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ABSTRACT

We present analytical results, numerical estimates, and
numerical simulations showing that wavelet based affine
MCM schemes are unfit for communication through
dispersive time invariant channels as given in DSL and
some wireless communication environments. Currently
used FFT based MCM schemes (DMT) outperform those
based on wavelets regardless of which wavelet is cho-
sen.

1. INTRODUCTION
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Modern digital communication systems show a gen-
eral trend towards linear modulation schemes [1]. Im-
portant examples of linear modulation among others
are CDMA and OFDM (orthogonal frequency division
multiplex). The common principle of these schemes is
that the transmission signal can be written as a series
expansion based on a prescribed set of “pulses” which
are trigonometric polynomials in case of OFDM and
binary sequences in case of CDMA. Other variants are
the classical PAM or QAM modulation.
Any of these linear modulation schemes are part of
standardized digital communication systems, either for
wireless (e.g., HIPERLAN 2 in case of OFDM) or wired
(e.g. ADSL, where the baseband variant DMT of OFDM
is standardized for the asymmetrical transmission over
digital subscriber line) systems. We shall address one
of the key questions in the design of future communica-
tion systems concerning the design of the transmission
pulses in such a linear modulation scheme.
In principle any essentially time-limited and essentially
band-limited function can be taken as starting point for
the design of transmission signal sets. However, many
practical side constraints have to be fulfilled in order to
obtain realistic implementations and to enable the re-
ceiver to cope with the detrimental effects of the chan-
nel:

(i) The function system should be orthogonal, or at
least linearly independent, in order to have unique
demodulation.

(ii) The whole set of transmission pulses must have
a structure which admits fast DSP algorithms for
the implementation.

(iii) The function system must be robust with respect
to the distortions caused by the channel.

The introduction of wavelets almost 20 years ago had a
lasting effect on many fields in mathematics and engi-
neering. For a detailed historical account see [5, 15]. In
information and communication theory, wavelets have
been successfully applied to source coding, e.g., JPEG
2000. Various authors have proposed the application of
wavelet systems for modulation/signal synthesis also,
e.g., see [4, 9, 16]. Even though wavelet families do
fulfill the first two constraints for multicarrier modula-
tion (MCM) mentioned above, they fail the third ob-
jective: perturbation stability when faced with the dis-
persive effect caused by a linear translation invariant
operator. This failure leads to high ISI and ICI.
In this paper we shall present the problem of MCM
from a mathematical point of view and outline our math-
ematical/technical results concerning the “perturbation
stability of coherent Riesz-systems” [8] in Section 2
and Section 3. The emphasis of our proposed contribu-
tion is the comparison of shift invariant MCM systems
based on numerical simulations. We shall present ex-
emplary results of those simulations in Section 5.

2. SHIFT INVARIANT MULTICARRIER
MODULATION

In linear multicarrier modulation systems the input sig-
nal is synthesized as a linear combination of basis func-
tions {gi(t)}i∈I (I denotes a possibly infinite index
set), where the complex or real coefficients sustain the
information aimed at transmission. In the case ofshift
invariant multicarrier modulation (Figure 1) the basis
functions are translates of a finite family of functions
{gl(t)}l=0,...,N−1, i.e., for someT > 0 and
I = {0, . . . , N − 1} × Z we have

gl,k(t) = gl(t − kT ), for l = 0, . . . , N − 1, k ∈ Z.

Hence, the resulting information carrying input signal
is given by

x(t) =

∞
∑

k=−∞

xk(t) =

∞
∑

k=−∞

N−1
∑

l=0

cl,k gl(t − kT ).

We assume throughout this work that the channel dis-
tortion due to transmission over a physical communica-
tion channel corresponds to a translation invariant sys-
tem, i.e.,

(Kh x)(t) = (h∗x)(t) =

∫

R

h(t−t′)x(t′) dt′.
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Fig. 1. Shift invariant multicarrier modulation

The transmitter strategy corresponds to a signal synthe-
sis, accordingly the receiver performs a signal analysis,
in the sense of matched filtering by a family of func-
tions with identical structureγl,k(t) = γl(t − kT ):

c̃l,k = 〈x ∗ h, γl,k〉 =

∫

R

(x ∗ h) (t) γl,k(t) dt.

In order to guarantee the stable and effective transmis-
sion of the information contained in the sequence
{cl,k} ∈ l2({0, . . . , N − 1} × Z), the families{gl(t)}
and{γl(t)} need to satisfy the following conditions:

(i) {gl,k(t)} and{γl,k(t)} are Riesz bases of their
linear span to guarantee stability and continuity
of the synthesis and analysis maps.

A
∑

l,k

|cl,k|2 ≤
∥

∥

∥

∑

l,k

cl,kgl,k

∥

∥

∥

2

≤ B
∑

l,k

|cl,k|2

where ‖x‖2 =

∫

R

|x(t)|2dt.

Note that finite-length, discrete-time signals es-
tablish a finite-dimensional Hilbert space. Here,
the notion of a Riesz basis reduces to a set ofN
linear independent vectors of dimensionN .

(ii) Biorthogonality of the families{gl,k(t)} and
{γl,k(t)}, i.e.,

〈gl,k, γl′,k′〉 = δl,l′δk,k′ ,

to ensurecl,k = c̃l,k for all l, k, in case of an
ideal channelK = Id.

(iii) The families{gl(t)} and{γl(t)} should be struc-
tured to allow for fast synthesis and analysis al-
gorithms.

(iv) Uniform compact support, i.e.,supp gl ⊂ [0, T ],
in order to restrict ISI and time delay.

(v) Efficient use of an assigned bandwidth.

(vi) Low ICI/ISI for an ensemble of convolution op-
eratorsH ⊂ L(L2(R)), i.e., for allh(t) ∈ H :

Gh
l,k,l′,k′ := 〈h ∗ gl,k, γl′,k′〉 ≈ dl,k δl,l′δk,k′ .

(2.1)

The most prominent coherent function systems satisfy-
ing conditions i) - v) are Weyl–Heisenberg and wavelet
systems which will be described in Section 4 and Sec-
tion 5. The mentioned fast algorithms are based on the
FFT, and on Mallat’s cascade algorithm, respectively.
For theoretical analysis of the ICI/ISI of MCM pulses,
we consider a setH of absolutely integrable impulse
responsesh(t) defined by the following requirements:

(i) The impulse response is supported within a cen-
tered interval of lengtht0,i.e.,

supph ⊆ [− t0
2 ,+ t0

2 ].

Althoughh(t) does not have finite support in gen-
eral, we may cut it off at some point and treat the
influence of the remaining part as noise.

(ii) Assume that the first moment of the magnitude–
squared impulse response vanishes (correspond-
ing to properly defined timing recovery):

∫

R

|h(t)|2 t dt = 0.

(iii) The maximum of the magnitude transfer func-
tion is normalized (corresponding to perfect au-
tomatic gain control)

sup
f

|H(f)| = 1.

3. GENERAL RESULTS

To analyze the ICI/ISI of the pulses{gl,k(t)} indepen-
dently of the analysis pulses{γl,k(t)} we choose or-
thogonal perturbation as a measure of stability, i.e., we
define

dg,h =
∥

∥Khg − P<g>(Khg)
∥

∥

L2 ,



whereP<g> is the orthogonal projection onto the span

of g(t), given byP<g>(Khg)(t) = 〈Khg,g〉
〈g,g〉 g(t) (cf.,

Figure 2).
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Fig. 2. Orthogonal distortion(=perturbation)

Note that if the family{γl,k(t)} is orthonormal, the or-
thogonal perturbation ofgl,k(t) is related to the ICI/ISI
of the synthesis prototypegl,k(t) via

d2
gl,k,h ≥

∑

l′ 6=l,k′ 6=k

|Gh
l,k,l′,k′ |2 =

∑

l′ 6=l,k′ 6=k

|〈h∗gl,k, γl′,k′〉|2.

In our treatise, we aim at finding lower and upper bounds
on the orthogonal perturbationdg,h for all h(t) ∈ H.
For simplicity, we define

dg = sup
h∈H

dg,h .

Since the convolutionKhg(t) = h∗g(t) corresponds to
multiplication in the Fourier domain,dg can be related
to the frequency localization ofg(t), as the following
theorem shows.

Theorem 1 (Upper bound) For g(t) ∈ L
2(R) with

‖g‖L2 = 1, we have

d2
g ≤ (πt0)

2σ2
|G|2 ,

whereσ2
|G|2 is the variance of|G|2, i.e.,

σ2
|G|2 =

∫

bR

(f−µ)2 |G(f)|2 df

with

µ = µ|G|2 =

∫

bR

f |G(f)|2 df .

(Note thatG(f) denotes the Fourier transform ofg(t)).
On the other hand, one must expect that signals which
are not well localized on the frequency side potentially
undergo a relatively strong orthogonal perturbation.
Clearly, for a given convolution operator there might be
arbitrarily bad localized functionsg(t) which are exact
eigenfunctions of this specific operator, sodg,h = 0 for
this particularh(t) — but for practical purposes, we
require a family of basis functions that are stable under
the action of allh(t) ∈ H. Therefore, to be able to
show that certain families are inadequate, we want to
determine a lower bound fordg. Using an uncertainty
principle obtained by Slepian, Pollak, and Landau [11,
12, 13] we obtain the following result.

Theorem 2 (Lower bound) There exist constants
s∈ ]0, 1[ andr∈ [ 12 , 1[ such that forg(t) ∈ L

2(R),
‖g‖L2 = 1, with supp g ⊆ [α, α + Tg] for someα ∈ R

andTg > 0, we have

d2
g ≥ r2

(

1 − 4

3
s

Tg

t0

)

for
Tg

t0

≤ 1

2s
,

and d2
g ≥ 1

12

(

r t0

s Tg

)2

for
Tg

t0

>
1

2s
.

4. SPECIFIC MCM SCHEMES

We now proceed to apply these results to compare struc-
tured signal families of wavelet, Wilson, and
Weyl–Heisenberg type with respect to their stability
under convolution operators.
For numerical results based on Theorem 1 and Theo-
rem 2 we assumesupph ⊆ [− t0

2 ,+ t0
2 ] andT = 50 t0 .

Furthermore, we will use as realistic choicer
.
= 0.9

ands
.
= 1.

As for the number of elementsN in the family,N ≥
256 seems realistic; in VDSL applications,N ≈ 2000
is used.
Weyl–Heisenbergor Gaborsystems [7] correspond to a
rectangular tiling of the time–frequency plane, thegl(t)
andγl(t) are modulated versions of appropriately cho-
sen prototype functiong0(t) andγ0(t), i.e.,

gl(t) = g0(t)e
2πi(ρ/T )lt, γl(t) = γ0(t)e

2πi(ρ/T )lt .

Existence of Riesz bases requires [10]

ρ ≥ 1.

Thus we have

supp gl = supp g0

and

|Gl(f)|2 = |G0(f − (ρ/T )l|2.

Since the variance is translation invariant, we have

σ2
|Gl|2

= σ2
|G0|2

for all gl(t), so the upper bound from Theorem 1 holds
uniformly in h(t) ∈ H andl = 0 . . . N−1.
Using forg0(t) a triangle function, a trapezoidal func-
tion, or the polynomialt2(t−a)2 (properly normalized)
yields

d2
g

.
= 0.0012 .

It is worth emphasizing that the main property ensuring
this uniform upper bound is the fact that within a Weyl–
Heisenberg family, allGl(f) share the same frequency
localization.
The real-valuedWilsonbases are equivalent to the so–
called OFDM/OQAM systems [2] and can be formu-



lated in terms ofsin-components andcos-components:

g0(t) = g(t) ,

gm,1(t) = g(t)
√

2 cos(2π 2m
T t),

gm,2(t) = g(t−T
2 )

√
2 cos(2π 2m−1

T t) ,

gm,3(t) = g(t)
√

2 sin(2π 2m−1
T t),

gm,4(t) = g(t−T
2 )

√
2 sin(2π 2m

T t) ,

where the index set is defined asm ∈ [0,M − 1] and
the corresponding number of pulses per symbol time is
given byN = 4M +1. Similar to WH-Systems, modu-
lation and demodulation can be realized efficiently via
FFT. A recently developed theory allows the design of
pulsesg(t) with improved frequency localization [2].
Nevertheless, the following theorem holds.

Theorem 3 In a Wilson basis with at least 200 ele-
ments andsupp g0 ⊆ [0, T ], there is an elementgl with

d2
gl

≥ r2

5

.
= 0.16 .

The popular dyadicwaveletbases [5, 16] are defined
via

g(n)
m (t) = 2m/2g0

(

2m(t−n
T

2m
))

whereg0 is an appropriate prototype function (referred
to as mother wavelet) and the index set is defined as
follows:

m = 0, 1, . . . ,M , n = 0, 1, . . . , 2m−1,

(The total number of transmission pulses within sym-
bol periodT is accordingly given byN = 2M+1−1)).
In a dyadic wavelet basis, we encounter the problem
that, since scaling on the time side results in reverse
scaling on the frequency side, the frequency localiza-
tion gets worse and worse as the indices grow. The
following result gives a quantitative estimate of this ef-
fect.

Theorem 4 In a dyadic wavelet family withsupp g0 ⊆
[0,KT ] and finest scaling levelM ≥ 7 + log2(K), the

elementsg(n)
M (t) on levelM satisfy

d2

g
(n)
M

≥ 0.81 (1 − 67 · 2−MK) .

When using the orthogonal Daubechies wavelet with
four vanishing moments (db4 in MatLab), we may choose
K = 8. If N > 1024, we needM ≥ 11 which yields
d2

g
(n)
11

≥ 0.386; for N > 2048 with M ≥ 12 we obtain

d2

g
(n)
12

≥ 0.598.

5. NUMERICAL SIMULATIONS

To corroborate our theoretical results of Section 3 in a
realistic setup, we shall compute the effective channel
matrix of an exemplary wavelet transmission basis and
of an exemplary Weyl–Heisenberg transmission basis

with respect to a normalized convolution operator re-
flecting a2km, 0.4mm PE twisted copper wire cable.
In order to visualize the channel matrices (2.1), we re-
sort the synthesis and analysis families and display a
segment of the biinfinite block Toeplitz matrix.
To compare the families discussed within a setting sim-
ilar to ADSL, we chooseT ≈ 250µs and bases capable
of transmitting about500 real coefficients (250 imagi-
nary coefficients) utilizing the baseband [-1,1] MHz.
The impulse response of a2km, 0.4mm PE twisted
copper wire cable sampled at2 MHz has been calcu-
lated according to [6]. The resulting causal impulse
response has been shifted to improve the performance
of all the coherent families discussed here. Addition-
ally, the impulse response has been normalized so that
sup |H(f)| = 1. The resulting functionh(t) is shown
in Figure 3.
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Fig. 3. Channel impulse responseh(t) of a 2km
0, 4mm PE twisted copper wire cable.

The colormap used in the Figures below is shown in 4.
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Fig. 4. Colormap used in the channel matrix images.

To illustrate the performance of an exemplary Weyl–
Heisenberg system, we choose as prototype functions

g0(t) = γ0(t) =
1√
250

χ[0,250)(t [µs]).

Using T = 250µs, b = 1
250MHz andL = 250, we

obtain the channel matrix displayed in Figure 5. Details
of this matrix are shown in Figure 6.
In the Weyl–Heisenberg example, we shall now employ
a cyclic prefix of30µs. Hence, the prototype functions
we choose

g0(t) =
1√
250

χ[−30,250)(t [µs])

and

γ0(t) =
1√
250

χ[0,250)(t [µs]).
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Fig. 5. Channel matrix of a Weyl–Heisenberg
family.

5 10 15 20 25

5

10

15

20

25

Fig. 6. Details of Figure 5.

Using T = 280µs, andL = 250, we obtain the seg-
ments of the channel matrix displayed in Figure 7 and
in Figure 8. Note that we do not have exact diagonal-
ization, since the duration of thecyclic prefixis smaller
than the duration of the impulse responseh (see Fig-
ure 3).
Next, we consider a Wilson basis of dimension496.
We choose

g0(t) = γ0(t) =
1√
250

χ[0,250)(t [µs])

with M = 124. The other parameters are chosen as in
the Weyl–Heisenberg example. The channel matrix is
shown in Fig. 9 and Fig. 10.
To obtain an exemplary wavelet system we shall use
the orthogonal Daubechies wavelet with 4 vanishing
moments, i.e.,g0 = db4, scaled to support[0, 1791]µs
and normalized in theL2(R) sense. Furthermore, we
setT = 28 = 256µs andM = 8 and obtain the trans-
mission family

{g(n)
k,m(t)}m=0,1,2,3,....8, n=0,1,....2m−1, k∈Z.
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Fig. 7. Channel matrix of a Weyl–Heisenberg
family using acyclic prefix.
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Fig. 8. Details of Figure 7.

The prototype functiong0(t) is displayed in Figure 11.
We reorder the orthonormal wavelet family according
to

g511k+2m−1+n(t) = g
(n)
k,m(t).

A segment of the resulting effective channel matrix is
displayed in Figure 12. The wavelet basis elements on
the finest scale suffer the strongest orthogonal pertur-
bation, reflecting their poor frequency localization.
Finally we consider a DS spread spectrum system based
on a Walsh-Hadamard code. This modulation scheme
is used in the North American cellular wireless system
[14, p.849]. The transmission signal is given by

x(t) =
∑

k

∑

l

ck,lg
(l)(t − kT )

whereg(l)(t) is the convolution of the binary-valued
code sequence with indexl and some bandlimited pulse-
shaping signal. We consider this modulation scheme in
a single-user setup, i.e., all of theck,l contain informa-
tion bits of the same user. (In the CDMA-type appli-
cation of DS spread-spectruml is the user index.) By
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Fig. 9. Channel matrix of a OFDM/OQAM (Wilson-
type family).
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Fig. 10. Details of Figure 9.

the principle of spread-spectrum communication, the
transmission componentsg(l)(t) deliberately have bad
frequency-localization. Hence one must expect poor
off–diagonal decay. Observe, however, that the robust-
ness advantage of CDMA systems leads to a reduced
variance of the diagonal elements (compared to OFDM
where the diagonal elements correspond essentially to
samples ofH(f)).
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