations [22] give

= LT Z (t — k;T) (ZquHw (kj + ) T)p(x —t + (k; + q)T))eQ’””J'Q(””’t).
qEZ
Observe that (3.5) implies that (r,TZ x QLZ) = {TerMira/s,7 i ez is a tight Gabor frame
whenever 8 > 142§ /T as, in this case, (r, QQLZ X A 7 ) = (r, BoTZ xQLZ) is an orthogonal sequence
and the Ron-Shen criterion applies [11, 26]. The same arguments imply that (gg, Q7 x %Z) is a

tight Gabor frame. Using a simple tensor argument, we obtain that {¥,, nik fm.nikez forms a
tight Gabor frame where
Vo, k(8 V) = Toer no)MLeag.,m/8,) T®O(L, V)
2mL(mT(y nQ)+€Q(t kT)) (t B k-T) (E(y B nQ) .
The frame bound is TQL?*TQ/(5182) = 1/(B1P2). We set @y ik = FsWpm k. Clearly, as

Fs is unitary, we have that {®,, n.1.k}mnikez forms a tight frame with frame bound 1/(3;82), in
fact, a tight Gabor frame as

Ptk (2,8) = Fs Vo, —k(2,8) = (FT_krMyras,7) (&) (f_lT—nQMmTL/ﬁla)(x)
= (MkTﬁLQ/BQA) (5) ( ’ﬂQTmTL/ﬁl ¢)($)
e2mitnm-kD) /’\(nLQ/ﬁszTT)(f) (TorL) 8 Mnad)(x).

Note that (6.1) together with the fact that the symplectic Fourier transform is unitary implies
that the coefficients in the Gabor frame expansion of o satisfy

(0, P, ;0 —k;) = (M Winonk) = 0 unless (n, k) = (ny, k;) for some j.

Hence we need to estimate Uin?e = (0, Pm,—n,,1,—k,;) for j =0,1,..., L — 1. We obtain by (6.3)

0'7(»,{)@ = <0- (I)m,fnj,l — > < \Ilm gyl kj >

il 'm.(u njQ) | 0k, T) .
// (t,v)e 2™k ) r(t— kT (v —n;Q)dtdy

/ / t+ kT, v+ nQ)e2rivksT o =2milLCHEED AT gy,
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m,uT

L-1
= // LT Z bjpe_QﬂiI/pTT(t)gg(V)(ZLT o H)w(t _|’_])7‘l7 I/) e—Qﬂi(L( in
p=0

+82) +rk; T) gt dy
o= N T 0tQ
=LT Z bip // r()p(v) e 2P (Zpr o H)w(t + pT,v) e —2mi( L5tk T) iy

L—-1
=LT Z bjp // ?"(t)g/ﬁ\( 727TWPT ZHU} t +pT qLT) 27rquT —27i(L (m”T+ ﬂ)+Vk‘ Tdtd

qEZ
7LTZbJpZ<\/ )H’U}( pT qLT) —omi L 42 /3 dt /¢ QTerT(qL p—kj—mL/B1) dl/)
qEZ

_LTijq(/ Hw(t—f—qT) 27T’LLB dt /¢ 27r11/T( q—kj—mL/B1) dl/)

qEZ

; (t—qT)

= LT bigd(T(—q — k _mL/ﬁl))(/HW(t)e_QmLmTTr(t—qT)dt)

qEZL

- LTZ bjqd(T(—q — kj —mL/B1)) (Hw, Tyr Myrays, 1),

qEZ
where bj, = bjq for ¢ =mL + ¢ with ¢ =0,1,..., L — 1. We can hence set
Cq’l(Hw) = <H’LU, ETMELQ/{BQ 7‘>.

To sum up,
.’17 6 Z Z g, (I)m,fnj,lf >(I)m,7njl* (l‘,f)

6152 §=0 m,eZ

LT - ; LL mTL
6.4 - o~ 2mi(an; Q+Ek; T) J(J) Ple— oz — 7
( ) 6162 j;o m%;z m,{ ( 182 ) ( ﬂl )
where

oy =" big dla(=q—k; —mL/B1)) Cou(Huw).
qEZ
Applying the symplectic Fourier transform to (6.4) yields
—2miv —2miv ~
U(t, V) =€ tn(t7 V) =€ i 5152 Z Z ( (—n;Q,—k;T) ﬁ%%ﬂﬁ(@r) (t7 V)

=0 m,bcZ

— —27‘(1Vt 6152 Z Z 0‘ Tk T,—n; Q) M(M 7mTL) T®$(t7l/)

7=0 m,leZ

Z > 0wl Tosrionyo) M(a _aze) (7”®$ (t,v) 6‘2”(””]'”“"““),

ﬂlﬂQ j e 2 Bl

LT (]) 27rzn Qk; T ~ it

6162 Z Z ’ Tk T,—nyQ M(“Q—ngﬂ kj T—"LTL ( ¢(t,1/)€ )
7=0 m,LeZ

For U(t,v) = r®¢ (t,v) e 2™ we have

FSU({E7§) — // ,r,(t)a(y)e—%ril/te—%ri(&t—l/x) dv dt
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= /r(t)¢(x —t)e 2 gt = /r(t)a(t —x)e 2 gt — Ver(z,§),
where we used that qAS real valued implies ¢(y) = ¢(—y). Now, we compute

o(z,8) = Fsn (x 5)

LT min
_ 16162 Z ; (J) e2min; Uk T Fe (Tk T,—n;Q) M(ﬁLQ_nJQ hy T—mLL) ) (z,8),
j 0 mLez
j 27'rin7'ijT
5152 Zo ZZ;ZO ' M (n;0,-k;T) T(*"B—TIL—ij,%—an) Ver (2,€),
7 m
L—1
LT mTL (LQ )
(65) _ 6 5 Z e—2m(xn,9+§k T) 27rzn]Qk T Z O_(]) V¢’I"<$ _ 6 + k‘ T g ;—n] )
172 =0 m ez 2
The convergence in (6.4) and (6.5) is defined in the weak sense, but can be shown to converge
absolutely and uniformly on compact subsets. O

Next we prove Theorem 3.6, that is, the direct local correspondence between the discretization
values and the operator action.

Proof of Theorem 3.6. We intend to apply Theorems 3.3 and 3.5. We assume that the set
M as well as its enclosing rectangular grid are fixed, hence also the parameters T, €2, and L.
The dependence of the constants, auxiliary functions, etc., in the following derivations on these
parameters will be suppressed for notational convenience; this should be seen as analogue to the
one-dimensional scenario where the arising constants also depend on the shape and not just the
size of the frequency support. Furthermore, set Q = max(LT, LQ).

We can bound using (2.3)

(6.6) o2 lel = 10, @yt < N oo | ®on, -y, 11 < Bllollocllf @ 611 < Bp

For the second 1nequahty7 we used that the Li-norm is invariant under translations and modula-
tions.
Furthermore, note that Vyr € S(R?), so there is a decreasing positive function p € ([0, 00))

such that for p(x,&) = p(\»ﬂ),ﬂ(\ﬂ)

Now observe that, as p is decreasing,

< 861'T'5 pointwise.

S apte) <p0)+> [ sttt =l + ol
70 =lagi-1)
We use this estimate to bound for arbitrary (z, &)
o (z, &)
_2m(mjﬂ+gkjT)ezmnjmj:r Z (g) ) Vir(a — (&L BT, €— (EL N nJ)Q)’
’BlﬁQ =0 (mLT/ﬁl,éLQ/ﬁg)ES b B2
< > (J)|‘V¢7‘x—( )T e ()0 )]
rB2 (urrysliassnes A P
T ‘= Cu mL
Sﬁlﬂz Z Z 8CT p(’x— ( B1 ’) (‘ +nJ)Q)D

J=0 (mLT/B1,LLQ/B2)ES

st 3 SCier) SlCf) < S )
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and hence
o~ &loe < llloe + 18l < 1+ & (ol + lpllc)” =: Cr
By the definition of S, for every § > 0, there is a constant C(§) such that for any fixed 0 < j < L,
(6.7) 6 Z8lpllr®+)lloll L1 ic(6)-20,00) = BlIAllL: (1-c(6)+@.c(6)-Q12))
and hence, for (z,¢) € S — B(C(9)),
2
oo szt e CE e (Zen)a)

£,mEeZ
(+-2tme—tto)er-cw.omr

To obtain (6.8) from (6.7), the boundary term in the discretization of the integral and the shifts
by k; and nj, respectively, are each compensated by increasing the dimensions of the integra-
tion/summation domain by LT and L in time and frequency, respectively, both of which are
bounded by Q.

Note furthermore that, as (z,&) € S — B(C(9)), a necessary condition for

mL (L )
(v =5 76~ 59) ¢ [-0(0),C0)

is that
(mLT /1, L/ B2) & S.
Thus, using (6.6) and the triangle inequality, we can bound (6.8) from below obtaining

69)  ou> ‘/6’162 3 oD Vor (@ - (%L + k)T, € - (2’; +1;)Q)|.

mLT/B1,LLQ/B2)¢S

Hence forming a weighted average (with complex weighting factors of modulus one) of Equa-
tion (6.9) over the L choices of j, we obtain

L—-1

727'ri(zn_7'52+§ij) 2min; Qk; T e ( _ (miL ) _ (@ ) ))
> e e Vyr(x +k;i )T, +n,;)Q
5152 = mLTze;Q mee s : Bo

(mET L) g
=lo(z,£) — 6 (x, &)l

This yields |0 — &1 (s—B(c(s))) < op. Hence by Theorem 3.3, we conclude that
~ )
|Hf—Hf|2 < Caﬂ
1

for all functions f which are Cil—time—frequency—localized to S — B(C(d)) — B(d(e)). The result
follows by choosing 6 = min (%e, Cle) and D(e) = C(d) + d(e). O
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