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Summary

Constructive design of Gabor frame windows is rare, and most results come from
the one-dimensional case. The connection between the geometry of fundamental
domains of lattices and Gabor systems was explored first in a series of papers
by Han and Wang [HW01], [HW04]. We build upon these results to construct
Gabor frames with smooth and compactly supported window functions in higher
dimensions. For this purpose we study pairs of lattices with equal density allowing
compact and star-shaped fundamental domains. Concrete examples are provided
and the results are extended to other special class of lattices. In addition, we
make observations on the intricate behavior of Gabor systems with multivariate
Gaussian windows.
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1 Introduction

Various applications from signal processing and communications engineering in-
volve time-frequency representations of functions and distributions. Gabor sys-
tems provide a useful basic structure for constructing discrete representations
of signals as a sum of a translated and modulated copies of a window func-
tion g. A Gabor system we shall denote by (g,Λ) = {TxMω : (x, ω) ∈ Λ}
where Tx is a translation (Txf)(y) = f(y − x), x ∈ Rd, and Mω a modulation
(Mωf)(y) = e2πi〈ω,y〉f(y), ω ∈ Rd. The set of translation and modulation parame-
ters is often chosen to be a full-rank lattice in Rd. An expression of the type

f =
∑
x,ω∈Λ

c(x, ω)TxMωg, (1)

is useful if the sum is (unconditionallty) convergent, and if the computation of
the coefficients and storing the necessary information is fast and stable. Gabor
systems considered here are frames, and they therefore provide these properties.

Criteria Gabor systems to be frames have been considered in many studies.
The most famous one is the density condition, which states that a Gabor system
whose lattice has density less than one, is not a Gabor frame for L2(R) [Dau92],
[Jan94]. In the case of a one-dimensional Gaussian γ1 the lattice density being
larger than one is sufficient for the system to be a frame. A characterization of
irregular Gabor systems based on the one-dimensional Gaussian window has also
been established. In fact, the Gabor system (γ1,Λ) is a frame for L2(R) if and
only if the density of Λ is greater than 1 [Lyu92], [SW92].

Constructing Gabor frames for lattices Λ of higher dimension (Λ ⊂ R2d, d ≥ 2)
is a much harder task. For lattices generated by a diagonal matrix, an explicit
construction of a window function g is not difficult [DGM86]. Moreover, for any
Λ = αAZ2d, A - symplectic, α < 1, it is easy to construct a Gabor frame for
L2(Rd) by taking the image of the Gabor frame (g, αZ2d) under a metaplectic
transform [Grö01].

Recently, the existence of Gabor frames for arbitrary lattices has been proven.
There exists a function g ∈ L2(Rd), such that (g,Λ) is a frame in L2(Rd), if and
only if the density of Λ is greater or equal to 1. In particular, g can be chosen
so that (g,Λ) is a Parseval frame for L2(Rd) [Bek04]. In spite of its importance,
Bekka proves existence only and his work reveals nothing more about the window
besides membership in L2(Rd).

The intricate structure of Gabor systems based on characteristic functions on
the unit interval is studied in [Jan03]. We add an interesting example of a Gabor
system based on a characteristic function in R2 in Section 4.4.

Another recent study constructs Gabor frames for L2(R2d), d ≥ 2 for separable
lattices Λ = AZd×BZd. It shows that any separable lattice Λ = AZd×BZd with
D(Λ) = 1 admits a Gabor orthonormal basis, as well as that any separable lattice
Λ with D(Λ) > 1 admits a Gabor frame for L2(Rd). However, the Gabor windows
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are constructed as characteristic functions on sets that are fundamental domains
for pairs of lattices in Rd [HW01], [HW04]. The fundamental domains may well
be unbounded, so the constructed Gabor window decays neither in time nor in
frequency.

This technical report aims to provide some examples and to give results on
constructing Gabor frames (g,Λ) in L2(R2) with window g ∈ C∞c (R2) for separa-
ble lattices Λ. Our search for window functions, which are smooth and compactly
supported, is motivated by the following consideration. Whenever, g is com-
pactly supported, the Gabor coefficients 〈f, TxMωg〉 provides a good information
about the size of f near time x. However, if g is discontinuous, the coefficients
〈f̂ ,M−xTωĝ〉 do not provide information about localization in frequency because
of the poor decay of ĝ (due to Heisenberg’s uncertainty principle). Whenever
bandwidth limitations are imposed (for instance, in radio communications the
available bandwidth is portioned between users in order to avoid signal interfer-
ence), poor frequency localization is a problem as well. However, a well-known
result [Kat76] states that smoothness in the time-domain implies fast decay in the
frequency-domain, guaranteeing better time-frequency localization of the function
f .

Expansions similar to (1) would be very easy to work with, if (g,Λ) were
an orthonormal basis (ONB). However, Gabor ONBs (and more generally, Riesz
bases) are severely restricted by a fact known as the Amalgam Balian-Low theo-
rem [BHW98], [GHHK03], [Grö01], [CP06], [BCM03]. This theorem states that
a Gabor orthonormal basis is not possible even under weak assumptions about
the time-frequency localization of the window function. In other words, if we re-
quire both g, ĝ to have (a) fast decay (implying good time-frequency localization),
and (b) non-redundancy, uniqueness and unconditional convergence of (1), then
(g,Λ) can span at most a subspace of L2(Rd). Under the requirement that every
f ∈ L2(Rd) has an unconditionally convergent expansion 1 and both g, ĝ to have
fast decay, then (g,Λ) can be at most a frame but not a Riesz basis, so we forego
uniqueness of the expansion coefficients. The Amalgam Balian-Low theorem es-
sentially states that (a) non-redundancy with completeness and convergence and
(b) good time-frequency localization are mutually incompatible in the context of
Gabor systems.

The structure of this technical report is as follows. Section 2 provides a back-
ground on lattices, fundamental domains of lattices and some aspects of Fourier
analysis related to translational tiling. Furthermore, we recall some notions from
functional analysis, such as Bessel sequences, Riesz bases and frames, with a focus
on basic properties of Gabor frames and Riesz bases.

Section 3 outlines the geometric approach for demonstrating existence of cer-
tain Gabor windows for certain lattices. In particular, we give an overview of the
approach in [HW01], [HW04] for constructing Gabor orthonormal bases and frames
for separable lattices in R2d. This result states that whenever A,B ∈ GL(d,Q),
with | detA · detB| = 1 then there exists a window function for the lattice
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AZd×BZd, creating a Gabor ONB for L2(Rd) [HW01], [HW04]. The existence of
an ONB for L2(Rd) is an essential ingredient in proving existence of a Gabor frame
for L2(Rd). However, the constructed window functions are always (discontinuous)
characteristic functions.

In Section 4 we discuss a “hands-on” approach, involving an explicit construc-
tion of smooth window functions for certain class of separable lattices. We observe
that an extra property of a fundamental domains for lattices (star-shapedness)
allows the construction of Gabor frames with smooth windows (Theorem 4.2).
Furthermore, these explicit constructions can be extended to lattices generated
by lower-block diagonal matrices with additional properties (Proposition 4.4). As
an illustration we provide some examples of pairs of lattices in R4 which admit a
common star-shaped fundamental domains in Section 4, namely Theorem 4.8 and
following.

In Section 5 we consider some examples of Gabor systems with Gaussian win-
dows in dimensions greater than 2. These examples demonstrate that the behavior
of Gaussians in higher-dimensional Gabor systems does not depend on the den-
sity of the relevant lattice in a straightforward way. We discuss there a potential
alternative criterion, called symplectic capacity of a lattice.

2 Theoretical background

2.1 Basic notation

This section provides a basic review of terminology and notation used in this
paper. C∞(Rd) denotes smooth (arbitrarily often differentiable), complex-valued
functions on Rd, C0(Rd) the continuous functions vanishing at infinity, Cc(Rd) the
compactly supported continuous functions. L1(Rd), L2(Rd) are the standard Ba-
nach spaces of integrable, resp. square-integrable functions. S(Rd) is the Schwartz
class of rapidly decreasing functions on Rd, in other words,

S(Rd) = {f ∈ C∞(Rd) : sup
x∈Rd
|xαDβf(x)| <∞ : for all multi-indices α, β}.

Its dual space S ′(Rd), or the space of tempered distributions, is the space of all
continuous linear functionals on S(Rd).

We now present the three most important unitary operators in time-frequency
analysis on Rd. Using the notation for the frequency domain R̂d as the domain
dual to the time domain Rd, we have R̂d ' Rd as topological groups [Kat76]. A
translation or a time shift is the operator (Txf)(t) = f(t − x), x ∈ Rd, and a

modulation or a frequency shift is the operator (Mωf)(t) = e2πi〈ω,t〉f(t), ω ∈ R̂d.
A time-frequency shift is

(π(λ)f)(t) = (MωTxf)(t) = e2πi〈ω,t〉f(t− x)

for λ = (x, ω) ∈ Rd × R̂d.
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2.2 Fourier transform and short-time Fourier transform

For our purposes the Fourier transform will be defined with the standard normal-
ization. The Fourier transform is the map F : L1(Rd) → C0(R̂d), mapping f to

f̂ = Ff , which is given by

f̂(ω) =

∫
Rd
f(y)e−2πi〈ω,y〉dy.

While the Fourier transform is defined for integrable functions, it can be naturally
extended to a unitary operator on L2(Rd) (a result known as Plancherel-Parseval
theorem) [Kat76]. The Fourier transform is an isomorphism of the Schwarz class
S(Rd) to itself [Kat76]. It ‘intertwines’ the translation and modulation operators
in the following way: FTxf = M−xFf and FMωf = TωFf .

A key tool in Gabor analysis is the short-time Fourier transform (STFT), also
called ‘continuous Gabor transform’ or ‘windowed Fourier transform’. The short-
time Fourier transform is defined by

Vgf(x, ω) =

∫
Rd
f(t) · e−2πiωtg(t− x)dt = 〈f,MωTxg〉 = 〈f̂ , TωM−xĝ〉 (2)

The STFT is a time-frequency representation of f because it carries information
simultaneously from the time and frequency domains. For example, (2) states
that if g (respectively ĝ) is well-localized, then |Vgf(x, ω)| can only be large if a
significant amount of the energy of f is concentrated around x (and, if a significant
amount of the frequency content of f is near ω). For a set Λ, the collection
{Vgf(λ), λ ∈ Λ} is called the set of Gabor coefficients of f .

The short-time Fourier transform Vgf , just like the Fourier transform, com-
pletely determines f as shown by the following well-known inversion formula. All
f ∈ L2(Rd) can be reconstructed from its STFT via the equality

f =
1

〈g, γ〉

∫∫
R2d

Vgf(x, ω)MωTxγ dωdx, (3)

for all g, γ ∈ L2(Rd) with 〈g, γ〉 6= 0. The integral on the right-hand side is
vector-valued. The equality (3), therefore, is understood in a weak sense [Grö01].

2.3 Lattices and fundamental domains

Next we recall some definitions about lattices. A lattice in R2d is a discrete sub-
group of the additive group R2d, i.e. Λ = AZ2d. In our discussion Λ will always be
a full-rank lattice in R2d (detA 6= 0). In line with the notation for the dual group

of Rd, we will sometimes write the lattice as a subset of Rd×R̂d. The dual lattice
Λ⊥ of Λ is defined as

Λ⊥ = {λ ∈ R2d : 〈λ, µ〉 ∈ Z,∀µ ∈ Λ}.
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The adjoint lattice Λ◦ of Λ is defined as

Λ◦ = {λ ∈ Rd × R̂d : π(λ)π(µ) = π(µ)π(λ),∀µ ∈ Λ}.

Note that for a lattice Λ = AZ2d, the dual Λ⊥ = A−TZ2d. A lattice is separable if
it can be represented as Λ = AZd×BZd. The adjoint lattice for a separable lattice
is Λ◦ = B−TZd×A−TZd.

An important notion is that of a fundamental domain (a tiling set) for a lattice.
A fundamental domain Ω for a lattice Λ in Rd is a measurable set in Rd with the
following properties

• (Ω + λ1) ∩ (Ω + λ2) is a null set forλ1 6= λ2 from Λ. (4)

• Rd =
⋃
λ∈Λ

(Ω + λ). (5)

An alternative formulation is that Ω is a tiling set for Λ, or that Ω tiles Λ. An
condition equivalent to (4) and (5) is to require that the equality∑

λ∈Λ

χΩ(x− λ) = 1 (6)

holds for almost all x ∈ Rd. Condition (4) on its own is equivalent to the inequality∑
λ∈Λ

χΩ(x− λ) ≤ 1, for almost all x.

Furthermore, 6 can be converted int a general statement about tiling with a func-
tion f , in other words, f tiles by Λ if∑

λ∈Λ

f(x− λ) = 1.

Condition (4) on its own is equivalent to the inequality∑
λ∈Λ

χΩ(x− λ) ≤ 1, for almost all x.

If only (4) is satisfied, then Ω is a packing set for Λ, or that Ω packs Λ.
Furthermore, if (4) andm(Ω) = vol Λ hold simultaneously, then Ω is a fundamental
domain for Λ.

The volume of the lattice Λ = AZd, vol Λ = m(Rd/Λ) = | detA|, and the
density of Λ, d(Λ) = (vol Λ)−1. Clearly, vol Λ equals the area of a fundamental
domain for Λ.

Next, we turn our attention to symplectic lattices, which are parametrized by
symplectic matrices. These matrices are a special subclass of volume-preserving
matrices SO(2d,R). Let λ = (x, ω), λ′ = (x′, ω′) ∈ R2d. The bilinear form
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[λ, λ′] = x′ω − xω′ is called symplectic. A matrix M ∈ GL(2d,R) is symplec-
tic if [Mλ,Mλ′] = [λ, λ′]. The symplectic matrices form a group Sp(d), a proper
subgroup of SO(d) [Fol89].

A characterization of a symplectic matrix can be expressed through relations

between its blocks: a block matrix M =

(
A C
D B

)
is symplectic if and only

if ADT = ATD, BCT = BTC and ATB − DTC = I [Fol89], [Grö01]. It is a
well-known fact [Fol89] that Sp(d) is generated by the matrices(

B 0
0 B∗

)
,

(
I 0
C I

)
,

(
0 I
−I 0

)
,

where B,C are such that detB 6= 0, C = CT [Fol89].
To every symplectic matrix M there is an associated metaplectic operator

µ(M), which is unitary on L2(Rd). The metaplectic operators associated to the
canonical generators are dilations DB, multiplication by the chirp e−πi〈t,Ct〉 and the
Fourier transform respectively. Hence, every metaplectic operator is a composition
of these three operators, up to a unit factor [Fol89], [Grö01].

2.4 Translational tiling and Fourier analysis

Fundamental domains can be studied using methods from Fourier analysis. A
deep result from this field states that a bounded measurable set Ω of unit measure
in Rd is a tiling set for a lattice if it possesses a spectrum (an ONB of exponentials
for L2(Ω)) [Fug74].

First, we recall some relations between measures on lattices. For a lattice Λ
we define the σ-finite measure

δΛ =
∑
λ∈Λ

δλ

While δΛ is infinite on Rd (δΛ(Rd) =∞), it is finite on any compact subset of Rd.
Because Λ is a discrete subgroup of Rd, δΛ is of bounded variation on any compact
subset of Rd, and thus can be interpreted as a tempered distribution in S ′(Rd)
[Bag92].

We use the Poisson summation formula [Kat76],[Grö01]:∑
λ∈Λ

f(x+ λ) =
1

vol Λ

∑
λ∈Λ⊥

f̂(λ)e2πi〈λ,x〉 (7)

to derive a formula for the Fourier transform of the distribution δΛ. Let φ ∈ S(Rd).
Then

〈φ̂, δ̂Λ〉 = 〈φ, δΛ〉 =
∑
λ∈Λ

φ(λ) =
1

vol Λ

∑
λ̃∈Λ⊥

φ̂(λ̃) =
1

vol Λ
〈φ̂, δΛ⊥〉.
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Therefore, as tempered distributions

δ̂Λ =
1

vol Λ
δΛ⊥ . (8)

The following lemma presents a criterion for a set Ω to be a fundamental
domain for Λ in terms of the zero set of a function. We denote the set of zeros of
a function f by N (f).

Lemma 2.1 Let Ω be a measurable set in Rd, Λ a lattice in Rd such that m(Ω) =
vol Λ. Assume χ̂Ω ∈ C∞(Rd). The following statements are equivalent:

1. Ω is a fundamental domain for Λ.

2. χ̂Ω vanishes on Λ⊥\{0}.

3. supp δ̂Λ ⊆ {0} ∪ N (χ̂Ω).

Proof. Formally speaking, (6) is equivalent to

χΩ ∗ δΛ(t) = 1.

Taking Fourier transforms of both sides (as distributions) we obtain χ̂Ω · δ̂Λ = δ0.
Since the right side is Dirac’s delta, the zeros of χ̂Ω have to eliminate all point
masses of δ̂Λ except that at 0, in other words,

supp δ̂Λ ⊆ {0} ∪ N (χ̂Ω).

Taking into account (8), this condition is equivalent to saying χ̂Ω vanishes on
Λ⊥\{0}. Hence, 2. ⇔ 3.

We follow the approach from [Kol04]. Assume
∑

λ∈Λ χΩ(x − λ) = 1 almost

everywhere. We have to determine supp δ̂Λ. From the definition of support for a
tempered distribution we must show that 〈φ, δ̂Λ〉 = 0 for all φ ∈ S(Rd) which are
supported in the complement of (the closed set) {0} ∪ N (χ̂Ω). Let us denote in
the following f ∗(x) = f(−x).

According to the convolution formula for the Fourier transform for functions
in L1(Rd).

F((χ̂Ω)∗ · h)(ξ) = χ∗Ω ∗ ĥ(ξ) (9)

Since χΩ is a nonnegative function, we have (χ̂Ω)∗ = χ̂Ω. So every φ ∈ S(Rd)
with suppφ ⊆ ({0} ∪ N (χ̂Ω))c can be represented as (χ̂Ω)∗ · ψ, where

ψ(s) =

{
φ(s)

(bχΩ)∗(s)
, s /∈ {0} ∪ N (χ̂Ω),

0, s ∈ {0} ∪ N (f̂).

is also in S(Rd), and ψ vanishes on ({0}∪N (χ̂Ω))c. We can now apply the Fourier

calculus for tempered distributions to 〈φ, δ̂Λ〉 and derive the following.

〈φ, δ̂Λ〉 = 〈(χ̂Ω)∗ · ψ, δ̂Λ〉
= 〈F−1((χ̂Ω)∗ · ψ), δΛ〉
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We write out this inner product as a sum of inner products with the individual
Dirac deltas, and use (9) to simplify it:

=
∑
λ∈Λ

〈χ∗Ω ∗ ψ̂, δλ〉

=
∑
λ∈Λ

χ∗Ω ∗ ψ̂(λ)

=
∑
λ∈Λ

∫
Rd
χΩ(t− λ)ψ̂(t) dt

due to χ∗Ω(λ − t) = χΩ(t − λ) (χΩ is positive). Next, Fubini’s theorem allows us
to exchange sum and integral and substitute (6):

〈φ, δ̂Λ〉 =

∫
Rd

∑
λ∈Λ

χΩ(t− λ)ψ̂(t) dt =

∫
ψ̂(t) dt = ψ(0) = 0

Thus supp δ̂Λ ⊆ {0} ∪ N (χ̂Ω), proving implication 1. ⇒ 3.
To prove 3. ⇒ 1., we have to show that h(t) =

∑
λ∈Λ χΩ(t − λ) is a constant

under condition 3. In other words, we must prove there exists a constant C such
that ∫

hφ = C

∫
φ, ∀φ ∈ S(Rd).

For φ ∈ S(Rd), we compute∫
hφ̂ =

∫
Rd

∑
λ∈Λ

χΩ(s− λ)φ̂(s) ds

after a change of variables t = s− λ, and exchanging sum and integral

=

∫
Rd
χΩ(t)

∑
λ∈Λ

φ̂(t+ λ) dt

=

∫
Rd
χΩ(t)〈T−tφ̂, δΛ〉 dt

We again apply the formula for the Fourier transform for S(Rd) to get for the
inner product

=

∫
Rd
χΩ(t)〈Mtφ, δ̂Λ〉 dt

By (8), δ̂Λ is a σ-finite measure, whence

=

∫
Rd
χΩ(t)

∫
Rd
φ(λ)e2πi〈t,λ〉 dδ̂Λ(λ) dt

=

∫∫
Rd×bRd χΩ(t)e2πi〈t,λ〉φ(λ) dδ̂Λ(λ) dt
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Integrating in t gives the Fourier transform of χΩ:

=

∫
Rd
χ̂Ω(−λ)φ(λ) dδ̂Λ(λ)

Now we plug in the condition on the support of δ̂Λ and obtain

= δ̂Λ(0)χ̂Ω(0)φ(0) = Cφ(0),

for some constant C. However,

χ̂Ω(0) =

∫
χΩ(t) dt = m(Ω) = vol Λ,

and (8) implies that δ̂Λ(0) = 1
vol Λ

. Thus,∫
hφ̂ = φ(0) =

∫
φ̂,

implying that h(x) is constant 1 for almost all x. �
A direct and important consequence of Lemma 2.1 is the existence of a spec-

trum (an ONB of pure frequencies) for fundamental domains.

Theorem 2.2 ([Fug74]) Let Ω be a bounded open measurable set in Rd, and Λ
a lattice in Rd with vol Λ = m(Ω). If Ω is a fundamental domain for Λ, then the

normalized exponentials {(m(Ω)−
1
2 e2πi〈λ,·〉 : λ ∈ Λ⊥} form an orthonormal basis

for L2(Ω). Furthermore, if vol Λ = m(Ω) = 1, and {(m(Ω)−
1
2 e2πi〈λ,·〉 : λ ∈ Λ⊥}

form an orthonormal basis for L2(Ω), then Ω is a fundamental domain for Λ.

Proof. We observe first of all that

〈e2πi〈x·〉, e2πi〈λ,·〉〉 =

∫
Ω

e2πi〈x−λ,y〉dy = χ̂Ω(x− λ). (10)

If Ω is a fundamental domain, the equality (10) and statement 2. from Lemma 2.1
imply that the exponentials {e2πi〈λ,·〉 : λ ∈ Λ⊥} are orthogonal as elements of
L2(Ω).

Assume now vol Λ = m(Ω) = 1 and {m(Ω)−
1
2 e2πi〈λ,·〉 : λ ∈ Λ⊥} is an ONB for

L2(Ω). Then it is enough to check that we have∑
λ∈Λ⊥

|χ̂Ω(x− λ)|2 =
∑
λ∈Λ⊥

|〈e2πi〈x,·〉, e2πi〈λ,·〉〉|2

= ‖e2πi〈x,·〉‖2
L2(Ω)

= 1

(11)

Therefore, by (11), |χ̂Ω|2 is a tiling for Λ⊥ (compare (6),[Kol04]). The remark after
Lemma 2.1 implies that the Fourier transform of |χ̂Ω|2, which is precisely χΩ ∗χ∗Ω,
vanishes on Λ\{0}. But the support of the convolution χΩ ∗χ∗Ω is Ω−Ω, so in fact
(Ω − Ω) ∩ Λ = {0}, equivalent to Ω ∩ (Ω + Λ\{0}) = ∅. Because by assumption
vol Λ = m(Ω) = 1, Ω is a fundamental domain for Λ. �
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2.5 Frames, Riesz bases, Bessel sequences

This is a brief overview of some general properties of Bessel sequences, Riesz bases,
and frames for a separable Hilbert space H with norm ‖ · ‖.

A Bessel sequence in H with bound b is a family of functions {fj}j∈N such that
for all f ∈ H, ∑

j∈N

|〈f, fj〉|2 ≤ b‖f‖2. (12)

A sequence {fj} ⊂ H is a Riesz sequence if and only if there exist constants
a, b > 0 such that for all finitely supported sequences of scalars {cj}j∈N,

a
∑
j∈N

|cj|2 ≤
∥∥∑
j∈N

cjfj
∥∥2 ≤ b

∑
j∈N

|cj|2 (13)

A Riesz basis for H is a Riesz sequence whose linear span is complete in H.
A sequence F = {fj}j∈N is a frame for H if there exist 0 < a ≤ b such that for

all f ∈ H,

a‖f‖2 ≤
∑
j∈N

|〈f, fj〉|2 ≤ b‖f‖2 . (14)

A frame sequence is a frame for the closure of its linear span.
The constants 0 < a ≤ b are called lower and upper frame bound respectively.

A frame is called tight if we can choose a = b. If a = b = 1, the frame is called a
Parseval tight frame.

The linear map associated to a sequence F

SF : H → H, SF : f 7→
∑
j∈N

〈f, fj〉fj.

is called a frame operator. By definition SF is self-adjoint, but if F is a frame for
H then SF is positive, invertible and bounded (details can be found for example
in [Chr03]).

Proposition 2.3 For every frame F = {fj}j∈N there exists a dual frame F̃ =
{gj}j∈N such that every f ∈ H has expansion

f =
∑
j∈N

〈f, gj〉fj =
∑
j∈N

〈f, fj〉gj.

2.6 Gabor frames and Gabor Riesz sequences

This section summarizes the most important definitions and properties from the
theory of Gabor frames and Gabor Riesz basic sequences.
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Definition 2.4 Let Λ ⊂ R2d be a discrete set. A Gabor system (g,Λ) for L2(Rd)
is the set of all time-frequency shifts of the window function g by λ = (x, ω) ∈ Λ,
i.e.

(g,Λ) := {gλ : λ ∈ Λ},
for gλ(t) = π(λ)g(t) = TxMωg = g(t− x)e2πi〈ω,t〉

We outline the basic definitions:

• A Gabor system (g,Λ) is a Riesz basis sequence if there exist constants
0 < a ≤ b such that for all c ∈ `2(Λ),

a‖c‖2
`2 ≤ ‖

∑
λ∈Λ

cλπ(λ)g‖2
2 ≤ b‖c‖2

`2 . (15)

• A Gabor Riesz basis is a Riesz basis for L2(Rd) if it is also complete in
L2(Rd).

• A Gabor system (g,Λ) is a frame for L2(Rd) with frame bounds 0 < a ≤ b
if such that for all f ∈ L2(Rd),

a‖f‖2 ≤
∑
λ∈Λ

|〈f, π(λ)g〉|2 ≤ b‖f‖2 . (16)

• A Gabor frame sequence is a frame for the L2-closure of its linear span.

• A Gabor Bessel sequence is a sequence for which (14) holds with a = 0, b > 0.

The operator

S(g,Λ) : L2(Rd)→ L2(Rd); S(g,Λ) : f 7→
∑

Vgf(λ)π(λ)g

is called a Gabor frame operator. It is a positive, bounded, invertible and self-
adjoint operator if (g,Λ) is a frame for L2(Rd).

For the rest of the paper, Λ will always denote a regular lattice, parametrized
by a matrix from GL(2d,R). Such lattices provide a large set of properties of
the respective Gabor frames. The frame operator Sg,Λ commutes with the time-
frequency shifts {π(λ), λ ∈ Λ} [Chr03]. This property of the frame operator
underlies the fundamental observation that the dual frame of a Gabor frame on a
regular lattice has the structure of a Gabor frame with the same lattice. Gabor
frames posses therefore a very useful reconstruction formula:

f =
∑
λ∈Λ

Vgf(λ) π(λ)γ =
∑
λ∈Λ

Vγf(λ) π(λ)g, (17)

where γ is the (canonical) dual window. For a detailed discussion of further
properties of Gabor frames, their duals and the Gabor frame operator we refer
to [FK98], [FZ98], [Chr03], [Grö01].

The following very important duality principle relates properties of two Gabor
systems on two time-frequency lattices.
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Theorem 2.5 (Ron-Shen duality principle) Let g ∈ L2(Rd), and Λ a full
rank lattice. Then (g,Λ) is a frame for L2(Rd) if and only if (g,Λ◦) is a Riesz
sequence.

This result will be used frequently in Section 3 and 4.
The separability of Λ is crucial for the following statements. If Λ = AZd×BZd,

Sg,AZd×BZd can be represented as a sesquilinear form on L2(Rd) × L2(Rd) → R :
(f, h)→ 〈Sg,γf, h〉. We define the bi-infinite cross-ambiguity Gramian matrix

G(x) = (Gij(x))i,j∈Zd :

Gij(x) = (detB)−1
∑
k∈Zd

g(x−B−T j − Ak)g(x−B−T i− Ak). (18)

This matrix is studied in [Wal92], [RS97]. The proof of the statement uses a
double application of the Poisson summation formula (7) for AZd and BZd. Thus,
the Gabor frame operator has the following matrix representation:

Proposition 2.6 (Walnut representation) Let g, γ ∈ W (Rd). Let Λ = AZd×
BZd be a full-rank lattice in R2d. For f, h ∈ L2(Rd), define the sequences

f(x) := {f(x−B−T i) : i ∈ Zd}, h(x) := {h(x−B−T j) : j ∈ Zd}.

Then for all f, h ∈ L2(Rd), the following holds:

〈Sg,AZd×BZdf, h〉 =

∫
B−TTd

〈G(x)f(x),h(x)〉dx. (19)

The following proposition characterizes the boundedness and stability of the op-
erator Sg in terms of the matrix G(x).

Proposition 2.7 Let g ∈ L2(Rd), and Λ = AZd × BZd be a full-rank lattice in
R2d. Then

• Sg is a bounded operator on L2(Rd) if and only if there exists b > 0 such
that G(x) ≤ bI`2 for almost all x ∈ Rd.

• Sg is an invertible operator on L2(Rd) if and only if there exists a > 0 such
that G(x) ≥ aI`2 for almost all x ∈ Rd.

The following theorem shows that symplectic transformations of the lattice
leave the Gabor frame property ‘invariant’.

Theorem 2.8 Let Λ be a full rank lattice in R2d and M ∈ Sp(d). Then the
following are equivalent:

1. There exists a g ∈ L2(Rd) such that (g,Λ) is a Gabor frame for L2(Rd).

2. There exists a g̃ ∈ L2(Rd) such that (g̃,MΛ) is a Gabor frame for L2(Rd).

12



Remark: The window g̃ = µ(M)g, where µ(M) is the metaplectic operator asso-
ciated to M .

Furthermore, Theorem 2.8 remains valid if we replace L2 by S,M1 because
g̃ is the image of g under a metaplectic operator [Grö01]. In short, this result
states that the spanning properties of the Gabor system (g,Λ) are carried onto
the Gabor system (g̃,MΛ), since the latter set is the image of the former under a
unitary map [Grö01].

2.7 Frames of exponentials

The following propositions list properties of families of exponential functions.

Proposition 2.9 Let I and J be two bounded open sets in Rd, and Λ be a discrete
set in Rd. Then the family {e2πi〈λ,·〉 : λ ∈ Λ} is a Bessel sequence for L2(I) if and
only if it is a Bessel sequence for L2(J).

Proof. Assume {e2πi〈λ,·〉 : λ ∈ Λ} is a Bessel sequence for L2(I) with bound b.
We shall show the following:

1. {e2πi〈λ,·〉 : λ ∈ Λ} is a Bessel sequence for L2(I ′), for all I ′ ⊆ I.

2. {e2πi〈λ,·〉 : λ ∈ Λ} is a Bessel sequence for L2(I + y), for all y ∈ Rd.

3. {e2πi〈λ,·〉 : λ ∈ Λ} is a Bessel sequence for L2(I ∪ I + y), for all y ∈ Rd.

By covering J with a finite number of translates of I it will follow that {e2πi〈λ,·〉 :
λ ∈ Λ} is a Bessel sequence for L2(J).

To show point 1. we note that we can consider L2(I ′) as a subspace of L2(I),
so for any f ∈ L2(I ′),∑

λ∈Λ

|〈f, e2πi〈λ,·〉〉|2 ≤ b‖f‖2
L2(I) = b‖f‖2

L2(I′).

Furthermore, ‖f‖L2(I+y) = ‖Tyf‖L2(I), so for f ∈ L2(I + y),∑
λ∈Λ

|〈f, e2πi〈λ,·〉〉|2 =
∑
λ∈Λ

|〈Tyf, e2πi〈λ,·−y〉〉|2

=
∑
λ∈Λ

|e2πi〈λ,y〉〈Tyf, e2πi〈λ,·〉〉|2

=
∑
λ∈Λ

|〈Tyf, e2πi〈λ,·〉〉|2

≤ b‖Tyf‖2
L2(I) = b‖f‖2

L2(I+y),

proving point 2.
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Last, without loss of generality we assume I ∩ I + y = ∅, as otherwise we have
I ∪ I + y = (I ∩ (I + y)c) t I + y, and as I ∩ (I + y)c ⊆ I, we can apply point 1.
We have for f ∈ L2(I ∪ I + y), ‖f‖2

L2(I∪I+y) = ‖PIf‖2
L2(I) + ‖PI+yf‖2

L2(I+y), hence∑
λ∈Λ

|〈f, e2πi〈λ,·〉〉|2 =
∑
λ∈Λ

|〈PIf + PI+yf, e
2πi〈λ,·〉〉|2

≤ 2
∑
λ∈Λ

|〈PIf, e2πi〈λ,·〉〉|2 + 2
∑
λ∈Λ

|〈PI+yf, e2πi〈λ,·〉〉|2

≤ 2b‖PIf‖2
L2(I) + 2b‖PI+yf‖2

L2(I+y)

= 2b‖f‖2
L2(I∪I+y),

whence point 3. follows. �

Proposition 2.10 Let I be a bounded open set in Rd, J ⊂ I and Λ be a discrete
set in Rd. Then the family {e2πi〈λ,x〉 : λ ∈ Λ} is a Riesz sequence in L2(I) if it is
a Riesz sequence in L2(J).

Proof. Let {e2πi〈λ,x〉 : λ ∈ Λ} is a Riesz sequence in L2(J). Let c = {cλ} be a
finitely supported sequence. Then

‖
∑
λ

cλe
2πi〈λ,·〉‖2

L2(I) ≥ ‖
∑
λ

cλe
2πi〈λ,·〉‖2

L2(J) ≥ a
∑
λ∈Λ

|cλ|2 = a‖c‖2
`2 .

Furthermore, there exist a finite number N of translates of J which cover I, so

‖
∑
λ

cλe
2πi〈λ,·〉‖2

L2(I) ≤ N‖
∑
λ

cλe
2πi〈λ,·〉‖2

L2(J) ≤ Nb
∑
λ

|cλ|2 = Nb‖c‖2
`2 ..

Thus {e2πi〈λ,·〉 : λ ∈ Λ} is a Riesz sequence in L2(I). �
The following statement shows that working with exponentials requires more care.

Proposition 2.11 Let Λ be a lattice in Rd, and Ω be a bounded measurable set
in Rd with m(Ω) < vol Λ. If (Ω +λ)∩Ω is null for all λ ∈ Λ \ {0} then the family
{e2πi〈λ,·〉 : λ ∈ Λ⊥} is a tight frame for L2(Ω).

Proof. Let us assume that the intersection (Ω + λ) ∩ Ω is null for all λ ∈
Λ \ {0}. Suppose first that Ω ⊆ ∆, where ∆ is a fundamental domain for Λ. We
can consider L2(Ω) as a subspace of L2(∆) with the embedding f 7→ χΩf . By
Theorem 2.2 the family {e2πi〈λ,·〉 : λ ∈ Λ⊥} is an orthonormal basis for L2(∆).
Then for f ∈ L2(∆), ∑

λ∈Λ⊥

|〈f, e2πi〈λ,·〉〉|2 = ‖f‖2
L2(∆)

This holds in particular for f ∈ L2(Ω). Hence {e2πi〈λ,·〉 : λ ∈ Λ⊥} is a Parseval
tight frame for L2(Ω). In general we have that the closure of Ω is compact and
can be covered by finitely many compact fundamental domains ∆ of Λ. Without
loss of generality we take ∆ to be the canonical domain Rd/Λ. Now the set of
exponentials {e2πi〈λ,·〉 : λ ∈ Λ⊥} constitutes a tight frame for the union of these
fundamental domains. Then applying Proposition 2.10, we obtain the desired
result. �
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3 Existence of L2-windows

In this section we present the known results about separable lattices, their ex-
tensions to lattices spanned by block-triangular matrices and at the end we make
some observations on tensor frames.

An entry point to the geometric approach to constructing Gabor frames is the
following basic observation: a fundamental domains Ω for lattice Λ in Rd allows
a spectrum, i.e. an orthonormal basis for L2(Ω) consisting of pure frequencies
[Fug74], [IKT03], [KM06], in our notation Theorem 2.2. Whenever Ω is a funda-
mental domain for a lattice Λ, the translates of Ω along the lattice points are all
disjoint up to a set of zero measure. Theorem 3.2 combines these two observations
to construct a Gabor ONB for L2(Rd). This method can be extended to construct
Gabor frames for L2(Rd) for special lattices as shown in Theorem 3.3.

3.1 Gabor frames for separable lattices

In this section we review the literature on Gabor frames, with windows being char-
acteristic functions, for separable lattices [HW01],[HW04]. In the one-dimensional
case, we refer to [Jan03] for a discussion of Gabor systems with windows charac-
teristic functions. At first we consider a separable lattice Λ = AZd × BZd. The
central result in [HW01] about fundamental domains is the following

Theorem 3.1 ([HW01]) Let AZd and BZd be two full-rank lattices in Rd, such
that detA = detB. Then there exists a measurable set Ω, which is a fundamental
domain for both AZd and BZd. If detB ≥ detA, then there exists a measurable
set Ω, which is a fundamental domain for AZd and (Ω + λ1) ∩ (Ω + λ2) is a null
set for any λ1 6= λ2 from BZd.

This theorem is used in [HW04] to show the existence of Gabor orthonormal
bases and Gabor frames on a separable lattice Λ = AZd × BZd as illustrated in
Theorem 3.2. The Gabor window function is a characteristic function.

Theorem 3.2 ([HW04]) Let Λ = AZd×BZd be a lattice in R2d with D(Λ) = 1.
There exists g ∈ L2(Rd) such that (g,Λ) is an orthonormal basis for L2(Rd).

Proof. The assumptionD(Λ) = 1 implies | detA| = | detB−T |. By Theorem 3.1
the lattices AZd and B−TZd have a common fundamental domain, which we denote
by Ω.

We consider the Gabor system (χΩ,Λ). For k1 6= k2 in Zd, we have

〈TAk1χΩ, TAk2χΩ〉 = 0, (20)

because the supports of the two functions are disjoint. Theorem 2.2 shows that
the family {e2πi〈Bl,y〉 : l ∈ Zn} forms an orthogonal basis for L2(Ω). To obtain an
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orthonormal basis, it is enough to normalize the L2-norm of χΩ by setting as a
window function

g =
χΩ√
m(Ω)

=
χΩ√
| detA|

.

The union of all those functions MBlTAkg for all k ∈ Zn is (g,Λ). Now if we denote
the projections of f ∈ L2(Rd) onto L2(Ω + Ak) by Pkf = χΩ+Ak · f , we have by
(20),

‖f‖2
2 =

∑
k∈Zd
‖Pkf‖2

2

For all k ∈ Zd Theorem 2.2 implies that

‖Pkf‖2
2 =

∑
l∈Zd
|〈e2πi〈Bl,y〉, Pkf〉|2 =

∑
l∈Zd
|〈TAkMBlg, f〉|2.

Therefore,

‖f‖2
2 =

∑
k∈Zd

∑
l∈Zd
|〈TAkMBlg, f〉|2

which implies that (g,Λ) is an orthonormal basis for L2(Rd) (since the L2-operator
norm of TAkMBl is 1). �

Theorem 3.3 ([HW04]) Let Λ = AZd×BZd be a lattice in R2d with D(Λ) > 1.
There exists g ∈ L2(Rd) such that (g,Λ) is a Gabor frame for L2(Rd).

Proof. The density condition D(Λ) > 1 implies | detA| < | detB−T |. By
Theorem 3.1 there exists a measurable set Ω which is a fundamental domain for
AZd and such that the set {Ω +B−Tk} ∩ {Ω +B−Tk′} is null for k 6= k′ ∈ Zd.

We apply Theorem 2.5 to the system (χΩ, B
−TZd × A−TZd). We claim that

this is a Riesz sequence. Let c = {ck,l} be a finitely supported sequence in C.∥∥∥∥∑
k,l

ck,lTB−T kMA−T lχΩ

∥∥∥∥2

2

=

〈∑
k,l

ck,lTB−T kMA−T lχΩ,
∑
k′,l′

ck′,l′TB−T k′MA−T l′χΩ

〉
(21)

Theorem 2.2 implies that {MA−T l : l ∈ Zd} form an orthonormal basis for L2(Ω)
because Ω is a fundamental domain for AZd. On the other hand, the set {Ω +
B−Tk} ∩ {Ω +B−Tk′} is null for k 6= k′ ∈ Zd, so

〈TB−T kMA−T lχΩ, TB−T k′MA−T l′χΩ〉 = δk,k′δl,l′m(Ω)

Hence, the right-hand side in (21) equals nothing butm(Ω)
∑

k,l |ck,l|2 = m(Ω)‖c‖2
`2 .

According to (15), (χΩ, B
−TZd×A−TZd) is a Riesz orthogonal basis for its closed

linear span, hence the Gabor system (χΩ, AZd×BZd) is a frame for L2(Rd) (which
follows from the Ron-Shen duality Theorem 2.5). �

Next we give another result about spectra.
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Corollary 3.4 Let Λ = AZd × BZd be a lattice in R2d such that D(Λ) ≥ 1. If
Ω is bounded open measurable set in Rd, which is a fundamental domain for AZd

and Ω ∩ {Ω + B−T l} is null for l 6= 0 ∈ Zd, then the family {MBlχΩ : l ∈ Zd} is
complete in L2(Ω).

Proof. Suppose for contradiction that there exists h ∈ L2(Ω), h 6= 0 such that
〈h,MBlχΩ〉 = 0 for all l ∈ Zd. Then for all k ∈ Zd,

〈h, TAke2πi〈Bl,y〉χΩ〉 = 0

The proof of Theorem 3.3 then would imply that there exist a, b > 0 such that

a‖h‖2
2 ≤

∑
k

∑
l

|〈h, TAke2πi〈Bl,y〉χΩ〉|2 ≤ b‖h‖2
2,

requiring ‖h‖2 = 0. �
In the following we combine the theory of the matrix form of the Gabor frame

operator and the results on the geometric constructions. We have the following
“no-go” result.

Proposition 3.5 Let Λ = AZd × BZd, A,B ∈ GL(d,R) with D(Λ) > 1. Let Ω
be a fundamental domain for AZd and a packing for B−TZd. If g ∈ C(Rd) is
supported on Ω, then the Gabor system (g,Λ) is not a frame for L2(Rd).

Proof. Let g ∈ L2(Rd), supp g ⊆ Ω, generate a Gabor frame (g, AZd × BZd).
We analyze the structure of the associated cross-ambiguity matrix G(x). If j 6= i,
then

supp g(x−B−T j − Ak)g(x−B−T i− Ak) ⊆ Ak + [(Ω +B−T j) ∩ (Ω +B−T i)].

Since (Ω +B−T j)∩ (Ω +B−T i) is null, then for almost all x, Gji(x) = 0, whenever
j 6= i. Thus the matrix G(x) (18) is diagonal for almost all x. Consider the matrix
entry

G00(x) =
∑
k∈Zd
|g(x− Ak)|2.

Since supp g = Ω, we have only one nonzero term in the summation (namely, the
one with k = 0), yielding G00(x) = |g(x)|2. By a substituon of the the sequence
c = {δn,0}n∈Zd in the Ron-Shen criterion [Grö01] we see that a ≤ 〈G(x)c, c〉 ≤ b,
because Sg is a bounded and invertible operator on L2(Rd). Therefore, the same
properties must be transferred to the matrix G(x) for almost every x. But then

〈G(x)c, c〉 = G00(x) = |g(x)|2,

which in turn implies
a ≤ |g(x)|2 ≤ b.

Hence g cannot be continuous on Rd. �
Proposition 3.5 implies that results of the type [HW04] do not provide windows
with good time-frequency localization. However, we have the following weaker
result
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Proposition 3.6 Let Λ = AZd × BZd with D(Λ) > 1. Let Ω be a fundamental
domain for AZd and packing for B−TZd. Let g ∈ C(Rd), supp g = Ω, that is,
g 6= 0 almost everywhere on Ω, then (g,Λ) is complete in L2(Rd).

Proof. Let f ∈ L2(Rd). Denote by fk the restriction of f to Ω + Ak, k ∈ Zd.
fk belongs to L2(Ω) and can be identified with a Ω-periodic function on Rd. Then

‖f‖2
2 =

∑
k∈Zd
‖fk‖2

2

Suppose there exists f ∈ L2(Rd) such that

〈f,MBlTAkg〉 = 0,∀k, l ∈ Zd. (22)

However, because supp g = Ω, for a fixed k ∈ Zd, (22) is the Fourier transform of
fk · TAkg evaluated at Bl. The Fourier expansion expansion of fk · TAkg implies
that fk · TAkg is identically 0 almost everywhere. Because g does not vanish on
a subset of Ω of positive measure, fk = 0 almost everywhere for all k. Therefore
f = 0 almost everywhere. �

We note also that whenever the window function is a characteristic function
supported on a (union of) fundamental domains Ω, the matrix G(x) given by (18)
is independent of the shape of Ω.

3.2 Gabor frames for lattices parametrized by block-triangular
matrices

In this section we review results from [HW04] about geometric construction of
Gabor windows for lattices generated by block-triangular matrices. At first, we
consider the lattice Λ ∈ R2d given by

Λ =

(
A 0
D B

)
Zd,

where A,B are full-rank matrices. The idea is to transform this lattice into a
separable lattice by multiplying Λ by the matrix

T =

(
I 0

−DA−1 I

)
which produces the separable lattice

TΛ =

(
A 0
0 B

)
Zd (23)

Proposition 3.7 ([HW04]) Let Λ =

(
A 0
D B

)
Z2d be a lattice in R2d with A,B ∈

GL(d,R) and D(Λ) > 1. Then there exists a function g ∈ L2(Rd) such that (g,Λ)
is a Gabor frame for L2(Rd).
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Proof. We denote by Ω the set which is tiling for AZd and packing for B−TZd,
and compute for λ = (x, ω) ∈ Λ, the action of the time-frequency shift π(Tλ) on
L2(Rd), with T defined in (23)

π(Tλ)h =π(x,−DA−1x+ ω)h

=e2πi〈−DA−1x+ω,t−x〉h(t− x)

=MAD−1xe
2πi〈DA−1x,x〉e2πi〈ω,t〉e2πi〈ω,−x〉h(t− x)

=MAD−1xe
−2πi〈DA−1t,t〉e2πi〈ω,t〉e2πi〈ω,−x〉e2πi〈DA−1t,t〉×

e2πi〈DA−1t,−x〉e2πi〈−DA−1x,t〉e2πi〈DA−1x,x〉h(t− x)

=MAD−1xe
πi〈DA−1t,t〉e2πi〈w,t−x〉e2πi〈DA−1(t−x),t−x〉h(t− x)

=MAD−1xUTxMωU
−1h

=MAD−1xUπ(λ)U−1h

(24)

where U is the unitary operator (chirp)

U : L2(Rd)→ L2(Rd), (Uh)(t) = e−2πi〈DA−1t,t〉h(t). (25)

Since Ω + Ak are disjoint up to a null set for different k ∈ Zd, it is clear that for
all φ ∈ L2(Rd)

‖φ‖2
2 =

∑
k∈Zd
‖PAkφ‖2

2,

where Pkφ = χΩ+Akφ. The Gabor system (χΩ, TΛ) is a frame for L2(Rd) by
Theorem 3.3, with bounds, say, a ≤ b. For k fixed, we estimate

a‖Pkφ‖2
2 ≤

∑
l∈Zd
|〈φ, π(Ak,Bl)χΩ|2 ≤ b‖Pkφ‖2

2. (26)

Let g = U−1χΩ, where U is the operator defined by (25). Let us denote the
x-coordinate of λ ∈ Λ by xλ. Rearranging (24), for f ∈ L2(Rd) we calculate∑

λ∈Λ

|〈f, π(λ)g〉|2 =
∑
λ∈Λ

|〈f,MAD−1xλU
−1π(Tλ)χΩ〉|2

=
∑
λ∈Λ

|〈MAD−1xλUf, π(Tλ)χΩ〉|2,

because MAD−1xλ and U are just phase factors. Now due to choice of T , for all
λ ∈ Λ, there exist k, l ∈ Zd such that Tλ = (Ak,Bl)T .∑

λ∈Λ

|〈f, π(λ)g〉|2 =
∑
k∈Zd

∑
l∈Zd
|〈MAD−1AkUf, π(Ak,Bl)χΩ〉|2 (27)

Let k be fixed for the moment.
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We apply the inequality (26) to φ = MAD−1AkUf , and substitute into (27).

a‖Pke2πi〈DA−1y,Ak〉Uf‖2
2 ≤

∑
l∈Zd
|〈MAD−1AkUf, π(Ak,Bl)χΩ〉|2

≤ b‖PkMAD−1AkUf‖2
2,

which is equivalent to

a‖PkUf‖2
2 ≤

∑
l∈Zd
|〈MAD−1AkUf, π(Ak,Bl)χΩ〉|2

≤ b‖PkUf‖2
2

because a modulation leaves the L2-norm unchanged. As we sum over all k ∈ Zd,
and then use (27), we obtain

a
∑
k∈Zd
‖PkUf‖2

2 ≤
∑
k∈Zd

∑
l∈Zd
|〈MAD−1AkUf, π(Ak,Bl)χΩ〉|2

≤ b
∑
k∈Zd
‖PkUf‖2

2 and

a‖f‖2
2 = a‖Uf‖2

2 ≤
∑
λ∈Λ

|〈f, π(λ)g〉|2 ≤ b‖Uf‖2
2 = b‖f‖2

2

Hence (g,Λ) is a Gabor frame for L2(Rd). �
Note: g is discontinuous because it is the multiplication of a characteristic function
χΩ with a chirp given by U−1.

Proposition 3.8 ([HW04]) Let Λ =

(
A C
0 B

)
Z2d be a lattice in R2d with

D(Λ) > 1. Then there exists a function g ∈ L2(Rd) such that (g,Λ) is a Ga-
bor frame for L2(Rd).

Proof. The upper block-triangular case can be reduced to the lower block-
triangular case via a Fourier transform. We consider again a Gabor frame (g,Λ′),
where

Λ′ =

(
−B 0
C A

)
Z2d

A,B are full-rank d × d-matrices, and g is the window function from Proposi-
tion 3.7. We take the Fourier transform of the elements (g,Λ′)

Fπ(λ′)g = FMCk+AlT−Bkg = TCk+AlMBkĝ,

which are nothing but the time-frequency shifts of g over a lattice

Λ =

(
A C
0 B

)
Z2d

that is generated by an upper block-triangular matrix. Because the Fourier trans-
form F is unitary on L2(Rd), the Gabor system (ĝ,Λ) is a frame for L2(Rd). �
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Proposition 3.9 ([HW04]) Let Λ =

(
A C
D B

)
Z2d be a full-rank matrix in

R2d such that D(Λ) ≥ 1 and either DA−1 or CB−1 is symmetric. There exists
g ∈ L2(Rd) such that (g,Λ) is a Gabor frame for L2(Rd).

Proof. Depending on whether DA−1 or CB−1 is symmetric, we choose a matrix

T =

(
I 0

−DA−1 I

)
or T =

(
I −CB−1

0 I

)
so that TΛ is a lower or upper block-triangular lattice. Since the symmetry of
a real-valued matrix M implies that M = MT , the matrix T is in both cases
symplectic. By Propositions 3.7 and 3.8 and Theorem 2.8, there exists g ∈ L2(Rd)
such that (g,Λ) is a frame. �

Proposition 3.10 Let Λ = MZ2d be a lattice in R2d with M ∈ Sp(d). There does
not exist g ∈ S(Rd) such that (g,Λ) is a Gabor frame for L2(Rd).

Proof. We argue by contradiction. Suppose that there exists a g ∈ S(Rd)
such that (g,Λ) is a Gabor frame for L2(Rd). By Theorem 2.8, there exists a
g̃ ∈ S(Rd) such that (g̃,Zd) is a frame for L2(Rd). By the Ron-Shen duality
principle, (g̃,Zd) is a Riesz sequence too, for L2(Rd). But then the amalgam
Balian-Low theorem [GHHK03], [BHW98], [Grö01] holds, yielding a contradiction
to our assumption. �

4 Construction of smooth windows

We consider a separable lattice Λ = AZd×BZd, with D(Λ) > 1, where A and B are
d× d-matrices of full rank. In view of Proposition 3.5 we have to look for window
functions in Cc(Rd) whose support extends beyond the fundamental domain Ω
of AZd. We shall construct a smooth window function by using a smoothened
characteristic function to obtain results similar to Theorem 3.2 and Theorem 3.3.

To simplify our computations we shall obtain statements about Riesz basic
sequences based on the adjoint lattice, Λ◦ = B−TZd×A−TZd, for which automati-
cally D(Λ◦) < 1. We will construct a smooth window g such that (g,Λ◦) is a Riesz
sequence. The existence of a frame (g,Λ) for L2(Rd) will be then deduced from
Theorem 2.5. In this section for two sets X, Y ∈ Rd we shall denote by X +Y the
set {x+ y, x ∈ X, y ∈ Y }.

4.1 Existence of smooth windows supported on star-shaped
fundamental domains

Our goal is to construct a fundamental domain Ω′ for B−TZd with the following
property: there exists a proper subset Ω of Ω′ with Ω + B(0, ε) ⊂ Ω′ for some
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N

Ω Ω′

Figure 1: Ω is the scaled image of Ω′ under dilation with centre O.

ε > 0, which is a fundamental domain for AZd (Figure 1). Due to the fact that
m(Ω′) = | detB−T | > | detA| = m(Ω), such sets Ω and Ω′ could theoretically
exist. In addition as long as the set Ω′ is bounded, we can apply the result on
perturbed frames [CC97] to a mollified characteristic function.

This leads to the question: Which lattices allow fundamental domains Ω and
Ω′ with such properties? We note that a sufficient condition for our purposes is
star-shapedness of the tiling set, stated as

Lemma 4.1 Let Λ = AZd ×BZd be a lattice with D(Λ) > 1. Let Ã = vol Λ−
1
dA.

If the lattices ÃZd and B−TZd have a common fundamental domain Ω′ which is
star-shaped and compact, then there exists ε > 0 and a fundamental domain Ω for
AZd such that Ω +B(0, ε) ⊂ Ω′.

Proof. Under the notation

Ã = D(Λ)
1
dA,

we obtain a scaling of the lattice AZd to ÃZd. Furthermore, | det Ã detB| = 1.
By Theorem 3.1 there exists a measurable set Ω′ which is a common fundamental
domain for ÃZd and B−TZd. We claim that there exists a fundamental domain Ω
for AZd such that Ω ⊂ Ω′. For a star-shaped set Ω′, there exists a point N ∈ Ω′

such that for all points Q ∈ Ω′ the segment
−−→
NQ is contained entirely within Ω′.

We apply a dilation with center N and coefficient D(Λ◦)−
1
d to Ω′ and obtain a set

Ω which is similar to Ω′ and moreover, Ω ∩ Ω′ = Ω (as illustrated in Figure 1).
In addition, there is a δ-neighborhood Ωδ of Ω (for δ sufficiently small), contained
inside Ω′. We claim that Ω is a fundamental domain for the lattice AZd.
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Using Lemma 2.1 and a change of variables x = N + yD(Λ◦)
1
d , we derive

χ̂Ω(ξ) =

∫
Ω

e−2πi〈ξ,x〉dx

=
1

D(Λ◦)

∫
TNΩ′

e−2πi〈ξ,N+yD(Λ◦)
1
d 〉dy

=
1

D(Λ◦)

∫
Ω′
e−2πi〈D(Λ◦)

1
d ξ,y〉dy

=
1

D(Λ◦)
· χ̂Ω′

(
ξD(Λ◦)−

1
d

)
Since χ̂Ω′ vanishes on Ã−TZd\{0}, χ̂Ω vanishes onD(Λ◦)−

1
d Ã−TZd\{0} = A−TZd\{0}.

Lemma 2.1 implies that Ω is a fundamental domain for AZd. �

Theorem 4.2 Let Λ = AZd × BZd be a lattice in R2d with D(Λ) > 1. Let

Ã = D(Λ)
1
dA. If the lattices B−TZd and ÃZd have a common compact star-shaped

fundamental domain, there exists g ∈ C∞c (Rd) such that (g,Λ) is a frame for
L2(Rd).

Proof. We denote the common star-shaped fundamental domain of the lattices
B−TZd and ÃZd by Ω′. The condition on its shape allows us to construct a compact
fundamental domain Ω for AZd such that Ω ⊂ Ω′.

Let g ∈ C∞c (Rd) be such that g(x) = 1 for x ∈ Ω, g(x) = 0 for x /∈ Ω′,
|g| ≤ 1 elsewhere. We know from the proof of Theorem 3.3 that (χΩ,Λ

◦) is a
Riesz sequence in L2(Rd).

Just as Ω is bounded set, so is Ω′. Therefore it is covered by finitely many
copies of Ω. Hence for any finitely supported sequence c = (ck),

‖
∑
k∈Zd

ckMA−T kg‖2
L2(Ω′) = ‖|g(·)| · |

∑
k∈Zd

cke
2πi〈A−T k,·〉|‖2

L2(Ω′)

≤ ‖
∑
k∈Zd

cke
2πi〈A−T k,·〉‖2

L2(Ω′),
(28)

because |g| ≤ 1 on Ω′. The family {MA−T kχΩ : k ∈ Zd} forms a tight frame
for L2(Ω) (Theorem 2.2). Applying now Proposition 2.9, we see that there exists
C > 0 such that (28) is bounded by C‖c‖`2 for all sequences c. This implies
that {MA−T kg : k ∈ Zd} forms a Bessel sequence for L2(Ω′). Since the translates
of supp g ⊆ Ω′ are disjoint up to a null set by translation in B−TZd, we can
derive easily that (g,Λ◦) is a Bessel sequence. We follow the same argument as
in the proofs of Theorem 3.3 and Theorem 3.2 - namely for all finitely supported
sequences c = (ck,n):

‖
∑
k,n

ck,nTB∗nMA∗kg‖2
L2(Ω′) =

∑
n

‖
∑
k

ck,nMA∗kg‖2
L2(Ω′)

≤ C
∑
k,l

|ck,l|2 = C‖c‖2
`2 ,

(29)
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Equation (29) holds since the set {Ω′+B−Tn1} ∩ {Ω′+B−Tn2} is null whenever
n1 6= n2 ∈ Zd.

Furthermore, since g|Ω = χΩ, we see that

‖
∑
k∈Zd

ckMA−T kg‖2
L2(Ω′) ≥ ‖

∑
k∈Zd

ckMA−T kg‖2
L2(Ω)

= ‖
∑
k∈Zd

ckMA−T kχΩ‖2
L2(Ω)

Thus as in (29) we show that

‖
∑
k,n

ck,nTB−TnMA−T kg‖2
L2(Ω′) ≥ C ′‖c‖`2

for some constant C ′ > 0. Then the Gabor system (g,Λ◦) is also a Riesz basic
sequence. By Theorem 2.5, (g,Λ) is a frame for L2(Rd). �
In fact the following more general fact is also true:

Corollary 4.3 Let Λ = AZd × BZd be a lattice in R2d such that D(Λ) > 1. Let
Ω ⊂ Rd and ε > 0 be such that Ω is a bounded fundamental domain for AZd

and Ω +B(0, ε) tiles B−TZd. Then there exists a compactly supported and smooth
function g such that (g,Λ) is a Gabor frame for L2(Rd).

The result from Theorem 4.2 can be extended to a lattices generated by lower-
block triangular matrices.

Proposition 4.4 Let Λ =

(
A 0
D B

)
Z2d be such that D(Λ)

1
dAZd and B−TZd

have a common fundamental domain Ω′ which is star-shaped and compact. Then
there exists g ∈ C∞c (Rd) such that (g,Λ is a frame for L2(Rd).

Proof. We consider the lattice

Λ =

(
A 0
D B

)
Z2d.

Let

T =

(
I 0

−DA−1 I

)
.

Then we note as in the proof of Proposition 3.7 that TΛ = AZd×BZd is separable
and fulfils the conditions of Lemma 4.1.

Then Theorem 4.8 assures that there exists g̃ ∈ C∞c (Rd) such that (g̃, TΛ) is
a Gabor frame for L2(Rd). From the details of the proof of Proposition 3.7 we
conclude that (g,Λ) is a Gabor frame for L2(Rd), where g(t) = e2πi〈DA−1t,t〉g̃(t).
Obviously g ∈ C∞c (Rd). �
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4.2 Examples of smooth windows in 2-D

In this section we illustrate the statement given in Proposition 4.1 and Theo-
rem 4.2. For a given pair of matrices in GL(2,R), we construct explicitly a common
convex fundamental domain.

Proposition 4.5 Let B =

(
1 0
0 1

)
and Ã =

(
m
n

0
0 n

m

)
where m,n are co-prime

integers. There exists a common convex fundamental domain for B−TZ2 = Z2 and
ÃZ2.

Proof. The two-dimensional torus is T2 = [0, 1)× [0, 1). Consider the parallel-
ogram

Ω =

(
1
n

m
0 n

)
T2.

We claim that Ω is a common fundamental domain for the lattices Z2 and

(
m
n

0
0 n

m

)
Z2.

Suppose that there exists (k, l)T 6= −→0 ∈ Z2 such that

{
Ω +

(
k
l

)}
∩ Ω 6= ∅.

Then there exist points (α1, β1), (α2, β2) ∈ T2 such that

α1

n
+mβ1 + k =

α2

n
+mβ2 and nβ1 + l = nβ2

Therefore,

β2 − β1 =
l

n
,

which implies that α1 − α2 = ml − kn must be an integer. Since 0 ≤ α1, α2 < 1,
we have necessarily α1 = α2, and also that

β2 − β1 =
k

m
.

Since gcd(m,n) = 1 and 0 ≤ β2 − β1 < 1, this is possible only if k = l = 0. Thus
(Ω + Z2\{0}) ∩ Ω = ∅. As m(Ω) = 1, Ω is a fundamental domain for Z2.

We apply the same argument to the lattice

(
m
n

0
0 n

m

)
Z2. Suppose that there

exists

(
k
l

)
6= −→0 ∈ Z2 such that {Ω +

(
m
n

0
0 n

m

)(
k
l

)
} ∩ Ω 6= ∅. Then there exist

points (α1, β1), (α2, β2) ∈ T2 such that

α1

n
+mβ1 +

km

n
=
α2

n
+mβ2 and nβ1 +

ln

m
= nβ2

The equality

β2 − β1 =
l

m
,
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again leads to the conclusion that α2 − α1 = mk − ln is an integer. Because
0 ≤ α1, α2 < 1, we have α1 = α2, and

β2 − β1 =
k

n
.

Again, since gcd(m,n) = 1 and 0 ≤ β2 − β1 < 1, this is possible only if k = l = 0.
Thus (Ω + Z2\{0}) ∩Ω = ∅. Because m(Ω) = 1, Ω is a fundamental domain also

for

(
m
n

0
0 n

m

)
Z2. �

Example 4.6 The lattices Z2,

(
m
n

0
0 n

m

)
Z2 and

(
1
n

m
0 n

)
Z2, where gcd(m,n) =

1, have a common convex fundamental domain.

Example 4.7 The lattices Z2,

(
n
m

0
0 m

n

)
Z2 and

(
n 0
m 1

n

)
Z2, where gcd(m,n) =

1, have a common convex fundamental domain.

Theorem 4.8 Let m,n ∈ Z be relatively prime. Let Λ = AZ2 × BZ2 be a lattice
in R4. Whenever BTA is of the form

1. kI, |k| ≤ 1;

2.

(
m2k 0

0 n2k

)
, where |k| < (mn)−1;

3.

(
k mnk
0 n2k

)
, where |k| < n−1; or

4.

(
n2k 0
mnk k

)
, where |k| < n−1,

there exists a function g ∈ C∞c (R2) such that (g,Λ) is a Gabor frame for L2(R2).

Proof. We have (
A 0
0 B

)
=

(
B−T 0

0 B

)
︸ ︷︷ ︸

M

(
BTA 0

0 I

)

which shows that Λ = M((BTA)Z2×Z2), andM is symplectic. Since detBTA ≤ 1,

we can rescale BTAZ2 to make its density 1 as in Lemma 4.1. Then B̃TAZ2 is
respectively of the form

Z2,

(
m
n

0
0 n

m

)
Z2,

(
1
n

m
0 n

)
Z2,

(
n 0
m 1

n

)
Z2
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Examples 4.6 and 4.7 assure the existence of a common convex fundamental do-
main for (BTA)Z2 and Z2 accordingly. Theorem 4.2 ensures that there exists a
smooth and compactly-supported function g′ such that (g′, (BTA)Z2 × Z2) is a
Gabor frame for L2(R2). The matrix M is symplectic, and its associated unitary
operator U from Theorem 2.8 is the dilation

(Uh)(x) = (detB)−
1
2h(B−1x),

see also [Fol89]. Hence, g = U∗g′ ∈ C∞c (R2) and (g,Λ) is a Gabor frame for
L2(R2). �

Using Proposition 3.7, we can extend the result from Theorem 4.8 to a larger
class of 4× 4-block-matrices.

Proposition 4.9 Let Λ =

(
A 0
D B

)
Z4 be a lattice in R4 with A,B ∈ GL(2,R)

such that BTA is of the form given in Theorem 4.8. Then there exists a function
g ∈ C∞c (R2) such that (g,Λ) is a Gabor frame for L2(R2).

Proof. We transform the lattice Λ into a separable lattice AZ2 × BZ2 by
multiplying it by

T =

(
I 0

−DA−1 I

)
Then Theorem 4.8 assures that there exists g̃ ∈ C∞c (R2) such that (g̃, TΛ) is

a Gabor frame for L2(R2). The proof of Proposition 3.7 states that (g,Λ) is a
Gabor frame for L2(R2), where g(t) = e2πi〈DA−1t,t〉g̃(t). Obviously g ∈ C∞c (R2). �

4.3 A pair of lattices which does not allow a common star-
shaped fundamental domain

This construction of windows in C∞c from Sections 4.1 and 4.2 strongly relied
on the existence of a common compact and star-shaped fundamental domain for
a given lattice pair (Λ1,Λ2). Here we provide an example of lattice pair (Λ1,Λ2)
such that Λ1,Λ2 do not have a compact fundamental domain with these properties.
This example illustrates the limitations of the method described in Theorem 4.2.

Proposition 4.10 There exist pairs of lattices in R2, which do not allow a com-
mon star-shaped fundamental domain.

Proof. Assume that there exists a compact star-shaped set Ω′ serving as a
common fundamental domain for the lattices

Λ1 =

(√
2 0

0
√

2
2

)
Z2, Λ2 = Z2.
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Then we would be able for (small enough) ε > 0 to locate Ω ⊂ Ω + B0(ε) ⊂ Ω′

which is a scaled copy of Ω′ by 1√
2

and thus a fundamental domain for

(
1 0
0 1

2

)
Zd

(a consequence of Lemma 4.1 - since

(
1 0
0 1

2

)
Z2 = D 1√

2
Λ1).

Furthermore, because Ω′ tiles Λ2, translates of Ω by Λ2 = Z2 do not have a
common side and are never adjacent (due to the fact that each one is a scaled
copy of Ω′ contained entirely in Ω′).

Now we consider the lattices(
1 0
0 1

2

)
Z2, Z2.

We see that the set Ω =

(
1 0
0 1

2

)
T2 is a fundamental domain for

(
1 0
0 1

2

)
Z2 and

forms a packing for Z2. This set, however, has the drawback that there is no “free
space” under horizontal translations by vectors of the form (n, 0)T , n ∈ Z. We

may hope to find another tiling set for

(
1 0
0 1

2

)
Z2, Ω̃, such that there exists ε > 0

such that Ω̃ +B0(ε) packs Z2. We shall show that this is impossible.

Let Ω be a general fundamental domain for

(
1 0
0 1

2

)
Z2. Consider its corona,

which is the collection of all adjacent (i.e. having at least one point in common)

translates of Ω under vectors ~v ∈
(

1 0
0 1

2

)
Z2. We have Z2 ⊂

(
1 0
0 1

2

)
Z2. If no

element from the corona of Ω is a Z2-translate of Ω, they must all result from
vectors ~v = (n,m + 1

2
)T ,m, n ∈ Z. But then if we take two adjacent translates

T~v1Ω, T~v2Ω from the corona, then ~v1 − ~v2 ∈ Z2. Because the arrangement of the
tiles is invariant under translation by vectors from the set Z2 = Λ2, then T~v1−~v2Ω
is an adjacent to Ω, hence it is in the corona of Ω, which is contradiction. Hence a
Λ2-translate of Ω adjacent to Ω always exists. For every ε > 0, no set Ω′ containing
Ω +B0(ε) as a proper subset can form a packing for Z2. Ω′

However, this is a contradiction coming from the assumption that Λ1,Λ2 have
a common star-shaped fundamental domain. �

4.4 “Janssen’s tie” in 2-D

The intricate structure of Gabor systems based on characteristic functions on the
unit interval is studied in [Jan03]. In two dimensions the behavior of characteristic
functions is even more intricate, as the following examples show:

The pair of lattices considered in Proposition 4.10 have the following interesting
property - for a characteristic function on a bounded domain not the size of a
domain but it spacial orientation determine the Gabor window property.
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Example 4.11 Let Λ = AZ2 × Z2, where A =

(
1 0
0 1

2

)
. Let Ω be a bounded

fundamental domain for AZ2, and g = χΩ + Tj0χΩ, j0 ∈ Z2, j0 6= ~0. Then the
Gabor system (g,Λ) is not a frame for L2(R2).

Proof. As we have seen before, the entries of the cross-ambiguity Gramian
matrix defined in (18) for g = χB are given by

Gi,j(x) =
∑
k∈Z2

g(x− j − Ak)g(x− i− Ak). (30)

Due to the planar arrangement of the support of g, we see that Gi,i(x) = 2 for
almost all x, while Gi,j(x) = 1 for i− j = ±j0 and Gi,j = 0 for all other i, j. It is
easy to see that these coefficients do not depend on the shape of Ω, whence G(x)
is independent of the shape of Ω.

Thus we may at first consider the simplest case, namely Ω = AT2, j0 = (1, 0)T ,
which is a 2 × 1

2
-rectangle with sides parallel to the axes in R2. In this case we

know that g = χ[0,2) ⊗ χ[0, 1
2

). Then (g, AZ2 × Z2) is essentially the tensor Gabor

system of (χ[0,2),Z×Z) and (χ[0, 1
2

),
1
2
Z×Z). But we know that (χ[0,2),Z×Z) is not

a Gabor frame for L2(R2) (this result is stated as Proposition 3.3.2.1. in [Jan03]),
because the lower frame bound is 0. Hence, the tensor system is not a Gabor frame
for L2(R2). In return, the cross-ambiguity matrix G(x) of (g,Λ) is not stable for
almost every x

For another j0 we shall also prove that G(x) is not stable. We fix a natural
number N > 0, and consider f =

∑N−1
s=0 (−1)sTs·j0χΩ. Clearly, ‖f‖2

2 = Nm(Ω).
We compute 〈Sgf, f〉 according to Proposition 2.6.

〈Sgf, f〉 = 〈G(x)f(x), f(x)〉

=

∫
T2

〈G(x)f(x),h(x)〉dx

=
∑
i,j∈Z2

∫
T2

Gi,j(x)Tif(x)Tjf(x)dx

=
∑
i∈Z2

∫
T2

2|Tif(x)|2dx+
∑

(i,j):i−j=±j0

∫
T2

Tif(x)Tjf(x)dx

= 2

∫
R2

|f(x)|2dx+

∫
R2

f(x)Tj0f(x)dx+

∫
R2

f(x)T−j0f(x)dx

= 2〈f, f〉+ 〈f, Tj0f〉+ 〈Tj0f, f〉
= ‖f + Tj0f‖2

2,

(31)

after we have applied the periodization trick several times in the computations (31).
But due to the choice of f , ‖f+Tj0f‖2

2 = 2m(Ω) because f+Tj0f is a telescoping
sum, and supp f+Tj0f = Ω∪TNj0Ω. This implies that for this choice of f , 〈Sgf, f〉
remains constant, whereas ‖f‖2 can vary (because of N). Hence no lower frame
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bound exists for the Gabor family (g,Λ). Thus (g,Λ) is not a frame for L2(R2).
�

Example 4.12 Let Λ = AZ2 × Z2, where A =

(
1 0
0 1

2

)
. Let Ω be a compact

fundamental domain for AZ2, and g = χΩ ∪ Tj0χΩ, where j0 ∈ AZ2 \ Z2. Then
(g,Λ) is a tight frame for L2(R2).

Proof. We consider again the cross-ambiguity Gramian matrix defined in (18)
for g, whose coefficients are given by

Gi,j(x) =
∑
k∈Z2

g(x− j − Ak)g(x− i− Ak). (32)

We note that unless i = j, suppTi+Akg and suppTj+Akg are disjoint because
g = χΩ ∪ Tj0χΩ, where j0 ∈ AZ2 \ Z2 and Ω is a fundamental domain for AZ2.
Therefore, the matrix G(x) is diagonal. Then we obtain that the diagonal entry

Gi,i(x) =
∑
k∈Z2

|g(x− Ak − i)|2 = G0,0(x) = 2,

for almost all x. Therefore, Proposition 2.7 guarantees that (χB,Λ) is a tight
frame for L2(R2). �

5 Multivariate Gaussian Gabor frames

In this section we study several examples of multivariate Gabor Gaussian systems.
We denote by γn the standard n-dimensional Gaussian function. Clearly,

γn =
⊗
n times

γ1.

A big goal is to give a criterion on lattices Λ ⊂ R2d which determines whether
(γn,Λ) is a Gabor frame for L2(Rd). For d = 1 the problem is solved.

If d = 1, the problem is solved. Its solution depends on the concept of density
d(Λ) of a lattice Λ. In fact, the following theorem has been proven in [SW92]:

Theorem 5.1 The family (γ1,Λ), for a discrete set Λ ⊆ R2, is with respect to
L2(R)

• a frame if D(Λ) > 1;

• complete but not a frame if D(Λ) = 1;

• a Riesz sequence if D(Λ) < 1.
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In higher dimensions a similar characterization is not trivial, and only very little
is known. In higher dimensions, pretty much all that is known is that the above
result does not hold in full. What remains true though is

Theorem 5.2 The family (γd,Λ), where Λ ⊆ Rd, is with respect to L2(Rd)

• not a frame if D(Λ) = 1;

• not complete if D(Λ) > 1;

We provide some examples, and discuss an alternative criterion, called sym-
plectic capacity. First we recall some theory which is applicable to the study of
Gabor frames.

5.1 Tensor frames

The easiest way to create frames for spaces of functions in higher dimensions
is to take tensor products. In this section we present some results on tensor
products of Gabor frames. For n lattices Λ1, . . . ,Λn of the same dimension, we set
�ni=1Λi = {(x1, . . . , xn)× (ω1, . . . , ωn) : (xi, ωi) ∈ Λi}.

Lemma 5.3 Let (g1,Λ1) and (g2,Λ2) be frames for L2(Rd). Then (g1⊗g2,Λ1�Λ2)
is a frame for L2(R2d).

Proof. Let f = f(x, y) ∈ L2(R2d), λ ∈ Λ1, µ ∈ Λ2. Then we have

π(λ, µ)(g1 ⊗ g2)(x, y) = π(λ)g1(x) · π(µ)g2(y).

We compute ∑
λ,µ

|〈f, π(λ, µ)(g1 ⊗ g2)〉|2

=
∑

(λ,µ)∈Λ1×Λ2

∣∣∣∣∫∫ f(x, y) π(λ)g1(x)π(µ)g2(y) dxdy

∣∣∣∣2
=

∑
(λ,µ)∈Λ1×Λ2

∣∣∣∣∫ 〈Fy, π(λ)g1〉π(µ)g2(y) dy

∣∣∣∣2, (33)

where we set Fy(x) = f(x, y) and

〈Fy, π(λ)g1〉 =

∫
f(x, y)π(λ)g1(x) dx.

The function f ∈ L2(R2d, d(x, y)), which implies that for almost every y,
Fy(x) = f(x, y) ∈ L2(Rd, dx). This is due to the Fubini theorem (the function
|f |2 ∈ L1(R2d, d(x, y)), hence |Fy|2 ∈ L1(R2d, dx) for almost every y, hence for
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almost every y, Fy ∈ L2(Rd, dx).Then applying the frame inequality (g1,Λ1) to
Fy, we obtain that for some a, b > 0 and almost every y ∈ Rd

a‖Fy‖2
L2(Rd,dx) = a

∫
|Fy(x)|2dx

≤
∑
λ∈Λ1

|〈Fy, π(λ)g1〉|2

≤ b‖Fy‖2
L2(Rd,dx)

= b

∫
|Fy(x)|2dx

We also want to show that the function φλ(y) = 〈Fy, π(λ)g1〉 ∈ L2(Rd, dy).
Essentially φλ(y) = Vg1Fy(λ). We compute in turn

‖φλ‖2
L2(Rd,dy) =

∫
|〈Fy, π(λ)g1〉|2dy

≤
∫ ∑

λ′∈Λ1

|〈Fy, π(λ′)g1〉|2 dy ≤ b

∫
‖Fy‖2

L2(Rd,dx)dy (34)

= b

∫ ∫
|f(x, y)|2dxdy

= b‖f‖2
2 <∞ (35)

Thus, φλ ∈ L2(Rd, dy). Next we rearrange terms in (33) so that we try to estimate
by Tonnelli the following summation

∑
(λ,µ)∈Λ1×Λ2

∣∣∣∣∫∫ f(x, y) π(λ)g1(x)π(µ)g2(y) dxdy

∣∣∣∣2
=

∑
(λ,µ)∈Λ1×Λ2

∣∣∣∣∫ 〈Fy, π(λ)g1〉π(µ)g2(y) dy

∣∣∣∣2 (36)

=
∑
λ∈Λ1

∑
µ∈Λ2

∣∣∣∣∫ φλ(y)π(µ)g2(y) dy

∣∣∣∣2 (37)

=
∑
λ∈Λ1

∑
µ∈Λ2

|〈φλ, π(µ)g2〉|2 (38)

Because φλ ∈ L2(Rd, dy) and (g2,Λ2) is a frame for L2(Rd, dy), there exists con-
stants c, d > 0 such that

c‖φλ‖2
L2(Rd,dy) ≤

∑
µ∈Λ2

|〈φλ, π(µ)g2〉|2 ≤ d‖φλ‖2
L2(Rd,dy), λ ∈ Λ1 (39)
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Using (39) into the summations of (38), we obtain

c
∑
λ∈Λ1

‖φλ‖2
L2(dy) ≤

∑
(λ,µ)∈Λ1×Λ2

∣∣∣∣∫∫ f(x, y) π(λ)g1(x)π(µ)g2(y) dxdy

∣∣∣∣2
≤ d

∑
λ∈Λ1

‖φλ‖2
L2(dy)

(40)

These are a preliminary upper and lower bounds on the quantity we want. Fur-
thermore,

‖φλ‖2
L2(dy) =

∫
|〈Fy, π(λ)g1〉|2dy

Therefore, equation (40) can be rewritten as

c
∑
λ∈Λ1

∫
|〈Fy, π(λ)g1〉|2dy ≤

∑
λ,µ

∣∣∣∣∫∫ f(x, y) π(λ)g1(x)π(µ)g2(y) dxdy

∣∣∣∣2
≤ d

∑
λ∈Λ1

∫
|〈Fy, π(λ)g1〉|2dy

(41)

and from (35), we know already that∫ ∑
λ′∈Λ1

|〈Fy, π(λ′)g1〉|2 dy <∞

so first Tonelli’s and then Fubini’s theorem allow us to interchange the order of
summation and integration in (41), so we obtain

c

∫ ∑
λ∈Λ1

|〈Fy, π(λ)g1〉|2dy

≤
∑

(λ,µ)∈Λ1×Λ2

∣∣∣∣∫∫ f(x, y) π(λ)g1(x)π(µ)g2(y) dxdy

∣∣∣∣2
≤ d

∫ ∑
λ∈Λ1

|〈Fy, π(λ)g1〉|2dy

(42)

Since the quantities on the left- and right-hand side of the inequality signs can
be simplified using the frame inequalities for (g1,Λ1) in L2(Rd, dx), we obtain
consequently

a

∫
|f(x, y)|2dx ≤

∑
λ∈Λ1

|〈Fy, π(λ)g1〉|2 ≤ b

∫
|f(x, y)|2dx

a

∫∫
|f(x, y)|2dxdy ≤

∫ ∑
λ∈Λ1

|〈Fy, π(λ)g1〉|2dy ≤ b

∫∫
|f(x, y)|2dxdy
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A substitution in (41) gives us finally,

ac

∫∫
|f(x, y)|2dxdy ≤

∑
(λ,µ)∈Λ1×Λ2

∣∣∣∣∫∫ f(x, y) π(λ)g1(x)π(µ)g2(y) dxdy

∣∣∣∣2(43)

≤ bd

∫∫
|f(x, y)|2dxdy (44)

Therefore, we have proved that in (37) Tonnelli’s theorem is applicable, which
brings us to the desired result. �

5.2 Symplectic capacity

We introduce a concept from symplectic geometry which might turn useful for
making classifications such as that in Theorem 5.1. The ball centered at the
origin and of radius r in R2d is denoted by B2d

r .
Examples given in the following section as well as general experience with time-

frequency analysis, imply that Theorem 5.1 might actually generalize to higher
dimensions in a canonical way, if we change the criterion on the density of the
lattice Λ by a concept involving the ideas of a symplectic capacity. This is defined
for bodies in Rd, see [Hof90], and this definition would yield that each lattice
(a discrete set) has symplectic capacity 0 in the classical sense. The following
represent some attempts at re-defining this quantity

Definition 5.4 ‘Capacity of a lattice’ can be defined in two possible ways:

1. The symplectic capacity of a lattice Λ is given by

c(Λ) = c(MZ2d) = sup
P symplectic plane

{
area

(
MTd ∪ P

)}
,

that is, the area of largest intersection of a fundamental domain with a sym-
plectic plane.

2. The linear symplectic capacity c(Λ) of a lattice Λ = MZ2d is given by the
linear symplectic capacity c(WM) of the Wigner ellipsoid WM = {z : M−1z ·
z ≤ 1}, that is,

c(Λ) = sup{πr2 : A(B2d
r ) ⊆ WM , A ∈ Sp(d)}.

At this time, we still do not know how to define the symplectic capacity of a
lattice. The above definitions probably have to be corrected. In fact, it is not clear
whether our approach is well defined, for example, in the second case whenever
MZ4 = M ′Z4 for M 6= M ′, must imply that c(WM) = c(WM ′). In fact, if we

consider M = I and M ′ =
(

1 100
0 1 0

0 I

)
, then c(WM) = 1, while the set WM ′ is not

an ellipsoid but a hyperboloid, so its capacity should be infinite!
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5.3 Examples

The following propositions illustrate the peculiar behavior of the Gaussian function
in higher dimensions. For a lattice Λ in R2d parametrized by a diagonal matrix
is not difficult to characterize the lattice parameters so that (γn,Λ) is a frame for
L2(Rd).

Proposition 5.5 Let Λ = Z2 ×
(
a 0
0 b

)
Z2. If a < 1 and b < 1, then (γ2,Λ) is a

frame for L2(R2). If a = b = 1, (γ2,Λ) is complete in L2(R2), but not a frame. If
a > 1 or b > 1, then (γ2,Λ) is incomplete.

Proof. If a < 1, b < 1, then the result from [Lyu92], [SW92] tells us that
(γ1,Z×aZ) and (γ1,Z× bZ) are frames for L2(R). Lemma 5.3 implies that (γ2,Λ)
is a frame for L2(R2).

To show completeness of the Gabor system, for a = b = 1 we observe that for
(x, ω) = (x1, x2, ω1, ω2)

Zγ2(x, ω) = Zγ1(x1, ω1) · Zγ1(x2, ω2) (45)

Because (γ1,Z×Z) is complete in L2(R), but not a frame, according to Proposition
9.4.3 in [Chr03], Zγ1 vanishes on a set of measure zero in [0, 1)2. Hence, the
Zak transform Zγ2 vanishes only on a set of zero measure in [0, 1)4. According
to Proposition 9.4.3 in [Chr03], (γ2,Z2 × Z2) is complete. Furthermore, since
γ2 ∈ S(R2), its Zak transform is continuous. Hence, it is not bounded away from
0 almost everywhere. Proposition 8.3.2 in [Grö01] implies that the Gabor system
(γ2,Z2 × Z2) is not a frame for L2(R2).

If a > 1 or b > 1, say b > 1, then (γ1,Z×bZ) is incomplete in L2(R). Hence we
can choose f1 ∈ L2(Rd), f1 6= 0 such that Vγ1f1(m1, bm1) = 0 for all (m1, n1) ∈ Z2.
Then for any f2 ∈ L2(R), f2 6= 0, the STFT

Vγ2(f1 ⊗ f2)(m1,m2, an1, bn2) = Vγ1(m1, an1)Vγ1(m2, bn2) = 0. (46)

But f1 ⊗ f2 6= 0, so (γ2,Z× Z× aZ× bZ) is incomplete. �
A more general statement in this spirit is

Proposition 5.6 The Gabor system (γn,�2d
j=1λjZ) is incomplete in L2(Rd) if for

some j, j′ : |j− j′| = d, |λjλj′| > 1, complete but not a frame if for some j, j′ : |j−
j′| = d, |λjλj′| = 1, and a frame for L2(Rd) if for all j, j′ : |j − j′| = d, |λjλj′| < 1.

Proof. The proof combines Lemma 5.3 with the ideas from the proof of Propo-
sition 5.5. �
Remark: In this case the criterion ‘symplectic capacity of a lattice’ as defined by
Definition 5.4, 2. coincides with the condition of Proposition 5.6. We illusrate this
in more detail. By definition, the linear symplectic capacity is invariant under
symplectic maps, that is, c(U) = c(SU) for any set U and S ∈ Sp(d). Hence,
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rather than considering the Wigner ellipsoid WM , we can consider WSM , where
we choose

S = diag

(√
λd+1

λ1

, . . . ,

√
λd
λ2d

,

√
λ1

λd+1

, . . . ,

√
λd
λ2d

)
∈ Sp(d)

Hence, for M = diag(λ1, . . . , λ2d), and M ′ = SM , we have

(M ′)−1z · z =


(λ1λd+1)−

1
2 x1

...
(λdλ2d)−

1
2 xd

(λ1λd+1)−
1
2 ξ1

...
(λdλ2d)−

1
2 ξd

 ·


x1
x2

...
xd
ξ1
ξ2
...
ξd


= (λ1λd+1)−

1
2 (x2

1 + ξ2
1) + . . .+ (λdλ2d)

− 1
2 (x2

d + ξ2
d),

and we can conclude that c(MZ2d) = c(M ′Z2d) = π
(

max{(λjλj+d)−
1
2 }
)−2

=

πmin {|λjλj+d| }.
For lattices parametrized by non-diagonal matrices criteria are different. The

next example is non-trivial.

Proposition 5.7 Let Λ = Z2×
(
a a
−b b

)
Z2. Then the Gabor system (γ2,Λ) is a

frame for L2(R2) if a, b < 1
2
. If a = b = 1

2
, (γ2,Λ) is complete, but not a frame for

L2(R2). If a, b > 1
2
, (γ2,Λ) is incomplete.

Proof. The lattice

Λ = Z2 ×
(
a a
−b b

)
Z2

is separable. A simple calculation shows that for F = f1 ⊗ f2 ∈ L2(R2),

Vγ2F (m1,m2, a(n1 + n2), b(n2 − n1))

= 〈f1 ⊗ f2, Tm1,m2Ma(n1+n2),b(n2−n1)γ2〉
= 〈f1, Tm1Ma(n1+n2)γ1〉〈f2, Tm2Mb(n2−n1)γ1〉
= Vγ1f1(m1, a(n1 + n2)) · Vγ1f2(m2, b(n2 − n1))

If n1, n2 are of the same parity, then n1 ± n2 is always even, otherwise n1 ± n2 is
odd. Hence, if

a, b >
1

2

after [Lyu92], [SW92] we can choose a nonzero f1 ∈ L2(R) such that

Vγ1f1(m1, a(n1 + n2)) = 0, ∀m1, ∀(n1, n2) : 2 | n1 − n2,
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and a nonzero f2 ∈ L2(R) such that

Vγ1f2(m2, b(n2 − n1)) = 0, ∀m2, ∀(n1, n2) : 2 - n1 − n2.

Then F = f1 ⊗ f2 6= 0 but

VγF (m1,m2, a(n1 + n2), b(n2 − n1)) = 0, ∀m1,m2, n1, n2.

This is due to density of the respective Gabor systems being greater than 1.
Therefore, the system (γ2,Λ) is incomplete for all a, b > 1

2
.

We note further that

Λ = {(m1,m2, 2ak1, 2bk2)T : m1,m2, k1, k2 ∈ Z}
∪ {(m1,m2, 2ak1 + a, 2bk2 + b)T : m1,m2, k1, k2 ∈ Z}.

If a, b = 1
2
, the system (γ2,Λ) is complete in L2(R2), because it is the union of two

complete systems in L2(R2). However, it is not a frame for L2(R2). After [Lyu92],
[SW92] we can choose ε > 0 and f1, f2 ∈ L2(R) with unit norm such that∑

k,l∈Z

|Vγ1f1(k, l)|2 < ε,
∑
k,l∈Z

|Vγ1f2(k, l + 1
2
)|2 < ε.

Then letting F = f1 ⊗ f2, it is not difficult to see that∑
m1,m2,n1,n2

|Vγ2F (m1,m2,
1
2
(n1 + n2), 1

2
(n2 − n1)|2

=
∑

m1,m2,n1, n2︸ ︷︷ ︸
2|n1−n2

|Vγ2F (m1,m2,
1
2
(n1 + n2), 1

2
(n2 − n1)|2

+
∑

m1,m2,n1, n2︸ ︷︷ ︸
2-n1−n2

|Vγ2F (m1,m2,
1
2
(n1 + n2), 1

2
(n2 − n1)|2

≤
∑
k,l∈Z

|Vγ1f1(k, l)|2 ·
∑
k,l∈Z

|Vγ1f2(k, l)|2

+
∑
k,l∈Z

|Vγ1f1(k, l + 1
2
)|2 ·

∑
k,l∈Z

|Vγ1f2(k, l + 1
2
)|2 < 2Cε,

where C is the `2-norm of the Gabor analysis operator Dγ1,Z2 . Dγ1,Z2 is bounded
by Proposition 12.2.5 [Grö01] because γ1 ∈M1(R).

Therefore, while the ‖F‖2 = 1,∑
m1,m2,n1,n2

|Vγ2F (m1,m2,
1
2
(n1 + n2), 1

2
(n2 − n1)|2 ≤ 2Cε,

implying that (γ2,Λ) has no lower frame bound. Thus the system (γ2,Λ) is not a
frame for L2(R2).
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If a, b < 1
2
, then (γ2,Λ) is a frame for L2(R2), because it is the union of two

frames for L2(R2). �
Remark: The symplectic capacity in this case is quite difficult to compute. Fur-
thermore, we have not been able to characterize the cases a > 1

2
, b < 1

2
or

a < 1
2
, b > 1

2
.

Proposition 5.8 Let Λ = Z2 ×
(
ak a
0 b

)
Z2, k ∈ N. Then the Gabor system

(γ2,Λ) is incomplete if there exists l ∈ N such that a > l
k
, b > k−l

k
.

Proof. We split the lattice points of Λ into k disjoint sets: Λ = {(akm1 +
am2, bm2, n1, n2) : m1,m2, n1, n2 ∈ Z} according to the remainder of m2 by divi-
sion by k, that is

Λ =
k−1⋃
d=0

{(akm1 + akm′2 + ad, bkm′2 + bd, n1, n2) : m1,m
′
2, n1, n2 ∈ Z},

where m2 = km′2 + d, 0 ≤ d ≤ k − 1. Let m′1 = m1 + m′2. As there exists l ∈ N
such that a > l

k
, b > k−l

k
we can rewrite this as

Λ =
l−1⋃
d=0

{(akm′1 + ad, bkm′2 + bd, n1, n2) : m′1,m
′
2, n1, n2 ∈ Z}

∪
k⋃
d=l

{(akm′1 + ad, bkm′2 + bd, n1, n2) : m′1,m
′
2, n1, n2 ∈ Z}.

(47)

Let F = f ⊗ g. Then the STFT of F with respect to γ2 factorizes into a product

Vγ2F = Vγ1f(akm′1 + ad, n1) · Vγ1g(bkm′2 + bd, n2).

We shall now suitably choose f, g so that the above product becomes identically
zero. The density of the set

l−1⋃
d=0

{(akm′1 + ad, n1) : m′1, n1 ∈ Z}

equals l
ak

, while that of

k−1⋃
d=l

{(bkm′2 + bd, n2) : m′2, n2 ∈ Z}

equals k−l
bk

(because these sets are finite unions of translates of the same set).
According to our assumptions on a, b both densities are less than 1. Hence af-
ter [Lyu92], [SW92] there exists f 6= 0 such that

Vγ1f(akm′1 + ad, n1) = 0, ∀m′1, n1 ∈ Z, 0 ≤ d ≤ l − 1;
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and g 6= 0 such that

Vγ1g(bkm′2 + bd, n2) = 0, ∀m′2, n2 ∈ Z, l ≤ d ≤ k − 1.

This choice of f, g annihilates the STFT Vγ2F on the first and the second com-
ponent of partition (47) of Λ. Therefore, for F 6= 0, Vγ2F vanishes on all of Λ
implying that the Gabor system (γ2,Λ) is incomplete. �
Remark: The range of parameters k, l, where the condition from Proposition 5.8
is stronger than the density condition is quite small if k > 4. If k ≥ 5, the only
values of l for which

1

k
> ab >

l

k
· k − l

k

are l = 1, k − 1 because always 2(k − 2) > k.
Generalizing the ideas underlying Proposition 5.7 leads to a result for lattices

Λ with a particular subgroup structure:

Theorem 5.9 Let �di=1AiZ2 be a subgroup of Λ ⊂ R2d of index n. If there exist
natural numbers li, 1 ≤ i ≤ d, such that

∑d
i=1 li = n and li < detAi, then the

system (γd,Λ) is incomplete in L2(Rd).

Proof. We split the n cosets of �di=1AiZ2 into d groupings ∆1, . . . ,∆d such that
|∆i| = li. ∆i contains coset representatives denoted by [τ ]. We have

Λ =
d⋃
i=1

⋃
[τ ]∈∆i

{A1Z2 × . . .× AdZ2}+ [τ ],

The short-time Fourier transform of the tensor product ⊗di=1fi factorizes, namely

Vγd(⊗di=1fi)(x, ω) =
d∏
i=1

Vγ1fi(xi, ωi),

where (xi, ωi) ∈ AiZ2 + [τi], [τi] being the coset representative of AiZ2 in the
restriction of �di=1AiZ2 to AiZ2. As the density of the set

Ui =
⋃

[τ ]∈∆i

AiZd + [τi], 1 ≤ i ≤ d

is liD(Ai) < 1, the results of [Lyu92], [SW92] apply and non-zero functions fi ∈
L2(R) can be chosen so that Vγ1fi(xi, ωi) = 0, for all (xi, ωi) ∈ Ui. Then as in
Proposition 5.7 we conclude that Vγd(⊗di=1fi) vanishes on all of Λ, but ⊗di=1fi 6= 0.
Hence, this Gabor system is incomplete in L2(Rd). �

Remark : If Λ satisfies the hypothesis of Theorem 5.9, then the density theorem
implies incompleteness if D(Λ) = n

∏d
i=1

1
detAi

< 1, that is, if
∏d

i=1 detAi >
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n. Hence, for Theorem 11 to be effective, we need to combine the condition∏d
i=1 detAi ≤ n with the condition detAi > li and

∑d
i=1 li = n. This leads to

d∏
i=1

li <

d∑
i=1

li. (48)

Assuming without loss of generality the order l1 ≥ l2 ≥ . . . ≥ ld > 0, we divide
(48) by l1 and observe that then

∏d
i=2 li < d. As all li are positive integers, we

conclude that l2 = l3 = l4 = . . . = ld = 1 and l1 = n− d+ 1.
Note that theorem 5.9 implies the incompleteness in Proposition 5.7 when

both a, b > 1
2

because (Z × 2aZ) � (Z × 2bZ) is a subgroup of Λ of index 2 and
l1 = l2 = 1 < 2a, 2b. Next we construct an example for 3-dimensional Gaussian.

Proposition 5.10 Let Λ = Z3×

 a a 0
−b b 0
0 0 c

Z3. Then the Gabor system (γ3,Λ)

is a frame for L2(R3) if a, b < 1
2
, c < 1. If a = b ≤ 1

2
, c = 1, (γ3,Λ) is complete,

but not a frame for L2(R3). If a, b > 1
2

or c > 1, (γ3,Λ) is incomplete.

Proof. We choose F = f1⊗f2⊗f3 ∈ L2(R3) in order to apply a tensor argument
as (46). When a, b > 1

2
, the claim follows immediately from Proposition 5.7.

When c > 1, it suffices to choose f3 which is in the orthogonal complement of
{TmMcnγ1 : m,n ∈ Z} and repeat the same line of reasoning.

Whenever a, b < 1
2
, c < 1, then (γ3,Λ) is a frame, because it is the product of

two frames (see Lemma 5.3 and Proposition 5.7). �
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