IDENTIFICATION OF OPERATORS WITH BANDLIMITED
SYMBOLS
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Abstract. Underspread and overspread operators are Hilbert—Schmidt operators with strictly
bandlimited Kohn—Nirenberg symbol. In this paper, we prove a classical conjecture concerning the
necessity of the underspread condition for the identifiability of such operator classes, and, in doing
so, we exhibit a new uncertainty principle phenomenon in the time—frequency analysis of operators.
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1. Introduction. Identification of incompletely known linear operators based
on the observation of a restricted number of input and corresponding output signals
is an important goal in many applied sciences. In communications engineering, for
instance, identifying the transmission channel can help to adjust signal synthesis at
the transmitter and signal analysis at the receiver. This is possible in wired communi-
cations, since a linear time-invariant system is a convolution operator, and — leaving
numerical instability of deconvolution aside — is completely determined by its action
on a single function.

Underspread and overspread operators on the other hand are time-varying
Hilbert—Schmidt operators. They act on a space of d-dimensional signals, but the
corresponding kernels of time-varying operators are essentially 2d-dimensional so that
a single observation of its action cannot uniquely determine the operator unless one
has additional a priori knowledge of the operator class at hand in the form of certain
constraints.

Hilbert-Schmidt operators can be represented as a weighted superposition of trans-
lation operators Ty, t € R, with Ty f(z) = f(z — t), * € R?, and modulation operators
M,, ve ]IA%, with M, f(z) = f(x)e?™™'* z € R? i.e., as an operator valued integral

H://nH(t,u)TtM,dtdy. (1.1)

Underspread and overspread operators are characterized by the property that the sup-
port of their spreading functionng in (1.1) is contained in a rectangular parallelepiped.
Such an operator is called underspread if the volume of the rectangular parallelepiped
does not exceed one, and it is overspread otherwise, conditions, which are intimately
related to uncertainty phenomena in time—frequency analysis. The Kohn—Nirenberg
symbol of a Hilbert—Schmidt operator is the symplectic Fourier transformation of the
respective spreading function, and, consequently, it is bandlimited in the case of an
underspread or overspread operator.

The identification of underspread and overspread operators is important in var-
ious areas of electrical engineering and applied mathematics, including radar/sonar
measurements and mobile radio communications, which we now briefly describe.
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The principle of radar/sonar measurements is to send out a signal modulated onto
an electromagnetic/acoustic wave and to deduce information about a (generally) mov-
ing target from an echo of the signal [Sko80]. In simple range-Doppler estimation the
target is modelled as a pure time-frequency shift and distance ("range”) and velocity
(”Doppler-shift”) are estimated. A more precise model of the physical phenomenon
is the doubly-spread target model. Here, the reflection is described as a continuous
superposition of time-frequency shifts which arise since the target causes different
reflections whose distance and velocity vary over a certain interval of the real-line.
Unambiguous identification of the target was realized to depend on the product of
the range and Doppler uncertainty, a fact that led to the terminology of underspread
and overspread targets [Gre68]. Qualitatively speaking, overspread targets are those
where the inherent uncertainty of the model is larger than the amount of information
gathered by observing the reflected signal [VT71].

In mobile radio communication, the transmitted signal typically undergoes multi-
ple reflections with different time—delay (corresponding to translation operators) and
Doppler—shift (corresponding to modulation operators). The action of such channels
on the signal can be modelled by underspread and overspread operators [VT71]. In
order to obtain reliable communication, it is necessary to gather knowledge about
channels by means of observations of transmitted and received signals to identify the
channel operator (channel sounding) [MMHT'02, MGOO03, LKS03].

Starting in the late 1950s, Thomas Kailath analyzed the identifiability of operators
with restricted time and frequency spread [Kai59, Kai62, Kai63]. In engineering terms
and without detailing a mathematical setup, Kailath proclaimed that a collection of
communication channels which are characterized by having common maximum delay a
and common maximum Doppler spread b, would be identifiable by a single input signal
if and only if ab < 1, i.e., if and only if the operator class is underspread. To prove
the necessity of the underspread condition, Kailath provided ingenious arguments
based on the comparison of the degrees of freedom of operators (which approximate
underspread operators), and degrees of freedom of the output signal. To compare
finite dimensions, Kailath used the theoretical construct of a bandlimited input signal
with finite duration.

Being aware of the mathematical shortcomings of his approach, and understand-
ing the work of Slepian, Landau, and Pollak on “the dimensions of the space of es-
sentially time- and bandlimited functions” [SP61, LP61, LP62], Kailath conjectured
that the underspread condition ab < 1 is necessary in general [Kai62].

We shall prove Kailath’s conjecture in Section 3 of this paper using the mathe-
matical framework which is described in Section 2. In Section 4, we shall describe
connections between the critical density in Gabor theory and the critical spread ab =1
in the theory of operators with bandlimited symbols. We proof an identification re-
sult for Gabor frame operators in Section 4.1, and compare this result and Kailath’s
conjecture to uncertainty principles in time—frequency analysis in Section 4.2.

In Section 5, we shall extend our identifiability result to higher dimensions and
include classes of operators which have restricted but not necessarily rectangular
spreading support. These results are based on the representation theory of the re-
duced Weyl-Heisenberg group, a fact which indicates close connections of our results
to quantum mechanics.

2. Preliminaries. The goal of operator/system identification is to locate, for
given normed linear spaces X and Y and a normed linear space of bounded linear
operators H C L(X,Y), an element f € X which induces a bounded and stable linear

2



map &y : H — Y, H — Hf (see Figure 2.1). Consequently, we call H identifiable
by f € X, if there exist A, B > 0 with A|H||n < ||Hf||y < B H|x for all H € H.
In Section 2.1 and Section 2.2, we shall describe the operator spaces H, the domain
spaces X, and the target spaces Y that are considered in this paper. In Section 2.3, we
shall present some techniques from Gabor analysis which will be used in this paper.

E(XY)DHJ”._' H2 T T ]S
e S0
.'.Hl '.G.

“’& v R

F1G. 2.1. The goal of operator identification: find f € X such that ®y : H — Y is bounded
and stable.

2.1. Hilbert—Schmidt operators with bandlimited symbols. We shall use
Hilbert-Schmidt operators which act on the Hilbert space L%(R%) of complex valued
and square integrable functions as model of physical time—varying linear systems, as
they appear in radar and in mobile communications [FL96, Yoo02, Str05] .

A Hilbert-Schmidt operator H : L?(R%) — L?(R%) is given by

Hf(x)://iH(x,t)f(t)dt:/ﬁH(x,x—t)f(x—t)dt (a.e.),

with kernel kz € L?(R??). The space of Hilbert-Schmidt operators HS(L?(R?)) is
itself a Hilbert space with inner product (Hy, Ho)us = (km,, km,) 2 [Die70, Gaa73].
Underspread and overspread operators are Hilbert—Schmidt operators which sat-
isfy two constraints: First, they have restricted delay, i.e., kg (z,x — t) vanishes for
large |t|, say for [t| > § > 0. Consequently, if f satisfies supp f C [0,7], then
supp H f C [~5,T+§]. Second, underspread and overspread operators have the prop-
erty that they are almost time—invariant, i.e., that their characteristics change only
slowly over time. A comparison to the time—invariant convolution operators K given
by K f(z) = [ ki (t)f(z —t)dt — whose kernel kg is independent of the time vari-
able x — leads us to quantify the slow variance of an operator H by means of a
Paley—Wiener type support condition on its spreading function which is given by

nu(t,v) = /,%H(m?:v —t)e T dy. (a.e.)

In fact, underspread and overspread operators have the property that ng (¢, v) vanishes
for large |v|, say for [v| > & > 0.



Combining the aforementioned time and frequency spread conditions on H leads
to the condition

supp g C Qa,b = [_%a %]d X [_37 g]d (21>
for some a,b > 0. An operator which satisfies (2.1) for a,b > 0 is called underspread
if ab < 1 and overspread if ab > 1.

The spreading function ng of a Hilbert—Schmidt operator H leads to a representa-
tion of H as an operator valued integral by means of (1.1). Here and in the following,
operator valued integrals shall be interpreted weakly, i.e., [ H(z)dzf, f € L*(R), is

given by means of

</H(z)dzf, g>L2(Rd) = /(H(z)f, 9)r2maydz, forall ge L*(R%).

Equation (1.1) illustrates that support restrictions on ngy reflect limitations on the
maximal time and frequency shifts which the input signals undergo, a fact which
emphasizes the usefulness of 7y in the time—frequency analysis of operators.

The condition (2.1) on a Hilbert—Schmidt operator H is a band-limitation on its
Kohn—Nirenberg symbol oy which is given by

oz, &) = /K,H(JL‘,$ — ) e 2™ gy = //UH(t,V)e%i(x”ftg) dtdv (a.e.) (2.2)

[KN65, Fol89].

To prove that a class of Hilbert—Schmidt operators whose spreading functions sat-
isfy (2.1) for fixed a, b > 0 with ab < 1 is identifiable necessitates the use of Shah distri-
butions (also called combfunctions or delta train) 111, =), cy4dan, a > 0 as identi-
fiers (see Section 2.2). Since not all Hilbert—Schmidt operators in £(L?(R%), L?(R%))
can be extended to a space of distributions containing the Shah distribution, we
need to restrict ourselves to operators which satisfy a regularity condition on their
kernels. Here, we choose Hilbert—Schmidt operators with kernels in the Feichtinger
algebra So(R??), a Banach algebra of test—functions which is discussed in detail in
Section 2.2. In fact, if kg € Sp(R2?), then the Hilbert—Schmidt operator H extends
to Sh(R?) with 111, € Sh(R?) [FZ98]. We set

H={He HS(L*(RY) : ry € So(R*")}, (2.3)

and, as discussed above, we consider operator classes with restricted spreading, i.e.,
we consider operator classes of the form

Hy ={HE€MH: suppny C M}, M CRxR% (2.4)

Note that H and Hys, M C Rdfod, are not closed as linear subspaces of the space
of Hilbert-Schmidt operators, and that Hys C Hay if M C M.

2.2. The Feichtinger Algebra. Introduced in [Fei81], Feichtinger’s Banach al-
gebra Sy (RY) of test functions gained popularity in the growing field of Gabor analysis
which is discussed in Section 2.3. The usefulness of So(R9) stems from the fact that
it is the smallest Banach space allowing a meaningful time—frequency analysis, which,
as a consequence, extends to its respectively large dual Banach space S)(R?). In fact,
the L2~ Fourier transform, the modulation operators M,,, v € ]IA%d, and the translation
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operators Ty, t € RY, which are all unitary on the Hilbert space L?(R?), are isometric
isomorphisms on the Feichtinger algebra So(R?), and, therefore, on its dual S§(R%).
The Feichtinger algebra Sp(R?) can be continuously embedded in any Banach space
with these properties and which contains at least one, and therefore all, non—trivial
Schwartz function [FZ98].

Note that we chose to work with the Banach spaces So(R?) and Sj)(R?) as sup-
posed to the Fréchet space of Schwartz functions S(RY) C Sp(RY) and its dual
S'(R%) > Sh(R?) of tempered distributions for the convenience of expressing con-
tinuity (boundedness) and openess (stability) of linear operators by means of norm
inequalities. We would like to point out that the results in this paper are conse-
quences of the structure of the identification problem at hand, and not of topological
subtleties.

There exist various ways of defining Sy(R%), and equally many different equivalent
norms for So(R%). Here, we shall give a definition based on the space of Lebesgue mea-
surable and integrable functions L' (R?), the space of Fourier transforms of functions
in L*(R9), which is denoted by A(R?) and which is equipped with the Banach-space
structure of L'(R?) by means of ||J?HA = ||fllz1[Kat76], and the space of absolutely
summable sequences ! (Z7)

The Feichtinger algebra So(R?) coincides with the Wiener amalgam space
W (A(RY),11(Z4)). Consequently, we have f € Sy(R?) if and only if f is locally in
A(R?) with global decay of I'~type, i.e., given any compactly supported ¢ € A(R%)
with 3, 70 Tht = 1 we have f € So(R?) if and only if > . ||f - Tutb]la < oo, and

1Fllse = D I - Tatblla

nezd

is a norm on Sp(R%). Moreover, So(R%) is a Banach algebra under convolution and
pointwise multiplication.

The dual space Sh(R?) of the Feichtinger algebra satisfies
SH(RY) = W(A'(RY),1°°(Z%)) since the class of compactly supported functions in
A(R?) is dense in A(R?) [FG85]. Hence, Sj(R?) contains Dirac’s delta § : f — £(0)
and Shah distributions 111, = ZnGZd Oan, Where 0, = Thed and a > 0. We set
Al =1117q.

2.3. Gabor analysis. Most techniques applied in this paper originate from Ga-
bor analysis.

Gabor introduced the concept of coherent states to electrical engineering inde-
pendently of quantum theory [Gab46, Gro01]. Hence, we shall simply call the family

(9,a,b) = {MipTiag}y 1e 74

of coherent states a Gabor system.

One of the basic results of Gabor analysis is the fact that there exists g € L%(R?)
such that (g,a,b) is an orthonormal basis for L2(R9) if and only if ab = 1. For
example, the Gabor system (19 4),a,b) is an orthonormal basis for L?(R?), where
1a(z) =1for x € Aand 14(x) =0 else.

If ab > 1 the system (g, a,b) is not complete. However, if ab > 1 then there exists
g € L*(R) such that the (g,a,b)-synthesis map D, : I*(Z?) — L*(R), {ck.} —
> ek iMipTiag is well-defined, bounded, and stable, i.e., (g,a,b) is a Riesz basis for
its closed linear span, span(g,a,b), in L2(R%); and, hence, there exist A, B > 0 such
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that

Al{eeatle <10 ekaMiTiaglle < Bl{c}ie for all {e,} € 12(Z°%) .(2.5)
k,lezd

For ab < 1, the system (g,a,b), g € L?(R) is overcomplete, i.e., there exists a
non-trivial coefficient sequence {cj;} € (?(Z*%) \ {0} such that 3 ¢ 1 MipyTiag = 0
in L2(RY). Nevertheless, for an appropriate choice of g, e.g., g being a Gaussian,
the (g, a,b)-analysis operator Cy = Dj : L*(R) — 1*(Z?), [ — {(f, MiyTiag9)} is
well-defined, bounded, and stable, i.e., (g, a,b) forms a frame for L?(R?); and, hence,
there exists A, B > 0 such that

Alf1Z2 < 301 MiwTiag)? < Bl|f|[72 forall f € L*(RY). (2.6)
As a consequence of (2.6), every f € L?(R%) has a stable representation

F=Y>" criMwTag in L*(RY),
koL

in terms of the frame (g, a,b), where the coefficients {cj;} € I?>(Z?) can be chosen by
means of inner products, i.e., cx; = (f, MipT147), where (v, a,b) is a so—called dual
frame of (g, a,b).

More details on time—frequency analysis with some relevance to this paper can
be found in [Gré01].

Operator—theoretic applications of Gabor theory as presented in this paper have
drawn increasing interest in applied harmonic analysis, see, for example, [Dau88,
HRT97, FK98, Ko0z98, RT98, Lab01, FN03, CG03, Hei03, GLMO04].

3. Identification of underspread and overspread operators. We shall
first prove Kailath’s conjecture for operators acting on functions defined on the
real line, i.e., we choose d = 1. The identification problem is given by the opera-
tor space Hq, ,, a,b > 0, which is defined in (2.3) and (2.4), where M = Q.3 =
[—2,9]x[—2,5]. The linear space Hg, , is equipped with the Hilbert-Schmidt norm
and its elements map X = S{(R) to Y = L(R) [FK98].

The Lebesgue measure a-b of the set Q1 plays a crucial role in determining the
identifiability of Hc, ,. The main result of our paper is

THEOREM 3.1. The set Hq, , is identifiable, i.e., there is f € SH(R) such that
@y :Ho,, — L*(R) is bounded and stable, where Hg, , is equipped with the Hilbert—
Schmidt norm, if and only if ab < 1.

First, we shall give a proof of the long understood identifiability of Hg, , for
ab < 1.

3.1. Sufficiency of ab < 1 for the identifiability of Hg,,. Our proof of
the sufficiency of the underspread condition is based on the unitarity of the Zak
transformations Z. : L*(R) — L?*(Q, 1), ¢ > 0, which are defined by

1
Zof(tv) =c2 Y f(t—cn)e?™™ () (tv) € Q, 1,
nez

and the following lemma.
LeEMMA 3.2. For H € H we have

. m
Z.oH111.(t,v) = ¢ 2 Z Z Nt —cn, v — %)627”("_?)t7 (t,v) € Q.1 .
neZ meZ )
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Proof. For x € R we have Hi11.(x) = (Ll kp(z, ) = ZHH(x,ck:). Using in
kEeZ
succession the Tonelli-Fubini Theorem, the formula

’%H(xa y) = /’rlH(:E - Y, V)€27Ti’/x dV, ($7 y) € RQ?

two substitutions, and the Poisson summation formula [Gré01], page 250, we obtain
for (t,v) € Q. 1 that

Z.o HMC(t, 1/) = C% Z Z kg (t —cl, ck)eQm‘clu
IEZ kEL
= ¢ Z Z/WH@ — el — ck,w)emilelrtelt=ch) g,
IEZ kEZ
E=vtw
=YY / it — en, & + v)e2mET)te=2miclt ge
nEZmeZL
= C_%ZZnH(t_Cnvl/_%)e%ri(vf%)t.
n€Z meZ 0

A standard periodization argument leads to the sufficiency of ab < 1 for the
identifiability of Hg, ,. In fact, the following theorem shows that for f = 111, €
SH(R) we have @y : Hg,, — L*(R), where Hg, , is equipped with the Hilbert—
Schmidt norm, is bounded and stable whenever ab < 1.

THEOREM 3.3. The operator family Hyr = {H € H : supp ng € M} can be
identified with the identifier 111 if and only if the interior M° of M satisfies

M° N U (MO—&—(cn,%)) =0, (3.1)
(m,n)€Z?\{(0,0)}

i.e., if and only if M° is contained in a fundamental domain of the lattice cZ X %Z.
In particular, Hq, ,, a,b > 0, is identifiable with 111 if and only if a < ¢ and ab < 1.

Note that Theorem 3.3 classifies all sets M with the property that Hjy, can be
identified using the tempered distribution 111., ¢ > 0. No result regarding the neces-
sity of the underspread condition ab < 1 for the identifiability of Hq, , by any other
f € 5)(R) has been obtained.

Figure 3.1 is a picture proof of Theorem 3.3 for M = @), 1, ¢ > 0. Details in the
case ¢ = 1 are given below. ‘

Proof of Theorem 8.3. For ease of notation, we shall only provide a proof of
Theorem 3.3 for ¢ = 1. The general case follows from Theorem 5.4.

First, we show that if (3.1) holds, then 111 identifies Has. Set @ = Q1,1 and let
Apn =M°N (Q+(m,n)) and By, = Amn—(m,n) C Q. Then By, N By = 0
for (m,n) # (m/,n’), since else M° N (M° + (m —m',n —n')) # 0. Further, the
spreading function ng of each H € Hj, is continuous, and, therefore, ng(t,v) = 0
for all (t,v) & U,,., Amn. We conclude that {(t,v) € Q : Zo Hiii(t,v) # 0} C

7



Mo, 7 7 7y 7
e, 1 /!Hlj.O.Al/Q/
_____ Zeo®y,
Dy,

Fic. 3.1. Sketch of the proof of the identifiability of Hg ,, ¢ > 0, using as identifier 111..
The Zak transform Z. is unitary and, therefore, bounded and stizble, and Zco® 1, maps Hg 1

into LQ(QC 1) and is bounded and stable as well. We conclude that ® |, is bounded and stable
on Hq 1 be, Lile identifies Hq

1
‘e

Umm Brn € Q. For H € Hys we calculate

1H s = el @iy = O I lz2(an0 = D 1T m—nynallLz s,
m,n m,n
=Y NZoHil|r2(5,.,) = 12 0 Hitt|12q) = IH 11| 2w

m,n

= 1P Hll 2wy ; (3.2)

and, by definition, Hj; allows identification with identifier 111.

Let us now assume that M° N U, )20 M°+(m,n) # 0, and show that Hy
is not identifiable. In this case, there exists (to,v9) € M° N U(m’n#o (Mo—i—(m,n) ),
% > ¢ > 0, and (ng,mg) € Z*? with B(tg,v9) C M° N (Mo—i-(no,mo)), where
Be(to,vo) = {(t,v) : ||(t,v) — (to,0)|leo < €}. Hence Bc(to — no,vo — mg) C M°.
Choose 0 # 77 € A(R?*?) C Sy(R??) with supp 77 C B.(to, 1), and define H € Hy; by
means of 7(t,v) = 7j(t,v) — ij(t + no, v + mg)e2™mo £ 0, (t,v) € RxR. We obtain

ZoH111(t,v) = Z n(t—n, v—m)e2miv—mt

m,ne”
= Z (ﬁ(t—n, v—m) — fj(t—n+ng, V—m—f—mo)eQ”i(t_")mO) g2milv—m)t
m,n€z
:( Z ﬁ(t_n’y_m>627ri(ufm)t)
m,n€Z

( Z n(t+no—n, l/+mo—m)62"i(t+"°)m062”(”*’””) = 0.
m,n€Z

The injectivity of the Zak transformation implies H 111 = 0, contradicting the injec-
tivity of @, and therefore the identifiability of H; by L11. ]
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Note that equation (3.2) implies that ®,, which is a-priori defined on Hys =
{H € H: suppny € M} C H C HS(L?*(R)) where M is a fundamental do-
main of Z x Z, can be isometrically extended to its HS-closure Hy = {H €
HS(L*(R)) : supp ng € M}. Certainly, not all H € HS(L?*(R)) extend in this
fashion to S{(R), and, hence, we must continue to focus our attention on opera-
tors with kernels in the Feichtinger algebra, i.e., on operator classes contained in
H={H e HS(L*(R)) : kg € So(R?)}.

3.2. Necessity of ab < 1 for the identifiability of Hg, ,. We shall show that
for ab > 1 and every f € Sj(R), the well-defined operator ®y : Ho, , — L*(R) is
not stable.

To obtain this result, we shall equip lo(Z?) with the topology induced by the
I norm and use the fact that ab > 1 to construct a bounded and stable synthesis
operator E : lo(Z*) — Hps in Lemma 3.4, and a bounded and stable (g, a’, b’)—analysis
operator Cy : L*(R) — [?(Z?) in the proof of Theorem 3.6, with the property that
the compositions

Cyo®;0E: 10(Z*) — 1*(Z*), fe€ SHR)

are not stable. The stability of £ and C, implies that all operators ®; : Hg, , —
L*(R), f € Sj(R), must not be stable, showing that He, , is not identifiable for
ab > 1.

We shall now construct the aforementioned synthesis operator E. For ab > 1,
we choose A € R with 1 < A\ < ab. Using a product-convolution operator P : f
(f *m) 72 as prototype operator, we define the embedding operator F by means of

E: 10(Z*) — Hy, {oki}— ZUk,l MixaTingPT_ipgM_ixa ,
Kl

where we chose a = % and g = % for simplicity of notation. The choice of A allows
us to construct P € Hg,, in Lemma 3.4 such that {MpxoaTixgPT_ixgM_gxa}k,icz
is a Riesz basis for its closed linear space in the Hilbert space of Hilbert—Schmidt
operators, and, as consequence of (2.5), E is stable. In addition to the Riesz property,
P is designed in Lemma 3.4 to satisfy a time—frequency localization property which
will play a central role in the proof of our main result.

LEMMA 3.4. Fiz X\ > 1 with 1 < X\* < ab and choose n1,1m2 € S(R) with values
in [0,1] and

1 forlt| < & 1 for|v| <
771(15) = f | ‘ - 3)‘ and 772(V) = f | ‘ - %)‘

The operator P € Hg,, defined by np = n1 ® n2 has the properties:
a) The synthesis operator

E: 1o(Z*) — Hy, {og}— ZUk,l MinaTingPT_ipgM_ira (3.3)
]

is well-defined, bounded and stable.

b) The operator P € Hys is a time—frequency localization operator in the following
sense: There exist functions dy,ds : R — Ra', which decay rapidly at infinity, and
which have the property that for all f € Sy(R) we have |Pf(x)| < ||fls; di(z), » €R

and |PJ(€)] < ||flls, d2(€), € € R.
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Fic. 3.2. Sketch of the proof that Hq, , is not identifiable if ab > 1. We show that for all

f € S{(R), the bounded operator Cgo®soE is not stable. The synthesis operator E and the analysis
operator Cy are stable, hence, stability of Cg o ®y o E must fail at ®y.

Proof. a) Observe that for any (s,w) € RxR and f € Sp (R) we have
M T,PT_M_f = //np(t,y)MwTs T,M, T_sM_, f dt dv
= / / np(t,v)e™ ISIT M, f dt dv,

Hence, for E defined in (3.3) and any {04} € lo(Z?), we have E{ok,} € Hq,,
with

NE{on ) (L V)=np(tv) Y oy 2T () € RxR. (3.4)
k,l€Z

We consider [o(Z?) as a subspace of [?(Z?) and observe that E is stable, since
1E{ok}lzs = (1500 lze = 10510 Lm g i — i 122 = 35 [{ow e

The boundedness of E follows from a similar calculation.
b) For f € So(R) and = € R we have

IPf ()] = \ [ [netee=e o - naraw

‘/772 QTrZWCdV ‘/’171 .%‘—t dt’

< [ia(=2)| £l lImllso- (3:5)

The function di(x) = |f2(—z)|||n1lls, decays rapidly at infinity, i.e., di(z) — 0 as
|x|] — oo faster than any power of %, since 2 € S(R). Further, the inequality
|Pf(x)] < | flls; di(x), © € R, extends to general f € Sj(R), since Sp(R) is w*~dense
in S| (R).
To establish a rapidly decaying bound on |153c |, f € SH(R?), we first assume
10



f € So(R) and calculate for ¢ € R

FHON = | [ Rl=) [ m©) =0t
= | [ fel=2) [ ) Fpe 2 dy da

=| [ mie - DmFa)a \ (3.6)
1 Fllsg e = 9 Ol (3.7)

The application of the theorem of Tonelli and Fubini to obtain (3.6) is valid for
f € So(R), and the validity of (3.7) extends once more to general f € Sj(R).

We claim that da(§) = [|n2(§ — )M (")||s, is rapidly decaying. Since the Fe-
ichtinger algebra So(R) equals the Wiener amalgam space W (A(R),1(Z)), we choose
¢ € S(R) € A(R) with supp @ C [~1,+1], and > ., T, @ = 1, and observe that
(171 - Ty @ | 4) ez, » decays rapidly, i.e., for any k € N exists Cj, > 0 such that

IN

lg- T 8[| ,= /‘/m TR (L — ) dﬂ«“\ dt < Cr(14+n?) 72 nez, (3.8)
[Gro01], page 228. For k € N we choose C}, satisfying (3.8) and calculate

d2(€) = Im2(€ = MmO)lsy < CY NTu®() 1206 = VM ()lla

neZ

=C > [T &() m2(§ = ) ()lla

E—1-Lf<n<é+1+2
< Clmzlla > | Tr @) M()]la
E—1-L<n<é+142
< CCklmllal2+b] (L+min{[6 —1-571% [€+1+5]°})
< C(14£%)7k/2

—k/2

d
Lemma 3.5 is technical but of upmost importance in the proof of Theorem 3.6.
It generalizes the fact that m x n matrices with m < n have a non-trivial kernel and,
therefore, are not stable, to operators acting on [2(Z?). In fact, the bi-infinite matrices
M = (mj ;) ;s jezz considered in Lemma 3.5 are not dominated by its diagonal m; ;
— which would correspond to square matrices — but by a skew diagonal m; »;, with
A> L
LEMMA 3.5. Given M = (mj ;) : I*(Z*) — 1*(Z?). If there exists a monotoni-
cally decreasing function w : Ry — Ry with w(z) = O (w’Q*‘s), 6 > 0, and constants
A > 1 and Ky > 0 with |m; ;| < w([|Aj" = jlleo) for [|Nj' = jllc > Ko, then M is not
stable.
Proof. First, we show that if w: R — R with w(z) = O (27279) is monotoni-
cally decreasing, then

Y KDY kuw(k)’ <oo. (3.9)

K>1 k>K
11



Inequality (3.9) is proven using the Riemann integral criterium for sums. To this end,
we pick continuous v € L>®(R*) with w(x) < v(x)z~27% and observe that

o0 (o) (o) o0
Z K Z kw(k)? S/ x/ yw(y)? dy dz §/ x/ v(y)?y =37 dy dx
K>1  k>K 0 z 0 T

||U||§o 22 g < oo

= 2126 J,

Now, we shall use (3.9) to show that inf,cs2(z2) {”|I\Viﬁllzﬂ } = 0. To this end, fix
€ > 0 and pick K; > Ky with

Z K ka(k)2 <2702,

K>K; E>K

Pick N € N with N := [¥] 4+ K; < N and define

M = (my ;) L CeNTD? _, cN+1?,

137 lloo <N [IF 1SN
The matrix M has a non-trivial kernel since (2N +1)2 < (2N +1)2, so we can choose
T € CONHY with |7, = 1 and MZ = 0. Define z € 12(Z?) according to z; =75 if
[l7]lo0 < N and x; = 0 else.

By construction we have ||z|;2 = 1, and (Mz);; = 0 for ||j|c < N.

To estimate (Mz);/ for ||j'||ecc > N, we fix K > K and j' € Z¢ with [|j']e =

5|+ K. We have ||A\)'||cc = N + an 7 =l = > orall je wit
J)\\’ K. Weh g N+ KXand ||A\j —j K\ > K for all j € Z¢ with
[I7]lcc < N, and, therefore,

2

2

|(M$);|2 = Zujuoogzvmj’,jxj < ”‘r”%ZHjHOOSN Imjs ;]
< Pileen WA = lle)® < s r wllilleo)?
= 223 sk 2k w(k)? = 223k kw(k).

Finally, we can compute

1Ml = Y (M) = > (M) [
j’ezd 15 loo =T R 1+K1
= 2° > S okwk)3<20 > KDY kwk)? <€
5" oo >T & T+ K1 k215" loo K>[N1+K, k>K
and obtain ||Mz|/;z < e. Since € was chosen arbitrarily and ||z|/;z = 1, we have
inf ez (z2) {”ﬁiﬁ‘gz } =0 and M is not stable. O
1

Now all pieces are in place to state and prove the main contribution of this paper.
THEOREM 3.6. For a,b > 0 with ab > 1, Hq, , is not identifiable.
Proof. Fix a,b > 0 with ab > 1 and choose A, 71, 12, P, and E as in Lemma 3.4.
To construct the aforementioned stable (g,a’, b’ )—analysis operator Cy, we choose
as Gabor atom the Gaussian go : R — RT, z+— ¢~ . Lyubarski [Lyu92] and Seip
12



and Wallsten [SW92, Sei92] have shown that (go,a’,b") = {Mka Ty go} is a frame for
any a’,b > 0 with ¢V’ < 1, and, hence, we conclude that the analysis map given by

Cyo : L*(R) = 1%(2%), [ = {{f, Mix2aTin2590) }

is bounded and stable since A28 - A\2a = 2—: < 1.
Let us now fix f € S{(R) and consider the composition

Wz & My B o2 X 12(72)

{ory} — E{or} — E{ow}f — {{(E{ori}f, Mpx2aTirzpgo) }k/,l’ :
The bi-infinite matrix

M = (mk’,l’,k,l) = (<Mk)\aTl>\ﬁPT—l)\ﬁM—k>\af7 Mk’/\QaTl/)\2ﬁ90>> )

represents the operator C,, o @5 o E with respect to the canonical basis of 1?(Z?),
since

(Cgo odsoFE {Uk,l}) = <ZJk,le)\aTl/\ﬁPTfl)\ﬂMkaafa Myrx2aTraz90)

ol
= (MiraTirgPT_iagM_praf, MirzaTirzs90) Ok

k,l
= E M 1kl Ok, -
k,l

In order to use Lemma 3.5 to show that M, and, therefore, Cy, o ®; o E is not
stable, we have to obtain bounds on the matrix entries of M. Lemma 3.4, part b, will
provide us with these bounds. In fact, for k,1, k’,1' € Z, we have

I v kil = [( MigaaTing PT-ixgM—ixaf, MiazaTirzg go)|
<A Tixg |PT-ixgM_gxa f1, Trazg|gol)
< fllsy dix go ABN = 1)),

kU

and

| 1 ket = |<Tk)\aMfl)\B(PTfl)\,@M,k)\af)A, Tirx2aM_y325 Go >‘
< (Tira | (PTo3pM-raf )|+ Tirxza lgol)
< | flls; dz * go(Aa(AK" = k).

In these calculations, we used that go > 0, go = go, and go(—z) = go(z), and the
Parseval-Plancherel identity. Since di, d2, and gy decay rapidly, so do dy * gg and
ds * go. We set

w(z) = || fls; max {dy * go(\Bx), dy * go(=ABz), do * go(Aaz), da * go(—Aax)}.

and obtain [my k| < w(max{|Ak’ — k|, |\’ —1|}) with w(z) = O (™) for n € N.
Lemma 3.5 implies that M is not stable, and, by construction, we can conclude that
Cy, 0 @y o E and thus ®; is not stable. |

Note that Lemma 3.5 is crucial for the understanding of Theorem 3.6: For any
[ € S), the operator C, 0 ®; 0 E : lo(Z*) — 13(Z?), and, therefore, the operator
s Heg,, — L*(R), is not stable as a result of the non—quadratic structure of the
canonical matrix representation of Cy o0 ®@; o E. The validity of Lemma 3.5 does not
depend on the choice of (reasonable) topologies on domain and range, in fact, a more
general version of Lemma 3.5 can be found in [Pfa05].
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4. Gabor frame operators, underspread operators, and uncertainty.
The proof of Kailath’s conjecture in Section 3 relies strongly on the existence of a
Schwartz function g € S(R) such that (g, a,b) is a Gabor frame for given a,b > 0 with
ab < 1. In Section 4.1 we shall discuss the role of the critical density ab = 1 in the
identification of Gabor frame operators and analogies of underspread and Gabor frame
operators. Interpretations of the results in Section 3 and Section 4.1 as consequences
of uncertainty in time—frequency analysis are given in Section 4.2.

As in Section 3, we choose to work in Section 4 in the one dimensional setting.

4.1. Identification of Gabor frame operators. For appropriate g,h € L?(R),
e.g., for g,h € So(R), and a,b > 0, the Gabor frame operator SZ”Z : L2(R) — L*(R)
is given by

Sonf=DpoCy f= > (f,MuTiag) MiwTiah, f € L*(R).
k€7

Let us compare the spreading function representation of Hilbert—Schmidt operators
given in (1.1) with Janssen’s representation of the Gabor frame operator, which is

Sypf =(@b)™ Y7 (b MaTyg) MaTyf, | € L*(R)

m,n€z

[Jan95, Gro01]. Both types of operators are superpositions of time—frequency shifts,
and, hence, we shall refer to the tempered distribution

(@)™ > (h,MnTag) 6200n € SH(RxR)

m,n€”Z

as spreading function of the Gabor frame operator Sa o

On a formal level, the relationship between Gabor frame operators and under-
spread and overspread operators is striking: the spreading functions of Gabor frame
operators are supported (as distributions) on a full rank lattice %Zx %Z in the time—

frequency plane R x ]@7 whereas the spreading functions of underspread and overspread
operators are supported on a fundamental domain of such a lattice (see Figure 4.1).
The duality of compact and discrete locally compact abelian groups suggests that re-
sults in the theory of underspread and overspread operators might lead to analogous
results in Gabor analysis and vice versa.

The correspondence of underspread and overspread operators to Gabor frame
operators has not yet been fully explored. To initiate research in this direction, we
shall show in Theorem 4.1 that identifiability of a canonically defined class of Gabor
frame operators with fixed lattice aZxbZ is equivalent to the existence of f € L%(R)
such that (f,a,b) is a Gabor frame for L?(R). As in Section 3, we need to define a
domain X and classes of Gabor frame operators S»* with some care in order to have
X sufficiently large to allow identification for ab < 1, and X small enough to allow
for an easy proof of the non-identifiability in case of ab > 1.

We choose as domain the Wiener space W (R), i.e.,

X =W(R) =W(L*R),1N2Z) = {f € L*®): [Iflw =D _If - Lpnrnlloo <00},
kEZ

as range, once more, Y = L?(R), and, for a,b > 0, we consider the operator class

Sab — {sg;,‘; : geL*R), he W(R)} with ||S;;};||Sa,,b = |[{(h, M=Tzg)} . -
14



F1a. 4.1. Support of the spreading symbol of an underspread or overspread operator and distri-
butional support of the spreading symbol of a Gabor frame operator.

We have

1S5 1z < Via+ DO+ 1) [1flw [1Sg7llser-

[Gr501], page 107, and, therefore, S»* C £ (W (R), L*(R)) and {®;: f € W(R)} C
L (8%t L2(R?)), where @ : S — 5oy f.

THEOREM 4.1. S%? is identifiable if and only if ab < 1. Moreover, for any a,b
with ab > 1 and any f € W(R) ezist g € L*(R) and h € W(R) such that S’;;Zf =0.

Note that identification of S** does not require to uncover g and h in S;”,l;, but
only to obtain the coefficients {<h, MzTrm g>} in Janssen’s representation of the Gabor
frame operator S’Z:Z.

Proof of Theorem 4.1. To show the identifiability of S** for ab < 1, we use the
fact that for any ab < 1 exists f € W(R) such that (f,a,b) = {MpT1.f} is a frame
for L?(R). For example, if ab < 1 we may choose the Gaussian f = gg : R — R, 2 +—
e=™" | with gy € S(R) C W(R) and for ab = 1 we could choose f = 1j0,0) € W(R).
The Ron—Shen duality principle implies that (f,a,b) is a frame for L?(R) if and only

if (f, 1, %) is a Riesz basis for its closed linear span in L?(R), i.e., if and only if there

exists A, B > 0 such that for all {d,, } € [*(Z?*) we have

Al{dmn iz <l Y dmnMaTy fllr2<Bl{dmn}e (4.1)

m,neZ

[RS97, Gro01]. Replacing {dm,n} by {(h, MnTyg)} € I>(Z*) in (4.1) shows that any
f with (f,a,b) is a frame for L?(R) identifies S*.

We shall now show that for any a,b > 0 with ab > 1 and any f € W(R) exists
g € L*(R) and h € W(R) such that S;’Z € 8**\ {0} and S;:Zf = 0, contradicting
that f identifies S**. Fix a,b > 0 with ab > 1 and f € W(R) and pick g € L?(R) such
that g L span(f,a,b), and, therefore, f L span(g,a,b). Let h = g9 € W(R) be the
Gaussian defined above and observe that (go, +, %) is a frame for L?(R) since 2 < 1.
Hence, {(h, M Ty g)} = {275 (g M_uT_yh) } € 3(22)\ {0}, ie., Sp € 522,

HSE:ZH 7é Ov but S;:Zf = Z <fa Tameng> Tamenh =0. 0
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4.2. Uncertainty. Theorem 4.1 illustrates a strong relationship of critical den-
sity in Gabor analysis to the identification of canonically defined classes of Gabor
frame operators. The critical density phenomenon in Gabor analysis is well known to
be rooted in uncertainty in time—frequency analysis:

e functions cannot be arbitrarily well localized simultaneously in time and fre-
quency, i.e., in phase space, and we can therefore exclude the possibility that
there exist Gabor systems (g, a,b) which are Riesz bases for L?(R) if ab < 1,
and
e functions cannot represent an area in phase space of volume larger one, in the
sense that one cannot construct complete Gabor frames (g, a,b) for L*(R) if
ab > 1.
Due to the first of the two limitations described above, Folland refers to a rectangle
of volume one in phase space as a “minimal rectangle in phase space” [FS97].

Theorem 3.1 describes a new interpretation of minimal rectangles which plays a
role in the time—frequency analysis of operators: an operator, whose spreading symbol
is known to be supported in a rectangle in the time—frequency plane can be identified
if the rectangle has volume less or equal one, and cannot be identified if the rectangle
has volume greater than one. Note that this phenomenon is not a direct consequence
of the fact that we cannot construct functions which are arbitrarily well localized in
phase space, since, in fact, there exist no support restrictions for the construction of
operator symbols or spreading functions in phase space.

Theorem 3.1 and Theorem 4.1 can also be viewed as pull-backs of the critical
density phenomenon of “phase space expansions” as described in [Lan93] to operator
theory. Any operator output signal can only carry a restricted amount of time—
frequency structured information, and therefore, any output signal can only be used
to resolve a limited amount of information from an operator. Theorem 3.1 illustrates
that this amount of information corresponds to a minimal rectangle in the spreading
domain. Theorem 4.1 shows that the resolvable amount of information of operators,
whose spreading functions have discrete distributional support contained in a lattice
%Zx %Z, is connected to the sparsity of the lattice. In fact, all information inherent
in such operator can be resolved using a single test—signal if and only if ab < 1. Note
that in the latter case, the Kohn—Nirenberg symbol, which is the symplectic Fourier
transformation of the spreading function, is axb periodic, i.e., is the periodization of
a function supported on a minimal rectangle of size ab < 1 in phase space.

We would like to add, that the physical interpretation of the uncertainty principle
as a limit to the achievable precision when measuring position and momentum of
quantum mechanical objects parallels the identifiability result for underspread and
overspread operators nicely, since the latter tells us that we will not be able to identify
an overspread operator no matter how smartly a signal is chosen to test the system.

The uncertainty principle phenomena discussed above, among others, can be
found in [Fef83, Dau92, Lan93, BHW98, Grs01, Gro03].

5. Generalized spreading constraints. We shall now extend the results stat-
ed in Section 3 to higher dimensions and to non-rectangular spreading support sets.
Similarly to the one dimensional case, we have

H=HR?) ={H € HS(L*(RY)) : ry € So(R*")} C £ (SH(R?), L*(R?)).

Once more, we shall use a Zak transformation, namely Z : L?(R?) — L2(R%),
Zf(t,v) =3, cpa [(t—n)e2™™ for a.e. (t,v) € Q = Q1,1, and the Shah distribution
16



11l = 1117. Adjusting Lemma 3.2 accordingly, we obtain

ZoHuiii(t,v)= Z n (t—n, v—m)e*™ =™ for all (t,v)e[-3, 312, (5.1)

n,mez

an identity which leads immediately to

THEOREM 5.1. Hy = {H € H : supp ng C M} is identifiable with identifier
e if and only if M° N0 U, nyez2a: (0,0) (M°+(m,n)) =0.

The proof of Theorem 5.1 is similar to the proof of Theorem 3.3 and is therefore
omitted.

A straightforward generalization of either Theorem 3.3 or Theorem 5.1 leads to

the identifiability of Hpg, @ = Q11 = [—%, %]2‘1, in the case that D is a diagonal
matrix with diagonal (aq,...,aq, a—ll, cee i) € (R*)2?4, This observation leads us to

the question for which general diagonal or non—diagonal, volume preserving matrices
A € SL(2d,R), the operator space H4¢ is identifiable.

The underlying idea of obtaining identifiability results on H 4¢ for non-diagonal
matrices A € SL(2d,R), is to use the canonical correspondence of elements in H 4
with elements in Hq given by a coordinate transformation in the spreading domain.
Theorem 5.3 states that for symplectic A, there exist unitary operators O 4 on L?(R%),
such that the following formal calculation of operator valued integrals holds for all
H € Haq. Note that here, we set u(t,v) = M,T; to obtain

H = [ [nu(t,v)M,T, dt dv = | [nu(t,v) pt,v)dtdy
= [/ nu(Altv)) pAtv) dtdv = [ [nu(A(t,v)) Oap(t,v)O4" dtdv
= Oa [ [nu,(t,v) plt,v) dtdy O O Hy O4%, (5.2)

where g, = ngoA and Hy € Hg. We shall see that the intertwining operators
O € U(L*(R?) in (5.2) extend to Sj(R?) and act isomorphically on So(R?). The
identifiability of H¢ leads therefore to the identifiability of H 4 using as identifier
the tempered distribution O 4111 € S§(R?). See Figure 5.1 for an illustration of this
approach.

To gather all A € SL(2d,R) which allow for calculations similar to those in (5.2),
we turn to the representation theory of the reduced Weyl-Heisenberg group ngd

which is identical to R¢xR4xT in topology and Haar measure. The group operation
on the reduced Weyl-Heisenberg group is

(t, v, 62m‘s) . (t/,y/762m‘s’) _ (t Tt v+ V/’627ri(s+s'+%(t’.uft.u’)))7

and its Schrédinger representation on the space of unitary operators on L?(R?) is
given by
pi Hp — U(L2(RY)
(t,v,8) — p(t,v,s): L*(R) — L?(R)
f — p(t, v, 627Tis)f - R RY
T — €2Tri(y'x)+sf(1‘+t) )

Representing H once more as operator valued integral, we obtain

1
H://nH(t,l/)M,,Ttdtdl/ = / [ / g (t,v)p(—t,v,0) dt dv ds
ra JRe Jo
:/HM e Mg (—tv)p(t,v, ™) du(t, v, ) = p(ng),

17



SH(R) 0, SH(R)

FiG. 5.1. Identifiability of Hag, A € Sp(d,R) based on the existence of an intertwining operator
O4.

where % (t, v, e2™%) = e~ 2™ ny (—t,v). In other words, a Hilbert—Schmidt operator
H with ng € L'(R2?) is the integrated Schrédinger representations of 13 with respect
to the reduced Weyl-Heisenberg group H’*¢ [Fol89, Gro01].

Before listing the relevant results from representation theory in Theorem 5.3, it
is now time to define the symplectic group.

DEFINITION 5.2. The symplectic group Sp(d,R) consists of those matrices A €
SL(2d,R) that satisfy A* (I(l _éd VA = (g _OId) , where I is the dxd—identity ma-
triz.

Theorem 5.3, part a) outlines the scope of our approach [Fol89]. Part c¢) delivers
intertwining operators for equivalent representations po .4 and p. Parts d), e), ), and
g) describe these operators as products of some elementary operators. This charac-
terization shows us that the a—priori Hilbert space theory applies to the Feichtinger
algebra setup used in this paper (see part h)). Part i) covers shifts of the spreading
support which allow to extend Theorem 5.4 to affine linear coordinate transforma-
tions.

For ease of notation we shall not distinguish between the matrix A and the cor-
responding linear map, i.e., we have A(t,v) = ((¢,v) - .At)t.
THEOREM 5.3.

a) Let S operate on H*Y. The induced map ps = po S : Hy*Y — U (L*(R?)) is
an unitary representation of ngd which is unitarily equivalent to the irreducible
Schrddinger representation p, i.e., there exists an unitary intertwining operator
O such that Op(g)O* = ps(g) for all g € HW}Y, if and only if there exists
A € Sp(d,R) with S = A where A is given by A : Hied — Hed, (¢, v, €2™)
(A(t,v), e2m).

b) Let A € Sp(d,R) and let pa = po A. Then pa(f) = p(fo A1) for f € L*(HY).

¢) For A € Sp(d,R) exists an unitary operator O on L*(R?), with O4HO% =
p(n(H)° o A1) for all H € HS(L2(RY)) with n(H) € L*(R24).

18



d) The matriz T = (_OId Iod) together with the subgroups

N={(%2), A=4"} andD={(#,%.), AecGLnR)}

of Sp(d,R) generate Sp(d,R).
e) For A= (701{1 Iéi) we have po A(t,v) = u(A(t,v)) = Ftu(t,v)F.

f) For A = (IX Iod) with A = A* define C4 through Caf(x) = e’””TAzf(x). Then
we have po A(t,v) = pu(A(t,v)) = Caou(t,v) o C}.

g) For A = (‘3 A*Ofl) let Uy be defined by setting Uaf(z) = |det A|=2 f(A~ z).
Then 110 A(h, ) = p(A(t, 1)) = U o u(t,v) 0 U

h) The unitary operators F, Cyu, and Ua restrict and extend to Sp(R) and S{(R)
respectively.

i) Set Lgp) : RIxR? — RIxR, (t,v)— (a+t,b+v). Then

po Liap)(t,v) = € pu(a, b)u(t, v) = e u(t, v)u(a, b).

For details on representation theoretic background, see [Fol89, FK98, Gro01].
Using Theorem 5.3, we obtain

THEOREM 5.4. Let S = Ligp) 0 A, A€ Sp(d,R). Then Hyy is identifiable if and
only if Hgnr is identifiable.

Proof. Assume that Hj; is identifiable with fy; € Sj(R?). Theorem 5.3 provides
us with an unitary operator O 4 on L?(R?%) which extends to Sj(R?). We claim that
Oafur € SH(R?) identifies Hgas. To see this, observe that for all H € Hsas we have

H://nH(t,y) u(t,v) dt dv
://nH(A(t,y)+(a, b)) n(A(t,v)+(a,b))dtdv
= / / nm (A(t, v)+(a, b)) 2Py (a, b u(A(t,v)) dtdv
= //nH(A(t, v)+(a, b)) e*™ LY y(a, b)Oap(t, v)O 4" dt dv
— 1(a,0)0 / / Wit o (£, it ) dbdy O 4"

= p(a,0)04 Hy ap) Oa™,

and

1 HOafrllr2maey = 104" 1(a, )" HO A farll L2 (re)
= [[Ha,ap) fmll22®ay = (108 4 (0 | 22®20) = 100 ]| L2 (R20) = HHHHSD-

For M = @, we can identify Hgg using the identity in
COROLLARY 5.5. Let S = L4 0 A for some (a,b) € RIxR? and A= (A B) €
Sp(d,R). Then for H € Hgq and for (t,v) € supp(nm)

e27ria-(C’t+Dv)+z/tZ 00OgoHo OgJ_I_L(t, I/) =Ny (Afl(t —a,v — b))
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Fic. 5.2. Exzamples of sets M such that Hp; is identifiable.

We have shown that identifiability is robust with respect to symplectic coordinate
transformations in the spreading domain. This result is rooted in the representation
theory of the Weyl-Heisenberg group. Theorem 5.3.7 shows that this approach can
not be extended to obtain insights on non—-symplectic coordinate transformations.

Nevertheless, we should note that for A € SL(2d, R) the condition A € Sp(d, R) is
not necessary for H 4o to be identifiable. In fact, the diagonal matrix D with diagonal
(2, %, 1, 1) has the property D € SL(4,R) \ Sp(2,R), but Hpq is identifiable since
DQ is a fundamental domain of the symplectic lattice (‘3 A*O—l ) 7* with A = ( % (1)),
and therefore an application of Theorem 5.1 and Theorem 5.4 is permissable.

For similar results on non-symplectic lattices in Gabor theory see [Bek04, HWO01,
HWO04].
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