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Sampling and reconstruction of operators
Götz E. Pfander, Member, IEEE, and David Walnut

Abstract

We study the recovery of operators with bandlimited Kohn-Nirenberg symbol from the action of such
operators on a weighted impulse train, a procedure we refer to as operator sampling. In previous work,
Kozek and the authors have shown that operator sampling is possible if the symbol of the operator is
bandlimited to a set with area less than one. In this paper we develop explicit reconstruction formulas for
operator sampling that generalize reconstruction formulas for bandlimited functions. We give necessary
and sufficient conditions on the sampling rate that depend on size and geometry of the bandlimiting
set. Moreover, we show that under mild geometric conditions, classes of operators bandlimited to an
unknown set of area less than one-half permit sampling and reconstruction. A similar result considering
unknown sets of area less than one was independently achieved by Heckel and Boelcskei.

Operators with bandlimited symbols have been used to model doubly dispersive communication
channels with slowly-time-varying impulse response. The results in this paper are rooted in work by
Bello and Kailath in the 1960s.

Index Terms

Bandlimined Kohn-Nirenberg symbols, spreading function, operator Paley-Wiener space, channel
measurement, channel identification, operator identification, operator sampling, Gabor analysis, symplec-
tic matrices.
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I. INTRODUCTION

In this paper we develop a sampling theory and reconstruction formulas for operators bandlimited to
domains of small area. Analogously to the classical sampling theory of functions, the objective of operator
sampling is to fully characterize an operator from at first sight insufficient information, specifically by
observing an operator’s action on a single discretely supported distribution, viz; a weighted sum of delta
distributions. The theory developed herein applies to so-called bandlimited operators, defined as operators
whose Kohn-Nirenberg symbol is bandlimited. The symplectic Fourier transform of the Kohn-Nirenberg
symbol of an operator is referred to as its spreading function, so that we are considering operators whose
spreading function is compactly supported. More generally, we extend reconstruction to operators in
which the spreading function is supported in a fundamental domain of a lattice. In engineering terms,
the operators considered are characterized by limited time-frequency dispersion.

A. Identification and sampling of operators

The operator identification problem addresses the question whether an operator from a given class can
be recovered from its action on a single probing signal. That is, for a given class of operators H, does
there exist an input signal g so that Hg determines H . Mathematically speaking, we require that the
map Φg : H 7→ Hg be injective on H. In order to be stable under noise introduced, for example, by
physical considerations or digital processing, it is reasonable to require in addition that the map Φg have
a bounded inverse.

Definition 1.1: Let H be a collection of linear operators mapping a space of functions or distributions
X(R) to a normed function space Y (R). If for some g ∈ X(R),

Φg : H −→ Y (R), H 7→ Hg

is bounded above and below, that is, if there are constants 0 < A ≤ B such that

A‖H‖H ≤ ‖Hg‖Y ≤ B ‖H‖H for all H ∈ H, (1)

then we say that H is identifiable with identifier g ∈ X(R). If H is not linear, then condition (1) is
replaced by

A‖H1 −H2‖H ≤ ‖H1g −H2g‖Y ≤ B ‖H1 −H2‖H for all H1, H2 ∈ H. (2)

The sampling and reconstruction theory for operators developed here addresses identifiability of oper-
ator classes utilizing discretely supported distributions.

Definition 1.2: A strictly increasing sequence Λ = {λn}n∈Z in R is a set of sampling for an operator
class H, if for some never-vanishing sequence (cn)n∈Z, we have that

∑
n∈Z cnδλn

identifies H. We define
the sampling rate of Λ by

D(Λ) = lim
r→∞

n−(r)

r
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where
n−(r) = inf

x∈R
#{n : λn ∈ [x, x+ r]}

Assuming that the limit exists, D(Λ) can be interpreted as the average number of terms cnδλn
appearing

in the identifier per unit time and corresponds to the lower Beurling density of Λ. The assumption that
the sequence c = (cn) never vanishes ensures that the sampling rate depends only on Λ. In particular,
we avoid the situation in which for some set Λ′ ⊇ Λ, of higher density than Λ,

∑
m dmδλ′m =

∑
n cnλn

where dm = cn whenever λ′m = λn and dm = 0 otherwise.
In this paper, we will restrict our attention to sets of sampling that are periodic subsets of a lattice in

R, and moreover will focus on periodic weighting sequences c = (cn).
Definition 1.3: We say that an operator class H can be identified by regular operator sampling if

there exists T > 0, L ∈ N, and a period-L sequence c = (cn) such that
∑

n∈Z cnδnT identifies H. In the
language of Definition 1.3,

Λ = {nT : cn 6= 0} ⊆ T Z.

Moreover,

D(Λ) =
1

T

‖c‖0
L

(3)

where
‖c‖0 = #{n : 0 ≤ n ≤ L−1 and cn 6= 0}

is the support size of the vector (c0, . . . , cL−1).
Our work addresses the identifiability of classes of operators characterized by their Kohn-Nirenberg

symbol being bandlimited to a set S. In [10], [21] (cf. [22] and [17]), the following result for the
identifiability of operator Paley-Wiener spaces (see Definition 1.5 below) is given. Here and in the
following, |S| denotes the Lebesgue measure of the set S.

Theorem 1.4: OPW 2(S) is identifiable by regular operator sampling if S is compact and |S| < 1,
and not identifiable if S is open and |S| > 1.

B. Operator representations, bandlimited operators, and operator Paley-Wiener spaces

Similarly to linear operators on finite dimensional space being represented by matrices, the Schwartz
kernel theorem implies that linear operators on any of the classical function spaces on R can be represented
by their kernel, that is, formally, we have

Hf(x) =

∫
κH(x, y)f(y) dy, (4)

for a unique kernel κH .1

As operators are in 1-1 correspondence with their kernels, they can also be formally represented by
their time-varying impulse response h, their Kohn-Nirenberg symbol σ, and their spreading function η.

1In fact, with S(Rd) denoting the space of Schwartz class functions and S ′(Rd) its dual, we can associate to any linear
and continuous operator mapping S(Rd) to S ′(Rd) a kernel κ ∈ S ′(R2d) so that (4) holds in a weak sense. Below, we shall
consider operators acting boundedly on the space of square integrable functions L2(R) which fall in the framework outlined
above. We refer to [17] for a more detailed functional analytic treatment of operator and function spaces involved.
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In fact, formally,

Hf(x) =

∫
hH(x, t) f(x− t) dt (5)

=

∫∫
ηH(t, ν) e2πiν(x−t) f(x− t) dν dt (6)

=

∫
σH(x, ξ) e2πixξ f̂(ξ) dξ, (7)

where ∫
ηH(t, ν) e2πiν(x−t) dν = hH(x, t) = κH(x, x− t) =

∫
σH(x, ξ) e2πiξt dξ, (8)

and the Fourier transform in (7) is normalized as Ff(ξ) = f̂(ξ) =
∫
f(x) e−2πixξ dx.

Operator representations such as those given in (5), (6), (7) are considered in the theory of so-called
pseudodifferential operators where we write

σ(x,D)f(x) =

∫
σ(x, ξ) e2πixξ f̂(ξ) dξ.

Observing further, that with the so-called symplectic Fourier transform given by

FsF (t, ν) =

∫∫
F (x, ξ) e−2πi(xν−tξ) dx dξ,

(8) implies e−2πitν ηH(t, ν) = FsσH(t, ν). We say that the operator

H is bandlimited to the set S ⊆ R2 if supp ηH = suppFsσH ⊆ S.

Considering now spaces of such operators we arrive at the following definition.
Definition 1.5: Given a set S ⊆ R2, define the operator Paley-Wiener space OPW (S) by

OPW (S) = {H ∈ L(L2(R), L2(R)) : suppFsσH = supp ηH ⊆ S}

where L(L2(R), L2(R)) denotes bounded operators on L2(R). The space of Hilbert-Schmidt operators
in OPW (S) is

OPW 2(S) = OPW (S) ∩HS(L2(R)) = {H ∈ L(L2(R), L2(R)) : suppFsσH ⊆ S, σH ∈ L2(R2)}.

The reconstruction formulas presented in this paper for OPW 2(S) hold formally for all of OPW (S).
Operator Paley-Wiener spaces defined by membership of the symbol in generic mixed Lp spaces is
considered in [17]; see also Section II-B below for some expamles.

C. Physical relevance of bandlimited operators

In communications engineering, (5) and (6) are commonly used as models for linear (time-varying)
communication channels. The time-varying impulse response of the channel hH(x, t) is interpreted as
the response of the channel at time x to a unit impulse at time x − t, that is, originating t time units
earlier. Hence, if hH(x, t) 6= 0 only for 0 ≤ t ≤ T , then H is causal with maximum time-dispersion T .

If hH(x, t) = hH(t) then the characteristics of the channel are time-invariant and in this case the
channel is a convolution operator. Such channels are identifiable since hH(t) is the response of the
channel to the input signal δ0(t), the unit-impulse at t = 0.

A mobile communication channel has the property that hH(x, t) depends on x, but changes as a
function of x rather slowly, since the change in the channel, for example, by movement of receiver,
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transmitter, or reflecting objects, is slow when compared with the speed of light at which information
travels. This slow variance can be expressed through a bandlimitation of hH(x, t) as a function of x, that

is, as a support constraint on the spreading function of H , ηH(t, ν) =

∫
hH(x, t) e−2πiν(x−t) dx, as a

function of ν. We conclude that a causal doubly dispersive communications channel with maximum time
dispersion T , and hH(x, t) bandlimited in x to [−Ω,Ω] is represented by a spreading function supported
on the set [0, T ]×[−Ω,Ω], that is, by operators in OPW ([0, T ]×[−Ω,Ω]) since ηH = FsσH .

To substantiate this bandlimitation on σH(x, t) further, we denote translation by t by Tt : f(x) 7→
f(x − t) and modulation by ν by Mν : f(x) 7→ e2πiνx f(x). The latter is also referred to as frequency
shift as M̂νf = Tν f̂ . Then (6) becomes the operator-valued integral

H =

∫∫
ηH(t, ν)TtMν dν dt =

∫ T

0

∫ Ω

−Ω
ηH(t, ν)TtMν dν dt ,

that is, the spreading function is the coefficient vector of the time-frequency shifts that a communication
channel carries out. Hence, OPW ([0, T ]×[−Ω,Ω]) has maximum time-delay T and maximum frequency
shift Ω.

D. Relation to other work

In 1963, T. Kailath [7], [8], [9] asserted that for time-variant communication channels to be identifiable
it is necessary and sufficient that the maximum time-delay, a, and Doppler shift, b, satisfy ab ≤ 1 and
gave an argument for this assertion based on counting degrees of freedom. In the argument, Kailath looks
at the response of the channel to a train of impulses separated by at least a time units, so that in this
sense the channel is being “sampled” by a succession of evenly-spaced impulse responses. The condition
ab ≤ 1 allows for the recovery of sufficiently many samples of hH(x, t) to determine it uniquely.

Kailath’s conjecture was given the precise mathematical framework described above and proved in
[10].

In 1969, P. A. Bello [2] argued that what is important for channel identification is not the product ab
of the maximum time-delay and Doppler shift of the channel but the area of the support of the spreading
function. It is notable that Kailath also asserted something along these lines. This means that a time-
variant channel whose spreading function has essentially arbitrary support is identifiable as long as the
area of that support is smaller than one. Using ideas from [10], Bello’s conjecture was confirmed in [22].

Building on the results from [10], [21], [22] a number of results have been established that are now part
of the herein described sampling theory for operators. For example, the results in [21] were extended from
the setting of Hilbert-Schmidt operators to a much wider class of pseudodifferential operators in [17]. In
[6], the choice of non periodic (irregular/jitter) sampling locations for operator sampling was discussed.
Necessary and sufficient conditions for the identifiability of bandlimited Multiple Input Multiple Output
(MIMO) channels were given in [16].

More recently, sampling results for stochastic operators, that is, for operators with stochastic spreading
functions, have been obtained [15], [24], [23]. Also, in applications, it is required to replace the identifier
considered in this paper by finite time, finite bandwidth, that is, smooth, signals. Local recovery results
in this setting, as well as a reconstruction formula that allows for the application of coarse quantization
methods prior to the approximate recovery of the operator are given in [12]. Focusing on a parametric
setup, the identification of bandlimited operators was analyzed with respect to applicability in super-
resolution radar [1].
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II. MAIN RESULTS

A. Sampling and reconstruction of operators

One of the goals of this paper is to give an explicit reconstruction formula for the impulse response
of the channel operator from its response to the identifier. Such formulas illustrate a connection between
operator identification and classical sampling theory and motivates the terminology of operator sampling
given above.

The main result of this paper is the following.
Theorem 2.1: Let S ⊆ R2 satisfy |S| < 1 and suppose that for some Ω, T > 0 with TΩ = 1/L,

L prime, S is contained in a fundamental domain of 1/ΩZ × 1/T Z (that is, the sets S + (k/Ω, `/T ),
k, ` ∈ Z, are pairwise disjoint). Further assume that there exist integers 0 ≤ qj , mj ≤ L−1, 0 ≤ j ≤ L−1,
and (t0, ν0) ∈ R2 such that with Rq,m = [0, T ]×[0,Ω]+(t0, ν0) + (qT,mΩ), q, m ∈ Z,

Sper = [0, 1/Ω]×[0, 1/T ] + (t0, ν0) ∩
⋃
k,`∈Z

(S + (k/Ω, `/T )) ⊆
L−1⋃
j=0

Rqj ,mj
. (9)

Then OPW 2(S) can be identified by regular operator sampling with identifier g =
∑

n cnδnT , (cn) a
period-L sequence, and there exist period-L sequences bj = (bj,k) and functions Φj(t, ν) for 0 ≤ j ≤
L−1, such that

h(x, t) = e2πi(t+t0)ν0
∑
k

L−1∑
j=0

bj,kHg(t− (qj − k)T ) e−2πimj(qj−k)/L Φj(t, x− (t+ t0) + (qj − k)T ).

(10)

where the sum converges unconditionally in L2(R2). Here

Φj(t, s) =

∫
e2πiνs χ

Sj
(t, ν) dν

where
Sj = S ∩

⋃
k,`∈Z

(Rqj ,mj
+ (k/Ω, `/T )).

B. Illustrations and Special Cases of Theorem 2.1

As a special case of Theorem 2.1, Shannon’s sampling theorem can be extended to the following
sampling theorem for operators. This result first appeared in [17].

Theorem 2.2: For H ∈ OPW 2(S), S ⊆ [0, T )×[−Ω/2,Ω/2) compact and TΩ ≤ 1,

h(x, t) = e−πit/T
∑
n∈Z

(
H
∑
k∈Z

δkT
)
(t+ nT )

sin( πT ((x− t)− nT ))

π((x− t)− nT )
χ

[0,T ](t). (11)

where the sum converges in L2(R2) and for each t, uniformly in x.
Proof: By the assumption on S, we can take TΩ = 1 and (t0, ν0) = (0,−Ω/2) in Theorem 2.1 so that
L = 1, q0 = m0 = 0, c0 = 1 and hence b0,0 = 1. In this case

Φ0(t, s) = χ
[0,T ](t)

∫ 1/2T

−1/2T
e2πiνs dν = χ

[0,T ](t)
sin(πs/T )

πs

and (11) follows.
The most straightforward extension of Theorem 2.2 is to operator classes OPW 2(S) where S is

compact, |S| < 1, but S is not necessarily contained in a rectangle with area smaller than or equal to 1.
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Theorem 2.3: If S ⊆ (0,∞)×R is compact with |S| < 1 then OPW 2(S) is identifiable via regular
operator sampling. Specifically, there exist T > 0 and L ∈ N such that S ⊆ [0, LT ]×[−1/(2T ), 1/(2T )],
and a period-L sequence c = (cn) such that g =

∑
n cn δnT identifies OPW 2(S). Moreover, there exist

period-L sequences bj = (bj,k), and integers 0 ≤ qj , mj ≤ L−1, for 0 ≤ j ≤ L−1 such that

h(x, t) = e−πit/T
∑
k

L−1∑
j=0

bj,kHg(t− (qj − k)T ) e2πimj(x−t)/LT φ((x− t) + (qj − k)T ) r(t− qjT ) (12)

where r, φ ∈ S(R) satisfy ∑
k∈Z

r(t+ kT ) = 1 =
∑
n∈Z

φ̂(γ + n/LT ), (13)

where r(t)φ̂(γ) is supported in a neighborhood of [0, T ]×[0, 1/LT ], and where the sum in (12) converges
unconditionally in L2 and for each t uniformly in x.

Equation (12) is a direct generalization of (11) under the assumption that r(t) = χ
[0,T ](t) and ϕ̂(γ) =

χ
[0,Ω](γ). The passage to smooth cut-off functions r and ϕ is enabled by the fact that |S| < 1 and allows

for faster decay of the reconstruction functions, and for the validity and convergence of the reconstruction
sums in more general function spaces. These matters have been studied extensively in [17].

By generalizing the setting to other function spaces, we can more precisely illustrate the connection
between operator sampling and the classical sampling theorem attributed to Shannon, Whittaker, and
Kotelnikov among others, and also the connection with the well-known fact that time-invariant operators
can be identified by their impulse response.

Definition 2.4: We define the operator Paley-Wiener spaces OPW∞,2(S) and OPW 2,∞(S) by

OPW∞,2(S) = {H ∈ L(L2(R), L2(R)) : supp ηH ⊆ S, ‖σH‖L∞,2 =
∥∥∥∫ |σH(·, ξ)|2dξ

∥∥∥1/2

∞
<∞}

and

OPW 2,∞(S) = {H ∈ L(L2(R), L2(R)) : supp ηH ⊆ S, ‖σH‖L2,∞ =
(∫
‖σH(x, ·)‖2∞dx

)1/2
<∞}

([17], Theorem 4.2). OPW p,q(S) is a Banach space with respect to the norm ‖H‖OPW p,q = ‖σH‖Lpq .
Note that convolution with a compactly supported kernel whose Fourier transform is in L2 is an

operator in OPW∞,2 and multiplication by a bandlimited function in L2 is an operator in OPW 2,∞.
First, take H to be ordinary convolution by hH(t), this means that hH(x, t) depends only on t, that

is, hH(x, t) = hH(t). In this case H can be identified in principle by g = δ0, the unit impulse at the
origin, since Hg(x) = hH(x). That is, Λ = {0} is a sampling set for the class of convolution operators.
Translating this into our operator sampling formalism results in something slightly different.

Assume that h is supported in the interval [0, T ′], ĥ ∈ L2 and that T > T ′, and Ω > 0 are chosen
so that ΩT < 1. In this case, ηH(t, ν) = h(t) δ0(ν) and σH(x, ξ) = ĥ(ξ). Therefore σH ∈ L∞,2 and
H ∈ OPW∞,2([0, T ′]×[−Ω/2,Ω/2]).

Applying Theorem 2.3 to this situation, note that if g =
∑

n δnT then Hg is simply the T–periodized
impulse response h(t), and it follows from the theorem (or by direct calculation) that with r, ϕ ∈ S(R),
r(t) = 1 on [0, T ′] and vanishing outside an interval of length T containing [0, T ′], and with ϕ̂(0) = 1
and ϕ̂ vanishing outside [−Ω/2,Ω/2],

r(t)
∑
k∈Z

(Hg)(t+ kT )ϕ(x− t− kT ) =
∑
k∈Z

∑
n∈Z

r(t)h(t+ kT − nT )ϕ(x− t− kT )

=
∑
k∈Z

h(t)ϕ(x− t− kT ) = h(t).
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Here we have used the fact that r(t) = 1 on [0, T ′] and vanishes outside a neighborhood of [0, T ′] and
that

∑
k ϕ(x − t − kT ) = 1 by the Poisson Summation Formula and in consideration of the support

constraints on ϕ̂. Indeed the theorem says that the sum
∑

k ϕ(x − t − kT ) converges to 1 in the L∞

norm and in particular uniformly on compact sets.
To compare Theorem 2.3 with the classical sampling theorem, take H to be multiplication by some fixed

function m ∈ L2 with supp m̂ ⊆ [−Ω/2,Ω/2] then ηH(t, ν) = δ0(t)m̂(ν), h(t, x) = δ0(t)m(x − t),
and σH(x, ξ) = m(x). Let Ω′ > Ω and T > 0 be such that Ω′T < 1. Then σH ∈ L2,∞ and H ∈
OPW 2,∞([−T/2, T/2]× [−Ω/2,Ω/2]).

Choose r, ϕ ∈ S(R) such that supp r ⊆ [−T/2, T/2] and r(0) = 1 and supp ϕ̂ ⊆ [−Ω′/2,Ω′/2] and
ϕ̂(ν) = 1 on [−Ω/2,Ω/2]. If g =

∑
n δnT , then Hg =

∑
nm(nT ) δnT , and it follows from Theorem 2.3

(and by direct calculation) that

δ0(t)m(x− t) = r(t)
∑
k∈Z

(Hg)(t+ kT )ϕ(x− t− kT )

= r(t)
∑
k∈Z

∑
n∈Z

m(nT ) δ(n−k)T (t)ϕ(x− t− kT )

=
∑
n∈Z

m(nT )ϕ(x− nT )

by support considerations on the function r(t). Therefore we have the summation formula

m(x) =
∑
n∈Z

m(nT )ϕ(x− nT )

where the sum converges unconditionally in L2. This recovers the classical sampling formula when
sampling above the Nyquist rate.

C. Necessary and sufficient conditions on the sampling rate in operator sampling

A second goal of this paper is to investigate efficient sampling rates for regular operator sampling.
In the classical sampling theory of functions, the sampling rate must exceed the reciprocal of the area
of the bandlimiting set; and regardless of the measure of the bandlimiting set, a (possibly high density)
sampling set always exists. As mentioned above (Theorem 1.4), operator sampling of OPW 2(S) is only
possible if the measure of S satisfies |S| ≤ 1. In addition, the sampling rates in operator sampling depend
on the geometry of S in an intricate way. A necessary condition on the sampling rate is the following.

Theorem 2.5: If S is closed and Λ is a set of sampling for OPW 2(S) with inf{|λ−µ| : λ, µ ∈ Λ} > 0,
then

D(Λ) ≥
∥∥∥∫

R
χS(·, ν) dν

∥∥∥
∞
.

The quantity
∥∥ ∫

R χS(·, ν) dν
∥∥
∞ can be interpreted as the maximum vertical extent of the set S.

To reduce the average rate at which we have to send Dirac impulses into a channel to apply regular
operator sampling results, we seek to find

min
{‖c‖0
TL

:
∑
n

cnδnT identifies OPW 2(S)
}
.

Clearly, the minimization problem is difficult since the choice of T and c is coupled. In general, we seek
to choose T as large as possible, and L and c so that the relative support of c, ‖c‖0/L is as small as
possible. In the following, we address the problem of finding large T which allows for regular operator
sampling and we establish a sufficient condition on ‖c‖0/L based on the geometry and size of S.
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We will first discuss the choice of T . Observe that our main result, Theorem 2.1, improves on
Theorem 2.3 as the latter requires the region S be compact, and that for some T > 0 and L ∈ N,
with Ω = 1/LT , S ⊆ (0, 1/Ω)×(−1/2T, 1/2T ) and that S be efficiently covered by rectangles of the
form [0, T ]×[0,Ω] + (0,−1/2T ) + (qT,mΩ), (q,m) ∈ Z2, that is, that S intersect at most L such
rectangles. This condition is weakened in Theorem 2.1 by requiring only that for some T > 0, L ∈ N
and Ω = 1/LT , S is a subset of a fundamental domain of 1/ΩZ×1/T Z and that for some shift (t0, ν0),

Sper = [0, 1/Ω]×[0, 1/T ] + (t0, ν0) ∩
( ⋃
k,`∈Z

S + (k/Ω, `/T )
)

is efficiently covered by rectangles of the form [0, T ]×[0,Ω] + (t0, ν0) + (qT,mΩ), (q,m) ∈ Z2. In
particular, S need no longer be closed nor bounded. Observe that in case S is compact, T > 0 and
L ∈ N satisfying the hypotheses of Theorem 2.3 also satisfy the hypotheses of Theorem 2.1, and hence
the latter theorem always allows a choice of T at least as large as the former.

To reduce the sampling rate further, we can consider S to be a subset of a fundamental domain of a
general lattice, specifically replacing TZ×ΩZ by a general lattice AZ2, and requiring S to be a subset
of a fundamental domain of LAZ2. Our next theorem relies on basic insights on the role of symplectic
geometry in time-frequency and generalizes Theorem 2.1. For simplicity, we state our result involving
the covering of the periodization of S with respect to LAZ2 by fundamental domains of the lattice AZ2

for lower triangular matrices A =
(
T 0
a Ω

)
that are shifted in the ν direction. Since a = 0 puts us in the

case of Theorem 2.1, letting a vary will always allow for choosing T at least as large as in Theorem 2.1.
In Section IV-B below we discuss the general case in detail and compute the quite involved resulting

reconstruction formulas.
Theorem 2.6: Let S ⊆ R2 satisfy |S| < 1 and suppose that for some A =

(
T 0
a Ω

)
with detA = TΩ =

1/L, L prime, S is contained in a fundamental domain of the lattice LAZ2. Assume that for ν0 ∈ R,
integers 0 ≤ qj , mj ≤ L−1, 0 ≤ j ≤ L−1, and for the parallelograms Pq,m = A

(
[0, 1]2+(0, ν0) +

(q,m)T
)
, q, m ∈ Z, we have

A
(
L[0, 1]2 + (0, ν0)

)
∩
⋃
k,`∈Z

S + LA(k, `)T ⊆
L−1⋃
j=0

Pqj ,mj
. (14)

Then OPW 2(S) can be identified by operator sampling. Namely, with the period-L sequence c = (cn)
and the period-L sequences bj = (bj,k)k from Theorem 2.1 and functions

Φj(t, s) =

∫
e2πiνs χ

Sj
(t, ν) dν, Sj = S ∩

⋃
k,`∈Z

(Pqj ,mj
+ LA(k, `)T ),

we have

h(x, t) = e−πiat
2/T

∑
k

L−1∑
j=0

bj,k e
−πiaT (t/T−(qj−k))2 Hg(t− (qj − k)T )

Φj(t, x− (qj − k)T ) e2πi(qj−k)at .

where g =
∑
cne

πiTan2

δnT and the sum converges unconditionally in L2(R2). If the product Ta is
rational, say Ta/2 = p/q in lowest terms, then (cne

πiTan2

)n is periodic with period being the least
common multiple of q and L. In particular, if LTa/2 is an integer, then the period is L as well.

The choice of the period-L sequence c = (cn) in Theorems 2.1, 2.3, and 2.6 is governed by the follow-
ing considerations. Defining the translation operator T on CL by T (x0, x1, . . . , xL−1) = (xL−1, x0, x1, . . . , xL−2)
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and the modulation operator M on CL by M(x0, x1, . . . , xL−1) = (ω0x0, ω
1x1, . . . , ω

L−1xL−1) where
ω = e2πi/L, we define the finite Gabor system with window c as the system of L2 vectors in CL,
{T qMmc}L−1

q,m=0, where with a slight abuse of notation we think of c now as the vector (c0, . . . , cL−1) ∈
CL (for details on Gabor frames in finite dimensions, see [14], [13], [4] and the overview article [25]).
Given a covering of Sper in (9) by at most L rectangles of the form Rq,m = [0, T ]×[0, 1/LT ]+(t0, ν0)+
(qT,m/LT ), specifically if

Sper ⊆
L−1⋃
j=0

Rqj ,mj
,

then we require that c be chosen so that {T qjMmjc}L−1
j=0 forms a basis for CL. It has been shown that

if L is prime, then such a choice of c always exists [14], but such a choice may well exist even if L is
not prime. Moreover, since the reconstruction formulas require that we invert the L × L matrix whose
columns are given by T qjMmjc, choosing L as small as possible is also desirable.

The main result in this paper relevant to finding a sufficient condition on the sampling rate for
identification of OPW 2(S) is the following.

Theorem 2.7: Let S ⊆ R2, |S| < 1, and suppose that for some T > 0 and N ∈ N, S is a subset
of a fundamental domain of the lattice TNZ × 1/T Z, and that Sper can be covered by no more than
N rectangles of the form Rqj ,mj

= [0, T ]×[0, 1/TN ] + (qjT,mj/TN), (qj ,mj) ∈ Z2. Then for every
sufficiently large prime L, OPW 2(S) can be identified via regular operator sampling by an identifier
satisfying

‖c‖0
L

<
∑
j

|Rqj ,mj
|.

Note that if
∑

j |Rqj ,mj
| is close to 1 (that is, if the covering of Sper by rectangles is very coarse),

then the conclusion of the theorem is quite weak. However, if |S| is small, and if, for some T > 0 not
too small, Sper can be covered by a union of rectangles whose total area is small, then Theorem 2.7
gives some hope of an efficient sampling scheme for OPW 2(S).

D. Sampling and reconstruction of operators with small, but unknown support

Just as in classical sampling, operator sampling requires full knowledge of the bandlimitation we expect
an operator to have, that is, the reconstruction formulas for OPW 2(S) depend on knowing the region
S. However, in some applications S may not be known precisely, but only some information on its
size, geometry and location is given by physical considerations. In Theorem 2.8 we address the question
whether such operator can be sampled and reconstructed in a stable matter. Independently of our work,
Heckel and Boelcskei have analyzed the problem of sampling operators with unknown bandlimitation in
greater detail [3]. In an analogous setup, they were able to prove identifiability for unknown support sets
of area less than one, rather than less than 1/2 achieved below.

Theorem 2.8: Fix A,B, ε, U > 0 and N ∈ N. LetH(A,B,U,N, ε) contain all operators with supp FsσH =
supp ηH ⊆ [−A,A]×[−B,B] and such that there exist N Jordan curves Ci with the property that

1) supp FsσH = supp ηH is contained in the interior sets of the Jordan curves,
2) the sum of areas of the interior sets is less than 1/2− ε, and
3) the sum of lengths of the Jordan curves is bounded by U .

Then there exists a prime L and an L-periodic sequence {cn} such that g =
∑

n cnδn/
√
L identifies

H(A,B,U,N, ε).
The reconstruction of an operator H ∈ H(A,B,U,N, ε) is then carried out in three steps: first, we

find T,Ω with L = 1/TΩ prime which ensure that the “rectified” support RH of H has area not greater
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than 1/2 (see the proof of Theorem 2.8 in Section III-D). Under this assumption, we determine RH . In
the final step, we apply the operator reconstruction formula developed in Theorem 2.1 to OPW (RH).

To determine the rectified support of ηH with H ∈ H(A,B,U,N, ε), we will apply ideas from
compressed sensing. Indeed, Lemma 3.9 below, shows that from H

∑
n cnδn

√
L, we can compute a

length L vector y(t, ν) with y(t, ν) = G(c)x(t, ν) and where the unknown discrete support of the length
L2 vector x(t, ν) encodes the support of the bivariate function ηH(t, ν). In fact, recovering the vector
x(t, ν) for a single point (t, ν) provides us with the support structure of ηH . Note that the conditions
given above imply that x(t, ν) has at most L/2 nonzero components.

The matrix G(c) consists of time-frequency shifted copies of the vector (c0, . . . , cL−1). This matrix
plays the role of a so-called measurement matrix and has the ability to recover any L/2-sparse vector
x(t, ν) [13], [14]. But finding an L/2-sparse vector requires consideration of every support structure out
of
(
L2

L/2

)
possible ones, which is hardly possible for L not being of the order 2, 3, 5. In addition, to

check whether c is appropriate, we would have to compute
(
L2

L

)
determinants of L×L matrices, which is

again only possible for very small L. (It is shown in [14], [13], that if each of the L entries are chosen
randomly, for example choosing the entries independently according to a uniform distribution on the unit
circle in the complex plane, then G(c) has with probability 1 no zero minors.)

If we know that far fewer than L/2 cells are active, then we can try to apply compressed sensing
algorithms such as Basis Pursuit or Orthogonal Matching Pursuit to recover x from y = G(c)x. Indeed,
the matrix G(c) with randomly chosen c has been established to be a good measurement matrix with
high probability [19], [18], [20], [11].

The work of Boelcskei and Heckel improves on our results above. They show that if only L− 1 cells
are active, these can be determined. Their analysis and derived recovery algorithms rely on the fact that
by varying (t, ν) you obtain a family of equations y(t, ν) = G(c)x(t, ν) where the vectors x(t, ν) have
identical sparsity structure.

III. SAMPLING AND RECONSTRUCTION

The purpose of this section is to present a proof of Theorem 2.1. Before doing so, a few preliminaries
on finite Gabor systems and the Zak transform are required.

A. Preliminaries

Definition 3.1: Given L ∈ N, let ω = e2πi/L and define the translation operator T on (x0, . . . , xL−1) ∈
CL by

Tx = (xL−1, x0, x1, . . . , xL−2),

and the modulation operator M on CL by

Mx = (ω0x0, ω
1x1, . . . , ω

L−1xL−1).

Given a vector c ∈ CL the finite Gabor system with window c is the collection {T qMpc}L−1
q,p=0.

Note that the discrete Gabor system defined above consists of L2 vectors in CL which form an
overcomplete tight frame for CL [14].

Definition 3.2: The non-normalized Zak Transform is defined for f ∈ S(R) by

Zaf(t, ν) =
∑
n∈Z

f(t− an) e2πianν .

The normalized Zak Transform Zaf(t, ν) satisfies the quasi-periodicity relations

Zaf(t+ a, ν) = e2πiaν Zaf(t, ν) and Zaf(t, ν + 1/a) = Zaf(t, ν).
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√
aZa can be extended to a unitary operator from L2(R) onto L2([0, a]×[0, 1/a]).
The following Lemma connects the output Hg(x) where g is a weighted delta-train, to the spreading

function ηH(t, ν). From this a reconstruction formula can be derived.
Lemma 3.3: Let a > 0 be given and let g =

∑
n δna. Then for all (t, ν) ∈ R2,

(Za ◦H)g(t, ν) = a−1
∑
k

∑
m

ηH(t+ ak, ν +m/a) e−2πiνka,

where ηH is the spreading function of the operator H .
Proof: For f ∈ S(R) and φ ∈ S ′(R), define the short-time Fourier transform (STFT) of f with respect
to φ by Vφf(t, ν) = 〈f, TtMνφ〉. Straightforward calculations show that if g =

∑
n δna then

Vgf(t, ν) = Zaf(t, ν),

and moreover that
〈Hg, f〉 = 〈ηH , Vgf〉 = 〈ηH , Zaf〉

where the bracket on the left is the L2 inner product on R and that on the right the L2 inner product on
R2. Because Za is unitary up to a constant, it follows that

a 〈(Za ◦H)g, Zaf〉 = 〈Hg, f〉 = 〈ηH , Zaf〉

where this time the bracket on the left is the L2 inner product on the rectangle [0, a]×[0, 1/a]. The inner
product on the right can be rewritten as

〈ηH , Zaf〉 =

∫ ∫
ηH(t, ν)Zaf(t, ν) dt dν

=
∑
k

∑
m

∫ (m+1)/a

m/a

∫ (k+1)a

ka
ηH(t, ν)Zaf(t, ν) dt dν

=
∑
k

∑
m

∫ 1/a

0

∫ a

0
ηH(t+ ka, ν +m/a)Zaf(t+ ka, ν +m/a) dt dν

=

∫ 1/a

0

∫ a

0

∑
k

∑
m

ηH(t+ ka, ν +m/a) e−2πiνkaZaf(t, ν) dt dν.

Since this holds for every f ∈ S(R), the result follows.
Lemma 3.4: Let T,Ω > 0 be given such that TΩ = 1/L for some L ∈ N, let (cn) be a period-L

sequence, and define g =
∑

n cn δnT . Then for (t, ν) ∈ R× R̂,

(Z1/Ω ◦H)g(t, ν) = Ω

L−1∑
q=0

c−q
∑
k

∑
m

ηH(t+ k/Ω + qT, ν +mΩ) e−2πi(ν+mΩ)qT e−2πiνk/Ω. (15)

Proof: A straightforward calculation shows that for any α ∈ R, the spreading function of the operator
H ◦ Tα is ηH(t−α, ν) e2πiνα where ηH is the spreading function of H . Next note that writing uniquely
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j = nL− q, 0 ≤ q ≤ L−1,

g =
∑
j

cj δnT

=

L−1∑
q=0

∑
n∈Z

cnL−q δnLT−qT

=

L−1∑
q=0

c−q
∑
n∈Z

δnLT−q/LΩ

=

L−1∑
q=0

c−qT−q/LΩ

∑
n∈Z

δn/Ω.

Therefore, by Lemma 3.3,

(Z1/Ω ◦H)g(t, ν) = (Z1/Ω ◦H)

(L−1∑
q=0

c−qT−q/LΩ

∑
n∈Z

δn/Ω

)
(t, ν)

=

L−1∑
q=0

c−q(Z1/Ω ◦H ◦ T−q/LΩ)

(∑
n∈Z

δn/Ω

)
(t, ν)

= Ω

L−1∑
q=0

c−q
∑
k

∑
m

ηH(t+ kΩ + q/LΩ, ν +mΩ) e2πi(ν+mΩ)(q/LΩ) e−2πiνk/Ω .

Definition 3.5: Given a bivariate function f(t, ν) and parameters T,Ω > 0, define the (1/Ω, 1/T )–
quasiperiodization of f , denoted fQP , by

fQP (t, ν) =
∑
k

∑
`

f(t+ k/Ω, ν + `/T ) e−2πiνk/Ω (16)

whenever the sum is defined.
Remark 3.6: (a) Note that fQP satisfies fQP (t, ν + 1/T ) = fQP (t, ν) and fQP (t + 1/Ω, ν) =

e2πiν/Ω fQP (t, ν) for all (t, ν) ∈ R2. These are similar to the quasiperiodicity conditions satisfied by the
Zak transform.
(b) Under the assumption that the support of f is contained in a fundamental domain of 1/ΩZ× 1/T Z,
the following lemma shows that f can be easily recovered from the function

fQP (t, ν)χ[0,1/Ω](t)χ[0,1/T ](ν).

Lemma 3.7: Suppose that supp(f) ⊆ S and that S is contained in a fundamental domain of 1/ΩZ×
1/T Z. Then

f(t, ν) =
∑
k

∑
`

fQP (t− k/Ω, ν − `/T )χ[0,1/Ω](t− k/Ω)χ[0,1/T ](ν − `/T ) e2πikν/Ω χ
S(t, ν) (17)

where if f ∈ L2(R2), the sum converges in L2 and uniformly on compact sets.
Proof: First note that under the given assumptions, the functions being summed in (17) have pairwise
disjoint supports. Since |S| < 1, it follows that the sum converges in L2 if f ∈ L2(R2). Moreover, since
on each compact set, the sum reduces to a finite sum, we get uniform convergence on compact sets.
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To complete the proof, we show that (17) holds pointwise. Note first that for all (t, ν),

fQP (t, ν)χS(t, ν) = f(t, ν)

since if (t, ν) ∈ S then because S is a fundamental domain, only the (k, `) = (0, 0) term survives in
(16). It remains to show that∑

k

∑
`

fQP (t− k/Ω, ν − `/T ) χ[0,1/Ω](t− k/Ω) χ[0,1/T ](ν − `/T ) e2πikν/Ω = fQP (t, ν).

To see this, note that∑
k,`

fQP (t− k/Ω, ν − `/T )χ[0,1/Ω](t− k/Ω)χ[0,1/T ](ν − `/T ) e2πikν/Ω

=
∑
k,`

∑
j,m

f(t+ (j − k)/Ω, ν + (m− `)/T ) e−2πiνj/Ω χ
[0,1/Ω](t− k/Ω)χ[0,1/T ](ν − `/T ) e2πikν/Ω.

Now suppose that (t, ν) ∈ [p/Ω, (p+ 1)/Ω)× [q/T, (q+ 1)/T ) for some (p, q) ∈ Z2. Then in the above
sum, only the (k, `) = (p, q) term survives, and we arrive at∑

k,`

∑
j,m

f(t+ (j − k)/Ω, ν + (m− `)/T ) e−2πiνj/Ω χ
[0,1/Ω](t− k/Ω)χ[0,1/T ](ν − `/T ) e2πikν/Ω

=
∑
j,m

f(t+ (j − p)/Ω, ν + (m− q)/T ) e−2πiν(j−p)/Ω χ
[0,1/Ω](t− p/Ω)χ[0,1/T ](ν − q/T )

= fQP (t, ν).

Lemma 3.8: Let T,Ω > 0 be given such that TΩ = 1/L for some L ∈ N, let (cn) be a period-L
sequence. Then with g =

∑
n cn δnT ,

(Z1/Ω ◦H)g(t, ν) = Ω

L−1∑
q=0

c−q

L−1∑
m=0

∑
k

ηQPH (t+ qT, ν +mΩ) e−2πiνqT e−2πiνmq/L (18)

for (t, ν) ∈ R2.
Proof: The proof follows immediately from Lemma 3.4. Letting m = nL+ `, n ∈ Z and 0 ≤ ` ≤ L−1,
in (15) gives

(Z1/Ω ◦H)g(t, ν) = Ω

L−1∑
q=0

c−q

L−1∑
`=0

∑
k

∑
n

ηH(t+ k/Ω + qT, ν + nLΩ + `Ω) e−2πi(ν+nLΩ+`Ω)qT e−2πiνk/Ω

= Ω

L−1∑
q=0

c−q

L−1∑
`=0

[∑
k,n

ηH(t+ k/Ω + qT, ν + nLΩ + `Ω) e−2πi(ν+`Ω)k/Ω

]
e−2πiνqT e−2πi`q/L

= Ω

L−1∑
q=0

c−q

L−1∑
`=0

ηQPH (t+ qT, ν + `Ω) e−2πiνqT e−2πi`q/L

where we have used the fact that LΩ = 1/T .
Lemma 3.9: Let T,Ω > 0 be given such that TΩ = 1/L for some L ∈ N, let (cn) be a period-L
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sequence. Then with g =
∑

n cn δnT , (t, ν) ∈ R2, and p = 0, 1, . . . , L−1,

e−2πiνTp (Z1/Ω ◦H)g(t+ Tp, ν)

= Ω

L−1∑
q=0

L−1∑
m=0

(T qMmc)p e
−2πiνTq ηQPH (t+ Tq, ν + Ωm). (19)

By (18),

(Z1/Ω ◦H)g(t+ pT, ν) = Ω

L−1∑
q=0

c−q

L−1∑
`=0

ηQPH (t+ (q + p)T, ν +mΩ) e−2πiνqT e−2πiνmq/L

= Ω

L−1+p∑
q=p

c−(q−p)

L−1∑
`=0

ηQPH (t+ qT, ν +mΩ) e−2πiν(q−p)T e−2πiνm(q−p)/L

= Ω

(L−1∑
q=p

+

L−1+p∑
q=L

)
c−(q−p)

L−1∑
`=0

ηQPH (t+ qT, ν +mΩ) e−2πiν(q−p)T e−2πiνm(q−p)/L.

Using the periodicity of (cn), the quasiperiodicity of ηQPH , and the fact that LT = 1/Ω, we continue with

Ω

L−1+p∑
q=L

c−(q−p)

L−1∑
`=0

ηQPH (t+ qT, ν +mΩ) e−2πiν(q−p)T e−2πiνm(q−p)/L

= Ω

L−1+p∑
q=L

c−((q−L)−p)

L−1∑
`=0

ηQPH (t+ LT + (q − L)T, ν +mΩ) e−2πiν((q−L)−p)T e−2πiνm((q−L)−p)/L e−2πiνLT

= Ω

L−1+p∑
q=L

c−((q−L)−p)

L−1∑
`=0

e−2πiν/Ω ηQPH (t+ 1/Ω + (q − L)T, ν +mΩ) e−2πiν((q−L)−p)T e−2πiνm((q−L)−p)/L

= Ω

L−1+p∑
q=L

c−((q−L)−p)

L−1∑
`=0

ηQPH (t+ (q − L)T, ν +mΩ) e−2πiν((q−L)−p)T e−2πiνm((q−L)−p)/L

= Ω

p−1∑
q=0

c−(q−p)

L−1∑
`=0

ηQPH (t+ qT, ν +mΩ) e−2πiν(q−p)T e−2πiνm(q−p)/L.

Therefore,

(Z1/Ω ◦H)g(t+ Tp, ν) = Ω

(L−1∑
q=p

+

p−1∑
q=0

)
c−(q−p)

L−1∑
m=0

e−2πim(q−p)/LηQPH (t+ qT, ν +mΩ) e−2πiν(q−p)T

= Ω

L−1∑
q=0

L−1∑
m=0

c−(q−p) e
−2πim(q−p)/L ηQPH (t+ qT, ν +mΩ) e−2πiν(q−p)T .

Since (T qMmc)p = cp−q e
2πim(p−q)/L, the result follows.
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B. Proof of Theorem 2.1

Suppose that S satisfies all the hypotheses of Theorem 2.1 with (t0, ν0) = (0, 0). Starting with (19),
we have that for 0 ≤ p ≤ L−1, and all (t, ν) ∈ R2,

e−2πiνTp (Z1/Ω ◦H)g(t+ Tp, ν)

= Ω

L−1∑
q=0

L−1∑
m=0

(T qMmc)p e
−2πiνTq ηQPH (t+ Tq, ν + Ωm).

Under the assumption (9), it follows that

(Z1/Ω ◦H)g(t+ Tp, ν) e−2πiνTp

= Ω

L−1∑
j=0

(T qj Mmjc)p η
QP
H (t+ qjT, ν +mjΩ) e−2πiνqjT

=

L−1∑
j=0

aj,p
(
ηQPH (t+ qjT, ν +mjΩ) e−2πiνqjT

)
where [aj,p]

L−1
j,p=0 is an L × L matrix whose jth column is Ω (T qj Mmjc) ∈ CL. Assuming that L is

prime, we can choose a period-L sequence c = (cn) such that the matrix [aj,p] is invertible. In fact, the
set of such c ∈ CL is a dense open subset of CL (see [13]). Let [aj,p]

−1 = [bj,p].
Again by (9), ηH ∈ OPW 2(S) satisfies

ηQPH (t, ν)χ[0,1/Ω](t)χ[0,1/T ](ν) =

L−1∑
j=0

ηQPH (t, ν)χ[0,T ](t− qjT )χ[0,Ω](ν −mjΩ),

and for each 0 ≤ j ≤ L−1,

ηQPH (t+qjT, ν+mjΩ)χ[0,T ](t)χ[0,Ω](ν) =

L−1∑
p=0

bj,p χ[0,T ](t)χ[0,Ω](ν) e2πiν(qj−p)T (Z1/Ω ◦H)g(t+pT, ν).

Therefore, by the quasiperiodicity of the Zak transform,

ηQPH (t, ν)χ[0,1/Ω](t)χ[0,1/T ](ν)

=

L−1∑
j=0

L−1∑
p=0

bj,p χ[0,T ](t− qjT )χ[0,Ω](ν −mjΩ)

e2πi(ν−mjΩ)(qj−p)T (Z1/Ω ◦H)g(t− (qj − p)T, ν).
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Applying (17),

ηH(t, ν) = ηQPH (t, ν)χS(t, ν)

=
∑
k,`

ηQPH (t− k/Ω, ν − `/T )χ[0,1/Ω](t− k/Ω)χ[0,1/T ](ν − `/T ) e2πikν/Ω χ
S(t, ν)

=
∑
k,`

e2πikν/Ω
L−1∑
j,p=0

bj,p χ[0,T ](t− k/Ω− qjT )χ[0,Ω](ν − `/T −mjΩ)

e2πi(ν−`/T−mjΩ)(qj−p)T (Z1/Ω ◦H)g(t− k/Ω− (qj − p)T, ν − `/T )χS(t, ν)

=
∑
k,`

e2πikν/Ω
L−1∑
j,p=0

bj,p χ[0,T ](t− k/Ω− qjT )χ[0,Ω](ν − `/T −mjΩ)

e2πi(ν−mjΩ)(qj−p)T e−2πiνkΩ (Z1/Ω ◦H)g(t− (qj − p)T, ν)χS(t, ν)

=

L−1∑
j,p=0

bj,p e
2πi(ν−mjΩ)(qj−p)T (Z1/Ω ◦H)g(t− (qj − p)T, ν)

∑
k,`

χ
[0,T ](t− k/Ω− qjT )χ[0,Ω](ν − `/T −mjΩ)χS(t, ν).

Defining

Sj = S ∩
(⋃
k,`

Rqj ,mj
+ (k/Ω, `/T )

)
,

it follows that S =
⋃L−1
j=0 Sj , that the union is disjoint, and that∑

k,`

χ
[0,T ](t− k/Ω− qjT )χ[0,Ω](ν − `/T −mjΩ)χS(t, ν) = χ

Sj
(t, ν).

Therefore,

ηH(t, ν) =

L−1∑
j,p=0

bj,p e
−2πi(ν−mjΩ)(qj−p)T

∑
n∈Z

Hg(t− n/Ω− (qj − p)T ) e2πiνn/Ω χ
Sj

(t, ν)

=

L−1∑
j=0

L−1∑
p=0

∑
n∈Z

bj,p e
−2πi(ν−mjΩ)(qj−p)T Hg(t− nLT − (qj − p)T ) e2πiνnLT χ

Sj
(t, ν).

Extending bj,p to have period L in p, it follows that

ηH(t, ν) =

L−1∑
j=0

L−1∑
p=0

∑
n∈Z

bj,p−nL e
−2πi(ν−mjΩ)(qj−(p−nL))T Hg(t− (qj − (p− nL))T )χSj

(t, ν)

=

L−1∑
j=0

∑
k

bj,k e
−2πi(ν−mjΩ)(qj−k)T Hg(t− (qj − k)T )χSj

(t, ν).
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Finally

h(x, t) =

∫
η(t, ν) e2πi(x−t)ν dν

=

L−1∑
j=0

∑
k

bj,k e
−2πimj(qj−k)/LHg(t− (qj − k)T )

∫
e−2πiν((x−t)+(qj−k)T )χ

Sj
(t, ν)

=

L−1∑
j=0

∑
k

bj,k e
−2πimj(qj−k)/LHg(t− (qj − k)T ) Φj(t, (x− t) + (qj − k)T ) (20)

where
Φj(t, s) =

∫
e2πiνs χ

Sj
(t, ν) dν.

To complete the proof, note that for almost every t, the set, {ν : (t, ν) ∈ Sj} is contained in a
fundamental domain of the lattice TZ of R. This implies that the measure of each such section is no
more than 1/T , and in particular that for almost every t, χSj

(t, ·) ∈ L2(R). Therefore, by Plancherel’s
Formula,∫∫

|Φj(t, s)|2 dt ds =

∫∫ ∣∣∣∣∫ e2πiνs χ
Sj

(t, ν) dν

∣∣∣∣2 ds dt =

∫∫
|χSj

(t, ν)|2 dν dt = |Sj |2 <∞

and for almost every (t, s),

|Φj(t, s)| ≤
∫
χ
Sj

(t, ν) dν ≤ 1/T.

Hence Φj ∈ L2∩L∞(R2). Convergence of the reconstruction sum in L2(R2) follows from the observation
that Hg ∈ L2(R) (see Lemma 3.3) and basic properties of the Zak Transform (see e.g., [5], Section 8.2).

If (t0, ν0) 6= (0, 0), we formally compute

H =

∫∫
S
ηH(t, ν)MνTt dt dν

=

∫∫
S−(t0,ν0)

ηH(t+ t0, ν + ν0) Tt+t0Mν+ν0 dt dν

=

∫∫
S−(t0,ν0)

ηH(t+ t0, ν + ν0) Tt0TtMν0Mν dt dν

=

∫∫
S−(t0,ν0)

ηH(t+ t0, ν + ν0) e−2πitν0 Tt0Mν0TtMν dt dν

= Tt0Mν0

∫∫
S−(t0,ν0)

ηH(t+ t0, ν + ν0) e−2πitν0 TtMν dt dν

= Tt0Mν0H̃,

where ηH̃(t, ν) = η̃(t, ν) = e−2πitν0 ηH(t+ t0, ν+ν0). Taking inverse Fourier transforms ν → x on both
sides, we obtain h̃(t, x) = e−2πitν0 hH(t+ t0, x) e−2πiν0x which is

hH(t, x) = e2πi(x+t−t0)ν0 h̃(t− t0, x).

With S̃ = S−(t0, ν0), we can apply (20) to reconstruct h̃ from H̃g with the constructed g =
∑
cnδnT ,
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that is,

h̃(x, t) =
∑
k

L−1∑
j=0

bj,k H̃g(t− (qj − k)T ) e−2πimj(qj−k)/L Φ̃j(t, (x− t) + (qj − k)T ). (21)

where
Φ̃j(t, s) =

∫
e2πiνs χ

S̃j
(t, ν) dν

and
S̃j = S̃ ∩

⋃
k,`∈Z

(R̃qj ,mj
+ (k/Ω, `/T )).

Shifting the set equation above by (t0, ν0), we recover the definition of Sj , namely

Sj = S̃j + (t0, ν0) = S̃ + (t0, ν0) ∩
⋃
k,`∈Z

(R̃qj ,mj
+ (k/Ω, `/T ) + (t0, ν0))

= S ∩
⋃
k,`∈Z

(Rqj ,mj
+ (k/Ω, `/T ))

and

Φj(t, s) =

∫
e2πiνs χ

Sj
(t, ν) dν =

∫
e2πiνs χ

S̃j
(t− t0, ν − ν0) dν

= e2πisν0

∫
e2πiνs χ

S̃j
(t− t0, ν) dν = e2πisν0 Φ̃j(t− t0, s)

This translates to

h(x, t) = e2πi(x+t−t0)ν0
∑
k

L−1∑
j=0

bj,k H̃g(t− t0 − (qj − k)T ) e−2πimj(qj−k)/L Φ̃j(t− t0, (x− t− t0) + (qj − k)T )

= e2πi(x+t−t0)ν0
∑
k

L−1∑
j=0

bj,k (M−ν0T−t0H)g(t− t0 − (qj − k)T ) e−2πimj(qj−k)/L

e−2πi(x−t−t0+(qj−k)T )ν0Φj(t, (x− t− t0) + (qj − k)T )

= e2πi(x+t−t0)ν0
∑
k

L−1∑
j=0

bj,k e
−2πi(t−t0−(qj−k)T )ν0Hg(t− (qj − k)T ) e−2πimj(qj−k)/L

e−2πi(x−t−t0+(qj−k)T )ν0Φj(t, (x− t− t0) + (qj − k)T )

= e2πi(t+t0)ν0
∑
k

L−1∑
j=0

bj,kHg(t− (qj − k)T ) e−2πimj(qj−k)/L

Φj(t, (x− (t+ t0) + (qj − k)T ) .

C. Outline of Proof of Theorem 2.3.

Suppose that S ⊆ (0,∞)×R is compact with |S| < 1. Then for δ > 0 sufficiently small, the set
Sδ = S + [−δ, δ]2 also satisfies Sδ ⊆ (0,∞)×R and |Sδ| < 1. Since |Sδ| < 1, then for any L ∈ N there
exists T > 0 such that with ΩT = 1/L,

Sδ ⊆ (0, 1/Ω)×(−1/2T, 1/2T )
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and Sδ is contained in at most L rectangles of the form

Rq,m = [0, T ]×[0,Ω]− (0, 1/2T ) + (qT,mΩ)

q, m ∈ Z. Specifically, for some 0 ≤ qj , mj ≤ L− 1, 0 ≤ j ≤ L− 1,

Sδ ⊆
L−1⋃
j=0

Rqj ,mj
= R.

Since S ⊆ R, it is sufficient to prove the theorem with OPW 2(S) replaced by OPW 2(R).
By Lemma 3.9, given H ∈ OPW 2(R) with spreading function ηH(t, ν), and given any weighted

delta train of the form g =
∑

n cn δnT where c = (cn) is a period-L sequence, (19) holds with ηQPH
replaced by ηH for all (t, ν) in a neighborhood of [0, T ]×[0,Ω]. For specificity, call this neighborhood
Rε0,0 = ([0, T ]×[0,Ω]− (0, 1/2T )) + [−ε, ε]2.

Let r, ϕ ∈ S(R) satisfy

supp r ⊆ [−ε/2, T + ε/2], (22)

supp ϕ̂ ⊆ [−ε/2,Ω + ε/2],

so that supp r(t)ϕ̂(ν) ⊆ Rε0,0, and∑
k∈Z

r(t+ kT ) = 1 =
∑
n∈Z

ϕ̂(ν + nΩ), (23)

for all (t, ν) ∈ R2. For ε < δ, it is not hard to show that if Rq,m 6⊆ R then

ηH(t, γ)r(t− qT )ϕ̂(ν −mΩ) = 0. (24)

Therefore,

ηH(t, ν) =

L−1∑
j=0

ηQPH (t, ν) r(t− qjT ) ϕ̂(ν −mjΩ).

Following precisely the proof of Theorem 2.1, with r(t) replacing χ[0,T ](t) and ϕ̂(ν) replacing χ[0,Ω](ν),

ηH(t, ν) =

L−1∑
j=0

∑
k

bj,k e
−2πi(ν−mjΩ)(qj−k)T Hg(t− (qj − k)T )Rj(t, ν)

where

Rj(t, ν) =
∑
k,`

r(t− k/Ω− qjT )ϕ̂(ν − `/T −mjΩ)χR(t, ν)

= r(t− qjT ) ϕ̂(ν −mjΩ).

Finally, taking t0 = 0 and ν0 = −1/2T ,

h(x, t) = eπit/T
L−1∑
j=0

∑
k

bj,k e
2πimj(qj−k)/LHg(t− (qj − k)T ) Φj(t, (x− t) + (qj − k)T )
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where here

Φj(t, s) =

∫
e2πiνsRj(t, ν) dν

= r(t− qjT )

∫
e2πiνsϕ̂(ν −mjΩ) dν

= r(t− qjT ) e2πismjΩϕ(s).

Plugging this into (10) gives the result.

D. Proof of Theorem 2.8.

Choose L prime with A,B ≤ (L−1)/2 and 4(U/
√
L+N/L) ≤ ε. We will first show that any operator

in H(A,B,U,N, ε) has the property that supp η touches at most L/2 sets of the form

Rq,m = [0, 1/
√
L]× [0, 1/

√
L] + (q/

√
L,m/

√
L), q,m = −(L− 1)/2,−(L− 1)/2 + 1, . . . , (L− 1)/2.

(25)

To this end, note that a Jordan curve Ci with length ui ∈ ((ki − 1)/
√
L, ki/

√
L), ki ∈ N, touches at

most 4ki boxes, in fact, this bound is rather pessimistic and only sharp for ki = 1. Note that

√
LU ≥

√
L

N∑
i=1

ui ≥
√
L

N∑
i=1

(ki − 1)/
√
L =

( N∑
i=1

ki
)
−N,

and, hence, the number of boxes B(∂S) needed to cover the boundary ∂S of S satisfies

B(∂S) ≤
N∑
i=1

B(Ci) ≤
N∑
i=1

4ki ≤ 4(
√
LU +N).

We conclude that the ”fat” boundary, that is, the 1/
√
L × 1/

√
L rectification of the boundary has area

bounded above by
4(
√
LU +N)/(

√
L)2 = 4(U/

√
L+N/L) ≤ ε.

It follows immediately, that at most L/2 sets Rq,m from (25) are needed to cover S.
Now, let {Sm : m = 1, . . . ,

(
L2

L

)
} be the collection of area 1 sets that are formed by exactly L subsets

of the form Rq,m in (25). Since OPW (Sm) is identifiable, there exist L-periodic sequences (cmn )n and
Am, Bm > 0 with the property that

Am‖H‖HS ≤ ‖H
∑
n∈Z

cmn δn/
√
L‖L2 ≤ Bm‖H‖HS , H ∈ OPW 2(Sm), m = 1, . . . ,

(
L2

L

)
.

In [14] it is shown, that indeed, we can choose a single sequence (cn)n = (cmn )n so that the above holds.
For this choice of (cn), set A = max{Am, m = 1, . . . ,

(
L2

L

)
} and B = min{Bm, m = 1, . . . ,

(
L2

L

)
}.

With this choice, we have

A‖H‖HS ≤ ‖H
∑
n∈Z

cnδn/
√
L‖L2 ≤ B‖H‖HS , H ∈

⋃
m=1,...,

(
L2

L

)OPW 2(Sm).

The proof is complete by observing that for H1, H2 ∈ H(A,B,U,N, ε) (which is not a linear space),
we have H1 −H2 ∈ OPW 2(Sm) for some m, and, hence,

A‖H1 −H2‖HS ≤ ‖(H1 −H2)
∑
n∈Z

cnδn/
√
L‖L2 ≤ B‖H1 −H2‖HS , H1, H2 ∈ H(A,B,U,N, ε).
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Clearly, this leads also to the weaker statement (H1 −H2)
∑

n cnδn/
√
L = 0 implies H1 = H2.

IV. NECESSARY AND SUFFICIENT CONDITIONS ON THE SAMPLING RATE IN OPERATOR SAMPLING

The goal of this section is to prove Theorems 2.5 and 2.7 giving necessary and sufficient conditions
on the sampling rate for operator sampling in OPW 2(S).

A. Proof of Theorem 2.5

Since S is closed, each t-section St of S is closed and, hence, measurable. Therefore, χS(t, ·) is a
nonnegative measurable function and

∫
R χS(t, ν) dν ∈ [0,∞] is well defined for all t ∈ R. It suffices to

show the result for A∞ =
∥∥ ∫

R χS(·, ν) dν
∥∥
∞ finite, the infinite case then follows from this.

Assume that Λ is a set of sampling with D(Λ) < a∞ < A∞.
Then, we can choose a set P with positive measure and

∫
R χS(t, ν) dν ≥ a∞ for all t ∈ P . Assume

without loss of generality P ⊆ [0, 1]. For any ε, there exist mt ∈ PW (St) with ‖mt‖L2 = 1 and
‖mt|Λ‖`2 ≤ ε, t ∈ P . Define κH(x, y) = mx−y(y) for x − y ∈ P , and 0 otherwise. Then hH(x, t) =
κH(x, x−t) = mt(x−t) and ηH(t, ν) = m̂t(ν) for t ∈ P , and 0 otherwise, so H ∈ OPW 2(S). Observe
that ‖σH‖L2 =

√
|P |.

Note that it is easily seen that if
∑

λ∈Λ cλδλ identifies OPW 2(S), then (cλ) is bounded. Also, by
hypothesis, there exists K ∈ N which bounds the cardinality of Λ ∩ [x, x+ 1] above for all x ∈ R. We
compute ∥∥H∑

λ∈Λ

cλδλ
∥∥2

L2 =

∫ ∣∣∑
λ∈Λ

cλκH(x, λ)
∣∣2 dx

=

∫ ∣∣∑
λ∈Λ

cλmx−λ(λ)
∣∣2 dx

≤ ‖(cλ)‖2`∞
∫ ∣∣∑

λ∈Λ

mx−λ(λ)
∣∣2 dx

≤ ‖(cλ)‖2`∞ K
∫ ∑

λ∈Λ

|mx−λ(λ)|2 dx

= ‖(cλ)‖2`∞ K
∑
λ∈Λ

∫
|mx−λ(λ)|2 dx

= ‖(cλ)‖2`∞ K
∑
λ∈Λ

∫ λ+1

λ
|mx−λ(λ)|2 dx

= ‖(cλ)‖2`∞ K
∑
λ∈Λ

∫ 1

0
|mt(λ)|2 dt

= ‖(cλ)‖2`∞ K
∫ 1

0

∑
λ∈Λ

|mt(λ)|2 dt

≤ ‖(cλ)‖2`∞ K
∫ 1

0
ε2 dt

= ‖(cλ)‖2`∞ K ε2 .
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B. Lattice tilings and proof of Theorem 2.6

In this section we will prove Theorem 2.6, but also derive results where the tiling of S is defined
by arbitrary full rank lattices in R2. The reconstruction formulas use results from representation theory;
these carry over to the higher dimensional setting if the lattice is symplectic.

As before, we assume that S ⊆ R2 satisfies |S| < 1. Suppose that for some A =
(
a11 a12
a21 a22

)
with

detA = 1/L, L prime, S is contained in a fundamental domain of the lattice The lattice LAZ2 is the
so-called adjoint lattice A◦ of A. Indeed, A◦ = (1/

√
L) (
√
LA)◦ =

√
L
√
LA = LA (see [5] for details).

We shall assume without loss of generality that a11 6= 0. Otherwise, we could replace the first column
with the second and the second with the negative of the first, leading to a different parametrization of
the same lattice. Further assume that there exist t0, ν0, and integers 0 ≤ qj , mj ≤ L−1, 0 ≤ j ≤ L−1
such that with the parallelograms Pq,m = A

(
[0, 1]2+(t0, ν0) + (q,m)T

)
, q, m ∈ Z, replacing rectangles

in Theorem 2.1, we have

LA[0, 1]2 ∩
⋃
k,`∈Z

S + LA(k, `)T ⊆
L−1⋃
j=0

Pqj ,mj
. (26)

As before, we will set
Φj(t, s) =

∫
e2πiνs χ

Sj
(t, ν) dν

where
Sj = S ∩

⋃
k,`∈Z

(Pqj ,mj
+ LA(k, `)T ).

We will derive reconstruction formulas and show that if a12/a11 is rational, then OPW 2(S) can be
identified with a weighted delta train and if a21a11 is rational as well, then we are assured that the
coefficient sequence (c̃n) is periodic, that is, we are in the framework of regular operator sampling.

We shall assign to each operator H ∈ OPW 2(S) an operator in H̃ ∈ OPW 2(L−1/2A−1S) and then
apply the reconstruction formula in Theorem 2.1 to reconstruct h̃ = hH̃ of H̃ ∈ OPW 2(L−1/2A−1S).
From this, we will construct h = hH and therefore H .

The result is based on the existence of the operators µ(
√
LA) that appear in the following computation.

The existence follows from the representation theory of the Weyl-Heisenberg group and is discussed in
this setting in [10], [17]. Let ρ(t, ν) = eπitνTtMν , η#(t, ν) = e−πitνη(t, ν), and B =

√
LA. Then

H =

∫∫
η(t, ν)TtMν dt dν

=

∫∫
S
η(t, ν)e−πitν eπitνTtMν dt dν

=

∫∫
S
η#(t, ν) ρ(t, ν) dt dν

=

∫∫
B−1(S)

η#(B(t, ν)) ρ(B(t, ν)) dt dν

=

∫∫
η#(B(t, ν)) µ(B)ρ(t, ν)µ(B)∗ dt dν

= µ(B)

∫∫
η#(B(t, ν)) ρ(t, ν) dt dν µ(B)∗

= µ(B) H̃ µ(B)∗ ,
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with η̃#(t, ν) = η#(B(t, ν)). Setting Q1(t, ν) = t and Q2(t, ν) = ν we have

η̃(t, ν) = eπi(tν−Q1B(t,ν)·Q2B(t,ν))η(B(t, ν)).

Moreover, observe that S̃ = B−1S satisfies the hypothesis of Theorem 2.1 with T = Ω = 1/
√
L.

We have therefore with an L periodic sequence (c̃n), g̃ =
∑
c̃nδn

√
L, and B−1 =

(
b22 −b12
−b21 b11

)
the

reconstruction formulas

h̃(x, t) = e2πi(t+t0)ν0
∑
k

L−1∑
j=0

bj,k H̃g̃(t− (qj − k)/
√
L) e−2πimj(qj−k)/L Φ̃j(t+t0, x− (t+t0) + (qj − k)/

√
L),

η̃(t, ν) = e2πi(t+t0)ν0
∑
k

L−1∑
j=0

bj,k H̃g̃(t− (qj − k)/
√
L) e−2πimj(qj−k)/L χB−1Sj

(t+t0, ν) e2πi(t+t0−(qj−k)/
√
L)ν

= eπi(tν−Q1B(t,ν)·Q2B(t,ν))η(B(t, ν))

η(t, ν) = e2πi(Q1B−1(t,ν)+t0)ν0 e−πi(Q1B−1(t,ν)·Q2B−1(t,ν)−tν)
∑
k

L−1∑
j=0

bj,k H̃g̃(Q1B
−1(t, ν)− (qj − k)/

√
L)

e−2πimj(qj−k)/LχSj

(
(t, ν)+B(t0, 0)

)
e2πi(Q1B−1(t,ν)+t0−(qj−k)/

√
L)Q2B−1(t,ν)

= e2πi(Q1B−1(t,ν)ν0+t0Q2B−1(t,ν)+t0ν0) eπi(Q1B−1(t,ν)·Q2B−1(t,ν)−tν)

∑
k

L−1∑
j=0

bj,k H̃g̃(Q1B
−1(t, ν)− (qj − k)/

√
L)

e−2πimj(qj−k)/LχSj

(
(t, ν)+B(t0, 0)

)
e−2πi(qj−k)/

√
L)Q2B−1(t,ν)

= e2πi((b22t−b12ν)ν0+t0(b11ν−b21t)+t0ν0) eπi((b22t−b12ν)·(b11ν−b21t)−tν)

∑
k

L−1∑
j=0

bj,k H̃g̃((b22t− b12ν)− (qj − k)/
√
L)

e−2πimj(qj−k)/LχSj

(
(t, ν)+(b11t0, b21t0)

)
e−2πi(qj−k)/

√
L)(b11ν−b21t)

= e2πi
((

(a22t−a12ν)ν0+t0(a11ν−a21t)
)√

L+t0ν0) eπi(L(a22t−a12ν)·(a11ν−a21t)−tν
)

∑
k

L−1∑
j=0

bj,k H̃g̃((a22t− a12ν)
√
L− (qj − k)/

√
L)

e−2πimj(qj−k)/LχSj
(t+
√
La11t0, ν +

√
La21t0) e−2πi(qj−k)(a11ν−a21t). (27)

Taking inverse Fourier transforms ν → x on both sides gives us a formula for h, but as the right hand
side contains the product of three functions in ν, the resulting formula for h does not give much insight
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in general. If a12 = 0 though, the above simplifies (using a11a22 = 1/L) to

η(t, ν) =
∑
k

L−1∑
j=0

bj,k H̃g̃(a22

√
Lt− (qj − k)/

√
L) e−2πimj(qj−k)/LχSj

(t+
√
La11t0, ν +

√
La21t0)

e2πi(t0ν0a11

√
L+L/2 a11a22t−t/2−(qj−k)a11)ν e2πi(−

√
La22a21t0ν0t2+t0ν0−L/2 a21a22t2+(qj−k)a21t)

=
∑
k

L−1∑
j=0

bj,k H̃g̃(a22

√
Lt− (qj − k)/

√
L) e−2πimj(qj−k)/LχSj

(t+
√
La11t0, ν +

√
La21t0)

e2πi(t0ν0a11

√
L−(qj−k)a11)ν e−2πi(

√
Lt0ν0+L/2)a22a21t2 e2πit0ν0 e2πi(qj−k)a21t

which leads to

h(x, t) = e−2πi(
√
Lt0ν0+L/2)a22a21t2 e2πit0ν0

∑
k

L−1∑
j=0

bj,k H̃g̃(
√
L(a22t− (qj − k)/L)) e−2πimj(qj−k)/L

Φj(t+
√
La11t0t, x+ t0ν0a11

√
L− (qj − k)a11) e−2πi

√
La21t0(x+t0ν0a11

√
L−(qj−k)a11) e2πi(qj−k)a21t

and, if t0 = 0,

h(x, t) = e−πiLa22a21t2
∑
k

L−1∑
j=0

bj,k H̃g̃(
√
L(a22t− (qj − k)/L)) e−2πimj(qj−k)/L

Φj(t, x− (qj − k)a11) e2πi(qj−k)a21t

By construction, we have H̃g̃ = µ(B)∗Hµ(B)g̃ with g̃ =
∑
c̃nδn/

√
L. Hence, we can replace H̃ in

(27) by µ(B)∗H and g̃ by g where g = µ(B)g̃. In the following, we will give explicit representation of
µ(B) and examine g = µ(B)g̃. Note that the given reconstruction formulas hold true for any tempered
distribution g = µ(B)g̃, but we are mainly interested in the case that µ(B)g̃ is discretely supported, or,
better, g = µ(B)g̃ =

∑
c̃nδnT for some T and a periodic sequence c = (cn). In applications, this would

allow us to use any hardware developed to excite an operator described in Theorem 2.1.
Recall that B =

√
LA, so detB = 1 and we assume b11 6= 0. We have(

b11 b12
b21 b22

)
=
( 1 0
b21/b11 1

)(
0 −1
1 0

)(
1 0

−b11b12 1

)(
0 1
−1 0

)( b11 0
0 1/b11

)
(28)

Using notation from [5], we have

µ1(α) = µ
(

1 0
α 1

)
: f 7→ eπiα(·)2f ,

F = µ
(

0 1
−1 0

)
: f 7→ f̂ ,

µ2(α) = µ
( α 0

0 1/α

)
: f 7→ α−1/2f( · /α),

hence,

µ
(
b11 b12
b21 b22

)
= µ1(b21/b11)F∗µ1(−b11b12)F µ2(b11) = µ1(a21/a11)F∗µ1(−La11a12)F µ2(

√
La11).
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This leads to

µ(B)g̃ = µ
(
b11 b12
b21 b22

)∑
cnδn/

√
L

= µ1(a21/a11)F∗µ1(−La11a12)F µ2(
√
La11)

∑
cnδn/

√
L

= (
√
La11)−1/2 µ1(a21/a11)F∗µ1(−La11a12)F

∑
cnδna11

= (
√
La11)−1/2 µ1(a21/a11)F∗µ1(−La11a12)

∑
ĉmδm/(La11)

= (
√
La11)−1/2 µ1(a21/a11)F∗

∑
ĉm e

−πiLa11a12(m/(La11))2δm/(La11)

= (
√
La11)−1/2 µ1(a21/a11)F∗

∑
ĉm e

−2πim2a12/(2La11)δm/(La11)

where we have used the fact that the Fourier transform of a delta train of the form
∑

n∈Z cnδnT , where
c = (cn) has period L is another delta train of the same form. Specifically,

F
∑
n∈Z

cnδnT =
1

LT

∑
m∈Z

ĉm δm/LT (29)

where ĉ denotes the Discrete Fourier Transform of c, that is

ĉm =

L−1∑
k=0

ck e
−2πikm/L.

Equation (29) is a simple consequence of the fact that

F
∑
n∈Z

δnW =
1

W

∑
m

δm/W .

The sequence e−2πim2a12/(2La11) is periodic in m if e−2πima12/(2La11) is, that is, if a12/a11 is ratio-
nal. In the following, LCM refers to least common multiples of natural numbers, and for a rational
number a, q[a] denotes the smallest natural number q such that qa is an integer. With this notation,
(ĉ′)m = ĉm e

−2πima12/(2La11) forms a sequence with period L′ = LCM{q[a12/(2La11)], L}. Once again
employing (29),

µ(B)g̃ = (
√
La11)−1/2 µ1(a21/a11)F∗

∑
(ĉ′)mδm/(La11)

= (
√
La11)−1/2 µ1(a21/a11)

∑
c′nδna11L/L′

= (
√
La11)−1/2

∑
c′n e

πia21/a11(na11L/L′)2δna11L/L′

= (
√
La11)−1/2

∑
c′n e

2πin2a21a11(L/L′)2/2δna11L/L′ .

We conclude that µ(B)g =
∑
c̃nδnT with T = a11L/q[a12/(2La11)] if a12/a11 is rational. Moreover, if

a21a11 is rational as well, then we are assured that the coefficient sequence (c̃n) has period

L′′ = LCM{q[a21a11(L/L′)2/2], L′} = LCM{q[a21a11(L/q[a12/(2La11)])2/2], q[a12/(2La11)], L},

that is, we are in the framework of regular operator sampling.
Let us consider the special case that a12/(2a11) is an integer (for example, if a12 = 0 as in The-

orem 2.6), then q[a12/(2La11)] ∈ {1, L}, so L′ = L and L′′ = LCM{q[a21a11/2], L}. If in addition
La21a11/2 is an integer, then q[a21a11/2] ∈ {1, L} and L′′ = L.
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To complete the proof of Theorem 2.6, observe first that L = L′, and indeed (cn) = (c′n). Consequently

g = µ(B)g̃ =
∑

cn e
πin2a21a11δna11

.

Further, observe that

µ
(
b11 b12
b21 b22

)∗
= µ2(

√
La11)∗F∗µ1(−La11a12)∗F µ1(a21/a11)∗

= µ2(1/(
√
La11))F∗µ1(La11a12)F µ1(−a21/a11).

Hence, if a12 = 0, then

µ
(
b11 0
b21 b22

)∗
f(x) = µ2(1/(

√
La11))µ1(−a21/a11)f(x) = (

√
La11)1/2 e−πia21/a11(

√
La11x)2 f(

√
La11x)

= (
√
La11)1/2 e−πiLa21a11x2

f(
√
La11x)

and

µ(B)∗Hg(
√
L(a22t− (qj − k)/L))

= (
√
La11)1/2 e−πiLa21a11(

√
L(a22t−(qj−k)/L))2 Hg(

√
La11

√
L(a22t− (qj − k)/L))

= (
√
La11)1/2 e−πia21a11(La22t−(qj−k))2 Hg(t− a11(qj − k))

We conclude that

h(x, t) = (
√
La11)1/2e−2πi(

√
Lt0ν0+L/2)a22a21t2 e2πit0ν0

∑
k

L−1∑
j=0

bj,k e
−πia21a11(La22t−(qj−k))2 Hg(t− a11(qj − k)) e−2πimj(qj−k)/L

Φj(t+
√
La11t0t, x+ t0ν0a11

√
L− (qj − k)a11) e−2πi

√
La21t0(x+t0ν0a11

√
L−(qj−k)a11) e2πi(qj−k)a21t

and, if t0 = 0,

h(x, t) = (
√
La11)1/2e−πiLa22a21t2

∑
k

L−1∑
j=0

bj,k e
−πia21a11(La22t−(qj−k))2 Hg(t− a11(qj − k))

Φj(t, x− (qj − k)a11) e2πi(qj−k)a21t .

C. Gabor matrices and proof of Theorem 2.7.

Preliminary to the proof of Theorem 2.7, we present some results on finite Gabor systems and their
associated matrix representations.

Definition 4.1: Let L ∈ N, and c = (ck)k∈Z a period-L sequence be given. Define the full Gabor
system matrix G(c) to be the L× L2 matrix given by

G(c) = [ D0WL D1WL · · · DL−1WL ]

where Dk is the diagonal matrix with diagonal T kc = (cL−k, . . . , cL−1, c0, . . . , cL−k−1), and where
WL is the L× L Fourier matrix WL = (e2πinm/L)L−1

n,m=0.
Note that for 0 ≤ q, p ≤ L − 1, the (q + 1)st column of the submatrix DpWL is the vector MpT qc

where the operators M and T are as in Definition 3.1, and where c = (c0, . . . , cL−1). This means that
each column of the matrix G(c) is a unimodular constant multiple of an element of the finite Gabor
system with window c, {T qMpc}L−1

q,p=0, defined in Definition 3.1.
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Suppose now that we are given a particular Gabor system matrix G(c) and a collection of columns
from this matrix is chosen. We associate to that choice the L-tuple τ = (τ0, τ1, . . . , τL−1), where τk
is the number of columns chosen from the submatrix DkWL. The total number of columns chosen is
given by ‖τ‖1, the number of submatrices DkWL from which any columns are chosen by ‖τ‖0 (the
support size of τ ), and the largest number of columns chosen from any submatrix DkWL by ‖τ‖∞.
Denote by G0(c) the L × ‖τ‖1 submatrix of G(c) defined by this choice of columns, and denote by
M(c) the collection of all ‖τ‖1 × ‖τ‖1 submatrices of G0(c). In other words, each matrix M ∈ M(c)
corresponds to some choice of ‖τ‖1 rows of G0(c). Finally, recalling that ‖c‖0 denotes the number of
nonzero elements of the vector (c0, c1, . . . , cL−1), let

µ = min{‖c‖0 : ∃M ∈M(c), detM 6= 0}.

In other words, given a collection of columns of G(c) with associated vector τ , µ is the minimum support
length of a period-L sequence c such that for some choice of ‖τ‖1 rows, the resulting square matrix in
M(c) is nonsingular.

For example, if we take L = 7, and fix some sequence c of period 7, then the matrix G(c) is 7× 49,
and each submatrix DkW7 is 7× 7. A choice of 6 columns from G(c) might look like this.

M =



ω0c2 ω0c2

ω1c3 ω2c3

ω2c4 ω4c4

ω3c5 ω6c5

ω4c6 ω7c6

ω5c0 ω3c0

ω6c1 ω5c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω0c3 ω0c3 ω0c3

ω0c4 ω2c4 ω5c4

ω0c5 ω4c5 ω3c5

ω0c6 ω6c6 ω1c6

ω0c0 ω1c0 ω6c0

ω0c1 ω3c1 ω4c1

ω0c2 ω5c2 ω2c2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω0c6

ω3c0

ω6c1

ω2c2

ω5c3

ω1c4

ω4c5


. (30)

Here 2 columns have been chosen from the submatrix D2W7, 3 from D3W7 and 1 from D6W7, and this
choice corresponds to the vector τ = (0, 0, 2, 3, 0, 0, 1). For this example, there are 7 ways to choose
6 rows of the matrix and so the set M(c) consists of 7 6× 6 matrices.

In our analysis below, we shall use the following shorthand notation for a matrix structured as the one
above. Namely, we will write

↓↓ ↓↓↓ ↓
0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 3 4 5 6 0 1
3 4 5 6 0 1 2
4 5 6 0 1 2 3
5 6 0 1 2 3 4
6 0 1 2 3 4 5

(31)

which can be further simplified by removing the irrelevant columns

↓↓ ↓↓↓ ↓
2 3 6
3 4 0
4 5 1
5 6 2
6 0 3
0 1 4
1 2 5

(32)
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Our goal in this subsection is to prove the following theorem.
Theorem 4.2: Suppose that the L-vector τ describes a collection of columns chosen from a full Gabor

matrix.
(1) If L is prime then µ ≤ (‖τ‖1 − ‖τ‖0) + 1.
(2) For any L ∈ N, µ ≥ ‖τ‖∞.

Remark 4.3: (a) Note that the vector τ does not completely determine the columns chosen from
G(c) but only their distribution within G(c) and hence that the conclusions of Theorem 4.2 do not depend
on the actual collection of columns chosen.
(b) It is not hard to see that the estimates in Theorem 4.2 cannot be improved. For example, if one
column is chosen from distinct submatrices DkWL, then the vector τ will have ‖τ‖1 non-zero entries
each of which is 1. Hence ‖τ‖1 = ‖τ‖0, and ‖τ‖∞ = 1. Choosing c0 = 1, c1 = c2 = · · · = cL−1 = 0,
and choosing those rows of G0(c) in which c0 appears, it follows that the resulting ‖τ‖1 × ‖τ‖1 matrix
M is a nonsingular diagonal matrix and hence that

µ = ‖τ‖∞ = (‖τ‖1 − ‖τ‖0) + 1.

At the other extreme, if we choose all ‖τ‖1 columns from one submatrix DkWL, then we would have
‖τ‖0 = 1 and ‖τ‖1 = ‖τ‖∞. If fewer than ‖τ‖1 of the ck are nonzero, then any choice of ‖τ‖1 rows
of G0(c) will contain at least one identically zero row, and hence the corresponding square matrix M
would be singular. This means that

µ ≥ (‖τ‖1 − ‖τ‖0) + 1 = ‖τ‖1 = ‖τ‖∞.

Moreover, if L is prime we once again have equality ([14]).
In order to prove Theorem 4.2 we must recall the main result and proof from [14], namely
Theorem 4.4: If L is prime, then there exists a period-L sequence c such that every minor of the full

Gabor system matrix G(c) is nonzero.
The proof of the theorem involved the following steps.

1. Given any square submatrix of G(c), call it M , det(M) is a homogeneous polynomial of degree L
in the variables c0, c1, . . . , cL−1.
2. In order to show that this polynomial does not vanish identically, it suffices to show that there is at
least one monomial in det(M) with a nonzero coefficient.
3. Such a monomial, pM is defined recursively as follows. If ‖τ‖1 = 1 then M is simply a multiple of a
single variable cj and we define pM = cj . If ‖τ‖1 > 1, let cj be the variable of lowest index appearing in
M . Choose any entry of M in which cj appears, eliminate from M the row and column containing that
entry, and call the remaining matrix M ′. Define pM = cj pM ′ . It can be shown that pM is independent
of which entry in M is chosen at each step and only depends on the variable cj chosen at that step.
4. The remainder of the proof of Theorem 4.4 consists of showing that the coefficient of pM is a product
of minors of WL. Since L is prime, a classical result asserts that such minors never vanish.

Proof of Theorem 4.2: (1). Let L be prime, and assume that columns are chosen from G(c) according
to the vector τ . By definition, there will be at least one column chosen from ‖τ‖0 distinct submatrices
DkWL of G(c). This means that there are exactly ‖τ‖0 distinct rows in which the variable c0 formally
appears. Choose those rows and the remaining ‖τ‖1 − ‖τ‖0 rows arbitrarily, and let M be the resulting
‖τ‖1 × ‖τ‖1 submatrix. Proceeding now with the construction of the monomial pM defined above, it
follows that pM will contain exactly ‖τ‖0 factors of c0 plus at most ‖τ‖1 − ‖τ‖0 other distinct factors.
Hence pM will be a monomial with at most ‖τ‖1 − ‖τ‖0 + 1 distinct variables appearing. Since L is
prime, the argument of [14] shows that the coefficient on this monomial is nonzero so that det(M) is
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not identically zero if the remaining ck are all set to zero. Hence

µ ≤ ‖τ‖1 − ‖τ‖0 + 1.

(2). Let L ∈ N be given and suppose that columns are chosen from G(c) according to the vector τ .
Let ‖τ‖1 rows be chosen from the submatrix G0(c), and call the resulting ‖τ‖1 × ‖τ‖1 matrix M . Any
diagonal of M must have τk entries chosen from τk distinct rows of each submatrix DkWL. Hence
every term in the expansion of det(M) is a multiple of a monomial with at least τk distinct variables
appearing in it. Therefore, if fewer than ‖τ‖∞ of the ck are non-zero, then the polynomial det(M) will
vanish identically. Hence µ ≥ ‖τ‖∞.

Example 4.5: The following example will show that for arbitrarily large L there are vectors τ such
that for any choice of submatrix G0(c), ‖τ‖∞ < µ < ‖τ‖1 − ‖τ‖0 + 1. More specifically, the following
theorem holds.

Theorem 4.6: For every L ∈ N large enough, there is an L-vector τ describing a choice of columns of
a full Gabor matrix G(c) such that ‖τ‖∞ < µ. Moreover, if L is prime, then also µ < ‖τ‖1 −‖τ‖0 + 1.
Proof: In order to construct this vector τ , first choose P, R ∈ N such that P ≤ R and

R+ P − 1

RP
<

1

2
.

Note that these imply that at least R ≥ P ≥ 3. Given L ∈ N with L ≥ 9, we can write L = PR + j
uniquely for some 0 ≤ j ≤ R − 1. Define the L-vector τ as follows. Let τk = 2 for 0 ≤ k ≤ R − 1,
and for k = mR − 1, 2 ≤ m ≤ P , and let τk = 0 otherwise. Then ‖τ‖0 = R + P − 1, ‖τ‖∞ = 2,
and ‖τ‖1 = 2(R + P − 1). We will show that ‖τ‖∞ = 2 < 3 ≤ µ and that in case L is also prime,
µ ≤ R < R+P = ‖τ‖1−‖τ‖0 +1. In our shorthand notation, the matrix G0(c) chosen has the following
form.

↓↓ ↓↓ ↓↓ ↓↓ . . . ↓↓ ↓↓ ↓↓ ↓↓ . . . ↓↓
0 N−1 N−2 N−3 . . . N−R+2 N−R+1 N−2R+1 N−3R+1 . . . N−PR+1
1 0 N−1 N−2 . . . N−R+3 N−R+2 N−2R+2 N−3R+2 . . . N−PR+2
2 1 0 N−1 . . . N−R+4 N−R+3 N−2R+3 N−3R+3 . . . N−PR+3
3 2 1 0 . . . N−R+5 N−R+4 N−2R+4 N−3R+4 . . . N−PR+4

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
R−2 R−3 R−4 R−5 . . . 0 N−1 N−R−1 N−2R−1 . . . N−(P−1)R−1
R−1 R−2 R−3 R−4 . . . 1 0 N−1 N−R−1 . . . N−(P−2)R−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
2R−1 2R−2 2R−3 2R−4 . . . R+1 R 0 N−1 . . . N−(P−3)R−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
3R−1 3R−2 3R−3 3R−4 . . . 2R+1 2R R 0 . . . N−(P−4)R−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
PR−1 PR−2 PR−3 PR−4 . . . (P−1)R+1 (P−1)R (P−2)R (P−3)R . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
N−1 N−2 N−3 N−4 . . . N−R+1 N−R N−2R N−3R . . . N−PR

,

Note that a matrix in M(c) corresponds to a choice of two entries in each column of the above matrix
such that no choice appears in more than one row.

In order to see the first inequality, let c = (cn)n∈Z be a period-L sequence, and define G0(c) to be
the matrix formed by choosing 2(R + P − 1) columns of G(c) according to τ . Specifically, we choose
2 columns from each submatrix DkWL of G(c) for all those k for which τk = 2. Now suppose that
‖c‖0 = 2, that is, that there are exactly two non-zero terms in the vector (c0, . . . , cL−1). We will show
that any choice of 2(R + P − 1) rows of G0(c) will contain a zero row, which will imply that µ ≥ 3.
In order to simplify the argument, let us assume without loss of generality that c0 6= 0. If not then we
could replace τ by a circular shift of τ in the argument that follows. Therefore, let us assume that c0

and ck0 are the only non-zero entries of c.
Note that each variable cj appears exactly twice in each row of G0(c) that it appears in at all, and
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hence that each cj appears in at most R+P −1 rows of G0(c). In order for a row of G0(c) to not vanish
identically, at least one of the variables c0 or ck0 must appear in that row. Since c0 and ck0 appear in at
most R+P − 1 rows, in order to choose 2(R+P − 1) non-vanishing rows of G0(c) we must be able to
choose R + P − 1 rows containing c0 and an additional R + P − 1 rows containing ck0 . We will show
that this is not possible by showing that there must be at least one row of G0(c) in which both c0 and
ck0 appear. Specifically, we will show that all of the variables c1, c2, . . . , cL−1 appear at least once in
the first R rows of G0(c). Clearly, c0 also appears in each of these rows.

In the pair of columns of G0(c) chosen from the matrix D0WL, the variables c1, . . . , cR−1 ap-
pear in the first R rows. Given 1 ≤ m ≤ P , consider the pair of columns of G0(c) chosen from
the matrix DmR−1WL. It is not hard to see that in the first R rows of these columns, the variables
c(P−m)R+j+1, . . . , cP−(m−1))R+j appear. Consequently, as m runs from 1 through P , all of the variables
cj+1, . . . , cPR+j will appear in the first R rows of G0(c). This completes the first part of the proof.

Now suppose that L is prime. We will show that µ ≤ R by showing that we can choose 2(R+P − 1)
rows of G0(c) in such a way that the monomial pM of the resulting square matrix M , as described in the
remark following the statement of Theorem 4.4, will have no more than R distinct variables cj appearing
in it.

First, choose the R + P − 1 rows of G0(c) in which c0 appears. For all 1 ≤ m ≤ P − 1, note that
c1 appears in row mR + 1, c2 appears in row mR + 2 and in general, ck appears in row mR + k
for k = 1, 2, . . . , R − 1. Note also that c0 does not appear in these rows. Therefore, choose those
(P − 1)(R− 1) rows of G0(c). Note that (R+P − 1) + (P − 1)(R− 1) = RP > 2(R+P − 1) by our
assumption at the beginning of the proof. This means that by choosing rows in this way, and eliminating
some if necessary, we arrive at a square sub-matrix M of G0(c). The corresponding monomial pM will
have R+ P − 1 factors of c0 and at most P − 1 factors of c1, c2, . . . , cR−1, resulting in no more than
R distinct variables appearing in pM . Hence µ ≤ R < R+ P = ‖τ‖1 − ‖τ‖0 + 1.
Proof of Theorem 2.7: Suppose that S ⊆ R2 and that for some T > 0 and N ∈ N, S satisfies the
hypotheses of Theorem 2.7. We may assume without loss of generality that in fact Sper can be covered
by fewer than L rectangles and in fact that∑

{(q,m) : Rq,m∩Sper 6=∅}

|Rq,m|+
2

N
< 1.

If not then we may replace T by T ′ = T/k and N by N ′ = mN for some k, m ∈ N. This leads to a
finer rectification of the set Sper, and since |Sper| = |S| < 1, we can approximate S in such a way that
the needed inequality is satisfied.

Let L ≥ N2 be prime and let Ω = 1/TL. Then with

R′q,m = [0, T ]×[0,Ω] + (qT,mΩ),

q, m ∈ Z, it follows that each rectangle Rq,m in the original rectification of S is covered by a collection
of rectangles R′q′,m′ satisfying ∑

{(q′,m′) : Rq′,m′∩Rq,m 6=∅}

|Rq′,m′ | ≤ |Rq,m|+
2

L
.
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Fig. 1. Rectification of a region R with L = 7 and τR = (0, 0, 2, 3, 0, 0, 1). A corresponding collection of columns of G(c)
is given by 30.

Consequently the rectification of S by the rectangles R′q,m satisfies∑
{(q′,m′) : R′

q′,m′∩Sper 6=∅}

|Rq′,m′ | ≤
∑

{(q,m) : Rq,m∩Sper 6=∅}

∑
{(q′,m′) : R′

q′,m′∩Rq,m 6=∅}

|R′q′,m′ |

≤
∑

{(q,m) : Rq,m∩Sper 6=∅}

(
|Rq,m|+

2

L

)

≤
∑

{(q,m) : Rq,m∩Sper 6=∅}

|Rq,m|+
2N

L
< 1.

Therefore, since |R′q,m| = 1/L it follows that Sper is rectified by no more than L rectangles of the form
R′q,m, and in particular we can write

Sper ⊆
⋂

{j : R′qj,mj
∩Sper 6=∅}

R′qj ,mj
= R

for some integers 0 ≤ qj , mj ≤ L − 1. Define the L–vector τR = (τR0 , τ
R
1 , . . . , τ

R
L−1) by τRk =

#{j : mj = k}. In other words, τRk is the number of boxes in R of the form R′qj ,k (see Figure 1) and

‖τR‖1 = #{j : R′qj ,mj
⊆ R}

is the total number of boxes R′q,m in R.
Since TΩ = 1/L = |R′qj ,mj

|,

‖τR‖1
L

=
∑

{j : R′qj,mj
⊆R}

|R′qj ,mj
|.

Since Sper ⊆ R, any identifier of OPW 2(R) is also an identifier of OPW 2(S). Let H ∈ OPW 2(S),
and assume that L is prime. By Lemma 3.9, (19) holds for any period-L sequence c = (cn) and for
all (t, ν) ∈ [0, T ]×[0,Ω]. By our assumptions on S, all but ‖τR‖1 ≤ L of the entries on the right side
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vanish so that (19) reduces to

e−2πiνTp (Z1/Ω ◦H)g(t+ Tp, ν)

= Ω

‖τS‖1−1∑
j=0

(T qj Mmjc)p e
−2πiνTqj ηQPH (t+ Tqj , ν + Ωmj), (33)

p = 0, 1, . . . , L−1, where for 0 ≤ j ≤ ‖τR‖1 − 1, Rqj ,mj
⊆ R. It is clear that the reduced system (33)

is the result of choosing ‖τR‖1 columns of the full Gabor system matrix G(c) according to the L-vector
τR. Since L is prime, Theorem 4.2 implies that there is a period-L sequence c = (cn) such that the
reduced Gabor matrix G(c) has full rank and

‖c‖0 ≤ ‖τR‖1 − ‖τR‖0 + 1 ≤ ‖τR‖1.

Therefore,
‖c‖0
L
≤ ‖τ

R‖1
L

=
∑

{j : Rqj,mj
⊆R}

|Rqj ,mj
|.

Remark 4.7: a) Note that Theorem 2.7 does not give a sufficient sampling rate required to identify
OPW 2(S) but only on the relative support of the weighting sequence c = (cn). The sampling rate will
of course depend on the parameter T .
(b) It is clear that the sampling rate cannot be bounded by the area of S alone. For example, if a > 0
and S = [0, a)× [0, 1), then |S| = a but since

∥∥∫ χ
S(·, ν) dν

∥∥ = 1, Theorem 2.5 implies that any delta
train identifying OPW (S) must have a sampling rate of at least one sample per unit.

V. CONCLUSION

This paper contains results relevant to two questions on the identification and recovery of operators with
bandlimited symbols from the response of the operator to a regular delta train with periodic weights. Such
operators model time-variant linear communication channels. The identification and recovery procedure
studied here is referred to as operator sampling. The procedure is a generalization of classical sampling
results for bandlimited functions, and provides a rigorous interpretation of the determination of a time-
invariant communication channel by measuring its response to a unit impulse.

We first obtain explicit reconstruction formulas in several cases: when the spreading support of the
operator is compact, when it is a subset of a fundamental domain of a rectangular lattice, and when it is
a subset of a fundamental domain of a general symplectic lattice. In all cases, the spreading support is
required to have measure less than one, and the precise formulas depend on covering the support region
efficiently by rectangles or parallelograms. For these results it is required that the support set be known.
We also obtain a result showing that, under mild geometric conditions, recovery is possible when the
support set is unknown but has area smaller than 1/2. A similar result for unknown support sets of area
smaller than one was proved independently in [3].

Next, we give a necessary condition on the rate of sampling, that is, the average number of deltas
in the identifying weighted delta train per unit time, required to identify an operator with bandlimited
symbol. The necessary rate depends on the geometry of the spreading support. Several considerations
relevant to finding a sufficient condition on the sampling rate are given. Separate consideration is given
to the spacing between successive deltas in the identifying delta train, which we seek to maximize, and
the relative support of the weighting sequence, which we seek to minimize. We present a qualitative
discussion related to maximizing the former in terms of finding the most efficient possible covering
of the spreading support with rectangles or parallelograms. An asymptotic result bounding the relative
support of the weighting sequence above by the area of the support set is given.
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