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Abstract. The Chebyshev norm of a degree n trigonometric polyno-
mial is estimated against a discrete maximum norm based on equidistant
sampling points where, typically, oversampling rather than critical sam-
pling is used. The bounds are derived from various methods known from
classical Approximation Theory. These estimates are of fundamental im-
portance for the design of efficient OFDM in communication systems.
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In modern digital communication a channel input signal is generally synthe-
sized as a linear combination of certain bases functions whose coefficients
are bearing the information that is to be transmitted [3, 10]. In the popular
orthogonal frequency division multiplexing (OFDM) communications system
the signal is expanded in terms of an orthogonal trigonometric basis and, up
to a modulation factor eiξt, it has the form

p(t) = a0 +
n∑

k=1

(
ak cos(kt) + bk sin(kt)

)
. (1.1)

Here, the degree n represents the width of the base band, which is generally
restricted.

One of the problems we may encounter in OFDM based transmission is
a large peak-to-average ratio (PAR), or equivalently, a large crest factor (CF)
for signals, given by

CF =
√

PAR :=
‖p‖∞
‖p‖2

=
maxt∈[0,2π] |p(t)|

(
1
2π

∫ 2π

0
|p(t)|2 dt

)1/2
. (1.2)
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The reliability of transmission systems containing input signals with large CF
is reduced. This is due to the fact that power amplifiers are only capable
of modulating signals which are bounded by a fixed constant, the so-called
clip level. Any input signal exceeding this value is clipped at this (“cut-off”)
level. This introduces noise to the system, reduces the signal-to-noise ratio
(SNR) and thus has strong impact on the reliability of the system. In order to
weaken this effect one can reduce the amplitude of the signal. But this worsens
the SNR directly. The total SNR of the system is also reduced due to the
increased quantization noise. The trade-off between clipping and reducing the
amplitude is chosen such that the maximal possible SNR of the transmission
system is achieved.

There exists a variety of methods aiming at a reduction of the CF in an
OFDM based transmission system; see [1, 2, 6, 12]. Many of them require a
fast and precise estimate of the CF of a given input signal, where the estimate
should be based on readily available information, such as the coefficients in
(1.1) and the sampled values of the signal on a sufficiently dense equidistant
mesh. Clearly, the denominator of (1.2) can be expressed in terms of the
coefficients of the signal (1.1), via Parseval’s identity. This gives rise to the
central problem discussed in this paper, which is equivalent to estimating the
crest factor: We want to derive bounds of the Chebyshev norm

‖p‖∞ := max
t∈[0,2π]

|p(t)|

of a trigonometric polynomial p of degree at most n, i.e.,

p ∈ Tn := span {1, sin t, cos t, . . . , sinnt, cos nt} ,

in terms of a discrete maximum norm

‖p‖N,∞ := max
k=0,...,N−1

|p(tk)| , (1.3)

where the tk are the N equidistant sampling points

ΘN :=
{

tk = t
(N)
k = k

2π

N

∣∣∣ k = 0, . . . , N−1
}

. (1.4)

In other words:
For given natural numbers n (the maximal degree of the trigonometric poly-
nomials) and N (the number of equidistant sampling points), we are after the
optimal constants cn,N > 0 in the estimate

‖p‖N,∞ ≤ ‖p‖∞ ≤ cn,N‖p‖N,∞ for all p ∈ Tn . (1.5)

Obviously, such a constant can not exist if N < 2n+1, since then Tn contains
a non-zero polynomial vanishing at all sampling points. Therefore, we shall
always assume that

N ≥ 2n+1 .
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For the case of critical sampling, i.e., N = 2n+1, estimates for cn,N have
been known for quite a while. In this case, the optimal constant in (1.5) is
given by the so-called Lebesgue constant for interpolation with trigonometric
polynomials; see [5, 11], where the case of algebraic polynomials was discussed
also. If the continuous and discrete Chebyshev norms are replaced by p-
norms, then the corresponding estimates are named after Marcinkiewicz and
Zygmund; see [13, Ch.X.7], or [9] for a more recent paper.

For the case of oversampling, the only results known to us are the estimate

cn,2m ≤ 1

cos πn
2m

due to Ehlich and Zeller [4], which is sharp if and only if n|m, and the recent
result by Wunder and Boche [12],

cn,N ≤
√

N+ 2n+1
N−(2n+1) .

We embark on this important problem by elaborating on basic methods and
results from classical Approximation Theory. Three different aspects will be
considered. In Section 2, we describe a straightforward application of Bern-
stein’s inequality in order to get a rough and easy estimate (Proposition 1).
Finer estimates are derived through the use of summation kernels in Section 3,
where we show that

cn,N ≤
√

N
N−2n

(Theorem 1). In Section 4, we develop a characterization of (n,N)-extremal
polynomials—for which the right-hand side estimate in (1.5) is sharp—in
terms of alternation properties (Theorem 2). These properties of extremal
polynomials enable us to show that cn,N depends on N

n only, and they pro-
vide a powerful tool to exactly determine the constants cn,N in special cases.
Some of these examples and some comments on surprising properties of the
function N

n 7→ cn,N conclude the paper.

§2. Oversampling and Bernstein’s Inequality

We want to sample trigonometric polynomials p ∈ Tn of degree at most n at
N equidistant points within one period, i.e., on the sampling set (1.4), and
then recover the polynomials from this information.

Since Tn is 2n+1-dimensional, the minimal setup is given by N = 2n+1.
In this case, sampling and recovering is usually denoted trigonometric inter-
polation involving an odd number of equidistant points. Here,

Γk(t) :=
1

2n+1

sin
(

2n+1
2

)
(t − tk)

sin 1
2 (t − tk)

=
1

2n+1

(
1 + 2

n∑

j=1

cos j(t − tk)

)
, k = 0, 1, . . . , 2n ,

3



are the so-called fundamental polynomials in Tn interpolating the δ-data, i.e.,
Γk(t`) = δk,` for k, ` = 0, 1, . . . , 2n. Consequently, polynomials p ∈ Tn can
be recovered from the information p(tk), k = 0, 1, . . . , 2n, by the Lagrange
interpolation formula

p =

2n∑

k=0

p(tk) Γk for all p ∈ Tn . (2.1)

For this case of critical sampling we have

cn,2n+1 = λn ,

where λn := ‖Λn‖∞ is the Chebyshev norm of the so-called Lebesgue function

Λn(t) :=
2n∑

k=0

|Γk(t)| .

It is well-known ( e.g., see [13, Ch.X]) that

λn = 2
π log n + O(1) (n → ∞) ,

and for this reason, trigonometric interpolation or critical sampling of poly-
nomials with high degree is often called “unstable”.

In order to avoid this instability, we can use a higher sampling rate. Let
us denote

q :=
N

n
. (2.2)

We will show later that cn,N actually depends on q only. Let us begin with a
first estimate.

Proposition 1. For q = N
n > π, we have

cn,N ≤ q

q − π
.

Proof: The result is an immediate consequence of the classical Bernstein
inequality ‖p′‖∞ ≤ n‖p‖∞ for p ∈ Tn (see [8, Ch.3.2]), if we use the integrated
form

|p(t) − p(t′)| ≤ n |t − t′| ‖p‖∞ , p ∈ Tn .

Without loss of generality we may assume ‖p‖∞ = 1. Consider t∗ ∈ [0, 2π[
with |p(t∗)| = 1, and choose tk ∈ ΘN such that tk is closest to t∗. Then
|tk − t∗| ≤ π

N and thus

|p(tk) − 1| ≤ n |tk − t∗| ≤ nπ

N
=

π

q
.

Hence,
‖p‖N,∞ ≥ |p(tk)| ≥

(
1 − π

q

)
‖p‖∞ .

Remark: Theorem 1 below will give a sharper estimate. However, we find it
interesting enough to include this proposition here, since it is based on a simple
argument using a Bernstein-Markov type inequality, and thus the method of
proof applies in various other situations as well. E.g., in [7], this idea has
been elaborated on in order to construct so-called norming sets for subspaces
of continuous functions on compact manifolds by using oversampling as well.
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§3. Summation Kernels

The Lagrange type interpolation formula (2.1) can be written in terms of the
n-th degree Dirichlet kernel

Dn(t) :=

+n∑

k=−n

eikt = 1 + 2

n∑

k=1

cos kt =
sin 2n+1

2 t

sin 1
2 t

,

which is the kernel of the n-th degree Fourier projection operator

Sn : C2π → Tn ,
(
Snf

)
(t) =

1

2π

∫ 2π

0

Dn(t−x) f(x) dx .

Namely, Γk =
1

2n+1
Dn(· − tk), k = 0, . . . , 2n. Using “gliding averages” of

such operators (respectively, their Dirichlet kernels), we can reproduce for-
mula (2.1) with modified functions Γk. In this way we shall improve on
Proposition 1.

A family of such operators is the class of (generalized) de la Vallée-Poussin
means

Sn,m :=
1

m−n

(
Sn + Sn+1 + . . . + Sm−1

)
for m > n (3.1)

with corresponding summation kernels

Dn,m(t) =
1

m−n

sin m+n
2 t sin m−n

2 t

sin2 1
2 t

. (3.2)

As special cases, we obtain the Fejér operators S0,n with corresponding Fejér
kernels

Fn(t) := D0,n(t) =
1

n

sin2 n t
2

sin2 t
2

,

and also the Fourier projectors themselves as Sn = Sn,n+1. By construction,

Sn,m : C2π → Tm−1 ,
(
Sn,mf

)
(t) =

1

2π

∫ 2π

0

Dn,m(t−x) f(x) dx , (3.3)

and
Sn,m p = p for all p ∈ Tn .

In particular, choosing p ≡ 1 yields

1

2π

∫ 2π

0

Dn,m(t−x) dx = 1 .

The operator norm of these operators is given by

‖Sn,m‖ =
1

2π

∫ 2π

0

∣∣Dn,m(t)
∣∣ dt =

4

π2
log

m

m−n
+ O(1) (3.4)

(see [8, p. 110]), hence these norms are uniformly bounded in n if m is chosen
proportional to n.
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Lemma 1. Given the sampling set ΘN = {tk = k 2π
N |k = 0, . . . , N−1}, the

de la Vallée-Poussin summation kernels Dn,m have the property

p(t) =
1

N

N−1∑

k=0

p
(
tk

)
Dn,m

(
t − tk

)
for all p ∈ Tn

whenever N ≥ m+n.

Proof: Given p ∈ Tn, we have

p(t) =
(
Sn,m p

)
(t) =

1

2π

∫ 2π

0

Dn,m(t−x) p(x) dx .

As a function of the variable x, the integrand is a trigonometric polynomial
of degree at most n+m−1. Thus the integral can be evaluated exactly by
applying a rectangular rule with sufficiently many points. Based on the set of
knots ΘN , the rectangular rule will do this whenever N−1 ≥ n+m−1, which
yields our claim.

Theorem 1. Given m ≥ n+1 and N ≥ m+n, we have

‖p‖∞ ≤
√

m+n

m−n
‖p‖N,∞ for all p ∈ Tn .

In particular,

cn,N ≤
√

N

N−2n
for N ≥ 2n+1 .

Our proof is based on ideas from [12], where it has been shown that

cn,N ≤
√

N+ 2n+1
N−(2n+1) .

Using properties of summation kernels, we can both shorten their argument
and somewhat improve their result.

Proof: The second estimate follows from the first one by choosing m := N−n.
Thus, in view of Lemma 1, it suffices to show that

1

N

N−1∑

k=0

∣∣Dn,m(t − tk)
∣∣ ≤

√
m+n

m−n
. (3.5)

According to (3.2), the left-hand side is given by

1

N(m−n)

N−1∑

k=0

∣∣∣
sin m+n

2 (t − tk) sin m−n
2 (t − tk)

sin2 1
2 (t − tk)

∣∣∣ ,
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Applying the Cauchy-Schwarz inequality, we have

( N−1∑

k=0

∣∣∣
sin m+n

2 (t − tk) sin m−n
2 (t − tk)

sin2 1
2 (t − tk)

∣∣∣
)2

≤
N−1∑

k=0

sin2 m+n
2 (t − tk)

sin2 1
2 (t − tk)

N−1∑

k=0

sin2 m−n
2 (t − tk)

sin2 1
2 (t − tk)

= (m+n)

( N−1∑

k=0

D0,m+n(t − tk)

)
(m−n)

( N−1∑

k=0

D0,m−n(t − tk)

)

= (m+n)N (m−n)N ,

where in the last step, we applied Lemma 1 to the constant function p(t) ≡ 1.
This estimate yields (3.5).

In engineering, one often prefers to use the so-called oversampling rate
r = N

2n+1 . In terms of this quantity, we obtain the following results. Here, b·c
as usual denotes the largest integer function.

Corollary 1. (i) Let N > 2n+1 and r := N
2n+1 . Then

cn,N ≤
√

r

r−1
.

(ii) Fix r > 1, and let N(n) := br(2n+1)c. Then

cn,N(n) ≤
√

r

r−1
for all n ∈ IN .

Proof: (i) is obvious, and (ii) follows from

br(2n+1)c
br(2n+1)c − 2n

≤ r(2n+1)

r(2n+1)−1 − 2n
=

r

r−1
.

§4. Extremal Polynomials and Extremal Alternating Sets

The optimal constant cn,N in estimate (1.5) can be expressed as

cn,N = sup
p∈Tn\{0}

‖p‖∞
‖p‖N,∞

. (4.1)

A polynomial p∗ ∈ Tn will be called (n,N)-extremal, if it satisfies

cn,N =
‖p∗‖∞
‖p∗‖N,∞

.
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Such an extremal polynomial always exists whenever N ≥ 2n+1. This follows
by a standard compactness argument: Given the unit ball in Tn, i.e.,

Bn :=
{
p ∈ Tn

∣∣ ‖p‖∞ = 1
}

,

we may write

cn,N = sup
p∈Bn

1

‖p‖N,∞
.

For N ≥ 2n+1, the mapping

Bn → IR, p 7→ ‖p‖N,∞

is nonzero and continuous. Since Bn is compact, this function assumes its
minimum at some p∗.

For n = 0, problem (4.1) is trivial, since any constant polynomial p ∈
T0 \ {0} is (0, N)-extremal, and c0,N = 1 for any N . Therefore, we shall from
now on tacitly assume

n ≥ 1 .

Consequently, we have for all N ≥ 2n+1 that

cn,N > 1 , (4.2)

which can be seen by simply considering an appropriate element of Tn. For
example, the polynomial

pN (x) = cos(x− π
N ) + 1

satisfies pN ∈ T1 and cn,N ≥ ‖pN‖∞/‖pN‖N,∞ > 1.

We shall characterize extremal polynomials by an alternation type theo-
rem. To this end, given p ∈ Tn \ T0, let

Ep :=
{
t ∈ [0, 2π[

∣∣ |p(t)| = ‖p‖∞
}

.

Since p is continuous, Ep is not empty. On the other hand, it contains at
most 2n points, since p attains a local extremum at each t ∈ Ep, and p′ has
at most 2n zeros in [0, 2π[. From (4.2), we know that if p is (n,N)-extremal,
then

Ep ∩ ΘN = ∅ .

So we may choose t∗ ∈ Ep and, after replacing p by p(· − tk) with an appro-
priate k if necessary, assume that 0 < t∗ < t1.

Furthermore, let

EN,p := {tk ∈ ΘN : |p(tk)| = ‖p‖N,∞}
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and define
E∗

N,p := EN,p ∪ {t∗, t∗+2π} .

Now we group the elements

t∗ < tj1 < tj2 < . . . < tjm
< t∗+2π

of E∗
N,p into adjacent groups

∆1 < ∆2 < . . . < ∆2κ+1 (4.3)

according to the sign of the function values

−p(t∗), p(tj1), p(tj2), . . . , p(tjm
), −p(t∗+2π) (4.4)

in the sense that in each ∆`, the sign stays constant, and in consecutive
groups, the sign alternates. (The reason for taking p(t∗) with the opposite
sign in (4.4) will become clear in the proof of Theorem 2.)

Because of the periodicity of p, it is clear that there must be an odd
number of groups in (4.3), which we indicated by the index 2κ+1, and it is
natural to count

∆1 ∪ ∆2κ+1 =: ∆∗
1 (4.5)

as one group. Choosing an element tk`
from each ∆` for ` = 2, 3, . . . , 2κ, we

obtain a set of points

t∗ < tk2
< tk3

< . . . < tk2κ
< t∗+2π (4.6)

with the property that the sequence

−p(t∗), p(tk2
), p(tk3

), . . . , p(tk2κ
), −p(t∗+2π) = −p(t∗) (4.7)

is strictly alternating in sign; in particular,

|−p(t∗)| = ‖p‖∞ and p(tk`
) = (−1)` sign(p(t∗)) ‖p‖N,∞ .

Such a set (4.6) will be called an N -extremal alternating set of length 2κ for
p. It is defined for any p with the property ‖p‖∞ > ‖p‖N,∞.

Remark: Let us again point to the fact that in contrast to the situation in
Chebyshev’s alternation theorem for uniform approximation with Chebyshev
systems, the point t∗ is counted in an exceptional way: We consider −p(t∗)
rather than p(t∗) in (4.7), and in addition |p(t∗)| > ‖p‖N,∞. Also note that
since we are dealing with trigonometric polynomials of degree n, the upper
estimate

2κ ≤ 2n+2

for the number of groups is immediate.

With these preparations, we can state a necessary and sufficient condition
for a trigonometric polynomial to be extremal.
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Theorem 2. Let n > 0 and N ≥ 2n+1. For p∗ ∈ Tn, the following are
equivalent:
(a) p∗ is (n,N)-extremal,
(b) ‖p∗‖∞ > ‖p∗‖N,∞, and p∗ has an N -extremal alternating set of length

2n+2.
Furthermore, if p∗ is (n,N)-extremal, it has the following properties:
(i) p∗ ∈ Tn \ Tn−1.
(ii) p∗ is unique up to translation by k 2π

N and multiplication by a constant.

(iii) If t∗ satisfies |p∗(t∗)| = ‖p∗‖∞, then t∗ is of the form (2k+1)π
N , and p∗ has

even symmetry about t∗.

Proof: (a) ⇒ (b): Assume that p∗ is (n,N)-extremal. By (4.2), this implies
‖p∗‖∞ > ‖p∗‖N,∞. Construct an N -extremal alternating set for p∗. If its
length satisfies 2κ ≤ 2n, we can choose points τ1, . . . , τ2κ ∈ [0, 2π[ such that

∆1 < τ1 < ∆2 < τ2 < . . . < ∆2κ < τ2κ < ∆2κ+1

and a function q ∈ Tκ ⊆ Tn such that q has a zero of order 1 at each τ`,
` = 1, . . . , 2κ, and no other zeros in the interval [0, 2π[. We can also assume
that ‖q‖∞ = 1, and that q is mimicking the sign distribution of p∗ in the sense
that

p∗(t) q(t)

{
< 0 for t ∈ ∆∗

1

> 0 for t ∈ ∆`, ` = 2, . . . , 2κ.

Letting α = ‖p∗‖N,∞ − max
{
|p∗(tk)|

∣∣ tk /∈ EN,p

}
> 0, we obtain with p̃ :=

p∗ − α q an element of Tn satisfying

‖p̃‖∞ ≥ |p̃(t∗)| > |p∗(t∗)| = ‖p∗‖∞ and ‖p̃‖N,∞ ≤ ‖p∗‖N,∞ ,

in contradiction to p∗ being extremal. So we may conclude that 2κ = 2n + 2.

(b) ⇒ (a): Assume that p∗ satisfies ‖p∗‖∞ > ‖p∗‖N,∞ and has an N -extremal
alternating set of length 2n+2. If necessary, shift p∗ by k 2π

N and multiply by
a constant to ensure that the t∗ in the N -extremal alternating set satisfies
0 < t∗ < 2π

N and p∗(t∗) = ‖p∗‖∞, and that ‖p∗‖N,∞ = 1.
Now let p̃ be (n,N)-extremal. Again, after shifting and normalizing p̃,

we may assume that p̃(t̃) = ‖p̃‖∞ for some t̃ ∈ ]0, 2π
N [, and that ‖p̃‖N,∞ = 1.

Then p̃ − p∗ satisfies

(
p̃ − p∗

)
(t̃) = ‖p̃‖∞ − p∗(t̃) ≥ ‖p̃‖∞ − ‖p∗‖∞ ≥ 0

by the extremality of p̃, and

(−1)`−1
(
p̃ − p∗

)
(tk`

) = (−1)`−1 p̃(tk`
) + ‖p∗‖N,∞ ≥ 0 ,

` = 2, 3, . . . , 2n+2

at the points tk`
of the N -extremal alternating set of p∗. But since p̃−p∗ ∈ Tn,

this sign distribution implies that p̃ − p∗ ≡ 0.
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In particular, this implies the stated uniqueness property (ii) of p∗. Also,
the number of sign changes requires (i) p∗ ∈ Tn \ Tn−1.

It remains to show the symmetry property (iii). To this end, assume
that p∗ is (n,N)-extremal with |p∗(t∗)| = ‖p∗‖∞. Again, we may assume
after a translation by k 2π

N that 0 < t∗ < 2π
N . Let p̃(t) = p∗( 2π

N −t) and

t̃ = 2π
N −t∗. Then p̃ is also (n,N)-extremal with |p̃(t̃)| = ‖p̃‖∞, and by the

same reasoning as above in showing (b) ⇒ (a), we conclude that p̃ = p∗. This
implies |p∗(t̃)| = |p∗(t∗)| = ‖p∗‖∞. By counting the zeros of (p∗)′, we see that
p∗ can have only one extremum in the interval [0, 2π

N ], so we necessarily have

t̃ = t∗ = π
N .

The line of argument in this proof illustrates the exceptional role of the
sign of p at the point t = t∗ in (4.4): To maximize the quotient ‖p‖∞/‖p‖N,∞,
we want to keep |p(tk)| small for each k, and at the same time increase ‖p‖∞ =
|p(t∗)|.

To illustrate the properties of an (n,N)-extremal function, Figure 1 shows
a typical example p∗ for (n,N) = (3, 11) and indicates the N -extremal alter-
nating set.

2 Π
�����������
11

4 Π
�����������
11

6 Π
�����������
11

8 Π
�����������
11

10 Π
���������������
11

12 Π
���������������
11

14 Π
���������������
11

16 Π
���������������
11

18 Π
���������������
11

20 Π
���������������
11

2 Π

-1.5

-1

-0.5

0.5

1

1.5

Fig. 1. p∗3,11 with its 11-extremal alternating set.

The characterization of extremal polynomials in Theorem 2 has a number
of immediate consequences.

Corollary 1. Let n > 0 and N ≥ 2n + 1. Then

cn,N = ckn,kN for all k ∈ IN .

Moreover, if p∗n,N is (n,N)-extremal, then

p∗kn,kN := p∗n,N (k · )
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is (kn, kN)-extremal.

Proof: Since p∗n,N ∈ Tn satisfies ‖p∗n,N‖∞ > ‖p∗n,N‖N,∞ and has an N -
extremal alternating set of length 2n+2, we find that p∗

n,N (k · ) ∈ Tkn satisfies
‖p∗n,N (k · )‖∞ > ‖p∗n,N (k · )‖kN,∞ and has a kN -extremal alternating set of
length 2kn+2. Consequently,

ckn,kN =
‖p∗n,N (k · )‖∞

‖p∗n,N (k · )‖kN,∞
=

‖p∗n,N‖∞
‖p∗n,N‖N,∞

= cn,N .

This result allows us to define

γq = γN
n

:= cn,N

for any rational index q > 2.

Corollary 2. The function q 7→ γq, defined on IQ∩ ]2,∞[, is strictly monotone
decreasing.

Proof: Given q1 = N1

n1

< q2 = N2

n2

, we may assume that N1 = N2 = N . This
implies n1 > n2, and thus

γq1
= cn1,N = sup

p∈Tn1
\{0}

‖p‖∞
‖p‖N,∞

≥ sup
p∈Tn2

\{0}

‖p‖∞
‖p‖N,∞

= cn2,N = γq2
.

Furthermore, we may deduce from Theorem 2.(i) that if p∗ is (n2, N)-extremal,
it is not (n1, N)-extremal, hence γq1

> γq2
.

§5. Examples and Further Notes

Theorem 2 allows us to determine cn,N explicitly for special cases.

Example 1. Let n = 1 and N ≥ 3.
If N is even, an extremal polynomial is given by

p1,N (t) = cos(t − π
N ) with c1,N =

1

cos π
N

.

If N is odd, an extremal polynomial is given by

p1,N (t) = cos(t − π
N ) +

1− cos π
N

2
with c1,N =

3 − cos π
N

1 + cos π
N

.

It should be noted that the case of even N = 2m recovers the reference
polynomial used by Ehlich and Zeller in order to prove their estimate

cn,2m ≤ 1

cos πn
2m

12



(see [4, Satz 3]). They also state that this bound is sharp if and only if n|m,
i.e., m = nm′, say, and we recover this result from

cn,2m = c1,2m′ =
1

cos π
2m′

=
1

cos πn
2m

.

Example 2. Let n = 2 and N ≥ 5.
If N is even, we obtain from Corollary 1

p2,N (t) = p1,N/2(2 t) with c2,N = c1,N/2 .

If N is odd, an extremal polynomial is given by

p2,N (t) = cos
(
2(t − π

N )
)

+ 4 sin2( π
2N ) cos(t − π

N )

+
(
1 + (−1)

N−1

2 2 sin( π
2N )

)
sin2( π

2N )

with

c2,N =
p2,N ( π

N )

p2,N (π+ π
N )

=
1 + 5 sin2( π

2N ) + (−1)
N−1

2 2 sin3( π
2N )

1 − 3 sin2( π
2N ) + (−1)

N−1

2 2 sin3( π
2N )

.

Further examples may be derived in special cases when elaborating on the
properties of extremal polynomials. Of course, in numerical calculations we
can also use Remez-type algorithms in order to construct an N -extremal
alternating set as follows. Given ΘN as in (1.4), choose 2n + 1 points

t0 < t1 < tk2
< tk3

< · · · < tk2n

from ΘN , and find the (unique) polynomial p ∈ Tn satisfying the interpolation
conditions

p(t0) = p(t1) = 1

p(tkj
) = (−1)j−1 , j = 2, . . . , 2n .

If this polynomial satisfies ‖p‖N,∞ = 1, then p = p∗ is (n,N)-extremal, and

cn,N = p∗(t∗) with t∗ =
1

2
(t0 + t1) .

Otherwise modify the points tk2
< tk3

< · · · < tk2n
and iterate. From our

experience, it is a good idea to start this process with an almost equidistant
subset t1=

2π
N < tk2

< tk3
< · · · < tk2n

< 2π+t0=2π of ΘN (see Figure 1
again).

13
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Fig. 2. Values of γq (for q = N
72 , N = 151 . . . 504).
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1.14

1.15

1.16

1.17

2.66 2.67

1.84

1.85

3.49 3.513.50

1.475

1.480

Fig. 3. Values of γq around q = 4, q = 6, q = 8
3 , and q = 7

2 .

With these methods, it is possible to calculate numerically many values
of γq efficiently. In doing so, we find surprising results (see Figure 2). At
certain numbers like 8

3 , 3, and 4, we observe “cliffs”, and also bends at other
points like 5

2 and 6. If we zoom in at these bends (see Figure 3), we realize
that they are “cliffs” as well.

Since IQ is dense in IR and γq is monotone (Corollary 2), we can extend

14



it to a monotone function ]2,∞[ → ]1,∞[ by defining

γ(x) := inf
q≤x

γq .

This ensures γ(q) = γq for q ∈ IQ, and makes γ continuous from the left at all
irrational points. Figures 2 and 3 lead us to the following conjecture.

Conjecture. The function γ has the following properties:
(i) γ is continuous.
(ii) The left-sided derivative of γ exists at all points, but γ is not differentiable

at any rational point.
(iii) The graph of γ is self-similar and has fractal dimension.

It might even be true that at all rational points, the left-sided derivative
is 0 and the right-sided derivative is −∞.
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