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Abstract

We study the recovery of operators with bandlimited Kohn-Nirenberg symbol from the action of such
operators on a weighted impulse train, a procedure we refer to as operator sampling. In previous work,
Kozek and the authors have shown that operator sampling is possible if the symbol of the operator is
bandlimited to a set with area less than one. In this paper we develop explicit reconstruction formulas for
operator sampling that generalize reconstruction formulas for bandlimited functions. We give necessary
and sufficient conditions on the sampling rate that depend on size and geometry of the bandlimiting
set. Moreover, we show that under mild geometric conditions, classes of operators bandlimited to an
unknown set of area less than one-half permit sampling and reconstruction. A similar result considering
unknown sets of area less than one was independently achieved by Heckel and Boelcskei.

Operators with bandlimited symbols have been used to model doubly dispersive communication
channels with slowly-time-varying impulse response. The results in this paper are rooted in work by
Bello and Kailath in the 1960s.

Index Terms

Bandlimined Kohn-Nirenberg symbols, spreading function, operator Paley-Wiener space, channel
measurement, channel identification, operator identification, operator sampling, Gabor analysis, symplec-
tic matrices.
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I. INTRODUCTION

In this paper we develop a sampling theory and reconstruction formulas for operators bandlimited to
domains of small area. Analogously to the classical sampling theory of functions, the objective of operator
sampling is to fully characterize an operator from at first sight insufficient information, specifically by
observing an operator’s action on a single discretely supported distribution, viz; a weighted sum of delta
distributions. The theory developed herein applies to so-called bandlimited operators, defined as operators
whose Kohn-Nirenberg symbol is bandlimited. The symplectic Fourier transform of the Kohn-Nirenberg
symbol of an operator is referred to as its spreading function, so that we are considering operators whose
spreading function is compactly supported. More generally, we extend reconstruction to operators in
which the spreading function is supported in a fundamental domain of a lattice. In engineering terms,
the operators considered are characterized by limited time-frequency dispersion.

A. Identification and sampling of operators

The operator identification problem addresses the question whether an operator from a given class can
be recovered from its action on a single probing signal. That is, for a given class of operators H, does
there exist an input signal g so that Hg determines H. Mathematically speaking, we require that the
map ®, : H — Hg be injective on H. In order to be stable under noise introduced, for example, by
physical considerations or digital processing, it is reasonable to require in addition that the map ®, have
a bounded inverse.

Definition 1.1: Let ‘H be a collection of linear operators mapping a space of functions or distributions
X (R) to a normed function space Y (R). If for some g € X(R),

¢,:H—Y(R), H— Hyg
is bounded above and below, that is, if there are constants 0 < A < B such that
AllH||n < ||Hg|ly < B||H|y for all H € H, (D)

then we say that H is identifiable with identifier g € X (R). If H is not linear, then condition (1) is
replaced by

Al|Hy — Hol|ly < |[H19 — Haglly < B|Hy — Ha||3 for all Hy, Hy € H. (2)

The sampling and reconstruction theory for operators developed here addresses identifiability of oper-
ator classes utilizing discretely supported distributions.

Definition 1.2: A strictly increasing sequence A = {\,, }nez in R is a set of sampling for an operator
class #, if for some never-vanishing sequence (¢, )nez, we have that Y, ¢,d), identifies H. We define
the sampling rate of A by

nez

D(A) = lim =)

r—00 T
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where
n-(r) = ig}%#{n: An € [z, 2+ 1]}

Assuming that the limit exists, D(A) can be interpreted as the average number of terms ¢, 0, appearing
in the identifier per unit time and corresponds to the lower Beurling density of A. The assumption that
the sequence ¢ = (c¢,,) never vanishes ensures that the sampling rate depends only on A. In particular,
we avoid the situation in which for some set A’ D A, of higher density than A, > o Am0 N, = Y on Cnin
where d,,, = ¢, whenever A/, = )\, and d,,, = 0 otherwise.

In this paper, we will restrict our attention to sets of sampling that are periodic subsets of a lattice in
R, and moreover will focus on periodic weighting sequences ¢ = (cy,).

Definition 1.3: We say that an operator class H can be identified by regular operator sampling if
there exists 7' > 0, L € N, and a period-L sequence ¢ = (¢,,) such that > _ ¢, 0,7 identifies . In the
language of Definition 1.3,

nez

A={nT: ¢, #0} CTZ.

Moreover, ol
1 Cllo
(A =715 )
where
lelo = #{n: 0 <n < L—1 and ¢, # 0}
is the support size of the vector (cg, ..., c—1).

Our work addresses the identifiability of classes of operators characterized by their Kohn-Nirenberg
symbol being bandlimited to a set S. In [10], [21] (cf. [22] and [17]), the following result for the
identifiability of operator Paley-Wiener spaces (see Definition 1.5 below) is given. Here and in the
following, |S| denotes the Lebesgue measure of the set S.

Theorem 1.4: OPW?2(S) is identifiable by regular operator sampling if S is compact and |S| < 1,
and not identifiable if S is open and |S| > 1.

B. Operator representations, bandlimited operators, and operator Paley-Wiener spaces

Similarly to linear operators on finite dimensional space being represented by matrices, the Schwartz
kernel theorem implies that linear operators on any of the classical function spaces on R can be represented
by their kernel, that is, formally, we have

Hi(x) = / ka2 9) £ () dy, 4

for a unique kernel rp.!
As operators are in 1-1 correspondence with their kernels, they can also be formally represented by
their time-varying impulse response h, their Kohn-Nirenberg symbol o, and their spreading function 7.

In fact, with S(R?) denoting the space of Schwartz class functions and S’(R?) its dual, we can associate to any linear
and continuous operator mapping S(R%) to S’'(R%) a kernel x € S’'(R??) so that (4) holds in a weak sense. Below, we shall
consider operators acting boundedly on the space of square integrable functions L?(R) which fall in the framework outlined
above. We refer to [17] for a more detailed functional analytic treatment of operator and function spaces involved.
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In fact, formally,

Hf(x) :/hH(x,t)f(x—t)dt 5)
= // i (t,v) ™ f(z —t) dv dt (6)
= / ou (@, &) e f(€) de, 7
where
/T}H(t, v) e2miv(e=t) g4, — hg(z,t) = kg(z,x —t) = /O’H(x’é-) 2Tkt de, (8)

and the Fourier transform in (7) is normalized as F f(§) = f(g) = [ f(z) e 2o dg.
Operator representations such as those given in (5), (6), (7) are considered in the theory of so-called
pseudodifferential operators where we write

o, D) (x) = / o, €) T F€) d.

Observing further, that with the so-called symplectic Fourier transform given by

P = [ [ Fla.ge oo

—2mity

(8) implies e nu(t,v) = Fsom(t,v). We say that the operator

H is bandlimited to the set S C R? if suppny = supp Fson C S.

Considering now spaces of such operators we arrive at the following definition.
Definition 1.5: Given a set S C R2, define the operator Paley-Wiener space OPW (S) by

OPW(S) = {H € L(L*(R), L*(R)): supp Fsoy = suppny C S}

where £(L?(R), L2(R)) denotes bounded operators on L?(R). The space of Hilbert-Schmidt operators
in OPW(S) is

OPW?(S) = OPW(S)N HS(L*(R)) = {H € L(L*(R), L*(R)): suppFsog C S, og € L*(R?)}.

The reconstruction formulas presented in this paper for OPW?2(S) hold formally for all of OPW (S).
Operator Paley-Wiener spaces defined by membership of the symbol in generic mixed LP spaces is
considered in [17]; see also Section II-B below for some expamles.

C. Physical relevance of bandlimited operators

In communications engineering, (5) and (6) are commonly used as models for linear (time-varying)
communication channels. The time-varying impulse response of the channel hy(x,t) is interpreted as
the response of the channel at time x to a unit impulse at time x — ¢, that is, originating ¢ time units
earlier. Hence, if hg(z,t) # 0 only for 0 < ¢ < T, then H is causal with maximum time-dispersion 7.

If hyg(x,t) = hg(t) then the characteristics of the channel are time-invariant and in this case the
channel is a convolution operator. Such channels are identifiable since hp(t) is the response of the
channel to the input signal d¢(t), the unit-impulse at ¢ = 0.

A mobile communication channel has the property that hp(z,t) depends on z, but changes as a
function of z rather slowly, since the change in the channel, for example, by movement of receiver,
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transmitter, or reflecting objects, is slow when compared with the speed of light at which information
travels. This slow variance can be expressed through a bandlimitation of hy(z,t) as a function of z, that

is, as a support constraint on the spreading function of H, ng(t,v) = [ hg(z,t) e 2™ dz, as a

function of v. We conclude that a causal doubly dispersive communications channel with maximum time
dispersion 7', and hp(x,t) bandlimited in x to [—£2, (2] is represented by a spreading function supported
on the set [0, 7] x[—,Q], that is, by operators in OPW ([0, T|x [, Q]) since ng = Fsoq.

To substantiate this bandlimitation on oy (x,t) further, we denote translation by ¢ by T} : f(x) —
flz—1t) ) and modulation by v by M, : f (z) > 2™ f(z). The latter is also referred to as frequency
shift as M, f =T, f Then (6) becomes the operator-valued integral

T rQ
H=//nH(t,v)TtMydudt=// ny(t,v) Ty M, dv dt
0 J-Q

that is, the spreading function is the coefficient vector of the time-frequency shifts that a communication
channel carries out. Hence, OPW ([0, T| x[—, 2]) has maximum time-delay T and maximum frequency
shift Q.

D. Relation to other work

In 1963, T. Kailath [7], [8], [9] asserted that for time-variant communication channels to be identifiable
it is necessary and sufficient that the maximum time-delay, a, and Doppler shift, b, satisfy ab < 1 and
gave an argument for this assertion based on counting degrees of freedom. In the argument, Kailath looks
at the response of the channel to a train of impulses separated by at least a time units, so that in this
sense the channel is being “sampled” by a succession of evenly-spaced impulse responses. The condition
ab <1 allows for the recovery of sufficiently many samples of hy(x,t) to determine it uniquely.

Kailath’s conjecture was given the precise mathematical framework described above and proved in
[10].

In 1969, P. A. Bello [2] argued that what is important for channel identification is not the product ab
of the maximum time-delay and Doppler shift of the channel but the area of the support of the spreading
function. It is notable that Kailath also asserted something along these lines. This means that a time-
variant channel whose spreading function has essentially arbitrary support is identifiable as long as the
area of that support is smaller than one. Using ideas from [10], Bello’s conjecture was confirmed in [22].

Building on the results from [10], [21], [22] a number of results have been established that are now part
of the herein described sampling theory for operators. For example, the results in [21] were extended from
the setting of Hilbert-Schmidt operators to a much wider class of pseudodifferential operators in [17]. In
[6], the choice of non periodic (irregular/jitter) sampling locations for operator sampling was discussed.
Necessary and sufficient conditions for the identifiability of bandlimited Multiple Input Multiple Output
(MIMO) channels were given in [16].

More recently, sampling results for stochastic operators, that is, for operators with stochastic spreading
functions, have been obtained [15], [24], [23]. Also, in applications, it is required to replace the identifier
considered in this paper by finite time, finite bandwidth, that is, smooth, signals. Local recovery results
in this setting, as well as a reconstruction formula that allows for the application of coarse quantization
methods prior to the approximate recovery of the operator are given in [12]. Focusing on a parametric
setup, the identification of bandlimited operators was analyzed with respect to applicability in super-
resolution radar [1].
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II. MAIN RESULTS
A. Sampling and reconstruction of operators

One of the goals of this paper is to give an explicit reconstruction formula for the impulse response
of the channel operator from its response to the identifier. Such formulas illustrate a connection between
operator identification and classical sampling theory and motivates the terminology of operator sampling
given above.

The main result of this paper is the following.

Theorem 2.1: Let S C R? satisfy |S| < 1 and suppose that for some 2, T > 0 with TQ = 1/L,
L prime, S is contained in a fundamental domain of 1/Q2Z x 1/T 7Z (that is, the sets S + (k/Q,¢/T),
k,l € Z, are pairwise disjoint). Further assume that there exist integers 0 < ¢;, m; < L—1,0 < j < L—1,
and (to,vp) € R? such that with R, = [0,T]x[0, Q]+(to, o) + (¢T, mQ), q, m € Z,

L-1
Sper = [0,1/92)x[0,1/T] + (to, v0) N | J (S + (k/2,¢/T)) € | Ryym;- 9)
k€L 7=0

Then OPW?(S) can be identified by regular operator sampling with identifier g = > ¢, 0n1, (c5) a
period-L sequence, and there exist period-L sequences b; = (b; ;) and functions ®;(¢,v) for 0 < j <
L—1, such that

L—1
hw,t) = 2™ NN Hy(t — (g5 — k)T) e 2@ NIE (80— (E+ to) + (g — k)T).
k j=0
(10)

where the sum converges unconditionally in L?(R?). Here
D;(t,s) = [ ¥ X, (t,v) dv

where
Si =50 J Ry,m, + (k/9,4/T)).
kel

B. lllustrations and Special Cases of Theorem 2.1

As a special case of Theorem 2.1, Shannon’s sampling theorem can be extended to the following
sampling theorem for operators. This result first appeared in [17].
Theorem 2.2: For H € OPW?(S), S C [0,T)x[-/2,§/2) compact and T2 < 1,

hat) = e 0T ST ('S ) (¢4 ) ST =D = 0 T))

neZ  kez ((z —t) —nT)

Xjo,77(%)- (11)

where the sum converges in L?(R?) and for each ¢, uniformly in .
Proof: By the assumption on S, we can take 72 = 1 and (o, vp) = (0, —£2/2) in Theorem 2.1 so that
L=1,qg =mo=0, cog =1 and hence by = 1. In this case
1/21 ; sin(mws/T
Do (t,s) = Xpo,11(t) / ™5 dv = X 1(t) sin(rs/T)
—1/2T s
and (11) follows.
The most straightforward extension of Theorem 2.2 is to operator classes OPW?(S) where S is
compact, |S| < 1, but S is not necessarily contained in a rectangle with area smaller than or equal to 1.
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Theorem 2.3: 1If S C (0,00)xR is compact with |S| < 1 then OPW?2(S) is identifiable via regular
operator sampling. Specifically, there exist 7' > 0 and L € N such that S C [0, LT|x[—1/(2T),1/(2T)],
and a period-L sequence ¢ = (cy,) such that g = Y, ¢, 6,7 identifies OPW?(S). Moreover, there exist
period-L sequences b; = (b; 1), and integers 0 < ¢;, m; < L—1, for 0 < j < L—1 such that

L1
h(z,t) = e YT "N b Hy(t — (q; — k)T) 27 ma @D 6((5 — 1) + (g5 — k)T) r(t — ¢;T) (12)
k=0

where r, ¢ € S(R) satisfy R
> r(t+kT)=1=>Y " é(y+n/LT), (13)

kEZ nez

~

where 7(t)¢(7) is supported in a neighborhood of [0, T|x[0,1/LT], and where the sum in (12) converges
unconditionally in L? and for each ¢ uniformly in .

Equation (12) is a direct generalization of (11) under the assumption that r(t) = X(o 71(¢) and () =
X(0,0)(7)- The passage to smooth cut-off functions 7 and ¢ is enabled by the fact that S| < 1 and allows
for faster decay of the reconstruction functions, and for the validity and convergence of the reconstruction
sums in more general function spaces. These matters have been studied extensively in [17].

By generalizing the setting to other function spaces, we can more precisely illustrate the connection
between operator sampling and the classical sampling theorem attributed to Shannon, Whittaker, and
Kotelnikov among others, and also the connection with the well-known fact that time-invariant operators
can be identified by their impulse response.

Definition 2.4: We define the operator Paley-Wiener spaces O PW>2(S) and OPW?>°(S) by

/
OPW°2(S) = {H € L(L*(R), L*(R)): suppng C S, |log|lr~> = H/ |0H("5)|2d5H;2 < oo}
and
1/2
OPW2’OO(S) _ {H c E(LZ(R),L2(R)) supp ng C S, ||O'HHL2.oo = (/ ||0'H(513,)H<2>od$) < OO}

([17], Theorem 4.2). OPWP4(S) is a Banach space with respect to the norm || H | opwr.a = ||om||Lra.

Note that convolution with a compactly supported kernel whose Fourier transform is in L? is an
operator in O PW°2 and multiplication by a bandlimited function in L? is an operator in O PW?2°°,

First, take H to be ordinary convolution by hy(t), this means that hy(z,¢) depends only on ¢, that
is, hg(z,t) = hy(t). In this case H can be identified in principle by g = Jp, the unit impulse at the
origin, since Hg(z) = hy(x). That is, A = {0} is a sampling set for the class of convolution operators.
Translating this into our operator sampling formalism results in something slightly different.

Assume that h is supported in the interval [0,7”], h € L? and that 7' > 7", and 2 > 0 are chosen
so that QT < 1. In this case, ny(t,v) = h(t) do(v) and op(z,&) = h(£). Therefore oy € L°? and
H € OPW>2([0, T'|x[-$/2,9/2)).

Applying Theorem 2.3 to this situation, note that if g = ) d,7 then Hyg is simply the T—periodized
impulse response h(t), and it follows from the theorem (or by direct calculation) that with r, p € S(R),
r(t) =1 on [0,7"] and vanishing outside an interval of length 7" containing [0,7"], and with $(0) = 1
and @ vanishing outside [—2/2, /2],

r(t) Y (Hg)(t + kT)p(x —t —kT) = > Y r(t) h(t + kT — nT) p(x — t — kT)

keZ k€EZ nEZ

= h(t)p(x —t — kT) = h(t).

keZ
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Here we have used the fact that 7(¢) = 1 on [0,7”] and vanishes outside a neighborhood of [0,7”] and
that ), ¢(x —t — kT) = 1 by the Poisson Summation Formula and in consideration of the support
constraints on @. Indeed the theorem says that the sum >, p(x — ¢t — kT') converges to 1 in the L™
norm and in particular uniformly on compact sets.

To compare Theorem 2.3 with the classical sampling theorem, take H to be multiplication by some fixed
function m € L? with suppm C [-£/2,9Q/2] then ny(t,v) = do(t)m(v), h(t,z) = So(t) m(x — t),
and oy (z,&) = m(z). Let @' > Q and T > 0 be such that QT < 1. Then oy € L>* and H €
OPW2([-T/2,T/2] x [-9/2,Q/2]).

Choose r, ¢ € S(R) such that suppr C [—-7/2,7/2] and r(0) = 1 and suppp C [—Q'/2,Q'/2] and
p(v)=1lon[-Q/2,Q/2].If g =), Opr, then Hg = > m(nT) 7, and it follows from Theorem 2.3
(and by direct calculation) that

So(tym(z —t) =r(t) > (Hg)(t+ kT)p(x —t — kT)

kEZ

= ()Y 3 mnT) Sy (e 1~ KT)
kEZ neZ

= Z m(nT) p(x —nT)

nez

by support considerations on the function r(t). Therefore we have the summation formula

m(x) = Z m(nT) ¢(x — nT)

nez

where the sum converges unconditionally in L?. This recovers the classical sampling formula when
sampling above the Nyquist rate.

C. Necessary and sufficient conditions on the sampling rate in operator sampling

A second goal of this paper is to investigate efficient sampling rates for regular operator sampling.
In the classical sampling theory of functions, the sampling rate must exceed the reciprocal of the area
of the bandlimiting set; and regardless of the measure of the bandlimiting set, a (possibly high density)
sampling set always exists. As mentioned above (Theorem 1.4), operator sampling of O PW?2(S) is only
possible if the measure of S satisfies |S| < 1. In addition, the sampling rates in operator sampling depend
on the geometry of S in an intricate way. A necessary condition on the sampling rate is the following.

Theorem 2.5: 1If S is closed and A is a set of sampling for OPW?2(S) with inf{|{A\—p| : A\, u € A} > 0,
then

p(A) > | / xsC) |

The quantity H fR xs(-,v) dyHOO can be interpreted as the maximum vertical extent of the set S.
To reduce the average rate at which we have to send Dirac impulses into a channel to apply regular
operator sampling results, we seek to find

min{”jf!;o : Z cnOnr identifies OPWQ(S)} .

Clearly, the minimization problem is difficult since the choice of 71" and c is coupled. In general, we seek
to choose T" as large as possible, and L and ¢ so that the relative support of ¢, ||c|lo/L is as small as
possible. In the following, we address the problem of finding large 7" which allows for regular operator
sampling and we establish a sufficient condition on ||c||o/L based on the geometry and size of S.
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We will first discuss the choice of 7. Observe that our main result, Theorem 2.1, improves on
Theorem 2.3 as the latter requires the region .S be compact, and that for some 7" > 0 and L € N,
with Q = 1/LT, S C (0,1/Q2)x(—1/2T,1/2T) and that S be efficiently covered by rectangles of the
form [0,7]x[0,Q] + (0,—1/2T) + (¢T,mQ), (g,m) € Z2, that is, that S intersect at most L such
rectangles. This condition is weakened in Theorem 2.1 by requiring only that for some 7" > 0, L € N
and Q = 1/LT, S is a subset of a fundamental domain of 1/Q7Z x 1/T Z and that for some shift (¢¢, vp),

Sper = [0,1/9Q]x[0, 1/T] + (o, o) N ( U s+ (k:/Q,K/T))
k€T

is efficiently covered by rectangles of the form [0,7]x[0,9Q] + (to,v0) + (¢T,m), (g,m) € Z>. In
particular, .S need no longer be closed nor bounded. Observe that in case .S is compact, 7' > 0 and
L € N satisfying the hypotheses of Theorem 2.3 also satisfy the hypotheses of Theorem 2.1, and hence
the latter theorem always allows a choice of 7' at least as large as the former.

To reduce the sampling rate further, we can consider S to be a subset of a fundamental domain of a
general lattice, specifically replacing TZ x QZ by a general lattice AZ?, and requiring S to be a subset
of a fundamental domain of LAZZ?. Our next theorem relies on basic insights on the role of symplectic
geometry in time-frequency and generalizes Theorem 2.1. For simplicity, we state our result involving
the covering of the periodization of S with respect to LAZ? by fundamental domains of the lattice AZ?
for lower triangular matrices A = ( Z s%) that are shifted in the v direction. Since a = 0 puts us in the
case of Theorem 2.1, letting a vary will always allow for choosing 7' at least as large as in Theorem 2.1.

In Section IV-B below we discuss the general case in detail and compute the quite involved resulting
reconstruction formulas.

Theorem 2.6: Let S C R? satisfy |S| < 1 and suppose that for some A = (7 0) with det A = TQ =
1/L, L prime, S is contained in a fundamental domain of the lattice LAZ7?. Assume that for 1y € R,
integers 0 < ¢;, m; < L—1, 0 < j < L—1, and for the parallelograms P, ,, = A([O, 1]24(0, v9) +
(q,m)T), q, m € Z, we have

L-1
A(L[0, A+ (0,10) N | S+ LA, 0T € | Pyyom,- (14)
kEZ j=0

Then O PW?(S) can be identified by operator sampling. Namely, with the period-L sequence ¢ = (c;,)
and the period-L sequences b; = (b; 1), from Theorem 2.1 and functions

B, (t,s) = / X (tv)dy, S5 = S0 | (Pym, + LA(K, 0T,
k0T

we have

L—1
Bl t) = T S by TR (s — (g, — )T
k=0
@(t, = — (g — R)T) 2milw et
where g = che”Ta”26nT and the sum converges unconditionally in L2(R?). If the product Ta is
rational, say T'a/2 = p/q in lowest terms, then (c,e™7%""), is periodic with period being the least
common multiple of ¢ and L. In particular, if LTa/2 is an integer, then the period is L as well.

The choice of the period-L sequence ¢ = (¢;) in Theorems 2.1, 2.3, and 2.6 is governed by the follow-
ing considerations. Defining the translation operator 7 on C* by T'(xg, 21, ..., x1_1) = (xr_1, To, 1,
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and the modulation operator M on C* by M (zq, 21, ..., 21_1) = (w'zo,w'x1, ..., wl ey 1) where

w = e?™/L we define the finite Gabor system with window ¢ as the system of L? vectors in CE,
{TIM™c qL’:nlzo, where with a slight abuse of notation we think of ¢ now as the vector (co, ..., cp—1) €
CL (for details on Gabor frames in finite dimensions, see [14], [13], [4] and the overview article [25]).
Given a covering of Sy, in (9) by at most L rectangles of the form R, ,, = [0,T]x[0,1/LT]+ (to, o)+
(¢T,m/LT), specifically if

L-1
Sper € | Raym
Jj=0

then we require that ¢ be chosen so that {7T% M m-?’c}f:_o1 forms a basis for CL. It has been shown that
if L is prime, then such a choice of ¢ always exists [14], but such a choice may well exist even if L is
not prime. Moreover, since the reconstruction formulas require that we invert the L x L matrix whose
columns are given by 1'% M™ic, choosing L as small as possible is also desirable.

The main result in this paper relevant to finding a sufficient condition on the sampling rate for
identification of OPW?(9) is the following.

Theorem 2.7: Let S C R2, |S| < 1, and suppose that for some 7" > 0 and N € N, S is a subset
of a fundamental domain of the lattice TNZ x 1/T Z, and that Sy, can be covered by no more than
N rectangles of the form Ry, ., = [0,T]x[0,1/TN] + (¢;T,m;/TN), (gj,m;j) € Z*. Then for every
sufficiently large prime L, OPW?(S) can be identified via regular operator sampling by an identifier

satisfying
[ello
T < Z |qu':mj|'
J

Note that if Zj |qu7mj| is close to 1 (that is, if the covering of Sy, by rectangles is very coarse),
then the conclusion of the theorem is quite weak. However, if |S| is small, and if, for some 7' > 0 not
too small, Spe, can be covered by a union of rectangles whose total area is small, then Theorem 2.7
gives some hope of an efficient sampling scheme for O PW?(.S).

D. Sampling and reconstruction of operators with small, but unknown support

Just as in classical sampling, operator sampling requires full knowledge of the bandlimitation we expect
an operator to have, that is, the reconstruction formulas for OPW?2(S) depend on knowing the region
S. However, in some applications S may not be known precisely, but only some information on its
size, geometry and location is given by physical considerations. In Theorem 2.8 we address the question
whether such operator can be sampled and reconstructed in a stable matter. Independently of our work,
Heckel and Boelcskei have analyzed the problem of sampling operators with unknown bandlimitation in
greater detail [3]. In an analogous setup, they were able to prove identifiability for unknown support sets
of area less than one, rather than less than 1/2 achieved below.

Theorem 2.8: Fix A, B,e,U > 0and N € N.Let H(A, B,U, N, ¢) contain all operators with supp Fsopg =
suppnyg C [—A, A|x[—B, B] and such that there exist N Jordan curves C; with the property that

1) supp Fson = supp ny is contained in the interior sets of the Jordan curves,

2) the sum of areas of the interior sets is less than 1/2 — ¢, and

3) the sum of lengths of the Jordan curves is bounded by U.

Then there exists a prime L and an L-periodic sequence {c,} such that g = 3" c,d_ VL identifies
H(A, B,U, N,e).

The reconstruction of an operator H € H(A, B,U, N,¢) is then carried out in three steps: first, we

find T, Q with L = 1/TQ prime which ensure that the “rectified” support Ry of H has area not greater
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than 1/2 (see the proof of Theorem 2.8 in Section III-D). Under this assumption, we determine Ry. In
the final step, we apply the operator reconstruction formula developed in Theorem 2.1 to OPW (Rp).

To determine the rectified support of ny with H € H(A,B,U, N,¢), we will apply ideas from
compressed sensing. Indeed, Lemma 3.9 below, shows that from H ) c,é, /I, We can compute a
length L vector y(t,v) with y(t,v) = G(c)z(t,v) and where the unknown discrete support of the length
L? vector x(t,v) encodes the support of the bivariate function 7y (¢, 7). In fact, recovering the vector
x(t,v) for a single point (¢,v) provides us with the support structure of 7. Note that the conditions
given above imply that x(¢, ) has at most L/2 nonzero components.

The matrix G(c) consists of time-frequency shifted copies of the vector (co,...,cr—1). This matrix
plays the role of a so-called measurement matrix and has the ability to recover any L/2-sparse vector
x(t,v) [13], [14]. But finding an L/2-sparse vector requires consideration of every support structure out
of (IJL/;) possible ones, which is hardly possible for L not being of the order 2,3,5. In addition, to

check whether c is appropriate, we would have to compute (%2) determinants of L x L matrices, which is
again only possible for very small L. (It is shown in [14], [13], that if each of the L entries are chosen
randomly, for example choosing the entries independently according to a uniform distribution on the unit
circle in the complex plane, then G(c) has with probability 1 no zero minors.)

If we know that far fewer than L/2 cells are active, then we can try to apply compressed sensing
algorithms such as Basis Pursuit or Orthogonal Matching Pursuit to recover z from y = G(c)z. Indeed,
the matrix G(c) with randomly chosen ¢ has been established to be a good measurement matrix with
high probability [19], [18], [20], [11].

The work of Boelcskei and Heckel improves on our results above. They show that if only L — 1 cells
are active, these can be determined. Their analysis and derived recovery algorithms rely on the fact that
by varying (t,v) you obtain a family of equations y(¢,v) = G(c)xz(t,v) where the vectors x(¢, ) have
identical sparsity structure.

III. SAMPLING AND RECONSTRUCTION

The purpose of this section is to present a proof of Theorem 2.1. Before doing so, a few preliminaries
on finite Gabor systems and the Zak transform are required.

A. Preliminaries
Definition 3.1: Given L € N, letw = e2™/L and define the translation operator T on (xqg, ..., T—1) €
CL by
Tr = (xp_1,%0, T1, ..., TL—2),
and the modulation operator M on C* by

0 1 L—1
Mz = (wzg,w x1, ..., w" "Tr_1).

Given a vector ¢ € CF the finite Gabor system with window c is the collection {Tquc}i;io.

Note that the discrete Gabor system defined above consists of L? vectors in C” which form an
overcomplete tight frame for CZ [14].

Definition 3.2: The non-normalized Zak Transform is defined for f € S(R) by

Zof(t,v) = Z f(t — an) e2manv,

neZ

The normalized Zak Transform Z, f(t,v) satisfies the quasi-periodicity relations

Zof (t +a,v) = *™W Z,f(t,v) and Z,f(t,v+ 1/a) = Z,f(t,v).
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V/a Z, can be extended to a unitary operator from L?(R) onto L?([0,a]x[0,1/a]).

The following Lemma connects the output Hg(x) where g is a weighted delta-train, to the spreading
function 7y (¢, ). From this a reconstruction formula can be derived.

Lemma 3.3: Let a > 0 be given and let g = ), 6,4 Then for all (¢,v) € R?,

(Za e} H)g(t7 V) = a*l Z ZnH(t 4 ak, v+ m/a) 6727ri1/ka7

k m

where ng is the spreading function of the operator H.
Proof: For f € S(R) and ¢ € S§'(R), define the short-time Fourier transform (STFT) of f with respect
to ¢ by Vi, f(t,v) = (f, Ty M, ¢). Straightforward calculations show that if g =) 6, then

Vof(t,v) = Zaf(t,v),

and moreover that
(Hg, f) = (g, Vof) = (nH, Zof)

where the bracket on the left is the L? inner product on R and that on the right the L? inner product on
R2. Because Z, is unitary up to a constant, it follows that

a{(Zao H)g, Zof) = (Hg, ) = (nu, Zaf)

where this time the bracket on the left is the L? inner product on the rectangle [0, a]x[0,1/a]. The inner
product on the right can be rewritten as

(N, Zaf) ://nH(t,v)Zaf(t,V)dtdy
B ZZ/ (m+1)/ /(k+1 t V mdtdu

1/a pa
:ZZ/ / na(t +ka,v+m/a) Zo f(t + ka,v + m/a) dt dv
r m Y0 0

1/a pa S
- / / YD nult+kav+mja)e T Z f(t v) dt dv.
0 0 % m

Since this holds for every f € S(R), the result follows.
Lemma 3.4: Let T,€) > 0 be given such that TQ = 1/L for some L € N, let (c,) be a period-L
sequence, and define g = ), ¢, dp7. Then for (t,v) € R x R,

(Z1 0 H)g( =0Q Zc_q ZZnH t+ k/Q+ qT, v + mQ) e~ 2milvim)al o =2mivk/Q (15
q=0

Proof: A straightforward calculation shows that for any a € R, the spreading function of the operator
HoT, is ng(t — a,v) 2™ where ny is the spreading function of H. Next note that writing uniquely
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j=nL—-q 0<qg<L-1,

g = Z Cj 6nT
J
L—-1
= Z Z CnL—q 6nLT—qT

q=0 nezZ

L-1
= Z C—q Z OnLT—q/LO

=0 nez
1

~

= C—qqu/LQ Z (5n/Q
0 nez

Q
Il

Therefore, by Lemma 3.3,

L—1
(Ziyoo H)g(t,v) = (Z1ygo H) (Z gl gir0 Y 5n/9) (t,v)

q=0 neZ

> 5n/g> (t,v)

L—-1
= Z C*Q(Zl/Q oHo T—q/LQ) <
q=0 nez

L-1
0 Z c_q ZZnH(t + kO + q/LQ, v+ mQ) 627ri(l/+mﬂ)(q/LQ) 6727”'1/]6/(2 )
q=0

k m

Definition 3.5: Given a bivariate function f(¢,v) and parameters 7', €2 > 0, define the (1/$2, 1/T")—
quasiperiodization of f, denoted f@F, by

P Y) =Y f(t+k/Qu+/T) e 2R (16)
k l

whenever the sum is defined.

Remark 3.6: (a) Note that fOF satisfies f@F(t,v + 1/T) = fOF(t,v) and fOF(t + 1/Q,v) =
e2mv/ fQP (¢ 1)) for all (t,v) € R2. These are similar to the quasiperiodicity conditions satisfied by the
Zak transform.

(b) Under the assumption that the support of f is contained in a fundamental domain of 1/Q7Z x 1/T Z,
the following lemma shows that f can be easily recovered from the function

For () X0,1/9)(t) Xj0,1/77 (V).

Lemma 3.7: Suppose that supp(f) C S and that S is contained in a fundamental domain of 1/Q7Z x
1/TZ. Then

Ft,v) =D Pt — k/Q v — £/T) X0 (t — k/Q) X7y (v — £/T) 2™/ Xg(t, ) (17)
PR

where if f € L?(R?), the sum converges in L? and uniformly on compact sets.

Proof: First note that under the given assumptions, the functions being summed in (17) have pairwise
disjoint supports. Since |S| < 1, it follows that the sum converges in L? if f € L?(R?). Moreover, since
on each compact set, the sum reduces to a finite sum, we get uniform convergence on compact sets.
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To complete the proof, we show that (17) holds pointwise. Note first that for all (¢, v),

fQP(tvy)XS(t7V):f(t’V)

since if (¢,v) € S then because S is a fundamental domain, only the (k,¢) = (0,0) term survives in
(16). It remains to show that

DO SO — kv =0/ T) X1 /0)(t — k/Q) Xppaym)(v — £/T) ™/ = 9P (1, 1)
k¢
To see this, note that

Z FOP(t = k/Qv — £/T) X1 (t — k/Q) X171 (v — £/T) *™F¥/2

= Z Z Ft+G—k)/Qv+ (m—10))T)e 2l Xj0.1/0)(t = k/Q) Xpo,1 7 (v — £/T) o 2mikv /9
k.l jm

Now suppose that (¢,v) € [p/€Q, (p+1)/Q) x [¢/T,(q+ 1)/T) for some (p,q) € Z>. Then in the above
sum, only the (k,¢) = (p, q) term survives, and we arrive at

Z Z fit+ (G —k)/Qv+(m—20)/T) o2/ X(0,1/01(t — k/Q) X017 (v — ¢/T) o2mikv/Q
k.t jm

= f(t+ (G —p)/Qv+ (m—q)/T) e > U POXg o (t = p/Q) Xjo 17y (v — ¢/T)
7m
= fQP(t’ V)'

Lemma 3.8: Let T, > 0 be given such that 7Q2 = 1/L for some L € N, let (¢,,) be a period-L
sequence. Then with g = > ¢, dnr,

L-1
(Zl/Q oH)g =0 Z C—q Z Zn (t+qT,v+mQ)e —2mivgT —2mivmg/L (18)
m=0 k
for (t,v) € R2,
Proof: The proof follows immediately from Lemma 3.4. Letting m =nL+/¢,n € Z and 0 < /¢ < L—1,
in (15) gives

L-1 L-1
(Ziyao H)glt,r) = Q> cg 3 D> nu(t+k/Q+ qT, v+ nLQ 4 (Q) e 2mi Ll o —2mivk/Q

q=0 =0 k n
L-1 L-1

-0 Z - |:Z 77H(t + ki/Q +¢T, v+ nLQ) + EQ) 6—27ri(l/+€Q)k/Q e 2mivgT e—27ri£q/L
q=0 =0 “kn
L-1 L-1

=0 c_q ngp(t +qT, v+ Q) e 2mival o—2milq/L
q=0 (=0

where we have used the fact that L = 1/7.
Lemma 3.9: Let T,§2 > 0 be given such that 7Q2 = 1/L for some L € N, let (¢,,) be a period-L
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sequence. Then with g =" ¢p nr, (t,v) €R%,, and p=0, 1, ..., L—1,

e 2P (7,60 H)g(t + Tp,v)
L—1L-1

=Y Y (1M, e TG (¢ + Tq, v + Qm). (19)
q=0 m=0

By (13),

L—-1
(Zl/Q OH)g(t + pT, V o) Zc_q Zn t—f— q+p)T V+mQ) —2mivgT 6—27ri1/mq/L
q=0

L—1+4p
=9 Z —(¢-p) Z N t + qT v+ mQ) —2miv(q—p)T eme'Vm(qu)/L

L—1 L-14p

:Q(ZJr Z) ) Zn (t+ gT, v + mQ) =27 ~2rivmla—p)/L.
q=p

q=L

Using the periodicity of (¢y,), the quasiperiodicity of ngp’ and the fact that LT = 1/, we continue with

L-1+p L—1
QS e SonST (4 qT v + mQ) e 2a DT o 2mivmlap)/L
q=L =0
L—1+4p L—1 | | |
=0 Z C—((g—L)—p) Z 77H t + LT + (q — L)T v+ mQ) —2miv((¢—L)—p)T 672mum((q7L)7p)/L 6*27T11/LT
q=L
=0 Z C_ ((a—L)—p) Z e —2miv /Q QP(t + 1/Q —+ (q — L)T v+ mQ) —2miv((¢q—L)—p)T 6727rwm((q7L)7p)/L
q=L
L—1+4p

=Q Z . (g-L)—p) ZHH t+ (¢ — L)T,v + mQ) e 27 v((a=L)=p)T o=2mivm((g—L)~p)/L

-0 ZC (4-p) ZT’ t + qT v+ mQ) —2miv(q—p)T e—27r721/m(q—p)/L.

Therefore,

L— p—1 L—-1
(Zl/Q 1) H)g(t + Tp7 1/) =0 <Z + Z) C—(q—p) Z e—?ﬂ'im(q—p)/Lngp(t + QT, v+ mQ) e—QWiV(q—p)T
q = m=0
L

“1L-1
=0 Z C_(qp) o—2mim(q—p)/L U%P(t 4 qT, v+ mQ) e 2 ap)7T,
q=0 m=0

Since (T M™c), = c,_, >™™P~D/L the result follows.
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B. Proof of Theorem 2.1
Suppose that S satisfies all the hypotheses of Theorem 2.1 with (¢, 2p) = (0,0). Starting with (19),
we have that for 0 < p < L—1, and all (t,v) € R?,
e IV (Zyyg 0 H)g(t + Tp,v)
L—1L-1

03 T (M G (4 T+ ),
q=0 m=0

Under the assumption (9), it follows that
(ZiyaoH)g (t +Tp,v) e 2mTP

= Z (T% M™ic), Q (t + ¢;T, v +m;Q) e 2mvaT
J=
1

L—
P o
- aj,p (771?1 (t+qT,v+miQ)e 2mi q]T)
Jj=0
where [am]]L 1;:10 is an L x L matrix whose j* column is (7% M™ic) € CL. Assuming that L is

prime, we can choose a period-L sequence ¢ = (c,) such that the matrix [a;,] is invertible. In fact, the
set of such ¢ € C is a dense open subset of C* (see [13]). Let [a;,] ™" = [bj)-
Again by (9), ng € OPW?(S) satisfies

L—1
5" (6, 1)X0,1/0) (X011 (V) = Y ng ()Xo m)(t — ;T Xjo.0) (v — m;Q),
7=0
and for each 0 < 5 < L—1,
L—1 '
N5 (t+ ¢ T, v+mQ) X0 1 ()Xo, (v) = D bjip Xjo,17 ()Xo, (v) €2 @7 (2, 0 H)g(t +pT, ).
p=0

Therefore, by the quasiperiodicity of the Zak transform,

15 () X(0.1 01 ()X (0,177 ()
L—-1L-1

= Z Z bjp Xj0.11(t — ¢ T)X 0,09 (v — m;€2)

7=0 p=0
e2mi(v—m;Q)(q;—p)T (Zl/Q oH)g(t—(¢; —p)T,v).
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Applying (17),
na(t,v) =g (tv) Xs(t,v)
= Z gl (t—k/Q v — £)T) Xpo 10yt — /X017y (v — ¢/ T) ™/ X (t,v)

L-1

= PN b Xy (t = B/Q = ¢ T) X0y (v — £/T — m;Q)
k.l 7,p=0
2=t T=m @, =T (7,0 0 H)g(t — k/Q — (¢ — p)T,v — £/T) Xs(t,v)
L—-1
= Z 62mky/ﬂ Z bj,p X[O,T} (t — k/Q — QjT)X[O,Q}(V — €/T — mJQ)
k.l 7,0=0

e2rily=ma;=p)T o =2mk (7, o H)g(t — (g; — p)T,v) Xs(t,v)

= Z b2 TG (7,6 0 H)g(t — (q; — p)T,v)
J:p=0

> Xyt —k/Q = q;T)Xjg 0 (v — £/T —m;Q) Xs(t,v).
k¢

Defining
(U Ry, + (6/9,8/7))
it follows that S = UJL:_ol S;, that the union is disjoint, and that

> Xyt — k/Q = ¢;T)Xjo.0)(v — €/T — m;Q) Xs(t, v) = X, (t,v).
)

Therefore,

pre_%“’ mNG=IT N Hg(t —n/Q — (g5 — p)T) ™™/ X, (t,v)

L-1L-1 - A
_ Z Z Z bj,p e—27rz(u—ij)(qj—p)T Hg(t —nLT — (qj _ p)T) eQmVnLT XS]‘ (t, I/).
j=0 p=0 neZ

Extending b;, to have period L in p, it follows that

L-1L-1

ZZZ% o, e 2mir=mi ) (g;—(p— "L))THg(t—( — (p—nL))T) Xs, (t,v)

0 p=0 nez

Z by e 2mW=m@ =BT fo4 (g — k)T) X, (£, v).
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Finally

Wz, t) = [ n(t,v) 2@ gy

S —

—

™

<
Il
HO

Zb L e —2mim;(q;—k)/L Hg( ( g — k‘)T) /6—27ril/((af—t)+(qJ‘—k)T)XSj (tvy)
k

b‘

Z jp e 2T maGRE gt — (q; — k)T) ®;(t, (z — t) + (q; — k)T) (20)
k

<
Il
o

where

By(t,) = [ X, (1) .

To complete the proof, note that for almost every ¢, the set, {v: (t,v) € S;} is contained in a
fundamental domain of the lattice 77 of R. This implies that the measure of each such section is no
more than 1/7", and in particular that for almost every ¢, Xg, (¢,-) € L*(R). Therefore, by Plancherel’s
Formula,

// D;(t,s)|>dt ds = //‘/62””5 Xs, (t,v)dv 2

and for almost every (t, s),

ds dt = //|X5j(t,u)\2dydt = ’Sj‘Z < 00

|P;(t,s)] < /ng (t,v)dv < 1/T.
Hence ®; € L2NL>(IR?). Convergence of the reconstruction sum in L?(R?) follows from the observation

that Hg € L?(R) (see Lemma 3.3) and basic properties of the Zak Transform (see e.g., [5], Section 8.2).
If (to,1v0) # (0,0), we formally compute

H = //nHtUMTtdtdl/

= // Ui (t+t0,V+V0) Tt+t0My+V0 dt dv
S—(to,v0)

= // ne(t + to, v + vo) T, Ty My, M, dtdv
S (to,l/g)

= / / nu(t + to, v + vo) e 20 Ty M, Ty M, dt dv
S—(to,0)

=Ty, My, // N (t + to, v + o) e~ 2mitvo TN, dt dv
S (to,l/()

== TtoMlloﬁﬂ

where 15 (t,v) = 7(t,v) = e 2™ ny(t+to, v+ 1p). Taking inverse Fourier transforms v —  on both
sides, we obtain h(t,z) = e~ 2 0 by (t 4 tg, x) e 27T which is

hi(t,x) = 2T R (1 — 4 7).

With S = §— (to, o), we can apply (20) to reconstruct I from Hg with the constructed g = > endnrs
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that is,
=3 bixHg(t — (g — k)T) e >0 RLD(t (z — 1) + (¢, —K)T). 21
k j=0
where
Q;(t, s) :/ 27r“’SX (t v)dv
and

S; =50 |J (Rgym, + (k/Q,0/T)).
k€L

Shifting the set equation above by (g, ), we recover the definition of S;, namely

Sj =S+ (to, o) = S+ (to, 1) N | (Rgym, + (/Q,0/T) + (to, )
kleT

=5N U (quvmj + (k/Q’E/T))
k(€7

and
Q;(t,s) = / 2mivs X g (t,v)dv = /627“”8 Xz (t —to,v — o) dv
J
= e2misvo /62’7”3 Xg (t — to,v) dv = *miswo E)j(t — to, 5)

This translates to

L—1
h(w,t) = 2@t NNy Hy(t —to — (g5 — k)T) e 2™ 6=R/L Gt — 1o, (x — t —to) + (q; — k)T)
k j=0
L—1
— 27T2($+t to)vo Z b]7k M l/ontoH) (t _ tO _ (q] _ ]{,’)T) e—Qﬂimj(qj—k‘)/L
k 7=0
6*27”'(90*t*t0+(%’*k)T)VO(I)j (t, (:C it tO) + (qj N k)T)
L—1

_ 27rz(x+t to)vo Z b —271'2 t—to—(q;— k:)T)VOHg(t o ( 4 — k‘)T) e—QWimj(qj—k)/L
k j

Il
o

6727r1(x7t7to+(%‘*k)T)uo(I)j (t, (.’L‘ ot tO) + (Qj . k)T)
_ 627ri(t+to)1/g Z Z bj,k Hg(t _ (Qj _ k)T) e—27rimj(qj—k)/L
k=0
D;(t, (x — (t +to) + (¢ — K)T).

C. Outline of Proof of Theorem 2.3.

Suppose that S C (0,00)xR is compact with |S| < 1. Then for § > 0 sufficiently small, the set
S5 = S+ [—6, )% also satisfies S5 C (0,00)xR and |Ss| < 1. Since |Ss| < 1, then for any L € N there
exists 7" > 0 such that with QT = 1/L,

Ss C (0,1/Q)x(—1/2T,1/2T)
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and Ss is contained in at most L rectangles of the form
R%m = [07 T] X [0’ Q} - (07 1/2T) + (QT, mQ)

q, m € Z. Specifically, for some 0 < ¢gj, m; <L —-1,0<5<L -1,

L-1
Ss € |J Rym, = R.
=0

Since S C R, it is sufficient to prove the theorem with OPW?2(S) replaced by OPW?2(R).

By Lemma 3.9, given H € OPW?(R) with spreading function 1 (t,v), and given any weighted
delta train of the form g = > ¢, 0,7 Where ¢ = (c,) is a period-L sequence, (19) holds with ngp
replaced by 7y for all (¢,v) in a neighborhood of [0,7]x [0, 2]. For specificity, call this neighborhood

6,0 = ([0,71x[0,9] = (0,1/2T)) + [~¢, €],

Let 7, € S(R) satisfy

suppr C [—€/2,T + €/2], (22)
supp ¢ € [—€/2,Q2 + €/2],

so that supp r(t)p(v) C Rf 5, and
D rt+kT) =1=) 3 +nQ), (23)
keZ nez

for all (t,v) € R2. For e < 4, it is not hard to show that if R, Z R then

na(t,7)r(t — qT)e(v —m) = 0. (24)
Therefore,
L-1
na(t,v) =Y ngl (6 v)r(t — g T) §lv — m;Q).
5=0

Following precisely the proof of Theorem 2.1, with (t) replacing X|o 7(¢) and ¢(v) replacing X(g o)(v),

L—-1
nir(tv) = 33 b e @B (s (g, — k)T) Ry (t,v)
j=0 k

where

Ry(t.v) = S r(t — k/Q — 1)@ — /T — m;Q) Xg(t,v)
k.l

=7r(t —q¢;T) (v —m;Q).
Finally, taking tp = 0 and vy = —1/2T,

L—-1
h(w,t) = ™ NN b 2™ G IE gt — (g — k)T) 5(t, (x — t) + (¢ — k)T)
=0 k
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where here

;(t,s) = /62”“’8 R;(t,v)dv

=r(t—q;T) /e%il’s@(u —m;Q) dv
=r(t—q;T) e2mismiL (),

Plugging this into (10) gives the result.

D. Proof of Theorem 2.8.

Choose L prime with A, B < (L—1)/2 and 4(U/v/L+ N/L) < e. We will first show that any operator
in H(A, B,U, N,¢) has the property that suppn touches at most L/2 sets of the form

Rym = [0,1/VL] x [0,1/VL] + (¢/VL,m/VL), qm=—(L—-1)/2,—(L—1)/2+1,...,(L—1)/2.
(25)

To this end, note that a Jordan curve C; with length u; € ((k; — 1)/v/L,k;/V/'L), k; € N, touches at
most 4k; boxes, in fact, this bound is rather pessimistic and only sharp for k; = 1. Note that

N N N
VLU > VLY u; > VLY (ki —1)/VL= (> k) —N,
i=1 =1 =1

and, hence, the number of boxes B(0.S) needed to cover the boundary 0.5 of S satisfies

N N
B(0S) <Y B(Ci) <> 4k <A(VLU + N).
i=1 i=1
We conclude that the “fat” boundary, that is, the 1/ VL x 1 / V'L rectification of the boundary has area

bounded above by
4WVLU + N)/(VL)? = 4(U/VL + N/L) < e.

It follows immediately, that at most L/2 sets R, from (25) are needed to cover S.

Now, let {S,, : m=1,..., (I;)} be the collection of area 1 sets that are formed by exactly L subsets
of the form R, in (25). Since OPW(S,,) is identifiable, there exist L-periodic sequences (cj;'),, and
A, B, > 0 with the property that

AplHlus < |HY 8, yzllie < Bul|Hllgs, HeOPW*(Sp), m=1,...,(f).
nez

In [14] it is shown, that indeed, we can choose a single sequence (¢,), = (¢)'),, so that the above holds.
For this choice of (), set A = max{4,,, m =1,...,(¥)} and B = min{B,,, m =1,..., ()}
With this choice, we have

AlH s < |HY b, ylls < BlH|gs. He |J OPW2(S,).

nez m:1,...,(%2)

The proof is complete by observing that for Hy, Hy € H(A, B,U, N,¢) (which is not a linear space),
we have H; — Hy € OPW?(S,,) for some m, and, hence,

AllHy — Hallgs < ||[(H1 — HQ)ZCn(Sn/@HLz < B||Hi — H2||ms, Hi,Hz € H(A,B,U,N,e).
nez
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Clearly, this leads also to the weaker statement (H; — Ha) Zn cnén VL= 0 implies H; = Hs.

IV. NECESSARY AND SUFFICIENT CONDITIONS ON THE SAMPLING RATE IN OPERATOR SAMPLING

The goal of this section is to prove Theorems 2.5 and 2.7 giving necessary and sufficient conditions
on the sampling rate for operator sampling in O PW?2(S).

A. Proof of Theorem 2.5

Since S is closed, each t-section S; of S is closed and, hence, measurable. Therefore, xs(¢,-) is a
nonnegative measurable function and [, xs(t,v)dv € [0,00] is well defined for all ¢ € R. It suffices to
show the result for Ay, = H fR xs(+,v) dV”OO finite, the infinite case then follows from this.

Assume that A is a set of sampling with D(A) < aoo < Ano.

Then, we can choose a set P with positive measure and fR xs(t,v)dv > ax for all ¢ € P. Assume
without loss of generality P C [0,1]. For any e, there exist m; € PW(S;) with ||m¢|/z2 = 1 and
|milallee < €, t € P. Define ky(x,y) = my—y(y) for x —y € P, and 0 otherwise. Then hy(z,t) =
kp(z,m—t) = my(x—t) and ny(t,v) = my(v) for t € P, and 0 otherwise, so H € OPW?(S). Observe

that HUH”L2 = \/‘ ‘

Note that it is easily seen that if Y, cxdy identifies OPW?(S), then (c)) is bounded. Also, by
hypothesis, there exists K € N which bounds the cardinality of A N [z, 2 + 1] above for all x € R. We
compute

113" il = [ 13 exmata ) do

AEA A€A

:/‘chmx_)\()\)fdl‘

A€A

< el [ 13 maaf da

AEA

<Nl & [ 3 mas ()P ds

AEA

e K Y / Ime s (V)| da
AEA
A+1

— (el & S A ma AW da

AEA

1
=l 5 3 [ P

AEA

1
=l K [ I ar

AEA

1
<l K [

= [l(en) 17 & €.
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B. Lattice tilings and proof of Theorem 2.6

In this section we will prove Theorem 2.6, but also derive results where the tiling of S is defined
by arbitrary full rank lattices in R2. The reconstruction formulas use results from representation theory;
these carry over to the higher dimensional setting if the lattice is symplectic.

As before, we assume that S C R? satisfies [S| < 1. Suppose that for some A = (gt g12) with
det A = 1/L, L prime, S is contained in a fundamental domain of the lattice The lattice LAZ? is the
so-called adjoint lattice A° of A. Indeed, A° = (1/V/'L) (V'L A)° = VLV LA = LA (see [5] for details).
We shall assume without loss of generality that a;; # 0. Otherwise, we could replace the first column
with the second and the second with the negative of the first, leading to a different parametrization of
the same lattice. Further assume that there exist Zg, 19, and integers 0 < ¢gj, m; < L—1,0 < j < L-1
such that with the parallelograms P, ,, = A([0, 1]*+(to, v0) + (¢,m)"), ¢, m € Z, replacing rectangles
in Theorem 2.1, we have

L-1
LA0,1°n | S+ LA 0T C | Py m,- (26)
klEZ 7=0

As before, we will set
By(t,5) = [ g, () dv

where
S; =50 {J (Pym, + LA, 0)7).
kLEZ

We will derive reconstruction formulas and show that if ai2/a;; is rational, then OPWz(S) can be
identified with a weighted delta train and if agjap; is rational as well, then we are assured that the
coefficient sequence (c,,) is periodic, that is, we are in the framework of regular operator sampling.

We shall assign to each operator H € OPW?(S) an operator in He OPW?(L~Y2A71S) and then
apply the reconstruction formula in Theorem 2.1 to reconstruct h=h: g of H € OPW?2(L —1/24-18 ).
From this, we will construct A = hy and therefore H.

The result is based on the existence of the operators ,u(\@A) that appear in the following computation.
The existence follows from the representation theory of the Weyl-Heisenberg group and is discussed in
this setting in [10], [17]. Let p(t,v) = ™ Ty M,,, n#(t,v) = e ™*n(t,v), and B = v/LA. Then

H = // (t,v) T, M, dtdv
= / / n(t,v)e ™ ™ T, M, dt dv
/ / (t,v) p(t, v) dt dv
-/ / g THBE) p(B0W) i
-/ n#(B(tﬂ/)) W(B)p(t,v) u(B)* dt dv
— u(B // p(t.v) dtdv u(B)"
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with 77 (t, v) = n# (B(t,v)). Setting Q1 (t,v) = t and Qs(t,v) = v we have
ﬁ(t, l/) — ewi(tu—QlB(t,u)~QQB(t,1/))U(B(t’ I/))

Moreover, observe that S = B~1S satisfies the hypothesis of Theorem 2.1 with T = Q = 1/+/L.
We have therefore with an L periodic sequence (¢,), § = > ¢u6, JI» and Bl = (_bgf;‘l _b?f) the
reconstruction formulas
L
B, ) = 2T S ST G — (g — k)W) e 2T 0BG (bt @ — (t+t) + (g — k)/VI),
—

I
—

T
- O

ﬁ(t, U) _ eQﬂ’i(t+t0)VU Z Z bj,k ﬁg(t _ (Qj _ k)/\FL) e—27rz‘mj(qj—k)/L XB-1, (t+t0, 1/) 627ri(t+to—(‘h—k)/ﬁ)”
E =0
_ ewi(tqulB(t,I/)'QzB(t,V))n(B(t7 V))

L—1
77(t7 U) _ eQm‘(Q1B*1(t,V)+to)Vo 6—7ri(Q1B*1(t,l/)-QzB*1(t,u)—tu) Z Z bj,k H§(QlB_1(t, U) _ (Qj N k)/\/Z)
k=0
efQﬂimj(quk)/LXSj ((t, I/)—i—B(to, O)) 6271’@'(@13—1(t,l/)tho*(qJ'7k)/\/Z)QzB—1(t,l/)

_ eQﬂi(QlB*1(t,u)u0+tonB’1(t,V)thouo) eﬂi(QlB’l(t,lz)-QgB’l(t,V)ftu)

L—1
SN by HG@QiB M (t,v) — (4 — k)/VI)

& j—=0
efQWimj(quk)/LXSj ((t, v)+B(to, 0)) 6*2“(%*’?)/@)@23_1@7”)

627T7:((b22t—b121/) l/()—‘rto (b11 l/—bglt) +t0 llo) e’]T?:((bQQt—blgl/)'(bll l/—b21t)—tl/)

L1
Z Z bjk HG((baat — brav) — (¢ — k)/VL)

k 3=0
e—Qﬂm:‘(%‘—k)/LXS] ((t, v)+(b11to, b21t0)) e~ 2mi(g;—k)/V'L)(b11v—bt)

627Ti ( ((a22t—a12V)l/0+t0 (auu—aglt)) \/Z+t0V0) ewi(L(aggt—aul/)-(anu—aglt)—tu)

L—-1
> > bk Hy((ant — a19v)VL — (¢; — k)/VL)

k j—0
e—QWimj(qj—k)/LXSj (t—|— \FLanto, v+ \/Za21t0) e—27ri(qj—k)(a11l/—a21t)‘ (27)

Taking inverse Fourier transforms v — x on both sides gives us a formula for h, but as the right hand
side contains the product of three functions in v, the resulting formula for / does not give much insight
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in general. If a12 = 0 though, the above simplifies (using aj1a22 = 1/L) to

L-1
n(t,v) = Z Z bk Hi(ageVLt — (q; — k)/VL) e M G0/ Ly o (t 4+ VLayito, v+ VLaxto)
k j=0
eQﬂ’i(tngan\EJrL/Qanaggtft/Qf(quk)au)u eQTri(f\/Zazgagltgl/()t2+t0V07L/2a21a22t2+(q]'7k‘)a21t)

L-1
= Z Z bjyk ﬁg(am\/ft — (Qj — k’)/\/f) 6_27rimj(qj_k)/LXSj (t =+ \/Zanto, v+ \/Zaglto)
kE =0
eQW’i(toanll\/Z*(q_jfk)(lll)l/ 6727ri(\/ftgyo+L/2)a22a21t2 €2Tl'itol/() 6271'7;((]_7‘7]?)(12115

which leads to
L—-1
h((l?, t) — e—27ri(\/ftolj0+L/2)a22a21t2 627ritoVo Z Z b],k ﬁg(ﬁ(a22t _ (q] _ ki)/L)) e—27rimj (¢;—k)/L
k j=0

&,(t + VEantot,  + toroan /I — (g — k)ary) e=2VEasto(e+ovoan VE=(g—k)an) 2mila,—Kjat

and, if to = 0,

L—1
e, 1) = e e SN b (VT st — (g — k)/L)) e 2@/
k j=0
O;(t, x — (qj — k)agy) e (@ —Ront

By construction, we have Hg = p(B)*Hu(B)g with § = EEnén/\/f. Hence, we can replace H in
(27) by u(B)*H and g by g where g = u(B)g. In the following, we will give explicit representation of
wu(B) and examine g = p(B)g. Note that the given reconstruction formulas hold true for any tempered
distribution g = p(B)g, but we are mainly interested in the case that u(B)g is discretely supported, or,
better, g = p(B)g = > ¢,0,7 for some T and a periodic sequence ¢ = (¢,,). In applications, this would

allow us to use any hardware developed to excite an operator described in Theorem 2.1.
Recall that B = /LA, so det B = 1 and we assume by # 0. We have

(2 v2) = (oo D) (3 70) (oo (25 Cot 1 ony) (28)

Using notation from [5], we have

hence,

(P 02) = gy (bor /bin) Fpa(—b11bra) F pa(bi1) = pa(azi/a11) F*pr(—Lagiars) F pa(VLan).
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This leads to
wB)G = (5 532) 22 endyyi
— pu1(ag1/a11) F*pn (—Layiaiz) F pa(VLan) Z Cn5n/@
2y (am fan) Frpa(—Lanarn) F Y cnnas,
1/2 Ml(a21/a11)]:*,ul(—Lanam)ZEm5m/(Lan)
pr(azt far)) F* S emmibanatn/(La)?s
pa(ant fast) F* 3 e em2mimtans/@Las)g

where we have used the fact that the Fourier transform of a delta train of the form ZnGZ CnOnT, Where
¢ = (cp) has period L is another delta train of the same form. Specifically,

FY enbur = 7 S G b 29)

nez meZ

1/2
1/2

where ¢ denotes the Discrete Fourier Transform of ¢, that is

L—-1
Cm = E Ck e—27rzkm/L'
k=0

Equation (29) is a simple consequence of the fact that

FY oaw = % > Gy

nez

: 2 . . . . . _ > . . . . .
The sequence e~ 27 a12/(2Lan) is periodic in m if e~ 2™ma2/(Lan) i that is, if ajp/aq; is ratio-

nal. In the following, LCM refers to least common multiples of natural numbers, and for a rational
number a, qla] denotes the smallest natural number ¢ such that ga is an integer. With this notation,
() = G e~ 2mma12/(2Lans) forms a sequence with period L' = LCM{q[a12/(2La11)], L}. Once again
employing (29),

1(B)g

VLai1)™Y? py(az /an) F* Z(g)mfsm/(mu)

-
an)™? p(ag/ann) Y hdnay,L/r
-

122:/ Tias: /a1 (nay L/L")?
/ cne 21/ 11( 11 / )6na11L/L’

(
(
(
(VLan) V2 ZC% e?ﬂin2a21a11(L/L/)Z/Q(SnanL/L/.

We conclude that u(B)g = > ¢,0,r with T' = a11L/qlai2/(2Lay1)] if a12/aq; is rational. Moreover, if
as1aq; is rational as well, then we are assured that the coefficient sequence (¢,) has period

L// = LCM{q[aglan(L/L')Q/Q], L/} = LCM{q[a21a11(L/q[alg/(ZLan)])Q/Z], q[alg/(ZLan)], L},

that is, we are in the framework of regular operator sampling.

Let us consider the special case that a12/(2a11) is an integer (for example, if a;2 = 0 as in The-
orem 2.6), then qla12/(2La11)] € {1,L}, so L’ = L and L” = LCM{q[a21a11/2], L}. If in addition
Lasiay1/2 is an integer, then qlagia11/2] € {1,L} and L” = L.
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To complete the proof of Theorem 2.6, observe first that L = L/, and indeed (¢,,) = (c},). Consequently
g= (B =Y cnemimomeng,, .
Further, observe that
p(p02)" = po(VLan)* F*pa (- Lariar2)* F p(az1 /a11)*
= u2(1/(VLan)) F*pn (Larai2) F pn(—azi/an).
Hence, if a2 = 0, then
p(br 0V f(2) = pe(1/(VLan)) pa(—azi fanr) f(z) = (VLaiy)V? e~ mian/on(VEane) §(\/Lay )
= (VLay)'/? emmhanens £(VLayx)
and
u(B)*Hg(V'L(azst — (q; — k) /L))
= (vVLay,)"? e~ miLanan (VL(azt—(g;—k)/L)* Hg(VLayVL(axt — (g; — k)/L))
= (VLay) /% emmiemen Lot =@ =) Fo4 — ay)(q; — k)
We conclude that
h(z,t) = (\/Zan)1/2672771'(@&)VO+L/2)a22a21t2 p2mitovo

L-1
Z Z bk e~ Tiaz1a11 (Lazzt—(q;—k))? Hg(t —an (Qj — k) e—2mim;(q;—k)/L
k=0

®;(t + vLantot, « + tovean VL — (g5 — k)ay) e~ 27V Ianto@ttornanvE=(g,~kjaw)  2ile; ~kjazit

and, if to =0,

L—-1
h(a:,t) — (\/Za11)1/2€_7riLa22a21t2 Z Z b‘,k‘ e—ﬂ'iaman(La22t—(q,-—k))2 Hg(t _ all(qj o k’))
k 5=0

(I)j (t7 xr — (Qj - k)an) e27ri(qj—k)az1t )

C. Gabor matrices and proof of Theorem 2.7.

Preliminary to the proof of Theorem 2.7, we present some results on finite Gabor systems and their
associated matrix representations.

Definition 4.1: Let L € N, and ¢ = (cg)rez a period-L sequence be given. Define the full Gabor
system matrix G(c) to be the L x L? matrix given by

G(C):[ Do Wp, ‘ Dy Wy, ‘ ‘ Dy Wy, ]
where D, is the diagonal matrix with diagonal T*c = (¢p—ky -+ CL_1, €Oy - -+, CL—k—1), and where
Wy, is the L x L Fourier matrix Wy, = (e?mnm/L )5;73:0.
Note that for 0 < ¢, p < L — 1, the (g + 1)st column of the submatrix D,W, is the vector MPTc
where the operators M and T are as in Definition 3.1, and where ¢ = (co, ..., ¢p—1). This means that

each column of the matrix G(c) is a unimodular constant multiple of an element of the finite Gabor
system with window ¢, {T7MPc fl‘;io, defined in Definition 3.1.
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Suppose now that we are given a particular Gabor system matrix G(c) and a collection of columns
from this matrix is chosen. We associate to that choice the L-tuple 7 = (19, 71, ..., T—1), Where 7%
is the number of columns chosen from the submatrix D; W7y,. The total number of columns chosen is
given by ||7]/1, the number of submatrices Dy Wy, from which any columns are chosen by ||7|o (the
support size of 7), and the largest number of columns chosen from any submatrix Dy W by ||7] .
Denote by Go(c) the L x ||7]|; submatrix of G(c) defined by this choice of columns, and denote by
M (c) the collection of all ||7]|; x ||7]/1 submatrices of Gy(c). In other words, each matrix M € M(c)
corresponds to some choice of ||7]|; rows of Go(c). Finally, recalling that ||c||o denotes the number of
nonzero elements of the vector (cg, c1, ..., cp—1), let

= min{||c||o: IM € M(c), det M # 0}.

In other words, given a collection of columns of G(c) with associated vector 7,  is the minimum support
length of a period-L sequence c¢ such that for some choice of ||7]|; rows, the resulting square matrix in
M (c) is nonsingular.

For example, if we take L = 7, and fix some sequence c of period 7, then the matrix G(c) is 7 x 49,
and each submatrix D;W7 is 7 x 7. A choice of 6 columns from G(c) might look like this.

CUOCQ wOCQ w003 w003 w003 wOC(;
wlcg w203 004 w? c4 504 wie
w204 w404 005 w405 365 661
M= ws wlcs | wWleg wleg wleg | we . 30)
466 706 OC() 100 600 563
w500 w3co w001 w3(:1 w401 wl Cq4
w6cl 561 002 502 w202 w465

Here 2 columns have been chosen from the submatrix DoW7, 3 from D3W7 and 1 from DgWW7, and this
choice corresponds to the vector 7 = (0, 0, 2, 3, 0, 0, 1). For this example, there are 7 ways to choose
6 rows of the matrix and so the set M (c) consists of 7 6 x 6 matrices.

In our analysis below, we shall use the following shorthand notation for a matrix structured as the one
above. Namely, we will write

W 1
01 2 3 456
12 3 4 560
23 4 5 6 01
34 5 6 01 2 S
45 6 0 1 23
5 6 0 1 2 3 4
6 0 1 2 3 45
which can be further simplified by removing the irrelevant columns
W
3 6
(32)

= O OOt i Wi
N = OO Ot
Gl W N~ O
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Our goal in this subsection is to prove the following theorem.

Theorem 4.2: Suppose that the L-vector 7 describes a collection of columns chosen from a full Gabor
matrix.
(1) If L is prime then p < (||7]|1 — ||7]lo) + 1.
(2) Forany L € N, > ||7|00-

Remark 4.3: (a) Note that the vector 7 does not completely determine the columns chosen from

G(c) but only their distribution within G(c) and hence that the conclusions of Theorem 4.2 do not depend
on the actual collection of columns chosen.

(b) It is not hard to see that the estimates in Theorem 4.2 cannot be improved. For example, if one
column is chosen from distinct submatrices Dy W7, then the vector 7 will have ||7||; non-zero entries
each of which is 1. Hence ||7||1 = ||7]|o, and ||7||cc = 1. Choosing co =1, ¢1 =ca = -+ =¢cp—1 = 0,
and choosing those rows of Go(c) in which ¢y appears, it follows that the resulting ||7{|; x ||7]|; matrix
M is a nonsingular diagonal matrix and hence that

= 7lloc = (Il = [I7flo) + 1.

At the other extreme, if we choose all ||7]|; columns from one submatrix Dy, W7, then we would have
I7]lo = 1 and ||7]]1 = ||7||co- If fewer than ||7||; of the ¢, are nonzero, then any choice of ||7||; rows
of Go(c) will contain at least one identically zero row, and hence the corresponding square matrix M
would be singular. This means that

pz (Il =li7llo) +1 = lI7ll = lI7]loo-

Moreover, if L is prime we once again have equality ([14]).

In order to prove Theorem 4.2 we must recall the main result and proof from [14], namely

Theorem 4.4: If L is prime, then there exists a period-L sequence c such that every minor of the full
Gabor system matrix G(c) is nonzero.

The proof of the theorem involved the following steps.

1. Given any square submatrix of G(c), call it M, det(M) is a homogeneous polynomial of degree L
in the variables cg, ¢, ..., ¢f_1.

2. In order to show that this polynomial does not vanish identically, it suffices to show that there is at
least one monomial in det(M) with a nonzero coefficient.

3. Such a monomial, pys is defined recursively as follows. If ||7||; = 1 then M is simply a multiple of a
single variable ¢; and we define pys = ¢;. If ||7]|1 > 1, let ¢; be the variable of lowest index appearing in
M. Choose any entry of M in which c; appears, eliminate from M the row and column containing that
entry, and call the remaining matrix M’. Define py; = ¢; par. It can be shown that pys is independent
of which entry in M is chosen at each step and only depends on the variable c; chosen at that step.

4. The remainder of the proof of Theorem 4.4 consists of showing that the coefficient of p,; is a product
of minors of Wp,. Since L is prime, a classical result asserts that such minors never vanish.

Proof of Theorem 4.2: (1). Let L be prime, and assume that columns are chosen from G(c) according
to the vector 7. By definition, there will be at least one column chosen from ||7|o distinct submatrices
Dy, Wy, of G(c). This means that there are exactly ||7||o distinct rows in which the variable ¢y formally
appears. Choose those rows and the remaining ||7||; — ||7||o rows arbitrarily, and let M be the resulting
||7]]1 % ||7|l1 submatrix. Proceeding now with the construction of the monomial py; defined above, it
follows that py; will contain exactly ||7||o factors of ¢y plus at most ||7||; — ||7]|o other distinct factors.
Hence pj; will be a monomial with at most ||7||; — ||7]|o + 1 distinct variables appearing. Since L is
prime, the argument of [14] shows that the coefficient on this monomial is nonzero so that det(M) is
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not identically zero if the remaining cj are all set to zero. Hence
< Nirlly = lirllo + 1.

(2). Let L € N be given and suppose that columns are chosen from G(c¢) according to the vector 7.
Let ||7]|1 rows be chosen from the submatrix G(c), and call the resulting ||7||; X ||7||; matrix M. Any
diagonal of M must have 73 entries chosen from 7, distinct rows of each submatrix D, Wy. Hence
every term in the expansion of det()) is a multiple of a monomial with at least 7 distinct variables
appearing in it. Therefore, if fewer than ||7||- of the ¢ are non-zero, then the polynomial det(M) will
vanish identically. Hence p > ||7]|co-

Example 4.5: The following example will show that for arbitrarily large L there are vectors 7 such
that for any choice of submatrix Gy(c), ||7]|ec < i < ||7]l1 — ||7|lo + 1. More specifically, the following
theorem holds.

Theorem 4.6: For every L € N large enough, there is an L-vector 7 describing a choice of columns of
a full Gabor matrix G(c) such that ||7|/s < p. Moreover, if L is prime, then also p < ||7||1 — ||7|lo + 1.
Proof: In order to construct this vector 7, first choose P, R € N such that P < R and

R+P—-1 1
RP "2

Note that these imply that at least R > P > 3. Given L € N with L > 9, we can write L = PR+ j
uniquely for some 0 < j < R — 1. Define the L-vector 7 as follows. Let 7, = 2 for 0 < k < R — 1,
and for k = mR — 1,2 < m < P, and let 7, = 0 otherwise. Then ||7]jo = R+ P — 1, ||[T]|cc = 2,
and ||7||y = 2(R+ P — 1). We will show that ||7||oc = 2 < 3 < p and that in case L is also prime,
uw<R<R+P=]|r|1—|7]lo+1. In our shorthand notation, the matrix Go(c) chosen has the following
form.

1 AR AR A 4 H A% H S H

0 N1 N-2 N-3 N-R4+2 N-R¥1 N-2Rf1 N-3R+1 ... N—PR41

1 0 N-1 N-2 N-R+3 N-R+2 N-2R+2 N-3R+2 ... N-PR42

2 1 0 N-1 ... N-Rt4 N-R+3 N-2R4+3 N-3R{3 ... N-PR43

3 2 1 0 . N-R{5 N-R44 N-2Rt4 N-3R+4 ... N—PR+4
R-2 R-3 R-4  R.s 0 N-1 N—R-1 N-2R-1 N—(P—1)R—1
R-1 R-2 R-3 R-4 1 0 N-1 N-R-1 N—(P—2)R—1
2R-1 2R-2 2R-3 2R-4 ... R¥1 R 0 N1 ... N-(P-3)R-1
3R-1 3R-2 3R-3 3R—4 ... 2R+1 2R R 0 ... N—(P-4)R-1
PR-1 PR-2 PR-3 PR-4 ... (P-1)R+l1 (P-1)R (P-2)R (P-3)R ... 0
N-1 N-2 N3  Ni4 ... N—R+1 NiR N-2R N-3R ... N-PR

Note that a matrix in M (c) corresponds to a choice of two entries in each column of the above matrix
such that no choice appears in more than one row.

In order to see the first inequality, let ¢ = (¢ )nez be a period-L sequence, and define Go(c) to be
the matrix formed by choosing 2(R + P — 1) columns of G(c¢) according to 7. Specifically, we choose
2 columns from each submatrix DWWy, of G(c) for all those k for which 7, = 2. Now suppose that
|lcllo = 2, that is, that there are exactly two non-zero terms in the vector (cy, ..., c¢r—1). We will show
that any choice of 2(R + P — 1) rows of Gp(c) will contain a zero row, which will imply that p > 3.
In order to simplify the argument, let us assume without loss of generality that ¢y # 0. If not then we
could replace 7 by a circular shift of 7 in the argument that follows. Therefore, let us assume that cg
and cg, are the only non-zero entries of c.

Note that each variable c; appears exactly twice in each row of Gg(c) that it appears in at all, and
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hence that each c¢; appears in at most R+ P — 1 rows of Go(c). In order for a row of Gg(c) to not vanish
identically, at least one of the variables ¢y or ci, must appear in that row. Since co and ¢y, appear in at
most R+ P — 1 rows, in order to choose 2(R + P — 1) non-vanishing rows of Go(c) we must be able to
choose R + P — 1 rows containing ¢y and an additional R 4 P — 1 rows containing cj,. We will show
that this is not possible by showing that there must be at least one row of Gy(c) in which both ¢y and

cr, appear. Specifically, we will show that all of the variables c;, co, ..., c—1 appear at least once in
the first R rows of G(c). Clearly, ¢y also appears in each of these rows.
In the pair of columns of Gy(c) chosen from the matrix DyW7y, the variables c¢i, ..., cr—1 ap-

pear in the first R rows. Given 1 < m < P, consider the pair of columns of Gp(c) chosen from
the matrix D,,z_1W7p. It is not hard to see that in the first R rows of these columns, the variables
C(P—m)R+j+1s - - -» CP—(m—1))R+j appear. Consequently, as m runs from 1 through P, all of the variables
Cj+1, - - -, CPR4+; Will appear in the first R rows of Gg(c). This completes the first part of the proof.

Now suppose that L is prime. We will show that ¢ < R by showing that we can choose 2(R+ P — 1)
rows of Ggy(c) in such a way that the monomial pj; of the resulting square matrix M, as described in the
remark following the statement of Theorem 4.4, will have no more than R distinct variables ¢; appearing
in it.

First, choose the R + P — 1 rows of Gg(c) in which ¢y appears. For all 1 < m < P — 1, note that
c1 appears in row mR + 1, co appears in row mR + 2 and in general, c; appears in row mR + k
for k = 1,2,..., R — 1. Note also that ¢y does not appear in these rows. Therefore, choose those
(P—1)(R—1) rows of Gy(c). Note that (R+P —1)+ (P—1)(R—1) = RP >2(R+ P —1) by our
assumption at the beginning of the proof. This means that by choosing rows in this way, and eliminating
some if necessary, we arrive at a square sub-matrix M of Gy(c). The corresponding monomial py; will
have R 4+ P — 1 factors of ¢y and at most P — 1 factors of ¢y, ¢, ..., cg—1, resulting in no more than
R distinct variables appearing in pys. Hence uy < R < R+ P = ||7|l1 — ||7]lo + 1.

Proof of Theorem 2.7: Suppose that S C R? and that for some 7" > 0 and N € N, S satisfies the
hypotheses of Theorem 2.7. We may assume without loss of generality that in fact S, can be covered
by fewer than L rectangles and in fact that

2
Z |Rq,m| + N < 1.
{(g;m): RgmNSper#0}

If not then we may replace 7' by 7" = T'/k and N by N’ = mN for some k, m € N. This leads to a
finer rectification of the set Sy.,, and since |Sper| = |S| < 1, we can approximate S in such a way that
the needed inequality is satisfied.

Let L > N? be prime and let Q = 1/TL. Then with

Ry = [0,T1x[0, Q] + (¢T,mQ),

q, m € Z, it follows that each rectangle R, ,,, in the original rectification of S is covered by a collection
of rectangles Ry, . satisfying

2
Z [Rg | < [Rgm| + iR
{(q/vm,): Rq’,m’qu,m?S@}
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Fig. 1. Rectification of a region R with I = 7 and 7% = (0,0,2,3,0,0,1). A corresponding collection of columns of G/(c)
is given by 30.

Consequently the rectification of .S by the rectangles sz,m satisfies

Z ‘Rq’,m'| < Z Z |R/q’,m"

{(qlvm/): R/I)m/msper#@} {(‘Lm): wammSPeT#@} {(qlvm/): R;I,m'qu,mfm}

< > <|Rq,m| + z>

{(qvm): R(].’"Lmspe’r'#w}
2N
< Z |Rq7m’ + T < 1.
{(g:m): Rg,mNSper#0}

Therefore, since |R;, ,,,| = 1/L it follows that Sy, is rectified by no more than L rectangles of the form
R/ .., and in particular we can write

qm>
/
Sper € N R, .. =R
{3 Ry, on;NSper 0}
for some integers 0 < ¢;, m; < L — 1. Define the L—vector ' = (T{i, e, ..., Tf_l) by TkR =

#{j: m; = k}. In other words, Tk,R is the number of boxes in I? of the form R’%k (see Figure 1) and

175 = #{5: Ry, € RY

is the total number of boxes R, ,, in R.
Since T2 =1/L = |th7m]_|,

Ay

I
L = Z ’ngmJ’

{3+ B, CRY

Since Sper C R, any identifier of OPW?(R) is also an identifier of OPW?(S). Let H € OPW?(S),
and assume that L is prime. By Lemma 3.9, (19) holds for any period-L sequence ¢ = (¢,) and for
all (t,v) € [0,T]x[0,9]. By our assumptions on S, all but ||7%||; < L of the entries on the right side
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vanish so that (19) reduces to

e 2P (7,0 0 H)g(t + Tp,v)

751 —1
=Q Y (T M™e)e TP (4 Tqj, v+ Qmy), (33)
§=0
p=0,1,..., L—1, where for 0 < j < ||[7%||; — 1, Ry, m, € R. It is clear that the reduced system (33)

is the result of choosing ||7%||; columns of the full Gabor system matrix G/(c) according to the L-vector
78, Since L is prime, Theorem 4.2 implies that there is a period-L sequence ¢ = (c,) such that the
reduced Gabor matrix G(c) has full rank and

llello < 7%l = 17l + 1 < |7l

Therefore, R
lello o 17"l

L= 1 = 2 (Rl

G+ Ry, CF)

Remark 4.7: a) Note that Theorem 2.7 does not give a sufficient sampling rate required to identify
OPW?2(S) but only on the relative support of the weighting sequence ¢ = (c,). The sampling rate will
of course depend on the parameter 7.

(b) It is clear that the sampling rate cannot be bounded by the area of S alone. For example, if a > 0
and S = [0,a) x [0,1), then |S| = a but since Hf Xs(+,v) dVH = 1, Theorem 2.5 implies that any delta
train identifying O PW (S) must have a sampling rate of at least one sample per unit.

V. CONCLUSION

This paper contains results relevant to two questions on the identification and recovery of operators with
bandlimited symbols from the response of the operator to a regular delta train with periodic weights. Such
operators model time-variant linear communication channels. The identification and recovery procedure
studied here is referred to as operator sampling. The procedure is a generalization of classical sampling
results for bandlimited functions, and provides a rigorous interpretation of the determination of a time-
invariant communication channel by measuring its response to a unit impulse.

We first obtain explicit reconstruction formulas in several cases: when the spreading support of the
operator is compact, when it is a subset of a fundamental domain of a rectangular lattice, and when it is
a subset of a fundamental domain of a general symplectic lattice. In all cases, the spreading support is
required to have measure less than one, and the precise formulas depend on covering the support region
efficiently by rectangles or parallelograms. For these results it is required that the support set be known.
We also obtain a result showing that, under mild geometric conditions, recovery is possible when the
support set is unknown but has area smaller than 1/2. A similar result for unknown support sets of area
smaller than one was proved independently in [3].

Next, we give a necessary condition on the rate of sampling, that is, the average number of deltas
in the identifying weighted delta train per unit time, required to identify an operator with bandlimited
symbol. The necessary rate depends on the geometry of the spreading support. Several considerations
relevant to finding a sufficient condition on the sampling rate are given. Separate consideration is given
to the spacing between successive deltas in the identifying delta train, which we seek to maximize, and
the relative support of the weighting sequence, which we seek to minimize. We present a qualitative
discussion related to maximizing the former in terms of finding the most efficient possible covering
of the spreading support with rectangles or parallelograms. An asymptotic result bounding the relative
support of the weighting sequence above by the area of the support set is given.
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