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ABSTRACT. We discuss the linear independence of systems of m vectors in
n–dimensional complex vector spaces where the m vectors are time–frequency
shifts of one generating vector. Such systems are called Gabor systems. When
n is prime, we show that there exists an open, dense subset with full–measure
of such generating vectors with the property that any subset of n vectors in
the corresponding full Gabor system of n2 vectors is linearly independent.
We derive consequences relevant to coding, operator identification and time–
frequency analysis in general.

1. Introduction

The goal of this paper is to show that there exist Gabor frames for Cn

consisting of n2 vectors in Cn with the property that any n vectors in this
frame are linearly independent. In other terminology, we say that the vectors
in such a Gabor frame are in linear general position or possess the Haar
property (cf. [4]).

This result, given as Theorem 1 in Section 2, has implications for op-
erator identification (e.g., [2], [10]), for the structure of the discrete short
time Fourier transform, and for the robust coding of signals transmitted
over lossy channels. Section 3 summarizes these implications, and Section 4
contains the proof of a slightly more general form of Theorem 1.
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c© 2004 Birkhäuser Boston. All rights reserved
ISSN 1069-5869
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2. Notation and Terminology

Definition 1. Set ω = e2πi/n. The translation operator T is the unitary
operator on Cn given by Tx = T (x0, . . . , xn−1) = (xn−1, x0, x1, . . . , xn−2),
and the modulation operator M is the unitary operator defined by Mx =
M(x0, . . . , xn−1) = (ω0x0, ω

1x1, . . . , ω
n−1xn−1). We set π(λ) = M lT k for

λ = (l, k). Given a vector f ∈ Cn the finite Gabor system with window f is
the collection {π(λ)f}λ∈Zn×Zn , where Zn = {0, 1, . . . , n− 1}.

Given n ∈ N, the discrete Fourier matrix Wn is defined by Wn =
(ωpq)n−1

p,q=0 and given a vector f ∈ Cn the Discrete Fourier Transform (DFT)
of f , denoted f̂ , is the vector f̂ = 1

n W ∗
n f .

Let f = (f0, f1, . . . , fn−1) ∈ Cn be given. For k = 0, 1, . . . , n− 1, let
Dk be the diagonal matrix

Dk =




fk

fk+1

. . .
fn−1

f0

. . .
fk−1




.

Define the n× n2 full Gabor system matrix A by

A = (D0 ·Wn |D1 ·Wn | · · · |Dn−1 ·Wn). (2.1)

We will sometimes write A = A(f) to emphasize that A is a matrix–valued
function of f ∈ Cn. It is clear that the columns of A are the vectors π(λ)f ,
for λ ∈ Zn × Zn.

Definition 2. A family F of m ≥ n vectors in Cn has the Haar property
(cf. [4]) if any subset F ′ ⊂ F with |F ′| = n is linearly independent.

The following is immediate.

Proposition 1. The Gabor system {π(λ)f}λ∈Zn×Zn has the Haar property
if and only if every minor1 of A of order n is nonzero.

The main result of this paper is the following.

Theorem 1. If n is prime then there is a dense open set E of full measure2

in Cn such that for every f ∈ E, the Gabor system {π(λ)f}λ∈Zn×Zn has the
Haar property.

1A minor of order k of an n×m matrix M is the determinant of a k× k submatrix
of M obtained by deleting n− k rows and m− k columns of M , see Definition 9.

2E is of full measure if the Lebesgue measure of Cn \ E is 0.
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3. Implications of Theorem 2.4

3.1 Operator identification and the short–time Fourier transform

Definition 3. A linear space of operators (matrices) M ⊆ L(Cm,Cn) ≡
Mat(n × m) is called identifiable with identifier f ∈ Cm if the linear map
ϕf : M−→ Cn, M 7→ Mf is injective, i.e., if Mf 6= 0 for all M ∈M\ {0}.
If there exists an identifier for M, then we call M identifiable. In other
words, M is identifiable if there exists a vector f ∈ Cm such that for all
M ∈M, Mf = 0 implies M = 0.

Example 1.

1. M = Mat(3×3), M not identifiable since dimM = 9 ≥ 3 = dimC3,
and, hence, M cannot be mapped injectively by a linear map to C3.
This reduces to the obvious statement that for every f ∈ C3 there is
a nonzero matrix M ∈M such that Mf = 0.

2. M =
{(

a b c
0 0 0
0 0 0

)
, a, b, c ∈ C

}
, M not identifiable since dimM = 3 ≥

1 ≥ dimMf ∀f ∈ C3, where Mf = {Mf, M ∈ M} = range ϕf .
This is equivalent to the statement that for every f ∈ C3 there is a
nonzero M ∈M such that Mf = 0. This is accomplished by simply
choosing

(
a
b
c

)
to be a nonzero vector orthogonal to f .

3. M =
{(

a 0 0
b 0 0
c 0 0

)
, a, b, c ∈ C

}
, M identifiable since

(
a 0 0
b 0 0
c 0 0

) (
1
0
0

)
=(

a
b
c

)

Definition 4. The spreading function of a matrix H ∈ Mat(n × n) given
by H = (hi,j)n−1

i,j=0, denoted ηH ∈ Cn2
, is defined by

ηH(l, k) =
1
n

n−1∑

m=0

hm,m−k ω−ml

for k, l = 0, . . . , n − 1, where here and in the following, indices are taken
modulo n.

Lemma 1. The family of operators {M lT k}(l,k)∈Zn×Zn
⊆ Mat(n× n) is a

basis for Mat(n× n). In particular,

H =
n−1∑

l=0

n−1∑

k=0

ηH(l, k)M lT k =
∑

λ∈Zn×Zn

ηH(λ)π(λ),

where ηH ∈ Cn2
is the spreading function of H.

Proof. Note first that for each k, ηH(·, k) is the discrete Fourier transform
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of the vector (hp,p−k)p∈Zn and the identity

hp,p−k =
n−1∑

l=0

ηH(l, k) ωpl

holds for each p, k ∈ Zn. Given x ∈ Cn,

(Hx)p =
n−1∑

k=0

hp,k xk

=
n−1∑

k=0

hp,p−k xp−k

=
n−1∑

k=0

n−1∑

l=0

ηH(l, k) ωpl xp−k

=
n−1∑

k=0

n−1∑

l=0

ηH(l, k) (M lT k x)p

and the result follows.

Definition 5. For Λ ⊆ Zn × Zn define HΛ = span {π(λ), λ ∈ Λ} = {H ∈
Mat(n× n) : supp ηH ⊆ Λ}.
Lemma 2. Let f ∈ Cn. The family {π(λ)f}λ∈Λ is linearly independent if
and only if f identifies HΛ.

Proof. The vector f fails to identify HΛ if and only if there is an element
H ∈ HΛ \ {0} such that Hf =

∑

λ∈Λ

ηH(λ)π(λ)f = 0. But by Lemma 1

H 6= 0 if and only if ηH 6= 0. Hence f fails to identify HΛ if and only if∑

λ∈Λ

ηH(λ)π(λ)f = 0 for some ηH 6= 0, that is, if and only if {π(λ)f}λ∈Λ fails

to be linearly independent.

Definition 6. We define the short time Fourier transform Vf with respect
to window f ∈ Cn on Cn by setting for g ∈ Cn, Vfg(λ) = 〈g, π(λ)f〉, λ ∈
Zn×Zn.

Lemma 3. If f identifies HΛ with |Λ| = n, then Vfg|Λ 6= 0 for all g 6= 0.

Proof. If f identifies HΛ with |Λ| = n, then by Lemma 2, {π(λ)f}λ∈Λ is
a basis for Cn. Hence Vfg(λ) 6= 0 for at least one λ ∈ Λ whenever g 6= 0.

Theorem 2. For f ∈ Cn \ {0}, the following are equivalent:

1. {π(λ)f}λ∈Zn×Zn has the Haar property.
2. HΛ is identifiable by f if and only if |Λ| ≤ n
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3. For all g ∈ Cn, g 6= 0, the vector Vfg ∈ Cn2
has at most n − 1

components which equal 0.
4. Vfg(λ) is completely determined by its values on any set Λ with |Λ| =

n.

Proof. 1. ⇐⇒ 2. This follows immediately from Lemma 2.

2. =⇒ 3. If 3 does not hold then there is a Λ with |Λ| = n such that
Vfg|Λ = 0 and g 6= 0. By Lemma 3 f does not identify HΛ and hence 2 fails
to hold.

3. =⇒ 1. If 1 does not hold then there is a set Λ ∈ Zn × Zn such that
|Λ| = n and {π(λ)f}λ∈Λ is not linearly independent. Let g be a nonzero
vector perpendicular to span {π(λ)f}λ∈Λ. Then for this g,

Vfg(λ) = 〈g, π(λ)f〉 = 0

for all λ ∈ Λ. Since |Λ| = n, 3 does not hold.

1. =⇒ 4. If 1 holds then for any Λ with |Λ| = n, {π(λ)f}λ∈Λ is a basis
for Cn. If Vfg(λ) = 〈g, π(λ)f〉 = 0 for all λ ∈ Λ then g = 0 and Vfg is
identically zero.

4. =⇒ 3. If 3 does not hold then there is a g 6= 0 such that Vfg has at least
n components which vanish. If 4 also holds then g = 0, a contradiction.

Corollary 1. If {π(λ)f}λ∈Zn×Zn has the Haar property, then fi 6= 0 and
f̂i 6= 0 for all i ∈ Zn.

Proof. If fi0 = 0 for i0 ∈ Zn, choose g = (1, 0, 0, 0, . . . , 0) and observe that
we have Vfg(i0, k) = 0 for k ∈ Zn. Hence, Theorem 2.3 is not satisfied and
{π(λ)f}λ∈Zn×Zn does not have the Haar property.

To see that f̂i 6= 0 for all i ∈ Zn, note that by a straightforward
calculation (π(l, k)f)∧ = ωkl π(k,−l)f̂ where, as before, the indices are taken
modulo n. This means that

Vfg(l, k) = 〈g, π(l, k)f〉 = nωkl 〈ĝ, π(k,−l)f̂〉 = nωkl V
f̂
(ĝ)(k,−l).

Now assuming that f̂i0 = 0 for i0 ∈ Zn, and choosing ĝ = (1, 0, 0, 0, . . . , 0)
we have that Vfg(−k, i0) = 0 for k ∈ Zn and the result follows as before.

Corollary 2. For n prime, HΛ is identifiable if and only if |Λ| ≤ n.

Proof. This follows immediately from Theorem 1 and Theorem 2.

3.2 Uniform tight finite frames and channels with erasures

Definition 7. A frame in a Hilbert space is a set of vectors {xk}k∈K with
the property that there exist constants c1, c2 > 0, called the frame bounds
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such that for all x in the Hilbert space

c1 ‖x‖2 ≤
∑

k∈K

|〈x, xk〉|2 ≤ c2 ‖x‖2. (3.1)

A frame is tight if c1 = c2 and is uniform if ‖xj‖ = ‖xk‖ for all j and k.
It is obvious that, in an n–dimensional Hilbert space, any collection of

m ≥ n vectors spanning the space is a (finite) frame for the space.

If our Hilbert space is Cn then it is convenient to represent a finite
frame for Cn, {xk}m

k=1, as an m × n matrix F whose rows are the complex
conjugates of the m vectors {xk}m

k=1. In this case the frame coefficients of
a vector x are given by the vector Fx, and the sum in (3.1) reduces to
〈x, F ∗Fx〉 and the inequality (3.1) can be written as c1 I ≤ F ∗F ≤ c2 I.
The frame is tight if and only if F ∗F is a multiple of the identity matrix.

Proposition 2. For any f 6= 0, the collection {π(λ)f}λ∈Zn×Zn is a uni-
form tight finite frame for Cn with frame bound c1 = c2 = n2 ‖f‖2.

Proof. Let F = A∗ where A is given by (2.1). Then the rows of F are the
complex conjugates of the elements of the Gabor system {π(λ)f}λ∈Zn×Zn .
Specifically

F =




W ∗
n D∗

0

W ∗
n D∗

1

· · ·
W ∗

n D∗
n−1




so that

F ∗F = D0 Wn W ∗
n D∗

0 + D1 Wn W ∗
n D∗

1 + · · · + Dn−1 Wn W ∗
n D∗

n−1

= n (D0 D∗
0 + D1 D∗

1 + · · · + Dn−1 D∗
n−1)

=
(

n2
n−1∑

k=0

|fk|2
)

I

and {π(λ)f}λ∈Zn×Zn is a tight frame for Cn. Moreover it is clear that

‖π(λ)f‖ =
(n−1∑

k=0

|fk|2
)1/2

for each λ ∈ Zn × Zn so that the frame is also uniform.

The basic problem we are interested in is the transmission of infor-
mation in the form of a vector x ∈ Cn over a channel in such a way that
recovery of the information at the receiver is robust to errors introduced by
the channel. In the particular model of interest we first transform the signal
x by forming y = Fx ∈ Cm. This vector is then quantized in some fash-
ion yielding ŷ = Q(y). In other words, we transmit not x but the quantized
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frame coefficients of x. Each such quantized coefficient is considered a packet
of data sent over the channel. It is assumed that the channel distorts the
transmitted vector by erasing packets at random. Robustness to this sort of
distortion means maximizing the number of packets that can be erased while
still allowing reconstruction of the signal as accurately as possible from the
remaining packets. For more details see [3, 6, 7, 8, 14] and the references
cited therein.

Definition 8. ([6]) A frame F = {xk}m
k=1 in Cn is maximally robust to

erasures if the removal of any l ≤ m− n vectors from F leaves a frame.

If the rows of F form a frame that is maximally robust to erasures, then
if no more than m − n packets are erased by our theoretical channel then
the error in the reconstructed signal x̂ recovered from the received packets
will be due entirely to quantization error in the coefficients ŷ. Indeed if the
quantization error is modelled as zero-mean uncorrelated noise, the mean
square error of the reconstructed signal is minimized if and only if the frame
is uniform and tight (Theorem 3.1, [6]).

The above discussion is summarized in following theorem.

Theorem 3. The following are equivalent.

1. {π(λ)f}λ∈Zn×Zn has the Haar property.
2. {π(λ)f}λ∈Zn×Zn is maximally robust to erasures.
3. The n2 × n matrix F whose rows are the complex conjugates of the

vectors in the Gabor system {π(λ)f}λ∈Zn×Zn has the property that
every minor of order n is nonzero.

4. Minors of Full Gabor System Matrices

The goal of this section is to prove Theorem 4 which, in light of Theorem 1,
is a generalization of Theorem 1.

Theorem 4. If n is prime then there exists a dense open set E of full
measure3 in Cn such that if f ∈ E then every minor of A = A(f) is nonzero.

Before getting to the proof, we specify in the following two subsections
some notation and basic results from the theory of determinants.

4.1 Basic results on determinants

The following is adapted from [11], Chapter 2 and [1], Chapter 6.

3In fact E is the complement of the union of the zero sets of finitely many homo-
geneous polynomials in n complex variables.
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Definition 9. The determinant of an n×n matrix A = (ai,j)n
i,j=1, denoted

det(A), is defined to be

det(A) =
∑

j

(−1)t(j) a1j1a2,j2 · · · anjn (4.1)

where j = (j1, j2, . . . , jn) runs through all permutations of {1, 2, . . . , n} and
t(j) is the parity of j, that is, the number of interchanges of pairs of elements
required to transform j into (1, 2, . . . , n).

For each permutation j = (j1, j2, . . . , jn), the set of matrix elements
{a1j1 , a2,j2 , . . . , anjn} is referred to as a diagonal of A. Then det(A) is the
sum over all diagonals of A of the products of those diagonals weighted by
±1.

Given an m× n matrix A and 1 ≤ p ≤ min(m, n), the determinant of
a p× p submatrix of A obtained by deleting m− p rows and n− p columns
is called a minor of order p of A. If the p rows and columns retained
have indices given by i = (i1, i2, . . . , ip) with i1 < i2 < · · · < ip and j =
(j1, j2, . . . , jp) with j1 < j2 < · · · < jp respectively then the corresponding
minor of order p is denoted

A

(
i1 i2 · · · ip
j1 j2 · · · jp

)
≡ A

(
i
j

)

If A is square then the complimentary minor corresponding to i =
(i1, i2, . . . , ip) and j = (j1, j2, . . . , jp), denoted

A

(
i1 i1 · · · ip
j1 j2 · · · jp

)c

≡ A

(
i
j

)c

,

is defined to be the determinant of the (n − p) × (n − p) submatrix of A
obtained by deleting the rows with indices in i and the columns with indices
in j.

The complimentary cofactor corresponding to i and j is defined as

Ac

(
i
j

)
= (−1)(|i|+|j|) A

(
i
j

)c

where |i| = ∑p
k=1 ik and |j| = ∑p

k=1 jk.

Theorem 5. (Laplace Expansion) Let A be an n × n matrix and let j =
(j1, j2, . . . , jp), j1 < j2 < · · · < jp, be a choice of p column indices, 1 ≤ p ≤
n. Then

det(A) =
∑

i

A

(
i
j

)
Ac

(
i
j

)
=

∑

i

(−1)(|i|+|j|) A

(
i
j

)
A

(
i
j

)c

(4.2)
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where i runs through all
(
n
p

)
choices of p row indices i = (i1, i2, . . . , ip),

i1 < i2 < · · · < ip.

Proof. The proof of this theorem is given in [11] and consists of showing
that each term in the sum contributes exactly p!(n − p)! terms in the sum
(4.1) defining det(A), and that

(
n
p

)
p!(n− p)! = n! thereby accounting for all

terms in this sum.

The proof of the following theorem is found in [1], Section 35.

Theorem 6. (Extended Laplace Expansion) Let A be an n×n matrix and
let s be a partition of the column indices of A, that is, s = (s1, s2, . . . , sm)
where sk is a set of pk column indices such that sk ∩ sk′ = ∅ when k 6= k′

and where p1 + · · ·+ pm = n. Then

det(A) =
∑

t

(−1)
∑m

k=1 |sk|+|tk|A
(

t1
s1

)
A

(
t2
s2

)
· · · A

(
tm
sm

)
(4.3)

where t = (t1, t2, . . . , tm) runs through all
(

n

p1

)(
n− p1

p2

)
· · ·

(
n− p1 − · · · − pm−1

pm

)

partitions of the row indices into subsets of size (p1, p2, . . . , pm).

Proof. This theorem follows from Theorem 5 and a straightforward in-
duction argument based on the following considerations. Given s as in the
statement of the theorem, (4.2) says that

det(A) =
∑
t1

(−1)(|t1|+|s1|) A

(
t1
s1

)
A

(
t1
s1

)c

where t1 runs through all choices of p1 row indices of A. Note now that

A

(
t1
s1

)c

is the determinant of an (n − p1) × (n − p1) matrix formed by

deleting the rows of A with indices in t1 and columns with indices in s1.
Hence applying (4.2) again,

A

(
t1
s1

)c

=
∑
t2

(−1)(|t2|+|s2|) A

(
t2
s2

)
A

(
t2
s2

)c

where t2 runs through all choices of p2 row indices of the (n− p1)× (n− p1)
submatrix of A formed by deleting the rows of A with indices in t1 and
columns with indices in s1. Hence

det(A) =
∑
t1

∑
t2

(−1)(|t1|+|s1|+|t2|+|s2|) A

(
t1
s1

)
A

(
t2
s2

)
A

(
t2
s2

)c

.
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Continuing in this fashion we arrive finally at

det(A) =
∑
t1

∑
t2

· · ·
∑
tm

(−1)
∑m

k=1(|tk|+|sk|) A

(
t1
s1

)
A

(
t2
s2

)
· · · A

(
tm
sm

)

where we have made the observation that at the penultimate step we have
the equality

A

(
tm−1

sm−1

)c

= A

(
tm
sm

)
.

Note that by combining this result with the counting argument in the
proof of Theorem 5, it follows that each term of the sum in (4.3) contributes
exactly p1!p2! · · · pm! terms to the sum in (4.1) which defines det(A) and that

(
n

p1

)(
n− p1

p2

)
· · ·

(
n− p1 − · · · − pm−1

pm

)
p1!p2! · · · pm! = n!,

thereby accounting for all terms in this sum. Indeed the proof of Theorem 6
in [1] (Section 35) follows precisely these lines.

4.2 Generalized Vandermonde determinants.

The proof of Theorem 1 requires the following lemma, whose proof may
be found in [5]. We will describe this proof below for completeness, with
notation taken from [5].

Lemma 4. If n is prime then every minor of the discrete Fourier matrix
Wn is nonzero.

The proof of Lemma 4 is based on the theory of generalized Vander-
monde determinants.

Definition 10. Given an p–tuple a = (a0, a1, . . . , ap−1) of distinct non-
negative integers and a point x = (x0, x1, . . . , xp−1) ∈ Cp, define the gen-
eralized Vandermonde determinant, denoted

Va(x) = Va(x0, x1, . . . , xp−1),

to be the determinant of the matrix (xal
k )p−1

k,l=0. With s = (0, 1, . . . , p− 1),
Vs(x) is the standard Vandermonde determinant.

It is well–known that the standard Vandermonde determinant is given
by

Vs(x) = Vs(x0, x1, . . . , xp−1) =
∏

0≤k<l≤p

(xk − xl)
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and hence does not vanish if and only if the xk are distinct. Suppose

that a minor of order p of the Fourier matrix Wn is given by Wn

(
i
j

)

where i = (i0, i1, . . . , ip−1) and j = (j0, j1, . . . , jp−1). Then Wn

(
i
j

)

is the generalized Vandermonde determinant Vj(ωi0 , ωi1 , . . . , ωip−1) where
ω = e2πi/n. If we consider Va(x) to be a polynomial in the p variables xk,
k = 0, 1, . . . , p − 1, then Va(x)/Vs(x) is a homogeneous polynomial in x
with integer coefficients.4 We will denote this polynomial by Pa(x).

Fundamental to the theory of generalized Vandermonde determinants
are the following results of Mitchell [13] (see [5] for elementary proofs and
interesting consequences of these results).

Theorem 7. Let a = (a0, . . . , ap−1) with 0 ≤ a0 < a1 < · · · < ap−1.
Then all the coefficients of the polynomial Pa(x) are nonnegative.

Theorem 8. Let a = (a0, . . . , ap−1). Then the sum of the coefficients of
Pa(x) is

Vs(a0, a1, . . . , ap−1)/Vs(0, 1, . . . , p− 1).

In other words,

Pa(1, 1, . . . , 1) =
Vs(a0, a1, . . . , ap−1)
Vs(0, 1, . . . , p− 1)

=
∏

0≤k<l≤p

(ak − al)
(k − l)

.

We can now prove Lemma 4 as follows. Given a choice of p row and
column indices of Wn, denoted respectively by i = (i0, i1, . . . , ip−1) and
j = (j0, j1, . . . , jp−1), suppose that

Wn

(
i
j

)
= Vj(ωi0 , ωi1 , . . . , ωip−1) = 0.

Now consider the polynomial in z ∈ C defined by

P (z) =
Vj(zi0 , zi1 , . . . , zip−1)
Vs(zi0 , zi1 , . . . , zip−1)

=
Vj(zi0 , zi1 , . . . , zip−1)∏

0≤k<l≤p(zik − zil)
. (4.4)

Since n is prime and since the 0 ≤ ik ≤ n − 1 are distinct integers the
denominator of the last term in (4.4) is nonzero when z = ω, and since its
numerator is assumed to vanish, P (ω) = 0. Moreover, P (ω) = 0 implies

4It follows by direct calculation that for each k < l, (xk − xl) divides Va(x). Since
Z[x] is a unique factorization domain ([9], p. 164, Thm. 6.14) and since (xk−xl) is
irreducible, Va(x)/Vs(x) is a polynomial. That it is homogeneous follows from the
fact that a polynomial P is homogeneous of degree k if and only if P (ax) = akP (x).
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that P is divisible by zn−1 + zn−2 + · · ·+ z + 1 in Z[z].5 Consequently P (1)
is an integer multiple of n.

Now, by Theorem 8, it also holds that

P (1) =
∏

0≤k<l≤p

(jk − jl)
(k − l)

.

However, since 0 ≤ jk ≤ n − 1 and are distinct, P (1) cannot be a multiple
of n since in that case n would be the product of integers strictly less than

n contradicting the assertion that n is prime. Hence Wn

(
i
j

)
is not zero.

4.3 Proof of Theorem 4.1.

Fix 1 ≤ l ≤ n and let M be an l × l submatrix of A formed by deleting
n2− l columns and rows of A. Associate to M the n-tuple (l0, l1, . . . , ln−1)
where lk is the number of columns of the matrix Dk ·Wn that appear in M
(see (2.1)).

Note that det(M) is a homogeneous polynomial of degree l in the vari-
ables f0, f1, . . . , fn−1. It will be sufficient to show that this polynomial does
not vanish identically. We will do this by finding at least one monomial in
this polynomial that has a nonzero coefficient. We define this monomial
below by means of a recursive algorithm.

Definition 11. The minor det(M) given by (4.1) is formally a sum of l!
monomials in f0, f1, . . . , fn−1. Of those monomials that formally appear in
this sum we define pM recursively as follows. If l = 1 then M is simply a
multiple of a single variable fj and we define pM = fj . For l > 1, let fj

be the variable of lowest index appearing in M . Choose any entry of M in
which fj appears, eliminate from M the row and column containing that
entry, and call the remaining matrix M ′. Define pM = fj pM ′ .

Of course it now must be argued that this definition makes sense, that
is, that the monomial pM is uniquely determined by M . It is clear that
what must be shown is that the choice of the term in M containing the
variable fj does not effect the variable of least index appearing in M ′. So
suppose that fj is the variable of lowest index appearing in M . There are
three possibilities. (i) the variable fj appears in more than one row of M ,
(ii) the variable fj appears in exactly one row and more than one column of
M , and (iii) the variable fj appears in exactly one row and one column of
M .

5That P is divisible by zn−1 + zn−2 + · · · + z + 1 in Q[z] follows from the fact
that I = {f ∈ Q[z] : f(ω) = 0} is an ideal in the principle ideal domain Q[z]
generated by zn−1 + zn−2 + · · ·+ z + 1 ([9], p. 123). That P also factors in Z[z] is
an application of Gauss’ Lemma, ([12], p. 181).
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Consider case (i). Because M is a submatrix of A, and because of the
structure of A given in (2.1), it follows that the variable fj cannot appear
twice in the same column of M . Hence no matter which term containing
fj is chosen, the variable fj will still appear in the reduced matrix M ′, and
will be the variable of least index appearing in M ′.

Consider case (ii). Again by the structure of A, and since M is a
submatrix of A, the columns in which fj appears must come from the same
submatrix Dk ·Wn of A. Consequently the variables appearing in each such
column are the same and appear in the same order in each column. Hence
all the variables that are removed by eliminating one of the columns in which
fj appears still appear in the reduced matrix M ′. Hence the term of lowest
index in M ′ is unaffected.

Consider case (iii). In this case, there is no ambiguity about which row
and column to eliminate so M ′ is uniquely determined.

Lemma 5. The number of diagonals of M that correspond to the monomial
pM is

∏n−1
k=0 lk!.

Proof. For any submatrix M of A, we define µ(M) to be the number of
diagonals of M whose product is a multiple of pM . The proof proceeds by
induction on l. If l = 1 then the result is obvious. Let M be given with
its associated n-tuple (l0, l1, . . . , ln−1). We may assume without loss of
generality that the variable of smallest index in pM with a nonzero exponent
is f0. In this case, there is a row of M in which the variable f0 appears lj
times for some index j. Choose one of these terms and delete the row and
column in which it appears. Call the remaining matrix M ′. The n-tuple
associated with M ′ is (l0, . . . , lj−1, lj − 1, lj+1, . . . , ln−1), and this n-tuple
does not depend on which term was chosen from the given row to form M ′.
By Definition 11, pM = f0 pM ′ and by the induction hypothesis

µ(M ′) = l0! · · · lj−1! (lj − 1)! lj+1! · · · ln−1!.

Since there are lj ways to choose a term from the given row to produce M ′

we have that

µ(M) = lj µ(M ′) = l0! · · · lj−1! lj(lj − 1)! lj+1! · · · ln−1! =
n−1∏

k=0

lk!

which was to be proved.

Proof of Theorem 4: Let s = (s1, s2, . . . , sm) be the partition of the column
indices of M defined as follows. Let 0 ≤ j1 < j2 < · · · < jm < n be such that
ljk

> 0 and let sk be the set of those ljk
column indices of M corresponding

to columns chosen from the submatrix Djk
·Wn of A. By (4.3), det(M) is
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given by the sum

det(M) =
∑

t

(−1)
∑m

k=1 |sk|+|tk|M
(

t1
s1

)
M

(
t2
s2

)
· · · M

(
tm
sm

)
(4.5)

where the sum runs over all partitions of the row indices of M for which tk
is the same size as sk. Note that each term in this sum is a multiple of a
monomial of degree l in the variables f0, f1, . . . , fn−1.

We will now choose a term in this sum that is a nonzero multiple of
the monomial pM . That is, we will choose a particular t = (t1, t2, . . . , tm)
with the property that the product

M

(
t1
s1

)
M

(
t2
s2

)
· · · M

(
tm
sm

)
(4.6)

is a nonzero multiple of pM . Define this partition as follows. Choose any
diagonal of M whose product is formally a multiple of pM . Define tk to be
the set of row indices of M such that the term in the chosen diagonal in
that row is in one of the columns whose index is in sk. Then for each k, the
submatrix of M formed by choosing the columns indexed by sk and the rows
indexed by tk has the property that the same variable fj appears in each row

of the submatrix. Hence the minor M

(
tk
sk

)
is a product of these variables

and of a minor of the Fourier matrix Wn. Moreover, the product of all the
variables that appear in each of the submatrices is precisely pM . Finally we
conclude that the quantity in (4.6) is pM multiplied by a coefficient which
is the product of m minors of Wn. By Lemma 4 this coefficient is nonzero.

Finally we assert that the term in the sum (4.5) described above is
the only one that is a multiple of pM . To see why this is true note that
the product (4.6) represents

∏n−1
k=0 lk! terms in the sum for det(M) given by

(4.1). However, by Lemma 5 this is precisely the number of terms in the
sum (4.1) for det(M) in which the monomial pM formally appears. Hence
the coefficient of pM in det(M) is nonzero and the polynomial det(M) is not
identically zero.

Let Z(M) be the set of zeros of det(M) and define Ec = ∪MZ(M)
where M runs through all l × l submatrices of A, 1 ≤ l ≤ n. Since this is a
finite union and since each set Z(M) has measure zero, is closed, and has
empty interior, E is an open dense subset of Cn of full measure. Clearly if
f ∈ E then every minor of the matrix A(f) is nonzero.

Example 2. The Matrix
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M =




ω0f2 ω0f2

ω1f3 ω2f3

ω2f4 ω4f4

ω3f5 ω6f5

ω5f0 ω3f0

ω6f1 ω5f1

∣∣∣∣∣∣∣∣∣∣∣∣

ω0f3 ω0f3 ω0f3

ω0f4 ω2f4 ω5f4

ω0f5 ω4f5 ω3f5

ω0f6 ω6f6 ω1f6

ω0f1 ω3f1 ω4f1

ω0f2 ω5f2 ω2f2

∣∣∣∣∣∣∣∣∣∣∣∣

ω0f6

ω3f0

ω6f1

ω2f2

ω1f4

ω4f5




gives an exemplary submatrix M of A(f) in the case n = 7.
M is obtained by removing the row of A(f) with index 4, and all

columns with indices not in {15, 16, 21, 23, 26, 45}. Recall that rows and
columns are numbered starting with 0 in this paper. Underlined are the
appearances of fj which contribute to the construction of pM which is given
by pM (f) = f2

0 f1f3f6.
The 7-tuple assigned to M in the proof of Theorem 4 is

(l0, l1, . . . , ln−1) = (0, 0, 2, 3, 0, 0, 1),

and the partition s is given by

s = (s1, s2, s3) = ({15, 16}, {21, 23, 26}, {45}).

We conclude that t1 = {4, 5}, t2 = {0, 2, 3}, and t3 = {1}.
We have

M

(
t1
s1

)
M

(
t2
s2

)
M

(
t3
s3

)

= det
(

ω5f0 ω3f0

ω6f1 ω5f1

)
det




ω0f3 ω0f3 ω0f3

ω0f5 ω4f5 ω3f5

ω0f6 ω6f6 ω1f6


 · det

(
ω3f0

)

= f2
0 f1f3f6 · det

(
ω5 ω3

ω6 ω5

)
det




ω0 ω0 ω0

ω0 ω4 ω3

ω0 ω6 ω1


 · ω3

and this coefficient of f2
0 f1f3f6 is nonzero by Lemma 4. The counting ar-

gument in the proof of Theorem 4 shows that pM (f) appears with this
coefficient in detM .
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