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We obtain uncertainty principles for finite abelian groups relating the cardinality of 
the support of a function to the cardinality of the support of its short-time Fourier 
transform and discuss their applications. These uncertainty principles are based on 
well-established uncertainty principles for the Fourier transform. Areas of 
applications include the existence of a class of equal norm tight Gabor frames that 
are maximally robust to erasures and implications for to the theory of recovering 
and storing signals with sparse time-frequency representation. 

1. Uncertainty principles. 

Let G be a finite abelian group with dual group Ĝ  consisting of the group homomorphisms 1: G Sξ → . 

The space of complex-valued functions f with domain G (vectors) will be denoted by GC , and the support 
size of a function is 0|| || : |{ : ( ) 0} |f x f x= ≠ . The Fourier transform is defined as 

( ) : ( ) ( )
x G

f f x xξ ξ
∈

= ⋅∑  for ˆ,Gf Gξ∈ ∈C . The Euclidean norm on GC  will be denoted by 2|| . || . 

Note that 0|| . ||  is not a norm. 
 
 
A well-known result [4] states that 0 0

ˆ|| || || || | |f f G⋅ ≥  for {0}\Gf ∈C . This inequality can be 

improved for groups of prime order, namely for pG = Z  with p prime, 0 0
ˆ|| || || || 1f f p+ ≥ +  holds for 

all \{0}pf ∈ ZC  [5, 11]. We illustrate all pairs 0 0
ˆ(|| || , || || )f f  for 2

4 2 5 6, , ,Z Z Z Z  (in this order) in 

Fig. 1. The achieved combinations 0 0
ˆ(|| || ,|| || )f f  are represented by a white square, whereas the 

nonexistent ones by a black square. 
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Fig. 2 illustrates the achieved and impossible combinations 0 0
ˆ(|| || , || || )f f  for the groups 

3
8 2 4 2, ,×Z Z Z Z  (in this order). Numerically verified combinations (by MatLab) are represented in a 

shaded square of the respective colour. 
 

   
Figure 2. 

Let {0}\Gg∈C  be a window function. The short-time Fourier transform with respect to g is given by  
ˆ( , ) : ( ) ( ) ( ), , ( , )G

g
y G

V f x f y g y x y f x G Gξ ξ ξ
∈

= − ∈ ∈ ×∑ C  

The linear mapping 
ˆ: G G G

gV ×→C C  has a matrix representation that will be denoted by ,G gA . For 

groups G of prime order the fact that for a generic g, all minors of ,G gA  are non-zero allows us to establish 
the fact that the cardinality of the support of the short-time Fourier transform must be larger than 

2| | | | 1G G− +  [7, 8]. 
 
Theorem 1. Let pG = Z , p prime. For almost every Gg∈C , 2

0 0|| || || || | | 1gf V f G+ ≥ +  for all 

{0}\Gf ∈C . Moreover, for 1 | |k G≤ ≤  and 21 | |l G≤ ≤  with 2| | 1k l G+ ≥ +  there exists f with 

0|| ||f k=  and 0|| ||gV f l= . 
 
 
The result stated in Theorem 1 can be improved further, namely we can choose a unimodular window 
function pg∈ ZC , that is, a vector g all of whose entries have absolute value 1 [7]. 
 
 
Similar to [9], in order to establish lower bounds on 0|| ||gV f  for a general group G, we define for 

0 | |k G< ≤ ,  

0 0
{0}\

( , ) : max min || || :  and 0 || || .{ }
G

G
g

g
G k V f f f kφ

∈
= ∈ < ≤

C
C  

 
 
Proposition. For 0 | |k G< ≤ , let 1d be the largest divisor of |G| which is less than or equal to k and let 

2d  be the smallest divisor of |G| which is larger than or equal to k. Then  
2

1 2
1 2

| |( , ) ( ).GG k d d k
d d

φ ≥ + −  

For pqG = Z , (p, q prime) the bound can be improved, namely  
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We illustrate the possible pairs ( )0 0|| || ,|| ||gf V f  for a generic window 0g ≠  for 2

4 2 6 7, , ,Z Z Z Z  in 

Figure 3 (due to space limitations the figures actually show the mirror points 0 0(|| || ,|| || )gV f f . We use 
the colour coding from Fig. 1 and 2. 
 

 

 

 

 
Figure 3. 

 
We note that for the cyclic groups 4Z  and 6Z  and for generic g, 2

0|| || | | | | 1gV f G G≥ − +  for all 

{0}\Gf ∈C . While such a statement turns out to be false in the case of arbitrary abelian groups (for 

instance, 2
2Z  - see Fig. 3), we believe that for cyclic groups the inequality remains valid, namely that for G 

cyclic,  
2

0 0 0 0
ˆ(|| || ,|| || ), {0} (|| || ,|| || | | | |), {0} .\ \{ } { }G G

gf V f f f f G G f∈ = + − ∈C C  

This question is discussed further for the group 8Z  in [7]. 

2. Gabor frames and erasure channels. 

In generic communication systems, information (a vector Gf ∈C ) is not sent directly, but must be coded 
in such a way that allows recovery of f at the receiver regardless of errors and disturbances introduced by 
the channel. We can choose a frame { }:k k Kϕ ∈  for GC  and send the coded coefficients 



{ , : }kf k Kϕ〈 〉 ∈  (see for example [2] for definition and properties of frames in finite-dimensional 
vector spaces and [6] for definition of Gabor systems and frames in particular). If none of the transmitted 
coefficients are lost, a dual frame { }kϕ′  of { }kϕ  can be used by the receiver to recover f via the inversion 

formula , k k
k

f f ϕ ϕ′= 〈 〉∑  (see [2]). 

 
 
In the case of an erasure channel, some coefficients are lost during the transmission. Suppose that only the 
coefficients { , : },kf k K K Kϕ ′ ′〈 〉 ∈ ⊂  are received. The original vector f can still be recovered if and 

only if the subset { }:k k Kϕ ′∈  remains a frame for GC . Of course this requires | | | | dim GK G′ ≥ = C . 

Hence we define a frame { : }k k Kϕℑ = ∈  in GC  to be maximally robust to erasures if the removal of 

any | | | |l K G≤ −  elements from ℑ  still leaves a frame. Furthermore, we have shown in [7] that for any 

{0}\Gg∈C , the columns of the matrix ,G gA  form an equal norm tight Gabor frame for GC .  
 
 
Theorem 2. For {0}\Gg∈C , the following are equivalent: 

• For all 2
0{0}, || || | | | | 1\G

gf V f G G∈ ≥ − +C . 

• The Gabor system, consisting of the columns of the matrix ,G gA , is an equal norm tight frame 
which is maximally robust to erasures. 

 
For |G| prime, Theorem 1 guarantees the validity of the first statement of Theorem 2 for a generic g and in 
particular, for some unimodular g. As Figure 3 shows, this statement is true also for the groups 4 6,Z Z . It 
remains yet an open question to verify it for general cyclic groups and show the existence of such frames in 
the general case. 

3. Signals with sparse representations. 
The classical theory of sparse representations centres around the problem of recovering a signal, which is a 
linear combination of a small number of frequencies, from very few of its sampled values. In a more 
general setting, we consider dictionaries 0 1 1{ , , , }ND g g g −= …  of N vectors in nC . For k n≤  we shall 
examine the sets 

0{ : ,  for all sequences : || || }.n
k r r

r

D f f c g kΣ = ∈ = ≤∑ c c£  

 
In other words D

kΣ is the set of vectors (signals) in nC  that have k-sparse representations in the dictionary 

D. Every such vector Df M= c  where DM is the matrix of the respective linear transformation 

associated to D. For example, a classical dictionary for GC is the set of frequencies ˆ{ : }GD Gξ ξ= ∈ . In 

this case 0
ˆ{ : : || || }.D G

k f f f kΣ = ∈ ≤C  
 
 
The main question is to find out how many values of D

kf ∈Σ  need to be known (or stored), in order for 
N∈c C  with r r

r
f c g=∑  and 0|| || k≤c , and therefore f, to be uniquely determined by the known data? 

Let us recall a well-known result [1, 3, 10]: 
 



Theorem 3. Let 0( , ) : min || || :{ }D
kD k f fψ = ∈Σ . Any D

k
Nf ∈Σ ⊆ C  is fully determined by any 

choice of ( , 2 ) 1N D kψ− +  values of f. 
 
 
We can extend the results in [1] to vectors having sparse representations in the dictionary ,G gD  which 

consists of the columns of ,G gA . In fact, ,G gD
kF ∈Σ  if and only if gF V f=  for some Gf ∈C  with 

0|| ||f k≤  and, therefore, 

, 0 0( , ) min || || : || || ( , ).{ }G g gD k V f f k G kψ φ= ≤ =  
As a second application of the uncertainty principle for the short-time Fourier transform, in [7] we state and 
prove the following 
 
Theorem 4. Let pg∈C , p prime, be such that for all 2

0{0}, ||\ || 1p
gf V f p p∈ ≥ − +C . 

Then any pf ∈C  is completely determined by sampling the values of gV f  on any p pΛ ⊂ ×Z Z  with 

|Λ| = p. Furthermore, any pf ∈C  with 1
0 2|| || | |, p pf ≤ Λ Λ ⊂ ×Z Z  is uniquely determined by Λ and 

the sampled values gV f  on Λ. 
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