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ABSTRACT
The classical Shannon-Nyquist theorem allows regular sam-
pling of bandlimited signals. Recently, this result was gener-
alized to sampling of channels with delay-Doppler occupancy
pattern of area less than one, resolving Bello’s conjecture in
positive. In this paper, it is shown that stochastic channels pos-
sess a similar property, namely, that we can characterize the
channel as long as the support of its scattering function has
area less than one. This holds for rectangular as well as non-
rectangular regions, allowing sampling of channels classically
considered overspread.
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1. INTRODUCTION

Operator identification is a common goal in several applied dis-
ciplines. In radar detection, we are interested in the identifica-
tion of a target. A known waveform is transmitted towards a
target, and the echo is used to recognize it. In wireless as well
as wired communications and acoustic telemetry, the properties
of the channel between the transmitter and the receiver have to
be known to facilitate the communication. Similarly, in signal
processing it is usually assumed that a signal is passed through
a filter, whose parameters have to be determined from the out-
put. Commonly, such systems are modeled with a time-variant
linear operator acting on a space of signals. Due to Doppler
shifts and multi-path propagation the echo is a sum of time-
frequency shifts of the sent signal. More generally, we observe
a continuum of scatterers. Then the channel is represented by
an operator with a superposition integral

(Hf)(x) =

∫∫
η(t, ν)TtMνf(x) dt dν,

where Tt is a time-shift by t, that is Ttf(x) = f(x − t), t ∈
R, Mν is a frequency shift or modulation given by Mνf(x) =

e2πiνxf(x) (it follows that M̂νf(x) = f̂(ω−ν) for all ω ∈ R̂ =
R). The function η(t, ν) is called a (Doppler-delay) spreading
function of H . If we denote the time-impulse response of H
related to η(t, ν) via

η(t, ν) =

∫
h(t, x)e−2πiν(x−t) dx

then we obtain the linear time-variant (LTV) operator model:

(Hf)(x) =

∫
h(x, t)f(x− t) dt.

The conditions under which such operator (or, equivalently,
its spreading function) is identifiable have long been of interest
to the scientific community. In 1963, T.Kailath [7] realizes that
for a deterministic time-variant channel to be identifiable, it is
necessary and sufficient that the product BL of the maximum
time delay L and maximum Doppler spread B is not greater
than 1. If BL < 1, the channel is said to be underspread, and
overspread if BL > 1 [15, 7]. His arguments have been made
precise in Kozek and Pfander [9].

Following in Kailath footsteps, P.Bello in his seminal paper
[3] lays the groundwork for channel sampling and characteri-
zation tools and vocabulary, and in [4] he argues that it is not
the product BL that matters for identification of a determinis-
tic time-variant channel, but rather the area of what he calls an
occupancy pattern supp ηH , that is, a not necessarily rectangu-
lar support of the spreading function. In [11] this conjecture
has been given a mathematical framework and was proven us-
ing tools from Gabor analysis. See section 2, Theorem 4 for a
full statement of this result. This has profound importance as it
significantly extends the class of systems that can be considered
“underspread” and identifiable, a fact which is particularly of
interest in the field of sonar communication [8]. The speed of
sound is much lower than electromagnetic waves, which leads
to time delays up to several seconds and Doppler spreads in the
tens of Hertz for high-frequency channels [2].

An alternative model, also set up and discussed in [6, 7, 3, 4],
is the stochastic time-variant operator. In this setting, h(t, x),
and hence, the spreading function η(t, ν), is a sample func-
tion of some random process. A popular assumption, stemming
from Bello and Proakis [3, 14], is the wide-sense stationarity
with uncorrelated scattering (WSSUS) of the channel. Namely,
the autocorrelation function of η is of the form

Rη(t, ν; t′, ν′) = E {η(t, ν)η∗(t′, ν′)}
= δ(t− t′)δ(ν − ν′)Pη(t, ν),

where Pη(t, ν) is known as the scattering function of H . It
completely characterizes the second-order statistics of η and
represents the power spectral density of the transfer function
of the channel.



The problem of identifying the channel can still be posed
in this stochastic setting to determine the channels parameters
h(t, x) or η(t, ν) based on the echo from the transmission of
a known sounding signal. A classical problem that is closely
related to identifying the operator is to estimate the scattering
function and other functions alike. There, the quantity of inter-
est is not the operator itself, but its average behavior. A mul-
titude of authors, including Kailath and Bello have suggested
methods to do that [1, 5, 10], two common types being decon-
volution and direct measurement methods. However, it is clear
that the complete identification of the stochastic spreading func-
tion guarantees identification of the scattering function exactly,
or a straightforward estimator of it via ensemble averaging.

The evolution of the condition on the channel that guaran-
tees the identification follows the development of the determin-
istic case. A brief comment of Kailath suggests sufficiency of
BL ≤ 1, and Bello treats this question as a side matter, more in-
terested in developing the estimator for η(t, ν) when the output
has been contaminated by additive noise. The reconstruction
formula due to Pfander and Walnut [11] allows us to recover a
sample spreading function from the echo. We generalize this
result to the stochastic operator setting. We can prove that it
is possible to recover the stochastic spreading function of the
channel in the mean-square sense provided that the support of
the scattering function suppPη(t, ν) occupies a region of area
less than one. We provide an explicit reconstruction formula
for it from the periodic samples of the echo of a specially con-
structed weighted delta train sounding signal.

2. DETERMINISTIC CHANNELS

The Shannon-Nyquist theorem allows sampling of signals
which are bandlimited, that is, whose Fourier transform is sup-
ported on a bounded set [−Ω/2,Ω/2]. Formally, any such func-
tion f from the Paley-Wiener space PW([−Ω/2,Ω/2]) is com-
pletely characterized by its periodic samples taken at a rate at
least T = Ω−1, where

PW(S) := {f ∈ L2(R) : supp f̂ ⊆ S}.

The reconstruction of f is achieved with

f(x) =
∑
n∈Z

f(nT ) sincT (x− n),

where sinc(x) := (πx)−1 sinπx (which is notable for its
Fourier transform χ[−1/2,1/2](x)).

In the context of the sampling theory of operators, the oper-
ators that allow an analogous reconstruction formula [13] must
be “bandlimited” to a region in the time-frequency plane whose
area is less than one. We will need the following definitions.

Definition 1. The operator Paley-Wiener space is defined as

OPW(S) := {H : L2(R)→ L2(R) such that

σH ∈ L2(R2), suppFsσH ⊆ S},

where Fs : L2(R2) → L2(R2) is the symplectic Fourier trans-
form given by

Fsf(t, ν) =

∫∫
f(x, ξ)e−2πi(νx−ξt) dx dξ

and σH(ν, ξ) is the Kohn-Nirenberg symbol of the operator H
which is defined by

σH(ν, ξ) := F−1
s η(t, ν).

In other words, the space OPW(S) contains precisely those
operators whose occupancy region, that is, the support of the
spreading function η(t, ν), is contained in S. It is important to
notice that due to the compact support of η(t, ν), it is possible
to extend the domain of H to include some tempered distribu-
tions, in particular, the delta train XT (x) =

∑
k∈Z δkT (see

[12, Prop.4.2]).
In the case where the occupancy region is rectangular, the

exemplary result is the following:

Theorem 2. For H ∈ OPW([0, T ) × [−Ω/2,Ω/2]) such that
TΩ ≤ 1, we can reconstruct the kernel

κH(t+ x, x) =
∑
n∈Z

(H
∑
k∈Z

δkT )(t+ nT ) sincT (x− n)

with convergence in L2(R2).

In the general case of the non-rectangular regions we need
the following definition to measure the spread factor.

Definition 3. Let S ⊂ R × R̂ be bounded and let µ be the
Lebesgue measure on R× R̂. We define Jordan inner and outer
measures of S via

µ−(S) = inf{µ(U) : U ⊇ S,U is a finite union of rectangles}

µ+(S) = sup{µ(U) : U ⊆ S,U is a finite union of rectangles}

If µ+(S) = µ−(S), we say that S is Jordan measurable.
Clearly, every Jordan measurable set is Lebesgue measurable,
and µ+(S) = µ−(S) = µ(S).

The method of proof in the non-rectangular case requires S
to be bounded: S ⊂ [0, T ] × [−Ω/2,Ω/2] with TΩ not nec-
essarily smaller than 1. It would be interesting to extend this
result to the unbounded domains.

By [11, Proposition 2.2], there exists a prime number L >
TΩ such that S can be covered with L integer translations of
the base rectangle R = [0, TL )× [−Ω/2,−Ω/2 + 1

T ).

S ⊆
L⋃
j=1

R+ (
qjT

L
,
kj
T

), such that (qj , kj) ∈ Z2.

The following key theorem proven by Pfander and Walnut
[11, 13] extends the Kailath’s rectangular underspread condition
TΩ < 1 to the essentially arbitrary regions.



Theorem 4. Let S ⊂ R × R̂ as above. If µ−(S) > 1, then
OPW (S) is not identifiable. If µ+(S) < 1, then OPW(S) is
identifiable via operator sampling, and the identifier is of the
form

g =
∑
n

cnδn/L,

where L > TΩ a prime number, and {cn} is an appropriately
chosen L−periodic sequence. Moreover, there exist coefficients
aj,k determined by the choice of the sequence {cn} such that

hH(t, x) =

L−1∑
j=0

∑
k∈Z

aj,k(Hg)(t− qi − k
L

)

× rj(t)ϕj(x− t−
qj + k

L
) (1)

unconditionally in L2(R2).

Here, the rj(t) and ϕj(x) are “mollified rectangular” func-
tions such that

rj(t)ϕ̂j(ν) = 1

on Rqj ,mj
and vanishes outside a small neighborhood of it.

3. STOCHASTIC CHANNELS

It is well known that the bandlimited stationary stochastic pro-
cesses can be sampled in the same way as the deterministic
functions.

Theorem 5. If x(t) is bandlimited, that is, its power density
spectrum is integrable and S(ω) = 0 for all |ω| > Ω/2, then
we can recover x(t) from the samples taken at a rate T = Ω−1

x(t)
m.s.
=

∑
n∈Z

x(nT ) sincT (x− n).

It turns out that the sampling of operators can be similarly
generalized to a class of stochastic operators. Here we report on
our results.

Definition 6. We will say H belongs to a stochastic operator
Paley-Wiener space, or H ∈ StOPW (S) if its scattering func-
tion Pη(t, ν) is supported on S:

StOPW(S) := {H : h(x, t) is WSSUS random process,

and suppPη(t, ν) ⊆ S, Pη(t, ν) ∈ L1(R2)}.

From the definition of the scattering function it follows that
|η(t, ν)|2 m.s.

= 0 for all (t, ν) 6∈ S. In addition, a sample spread-
ing function η(t, ν) ∈ L2(R2) almost surely, and the operator
H is well-defined. In parallel with the development of the sam-
pling theory of deterministic operators, we first focus on the
case when the support of the scattering function is rectangular.
A direct analogue of Theorem 2 is the following.

Theorem 7. For H ∈ StOPW([0, T ) × [−Ω/2,Ω/2]) such
that TΩ ≤ 1, we can reconstruct the kernel for all x, t ∈ R:

κ(x+ t, x)
m.s.
= χ[0,T )(t)

∑
n∈Z

(H
∑
k∈Z

δkT ) sinc Ω(x− nT ).

A case when the support of the scattering function S is not
confined to a rectangle of area one is rather more interesting. If
S ⊂ [T0, T0 +T )× [Ω0,Ω0 + Ω), with TΩ not necessarily less
than 1, as in Theorem 4, there exists a prime number L > TΩ
and a finite union of the integer translations of the base rectangle
R = [T0, T0 + T

L )× [Ω0,Ω0 + 1
T ) that cover S completely:

S ⊆
L⋃
j=1

R+ (
qjT

L
,
kj
T

), such that (qj , kj) ∈ Z2.

Theorem 8. Given a stochastic operator H ∈ StOPW(S)
with a spreading function representation

Hf(x) =

∫∫
η(t, ω)TtMωf(x) dt dω

and S as above, µ+(S) < 1, there exists a vector of complex
weights c ∈ CL such that we can reconstruct H from its re-
sponse to a L−periodic c−weighted delta train

f(x) =

L−1∑
q=0

cq
∑
m∈Z

δ
m+ q

L +
T0
T

via

η(x, ν)
m.s.
=

L−1∑
j=0

L−1∑
p=0

apj(c)

× (Z ◦H(f))(
x− T0

T
+
p− qj
L

, (ν − Ω0)T −mj)

× e2πi((ν−Ω0)T−mj)(p−qj)/LχR(x− qjT

L
, ν − kj

T
), (2)

where Zf(x, ν) is the Zak transform

Zf(x, ν) =
∑
n∈Z

f(x− n)e2πinν ,

χR is the characteristic function

χR(x, ν) =

{
1, (x, ν) ∈ R,
0, (x, ν) 6∈ R,

and the coefficients aj,k are determined by the choice of the
sequence {cn}.

Similarly to the Theorem 4, a characteristic function can be
replaced with an infinitely smooth function

rj(t)ϕ̂j(ν) =

{
1, (x, ν) ∈ E,
0, outside of a small neighborhood of E.



The coefficients aj,k are given with an explicit construction via
straightforward inversion of the matrix populated by those time-
frequency shifts of the vector c that correspond to the positions
of the covering rectanglesR+(

qjT
L ,

kj
T ). The further details can

be found in [13].
We note that µ+(S) < 1 is a sufficient condition for the iden-

tification of the operator by the sampling formula (2). Necessity
of µ−(S) > 1 for the identification of the class StOPW(S) fol-
lows from Theorem 4 by Pfander and Walnut. In the degenerate
case when the stochastic operator is actually deterministic, the
supports of η(t, ν) and Pη(t, ν) coincide:

|η(t, ν)|2 = E {η(t, ν)η∗(t, ν)} = δ(0)δ(0)Pη(t, ν),

and thus OPW(S) ⊂ StOPW(S).
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