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ABSTRACT

This paper deals with the analysis of electrical potential time series derived from brain activity
of patients before and during an epileptic seizure. Outstanding problems for this analysis
include the prediction and space-time localization of seizures. We shall focus on the prediction
problem, whose satisfactory solution would provide maximal lead time in which to predict an
epileptic seizure.1−4 In particular, we shall present a fast method aimed at detecting periodic
behavior inherent in EEG seizure data.

The proposed procedure recognizes interindividual different periodic behavior in the electrical
brain activity during an epileptic seizure. The method is composed of three steps:

1. ECoG data of an individual patient are analyzed through spectral and wavelet methods to
extract periodic patterns associated with epileptic seizures of a specific patient.

2. Using this knowledge of seizure periodicity, we construct an optimal piecewise constant
wavelet designed to detect the epileptic periodic patterns of the patient.

3. We introduce a fast discretized version of the continuous wavelet transform, as well as
waveletgram averaging techniques, to detect occurrence and period of the seizure periodicities
in the preseizure EEG data of the patient. The algorithm is formulated to provide real time
implementation.

Our procedure is generally applicable to detect locally periodic components in signals s which
can be modelled as

s(t) = A(t)F (h(t)) + N(t) for t in I, (1)

where F is a periodic signal, A is a nonnegative slowly varying function, and h is strictly
increasing with h′ slowly varying. N denotes background activity. In the case of ECoG data,
N is essentially 1/f noise. In the case of EEG data and for t in I, N includes noise due
to cranial geometry and densities.5,6 In both cases N also includes standard low frequency
rhythms.7

PIECEWISE CONSTANT WAVELETS

We shall introduce the notion of piecewise constant wavelets, and give a constructive method for
choosing the optimal piecewise constant wavelet with which to detect periodicities of a known
shape. Our wavelet transformation is an Lp(R) normalized discrete variation of the continuous
wavelet transformation

WF (b, a) = a−1/p

∫

R

F (t)ψ(
t− b

a
)dt = a−1/p

∫

R

F (t)ψb,a(t)dt.



This discretized version of WF was introduced by Benedetto and Colella1, but we shall see
that a solution of our period detection and computation problem requires wavelets that were
not implemented in that work. The inherent redundancy in our wavelet transform reduces the
effects of some noises; and the expected computational complexity of the process is significantly
reduced through the restriction to piecewise constant wavelets.

Definition: A piecewise constant wavelet of degree M is a function ψ ∈ L2(R) such that

∫

R

ψ(t)dt = 0,

∃si ∈ R, i = 1, ..., N such that ψ|[si,si+1) = ci, ci ∈ R for i = 1, ..., N − 1,

ψ = 0 on R \ [s1, sN),

and

∃M ∈ N such that Msi ∈ Z for all i = 1, ..., N.

Note that ψ has compact support, i.e., supp(ψ) ⊆ [s1, sN ] and supp(ψb,a) ⊆ [as1 + b, asN + b].

The first observation in our approach to period detection and computation is the following fact.

Theorem 1: Let F ∈ L2(TT ), i.e., F is T -periodic with finite energy, and let ψ be a piecewise
constant wavelet of degree M . Then

a1/pWF (b, a) =

∫

R

F (t)ψ(
t− b

a
)dt

is T periodic in b and MT -periodic in a.

This result implies that if the signal s has the particular form s(t) = AF (ct) for constants
A and c, then the relative maxima of Ws form a lattice in time-scale space. The horizontal
(time) distance between two neighboring vertices of the lattice is 1/c, and the vertical (scale)
distance between two neighboring vertices is M/c.

Detecting lattice patterns and measuring the distance between vertices in redundant wavelet-
grams will disclose periodicities in the signal. Averaging techniques will reduce the effect of
noise in the case s(t) = AF (ct) + N(t).

CONSTRUCTION OF OPTIMAL PIECEWISE CONSTANT WAVELETS

We shall detect lattice patterns in time-scale space in terms of relative maxima of wavelet
transforms. To do this, we begin by fixing N ∈ N and we consider piecewise constant wavelets
ψc of the form

ψc|[i,i+1) = ci for i = 0, ..., N − 1, c = (c0, c1, ..., cN−1) ∈ RN . (2)

In particular, we have

0 =

∫

R

ψc(t)dt =
N−1∑
i=0

ci, (3)



and we normalize ψc so that

‖ψc‖L2(R) = ‖c‖l2(RN) = 1. (4)

Equation (3) allows us to achieve the periodicity properties asserted in Theorem 1. Note that
(3) is equivalent to the condition that

c ∈ H = {x ∈ RN :
N−1∑
i=0

xi = 〈x, (1, 1, ..., 1, 1)〉 = 0}.

H is an N−1 dimensional subspace, i.e., a hyperplane. Equation (4) is a standard normalization
constraint which can be made in constructing wavelets ψc, and it can be expressed as

c ∈ SN−1 = {x ∈ RN : ‖x‖l2(RN) = 1}.

Note that M = 1 in this setting.

The following theorem answers the general question of how to choose optimal piecewise constant
wavelets:

Theorem 2: Let F ∈ L2(TT ) and let N ∈ N.

a. There exist (b0, a0) ∈ R×R+ such that

a
− 1

p

0 ‖PH(kb0,a0)‖l2(RN) = max
(b,a)∈R×R+

a−
1
p ‖PH(kb,a)‖l2(RN) ,

where kb,a = (kb,a,0, ...kb,a,N−1) ∈ RN is defined by kb,a,i =
∫ (i+1)a+b

ia+b
F (t)dt and PH is the or-

thogonal projection of RN onto the hyperplane H,

H = {x ∈ RN :
N−1∑
i=0

xi = 〈x, (1, 1, ..., 1, 1)〉 = 0}

b. For this (b0, a0) we set

c0 =
PH(kb0,a0)

‖PH(kb0,a0)‖l2(RN)

.

The piecewise constant wavelet ψc0 satisfies (2),(3), and (4), and

|Wψc0

F (b0, a0)| ≥ |Wψc

F (b, a)|

for all (b, a) ∈ R×R+ and all ψc satisfying (2),(3), and (4).

Note that the optimization process depends on the choice of p.

Figure 1 illustrates the application of this theorem. After drawing the expected period, in our
case the seizure period of an individual patient, we define the periodic function F associated
with the seizure period. F is sampled at 130 samples per period for subsequent calculations
with the projection PH . We choose N = 5 and calculate k(b, a) = ‖PH(kb,a)‖l2(RN). For the
normalization constants p = 1, p = 1.35, and p = 2 we obtain distinct optimal piecewise
constant wavelets.
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Figure 1: Designing optimal piecewise constant wavelets to extract seizure periods.

PERIODICITY DETECTION

The periodicities discribed in Theorem 1 allow us to introduce averaging methods in the fol-
lowing way in order to analyze the waveletgram. Theorem 1 implies that if F is T -periodic

then a
1
p WF (a, b) takes the same value on each of the cells

[b0 + iT, b0 + (i + 1)T ]× [jMT, (j + 1)MT ] for i ∈ Z and j ∈ N0.

Consequently, for any signal s and positive integers Q and R, we define the average

V R,Q
s (b, a, T ) =

1

vQ(a, T )(2R + 1)

R∑
r=−R

Q∑
q=0

Wψc

s (b + rT, a + qT ),

where

vQ(a, T ) = a
1
p

Q∑
q=0

(a + qT )−
1
p , a, T ∈ R+,

with T ∈ R+, a ∈ (0, T ), and b ∈ [0, T ). Thus, if F is a T0-periodic signal then

V R,Q
F (b, a, T0) = Wψc

F (b, a).

As such, for any signal s, we set

ZR,Q
s (T ) = sup

a∈[0,T ),b∈[0,T )

|V R,Q
s (b, a, T )|. (5)
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Figure 2: Illustration of the algorithm applied for period detection. Here p = 1.35, N=5.

Therefore,

ZR,Q
F (T0) = sup

a∈[0,T0),b∈[0,T0)

|Wψc

F (b, a)|,

and we expect ZR,Q
F (T ) to be small for T 6= T0 and for large values of Q and R. Further, for

several types of noises N , including white noise, this averaging criterion will give small values of
ZR,Q

N (T ) for all values of T and for large values of Q and R. Hence, the subadditivity inherent
in (5) for signals s = F + N , combined with Theorems 1 and 2, give rise to an algorithm for
computing T0.

In Figure 2 we apply this method to the signal F constructed in Figure 1 sampled at a realistic
rate of 13 samples per period. First, we obtain the p = 1.35 normalized wavelet transform of
F . ZR,Q

F (T ) is then calculated for T = 1, ..., 20. The maximum of Z in Figure 2 implies the
occurence of the periodic signal with period length of 13 samples.

The technique has been successfully applied to synthesized noisy data. We are currently working
with EEG and ECoG data.

Theorem 2 remains true if we replace the hyperplane H by any subspace contained in H. This
fact allows us to include additional features in the optimization process of Theorem 2. For
example, a desirable feature is to use wavelets with multiple vanishing moments. Thus, we ask
if we can construct a subspace U ⊆ RN such that ψc has n vanishing moments for each c ∈ U .
In fact, we have proven the following result.

Theorem 3: For N ≥ 2 and 0 ≤ n ≤ N − 2, and define vk = (1k, 2k, 3k, ..., Nk) ∈ RN for
k = 0, ..., n. Consider the subspace

Un = span{v0, ..., vn}⊥.

Then c ∈ Un if and only if ψc has n + 1 vanishing moments



REMARKS

1. The proposed method is based on knowledge of the periodic component F . Typically, this
knowledge is obtained through ECoG data analysis. After gathering ECoG information about
F , we expect to obtain real time detection and computation of seizure periodicities in noisy
EEG data by means of the averaging method we have just described. Thus, the invasive ECoG
technique will properly assume a very limited role in long term prediction studies.

2. If F is a trigonometric polynomial, then the signals described in (1) have been analyzed
by Kronland-Martinet, Seip, Torresani, et al. to deal with the problem of detecting spectral
lines in NMR data.8,9 Another technique, that of computing critical frequencies in ECoG
seizure data using waveletgram striations, was formulated by Benedetto and Colella1. These
frequencies are related to the instantaneous frequency10 h′(t) of s at t; and, with our period
detection and computation problem in mind, 1/h′(t) is the instantaneous period of s at t.

3. Our analysis of ECoG seizure data establishes that the periodic function F in (1) is not
a simple trigonometric polynomial. This fact, and the goal of real time period detection and
computation, has led us to the described wavelet approach.
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