Support size restrictions on time-frequency representations of functions on finite abelian groups

Felix Krahmer¹, Götz Pfander^{*2}, and Peter Rashkov²

¹ Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10009, USA
 ² School of Engineering and Science, Jacobs University, College Ring 1, 28759 Bremen, Germany

We obtain uncertainty principles for finite abelian groups that relate the cardinality of the support of a function to the cardinality of the support of its short-time Fourier transform. These uncertainty principles are based on well-established uncertainty principles for the Fourier transform. In terms of applications, the uncertainty principle for the short-time Fourier transform implies the existence of a class of equal norm tight Gabor frames that are maximally robust to erasures.

Copyright line will be provided by the publisher

1 Uncertainty principles

Let G be a finite abelian group with dual group \widehat{G} consisting of the group homomorphisms $\xi : G \mapsto S^1$. The space of functions $\{f : G \longrightarrow \mathbb{C}\}$ will be denoted by \mathbb{C}^G , and the support size of a function is $||f||_0 := |\{x : f(x) \neq 0\}|$. The Fourier transform is defined as $\widehat{f}(\xi) = \sum_{x \in G} f(x) \overline{\xi(x)}$ for $f \in \mathbb{C}^G, \xi \in \widehat{G}$. The Euclidean norm on \mathbb{C}^G will be denoted by $|| \cdot ||_2$.

A well-known result [2] states that $||f||_0 \cdot ||\hat{f}||_0 \ge |G|$ for $f \in \mathbb{C}^G \setminus \{0\}$. This inequality can be improved for groups of prime order, namely for $G = \mathbb{Z}_p$ with p prime, $||f||_0 + ||\hat{f}||_0 \ge |G| + 1$ holds for all $f \in \mathbb{C}^G \setminus \{0\}$ [3, 8]. We illustrate the possible pairs $(||f||_0, ||\hat{f}||_0)$ for different groups in Figure 1.

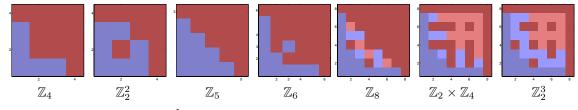


Fig. 1: Achieved combinations $(||f||_0, ||f||_0)$ are represented by a red square, nonexistent ones by a blue square. Numerically verified combinations are represented in a lighter shade.

Let $g \in \mathbb{C}^G \setminus \{0\}$ be a window function. The short-time Fourier transform with respect to g is given by

$$V_g f(x,\xi) = \sum_{y \in G} f(y) \overline{g(y-x)\xi(y)}, \quad f \in \mathbb{C}^G, (x,\xi) \in G \times \widehat{G}.$$

The linear mapping $V_g : \mathbb{C}^G \longrightarrow \mathbb{C}^{G \times \widehat{G}}$ has a matrix representation that will be denoted by $A_{G,g}$. For groups G of prime order the fact that for a generic g, all minors of $A_{G,g}$ are non-zero allows us to establish the fact that the cardinality of the support of the short-time Fourier transform must be larger than $|G|^2 - |G| + 1$ [5, 6].

Theorem 1.1 Let $G = \mathbb{Z}_p$, p prime. For almost every $g \in \mathbb{C}^G$, $||f||_0 + ||V_g f||_0 \ge |G|^2 + 1$ for all $f \in \mathbb{C}^G \setminus \{0\}$. Moreover, for $1 \le k \le |G|$ and $1 \le l \le |G|^2$ with $k + l \ge |G|^2 + 1$ there exists f with $||f||_0 = k$ and $||V_g f||_0 = l$.

The result stated in Theorem 1.1 can be improved further, namely we can choose a unimodular window function $g \in \mathbb{C}^{\mathbb{Z}_p}$, that is, a vector g all of whose entries have absolute value 1 [5].

Similar to [7], in order to establish lower bounds on $||V_q f||_0$ for a general group G, we define for $0 < k \le |G|$,

$$\phi(G,k) := \max_{g \in \mathbb{C}^G \setminus \{0\}} \min \left\{ \|V_g f\|_0 : \ f \in \mathbb{C}^G \text{ and } 0 < \|f\|_0 \le k \right\}.$$

Proposition 1.2 For $k \leq |G|$, let d_1 be the largest divisor of |G| which is less than or equal to k and let d_2 be the smallest divisor of |G| which is larger than or equal to k. Then

$$\phi(G,k) \ge \frac{|G|^2}{d_1 d_2} (d_1 + d_2 - k).$$

^{*} Corresponding author: e-mail: g.pfander@jacobs-university.de, Phone: +494212003211, Fax: +494212003103

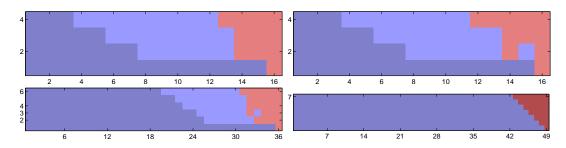


Fig. 2: Possible pairs $(||f||_0, ||V_g f||_0)$ for the groups $\mathbb{Z}_4, \mathbb{Z}_2^2, \mathbb{Z}_6, \mathbb{Z}_7$ for a generic g. Achieved combinations $(||f||_0, ||V_g f||_0)$ are represented by a red square, nonexistent ones by a blue square. Numerically verified combinations are represented in a lighter shade.

For $G = \mathbb{Z}_{pq}$ the bound can be improved, namely

$$\phi(G,k) \ge \begin{cases} p^2(q^2 - k + 1) & \text{if } k < q_2 \\ (p^2 - \frac{k}{q} + 1)(q^2 - q + 1) & \text{else.} \end{cases}$$

We illustrate the possible pairs $(||f||_0, ||V_g f||_0)$ for a generic g for different groups in Figure 1. We note that for the cyclic groups \mathbb{Z}_4 and \mathbb{Z}_6 and for generic g, $\|V_g f\|_0 \ge |G|^2 - |G| + 1$ for all $f \in \mathbb{C}^G \setminus \{0\}$. While such a statement turns out to be false in the case of arbitrary abelian groups (for instance, \mathbb{Z}_2^2), we believe that for cyclic groups the inequality remains valid, namely that for G cyclic, $\{(\|f\|_0, \|V_g f\|_0), f \in \mathbb{C}^G \setminus \{0\}\} = \{(\|f\|_0, \|\hat{f}\|_0 + |G|^2 - |G|), f \in \mathbb{C}^G \setminus \{0\}\}$. We note that checking this equality for \mathbb{Z}_8 turned out to be too expensive numerically.

Applications: Gabor frames and erasure channels 2

In generic communication systems, information (a vector $f \in \mathbb{C}^G$) is not sent directly, but must be coded in such a way that allows recovery of f at the receiver regardless of errors and disturbances introduced by the channel. We can choose a frame $\{\varphi_k\}_{k\in K}$ for \mathbb{C}^G and send the coded coefficients $\{\langle f, \varphi_k \rangle\}_{k\in K}$ (see for example [1, 4] for definition and properties of frames in finite-dimensional vector spaces and Gabor frames). If none of the transmitted coefficients are lost, a dual frame $\{\widetilde{\varphi}_k\}$ of $\{\varphi_k\}$ can be used by the receiver to recover f via the inversion formula $f = \sum_k \langle f, \varphi_k \rangle \widetilde{\varphi}_k$. In the case of an erasure channel, some coefficients are lost during the transmission. Suppose that only the coefficients

 $\{\langle f, \varphi_k \rangle\}_{k \in K'}, K' \subset K \text{ are received. The original vector } f \text{ can still be recovered if and only if the subset } \{\varphi_k\}_{k \in K'} \text{ remains a frame for } \mathbb{C}^G.$ Of course this requires $|K'| \ge |G| = \dim \mathbb{C}^G.$

Definition 2.1 A frame $\mathcal{F} = \{\varphi_k\}_{k \in K}$ in \mathbb{C}^G is maximally robust to erasures if the removal of any $l \leq |K| - |G|$ vectors from \mathcal{F} leaves a frame.

For any $g \in \mathbb{C}^G \setminus \{0\}$, the columns of the matrix $A_{G,g}$ form an equal norm tight Gabor frame for \mathbb{C}^G [5].

Theorem 2.2 For $g \in \mathbb{C}^G \setminus \{0\}$, the following are equivalent:

- 1. For all $f \in \mathbb{C}^G \setminus \{0\}$, $||V_q f||_0 \ge |G|^2 |G| + 1$.
- 2. The Gabor system, consisting of the columns of the matrix $A_{G,q}$, is an equal norm tight frame which is maximally robust to erasures.

For |G| prime, Theorem 1.1 guarantees the validity of Statement 1 for a generic g and in particular, for some unimodular g. As Figure 1 shows, Statement 1 is true for $G = \mathbb{Z}_4, \mathbb{Z}_6$. It remains yet an open question to verify it for general cyclic groups and show the existence of such frames in the general case.

References

- O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, 2003.
 D. Donoho, P. Stark. Uncertainty principles and signal recovery, *SIAM J. Appl. Math.* 49 (1989), 906–931.
- [3] P. E. Frenkel. Simple proof of Chebotarev's theorem on toots of unity. preprint, math.AC/0312389 (2004).
- K. Gröchenig. Foundations of time-frequency analysis. Birkhäuser, 2001.
- [5] F. Krahmer, G. Pfander, P. Rashkov. Uncertainty in time-frequency representations on finite abelian groups and applications, Appl. Comp. Harm. Anal. (2007).
- [6] J. Lawrence, G. Pfander, D. Walnut. Linear independence of Gabor systems in finite dimensional vector spaces. J. Four. Anal. Appl. 11 (2005), 715-726.
- R. Meshulam. An uncertainty inequality for finite abelian groups. Eur. J. Comb. 27 (2006), 227-254.
- [8] T. Tao. An uncertainty principle for cyclic groups of prime order, Math. Res. Lett. 12 (2005), 121–127.