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Summary

The uncertainty principle for functions on finite Abelian groups provides us with
lower bounds on the cardinality of the support of Fourier transforms of functions
of small support. We discuss novel results in this realm and generalize these to
obtain results relating the support sizes of functions and their short–time Fourier
transforms. We then apply these results to construct a class of equal norm tight
Gabor frames that are maximally robust to erasures. We discuss consequences
of our findings to the theory of recovering and storing signals with sparse time–
frequency representations.
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1 Introduction

Uncertainty principles establish restrictions on how well localized the Fourier
transform of a well localized function can be and vice versa [DS89, Grö03, FS97].
In the case of a function defined on a finite Abelian group, localization is gen-
erally expressed through the cardinality of the support of the function. Due to
its relevance for compressed sensing and, in particular, for the recovery of lossy
signals under the assumption of restricted spectral content [CRT06], the uncer-
tainty principle for functions on finite Abelian groups has recently drawn renewed
interest.

In this realm, a classical result on uncertainty states that the product of the
number of nonzero entries in a vector representing a nontrivial function on an
Abelian group and the number of nonzero entries in its Fourier transform is not
smaller than the order of the group [DS89, MÖP04]. This result can be improved
for any nontrivial Abelian group [Mes06]. For example, for groups of prime order,
the sum of the number of nonzero entries in a vector and the number of nonzero
entries in its Fourier transform exceeds the order of the group [Tao05].

The objective of this technical report is to establish corresponding results for
joint time–frequency representations, that is, to obtain restrictions on the minimal
cardinality of the support of joint time–frequency representations of functions
defined on finite Abelian groups. The central results in this paper are published
in [KPR].

As first example, let us consider the simplest time–frequency representation of
a function, namely the one that is given by the tensor product of a function and
its Fourier transform. In this case, the classical uncertainty principle for nontrivial
functions on finite Abelian groups states that the cardinality of the support of this
tensor is at least the order of the group.

In this paper though our focus lies on time–frequency representations given
by short–time Fourier transforms. It is easy to see that, again, the cardinality of
the support of any short–time Fourier transform of a nontrivial function defined
on a finite Abelian group is bounded below by the order of the group. As seen
below, we can improve this bound by using the subgroup structure of the groups
and/or by allowing only well-chosen window functions. For example, we establish
in Theorem 4.5 that for any group of prime order and for almost every window
function on the group, the sum of the cardinality of the support of the analyzed
function and the cardinality of the support of its short–time Fourier transform
exceeds the square of the order of the group.

In addition to the above, we give applications of our results to the theory of
so-called Gabor frames and the theory of sparse signal recovery. For instance, the
results on the cardinality of the support of short–time Fourier transforms can be
translated into criteria for the recovery of encoded signals from a channel with
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erasures.
The paper is organized as follows. In Section 2 we give a brief but self-contained

account of the Fourier transformation and of the short–time Fourier transformation
for functions defined on finite Abelian groups. Section 3 discusses uncertainty
principles which relate the cardinality of the support of functions to the cardinality
of the support of their Fourier transforms. We start Section 3 with a classical
result which is based on standard norm estimates [DS89]. In Section 3.1 we state
results based on the minors of Fourier transform matrices and which apply only to
functions defined on cyclic groups of prime order [Tao05]. Finite Abelian groups of
any order are analyzed in Section 3.2. There, the underlying subgroup structure of
finite Abelian groups is used to obtain improvements to the classical uncertainty
result discussed above [Mes06]. In addition, we provide numerical evidence on the
achieved support set pairs for the Fourier transformation on groups of order less
than or equal to 16.

Section 4 is devoted to uncertainty inherent in the short–time Fourier trans-
formation. Following the organization of Section 3, a discussion of general results
is followed by results for functions defined on cyclic groups of prime order in Sec-
tion 4.1. Other finite Abelian groups are covered in Section 4.2. We conclude our
discussion of the cardinality of the support set of short–time Fourier transforms in
Section 4.3 with a question on the possible cardinalities of the support of short–
time Fourier transforms with respect to an optimally chosen window function. In
fact, one of the major difficulties to obtain uncertainty principles for the short–
time Fourier transform is its dependence on the chosen window function. Our
results are complemented by numerical experiments.

In Section 5 we give applications of the results of Section 4 to communications
engineering. In Section 5.1 we discuss the identification/measurement problem for
time-varying operators/channels. Also we consider channel coding for the trans-
mission of information through channels with erasures. In addition, we show the
existence of a large class of Gabor type. In Section 5.2 we briefly discuss connec-
tions of our work to the recovery of signals which have a sparse representation in
a given dictionary.

2 Background and Notation

For any finite set A we set CA = {f : A −→ C}. For |A| = |B| = n, CA ∼= CB ∼= Cn

as vector spaces, where |A| denotes the cardinality of the set A. Further, for
A ⊆ B, we write Ac = B\A and we define the embedding operator iA : CA −→ CB

where iAf(x) = f(x) for x ∈ A and iAf(x) = 0 for x ∈ Ac. Correspondingly,
we define the restriction operator rA : CB −→ CA. Similarly, every map S :

A −→ B induces a map S̃ : CB −→ CA,
(
S̃f
)

(a) = f (S(a)). If S is bijective,

then S̃ is bijective as well. For M ∈ Cm×n and A ⊆ {0, 1, . . . , n−1} and B ⊆
{0, 1, . . . ,m−1} we let MA,B denote the |B|×|A|–submatrix of M which represents
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rB ◦M ◦ iA. For f ∈ CA, we use the now customary notation ‖f‖0 = |supp f |
where supp f = {a ∈ A : f(a) 6= 0}. Clearly, ‖ · ‖0 is not a norm.

Throughout this paper, G denotes a finite Abelian group. The identity element
of G is denoted by e or by 0 in case that G is cyclic, in other words, if G = Zn

for some n ∈ N. The dual group of characters Ĝ of G is the set of continuous
homomorphisms ξ ∈ CG which map G into the multiplicative group S1 = {z ∈
C : |z| = 1} [Ben97, Kat76, Ter99]. The set Ĝ is an Abelian group under
pointwise multiplication and, as is customary, we shall write this commutative
group operation additively. Note that G ∼= Ĝ as groups and Pontryagin duality

implies that
̂̂
G can be canonically identified with G, a fact which is emphasized

by writing 〈ξ, x〉 for ξ(x).

The Fourier transform Ff = f̂ ∈ CĜ of f ∈ CG is given by

f̂(ξ) =
∑
x∈G

f(x) ξ(x) =
∑
x∈G

f(x) 〈ξ, x〉, ξ ∈ Ĝ .

The inversion formula for the Fourier transformation allows us to reconstruct the
original function from its Fourier transform. Namely, for f ∈ CG we have

f(x) = 1
|G|

∑
ξ∈Ĝ

f̂(ξ) 〈ξ, x〉, x ∈ G .

The inversion formula implies that

‖f‖2
2 = 1

|G|

∑
ξ∈Ĝ

|f̂(ξ)|2 = 1
|G|‖f̂‖

2
2, (1)

where ‖f‖2 := (
∑

t∈G |f(t)|2)
1
2 . Further, (1) together with ‖ξ‖2 = |G| 12 for all

ξ ∈ Ĝ implies that the normalized characters in {|G|− 1
2 ξ}ξ∈Ĝ form an orthonormal

basis for CG, and
∑

x〈ξ, x〉 = 0 if ξ 6= 0 and
∑

ξ〈ξ, x〉 = 0 if x 6= 0.

For n ∈ N and ω = e2πi/n, the discrete Fourier matrix WZn of the cyclic group

Zn is defined by WZn = (ωrs)n−1
r,s=0. Identifying CZn with Cn, we have f̂ = WZnf .

An arbitrary finite Abelian group G can be represented as a direct product of
cyclic groups G ∼= Zd1 × Zd2 × . . . × Zdm where d1, . . . , dm can be chosen to be

powers of prime numbers. A character in the dual group Ĝ is then given by

〈(ξ1, ξ2, . . . , ξm), (x1, x2, . . . , xm)〉 = 〈ξ1, x1〉〈ξ2, x2〉 . . . 〈ξm, xm〉 ,

where (ξ1, ξ2, . . . , ξm) ∈ Ẑd1×Ẑd2× . . .×Ẑdm
∼= Ĝ. The discrete Fourier matrix WG

for G = Zd1×Zd2× . . .×Zdm is the Kronecker product of the Fourier matrices for
the groups Zd1 ,Zd2 , . . . ,Zdm , that is, WG = Wd1 ⊗Wd2 ⊗ . . .⊗Wdm . For example,
we have

WZ4 =

( 1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

)
and WZ2×Z2 =

( 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

)
.
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Note that for appropriately chosen bijections S1 : {0, 1, . . . , |G|−1} −→ G and

S2 : {0, 1, . . . , |G|−1} −→ Ĝ we have f̂ ◦ S2 = WG(f ◦ S1) for f ∈ CG.
The translation operator Tx, x ∈ G is the unitary operator on CG given by

Txf(y) = f(y−x), y ∈ G. Similarly, the modulation operator Mξ, ξ ∈ Ĝ is the
unitary operator defined by Mξf = f · ξ, where here and in the following f · g
denotes the pointwise product of f, g ∈ CG. We have M̂ξf = Tξf̂ . We refer to the

unitary operators π(λ) = Mξ ◦ Tx for λ = (x, ξ) ∈ G × Ĝ as time-frequency shift
operators.

The short–time Fourier transformation Vg : CG −→ CG×Ĝ with respect to the
window g ∈ CG\{0} is given by [FK98, FKL07, Grö01, Grö03]

Vgf(x, ξ) = 〈f, π(x, ξ)g〉 =
∑
y∈G

f(y)g(y−x)〈ξ, y〉, f ∈ CG, (x, ξ) ∈ G×Ĝ,

The inversion formula for the short–time Fourier transform is

f(y) =
1

|G| ‖g‖2
2

∑
(x,ξ)∈G×Ĝ

Vgf(x, ξ) g(y−x)〈ξ, y〉 , y ∈ G, (2)

that is, f can be composed of time–frequency shifted copies of any g ∈ CG\{0}.
Further, ‖Vgf‖2 =

√
|G| ‖f‖2‖g‖2. This equation resembles (1), but the so-called

Gabor system {π(x, ξ)g}(x,ξ)∈G×Ĝ is clearly not an orthonormal basis if |G| > 1

since it consists of |G|2 vectors in a |G| dimensional space.
For a given group G, we shall use again the previously chosen enumerations

S2 : {0, 1, . . . , |G|−1} −→ Ĝ and S1 : {0, 1, . . . , |G|−1} −→ G which relate the
Fourier transform to the Fourier matrix WG. For g ∈ CG and x ∈ G, we define
the |G|×|G|–diagonal matrix

Dx,g =

 g(S1(0) + x) 0
g(S1(1) + x)

. . .
0 g(S1(|G|−1) + x)

 .

Then, the |G|×|G|2–full Gabor system matrix with respect to g is given by

AG,g = (DS1(0),gWG |DS1(1),gWG | · · · |DS1(|G|−1),gWG)∗, (3)

where M∗ denotes the adjoint of the matrix M . For example, for G = Z4,

AZ4,(1,2,3,4) :=

( 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 2i −2 −2i 3 3i −3 −3i 4 4i −4 −4i 1 i −1 −i
3 −3 3 −3 4 −4 4 −4 1 −1 1 −1 2 −2 2 −2
4 −4i −4 4i 1 −i −1 i 2 −2i −2 2i 3 −3i −3 3i

)∗
.

Similarly, for the group G = Z2 × Z2 we have

AZ2×Z2,(1,2,3,4) :=

( 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 −2 2 −2 1 −1 1 −1 4 −4 4 −4 3 −3 3 −3
3 3 −3 −3 4 4 −4 −4 1 1 −1 −1 2 2 −2 −2
4 −4 −4 4 3 −3 −3 3 2 −2 −2 2 1 −1 −1 1

)∗
.

(4)
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Using the enumeration S : {0, 1, . . . , |G|2−1} −→ G×Ĝ that is given by the

lexicographic order on G×Ĝ induced by S1 and S2, we have Vgf ◦ S = AG,gf .
Therefore, we shall refer to AG,g as short–time Fourier transform matrix with
respect to the window g. Clearly, the rows of AG,g represent the vectors in the
Gabor system {π(λ)g}λ∈G×Ĝ, and formula 2 implies that A∗G,gAG,g is a multiple of
the identity matrix.

3 Uncertainty principles for the Fourier trans-

form on finite Abelian groups

The following uncertainty theorem for functions defined on finite Abelian groups
is the natural starting point for our discussion [DS89].

Theorem 3.1 Let f ∈ CG\{0}, then ‖f‖0 · ‖f̂‖0 ≥ |G|.

Proof. For f ∈ CG, f 6= 0, and without loss of generality ‖f̂‖∞ = 1, we
compute

|G| = |G|‖f̂‖2
∞ ≤ |G|

(∑
x∈G

|f(x)|

)2

≤ |G|‖f‖0

∑
x∈G

|f(x)|2

= |G|‖f‖0
1

|G|
∑
ξ∈Ĝ

|f̂(ξ)|2 ≤ ‖f‖0‖f̂‖0‖f̂‖2
∞ = ‖f‖0 ‖f̂‖0.

�
A complementary result characterizes those f for which the bound in Theo-

rem 3.1 is sharp [DS89, Smi90, MÖP04].

Proposition 3.2

1. If k divides |G|, then there exists f ∈ CG with ‖f‖0 = k and ‖f̂‖0 = |G|
k

.

2. If ‖f‖0‖f̂‖0 = |G| and e ∈ supp f , then supp f is a subgroup of G.

A generalization of Theorem 3.1 to non Abelian groups is given in [Mes92] and
those f achieving the respective lower bounds are described in [Kan07].

3.1 Groups of prime order

The geometric mean of two positive numbers is dominated by their arithmetic
mean; hence, Theorem 3.1 implies the weaker inequality

‖f‖0 + ‖f̂‖0 ≥ 2
√
|G|. (5)

If |G| is prime, that is, if G is a cyclic group of prime order, then (5) and also
Theorem 3.1 can be improved significantly [Fre04, Tao05].
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Theorem 3.3 Let G = Zp with p prime. Then ‖f‖0 + ‖f̂‖0 ≥ |G|+1 holds for all
f ∈ CG\{0}.

As illustrated in [Tao05], Theorem 3.3 follows from combining Chebotarev’s
theorem on roots of unity which states that every minor of the Fourier transform
matrix WZp , p prime, is nonzero [EI76, SL96, Tao05, Fre04] with

Proposition 3.4 Let M ∈ Cm×n. Then ‖f‖0 + ‖Mf‖0 ≥ m+1 for all f ∈ Cn if
and only if every minor of M is nonzero. Moreover, if every minor of M ∈ Cm×n

is nonzero and k, l are given with k + l ≥ m+1, then there exists f ∈ Cn with
‖f‖0 = k and ‖Mf‖0 = l.

Proposition 3.4 in turn can be obtained from the following observation which
will also be used in numerical experiments below.

Lemma 3.5 For M ∈ Cm×n and 1 ≤ k ≤ m, 1 ≤ l ≤ n, there exists f ∈ Cn with
‖f‖0 = k and ‖Mf‖0 = l if and only if there exist sets A ⊆ {0, . . . , n−1} and
B ⊆ {0, . . . ,m−1} with |A| = k, |B| = m − l, and for all a ∈ A and y ∈ Bc, we
have

rankMA\{a},B = rankMA,B = rankMA,B∪{y} − 1 < |A| . (6)

Proof. If f ∈ Cn with ‖f‖0 = k and ‖Mf‖0 = l, then A = supp f and
Bc = suppMf satisfy 0 6= rAf ∈ kerMA,B, so rankMA,B < |A|. Moreover, for
a ∈ A, supp f = A implies f /∈ {g : ‖g‖0 < |A|} ⊃ iA\{a} kerMA\{a},B and, hence,

f ∈ iA kerMA,B\iA\{a} kerMA\{a},B .

So dim kerMA,B ≥ dim kerMA\{a},B + 1. We conclude that for all a ∈ A,

rankMA\{a},B ≤ rankMA,B = |A| − dim kerMA,B

≤ |A| − dim kerMA\{a},B − 1

= rankMA\{a},B

which implies rankMA\{a},B = rankMA,B. Also, suppMf = Bc, so for y ∈ Bc,
Mf(y) 6= 0. Therefore, f /∈ kerMA,B∪{y}and so f ∈ iA kerMA,B\iA kerMA,B∪{y}.
This implies

rankMA,B = |A| − dim kerMA,B < |A| − dim kerMA,B∪{y} = rankMA,B∪{y} .

The submatrices considered differ only by one column, so the rank can increase at
most by one and we get rankMA,B = rankMA,B∪{y} − 1.

Suppose now that A ⊆ {0, . . . , n−1} and B ⊆ {0, . . . ,m−1} with |A| = k and
|B| = m− l satisfy (6). This implies dim kerMA,B ≥ 1 and that for any a ∈ A,

dim kerMA\{a},B = |A| − 1− rankMA\{a},B

= |A| − 1− rankMA,B

= dim kerMA,B − 1.
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So iA\{a} kerMA\{a},B & iA kerMA,B, and consequently, there exists some vector
fa ∈ iA kerMA,B\iA\{a} kerMA\{a},B, so fa(a) 6= 0, fa(x) = 0 for x /∈ A and
suppMfa ∩B = ∅.

Similarly, (6) implies also that for any y ∈ Bc we have iA kerMA,B∪{y} &
iA kerMA,B, so there exists gy with supp gy ⊆ A such that Mgy(y) 6= 0 while
Mgy(b) = 0 for all b ∈ B.

To conclude this proof, we enumerate the vectors fa, a ∈ A and gy, y ∈ Bc

and choose a linear combination

f =
∑
a∈A

cafa +
∑
y∈Bc

cygy =
k+l−1∑
r=0

drhr (7)

with the property that supp f =
⋃
a∈A

supp fa = A and suppMf =
⋃
y∈Bc

suppMgy =

Bc.
By construction we have supp f ⊆ A and suppMf ⊆ Bc. To get the re-

verse inequality, we assume without loss of generality that min
x∈supphr

|hr(x)| = 1

for all r, and choose dr = N2r, where N−1 ≥ ‖hr‖∞, ‖Mhr‖∞, ‖Mhr‖−1
∞ for

r = 0, 1, . . . , k+l−1. Since fa0(a0) 6= 0 we can find s = max{r : hr(a0) 6= 0}.
Then

|f(a0)| =
∣∣ s∑
r=0

drhr(a0)
∣∣

≥ |N2shs(a0)| −
∣∣ s−1∑
r=0

N2rhr(a0)
∣∣

≥ N2s − (N−1)
s−1∑
r=0

(N2)r

= N2s − N2s − 1

N + 1
> 0,

so a0 ∈ supp f .
Similarly, Mgy0(y0) 6= 0 for fixed y0 ∈ Bc implies that for s = max{r :

Mhr(y0) 6= 0} we have

|Mf(y0)| =
∣∣ s∑
r=0

drMhr(y0)
∣∣

≥ |N2sMhs(y0)| −
∣∣ s−1∑
r=0

N2rMhr(y0)
∣∣

≥ N2s

N−1
− N2s − 1

N + 1
> 0.

We conclude that supp f = A and suppMf = Bc.
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�
Proof of Proposition 3.4. If f has no zero minors, then (6) in Lemma 3.5 is

equivalent to |B| < |A|, implying that there exists f ∈ Cn with ‖f‖0 = k and
‖Mf‖0 = l if and only if k + l ≥ m+1.

It remains to show that ‖f‖0 + ‖Mf‖0 ≥ m+1 for all f implies that M has no
zero minors. To this end, assume that there is a d× d submatrix MA,B of M with
detMA,B = 0. Then there exists a nonzero vector f ′ ∈ CA such that MA,Bf

′ = 0.
For f = iAf

′, ‖Mf‖0 ≤ m−d and therefore ‖f‖0+‖Mf‖0 ≤ d+m−d = m < m+1.
�

Theorem 3.3 is a clear improvement to Theorem 3.1 but it applies only to
cyclic groups of prime order since any other finite Abelian group G has proper
subgroups leading to zero minors in WG [MÖP04]. As example, we display in
Table 1 counts on the ranks of square submatrices of WZ5 and WZ6 . See [CR06]

for estimates on the probability that for randomly chosen sets T ⊆ G and Ω ⊆ Ĝ
with |T |+ |Ω| ≤ G there exists f ∈ CG with supp f = T and supp f̂ = Ω. Due to
their role in obtaining Theorem 3.3, we shall now collect facts regarding zero and
nonzero minors of Fourier matrices in general.

1 2 3 4 5
1 25 0 0 0 0
2 0 100 0 0 0
3 0 0 100 0 0
4 0 0 0 25 0
5 0 0 0 0 1

1 2 3 4 5 6
1 36 36 0 0 0 0
2 0 189 48 0 0 0
3 0 0 352 36 0 0
4 0 0 0 189 0 0
5 0 0 0 0 36 0
6 0 0 0 0 0 1

Table 1: Counts of square submatrices of WZ5 and WZ6 with given size (column
index) and rank (row index).

Let M ∈ Cn×n and let A,B ⊂ {1, 2, . . . , n} such that |A| = |B|. Then detMA,B

defines a minor of M , and detMAc,Bc is called its complementary minor.

Proposition 3.6

1. The complementary minor of any zero minor in a Fourier matrix WG is also
zero.

2. Let d0 > 1 be the smallest divisor of |G|. Then for all d0 ≤ r ≤ n−d0, there
exists an r×r zero minor of the Fourier matrix WG. In particular, if |G| is
even, then there exist r×r zero minor for r = 2, 3, . . . , |G|−2.

3. Any minor of the Fourier matrix WZn, n ∈ N, that contains only adjacent
rows or columns is nonzero.

8



Proof. 1. The adjugate of a matrix M = (mkl) is adj M = (Mkl), where
Mkl = (−1)k+l detM{k}c,{l}c is the cofactor of the element mkl. Then for any sets
A,B ⊂ {1, 2, . . . n} of cardinality r, a theorem by Jacobi (see [Pra94]) states that

detMA,B = (−1)r det(adj M)Ac,Bc · (detM)r−1 (8)

Furthermore, adj M ·M = detM · I by Cramer’s rule.
For any zero minor of M = WG on the left hand side of (8), Jacobi’s theorem

implies that the right hand side, representing a minor in adj WG, is zero as well.
Since WG ·WG = |G| · I, we have adj WG = det(WG)

|G| ·WG. Thus the corresponding

minor in WG is zero, which implies that also the corresponding minor in WG is
zero.

2. Let d divide |G|. Part 1 in Proposition 3.2 allows us to choose fd such that

‖fd‖0 = d and ‖f̂d‖0 = |G|
d

. Hence, for any r with d ≤ r ≤ |G|− |G|
d

we can pick sets

A ⊇ supp fd and B ⊆ (supp f̂d)
c such that |A| = |B| = r. Then rAfd ∈ kerMA,B

and the r×r-minor detMA,B is zero.

This way, we obtain r×r zero minors for d0 ≤ r ≤ |G|
d0

(d0 − 1) and for |G|
d0
≤

r ≤ |G| − d0, where d0 is the smallest nontrivial divisor of |G|. The result follows
since d0 − 1 ≥ 1.

3. A minor with adjacent columns is a determinant of the type

det

 ωk1l ωk1(l+1) · · · ωk1(l+m)

ωk2l ωk2(l+1) · · · ωk2(l+m)

...
... · · ·

...
ωkml ωkm(l+1) · · · ωkm(j+m)

 = ωk1l+k2l+···+kml det

 1 ωk1 · · · ωmk1

1 ωk2 · · · ωmk2

...
... · · ·

...
1 ωkm · · · ωmkm


= ωk1l+k2l+···+kml

∏
i<j≤m

(ωkj − ωki) 6= 0

The second determinant was evaluated using the formula for Vandermonde deter-
minants and the result does not equal 0, as always 0 < kj − ki < n and ω is a
primitive n-th root of unity. �

3.2 Groups of non-prime order

Meshulam improved the bound in the classical uncertainty relation presented in
Theorem 3.1 for nontrivial finite Abelian groups of nonprime order [Mes06]. He
defined for 0 < k ≤ |G| the function

θ(G, k) = min
{
‖f̂‖0 : f ∈ CG and 0 < ‖f‖0 ≤ k

}
.

Using this notation, Theorem 3.3 implies that θ(Zp, k) = p − k + 1. The main
result in [Mes06] is

9



Theorem 3.7 For k ≤ |G|, let d1 be the largest divisor of |G| which is less than
or equal to k and let d2 be the smallest divisor of |G| which is larger than or equal
to k. Then

θ(G, k) ≥ |G|
d1d2

(d1 + d2 − k). (9)

Tao realized that this theorem simply states that all possible lattice points
(‖f‖0, ‖f̂‖0) lie in the convex hull of the points (|H|, |G/H|), where H ranges over
all subgroups of G [Mes06]. To see this, recall that for any divisor d of |G| exists
a subgroup H of G with d = |H|. Furthermore, the right hand side of expression
(9) is linear between two successive divisors and the slope is increasing when k
increases. Hence (9) characterizes the convex hull of the points (|H|, |G|/|H|).
Proposition 3.2, part 1, implies that the vertex points (|H|, |G|/|H|) are attained,

but little more is known about the set {(‖f‖0, ‖f̂‖0), f ∈ CG}.
The proof of Theorem 3.7 in [Mes06] is inductive and uses three facts: first,

it uses Theorem 3.3 as induction seed, and second, it uses the submultiplicativity
of the right hand side of (9). That is, if we denote this right hand side by u(n, k)
for n = |G|, then it uses that u(n, k) ≤ u(n

d
, t)u(d, s) for d dividing n and st ≤ k.

The third ingredient is

Proposition 3.8 Let H be a subgroup of G. For k ≤ |G| there exist s ≤ |H|,
t ≤ |G/H| with st ≤ k and

θ(G, k) ≥ θ(H, s) θ(G/H, t) .

Meshulam’s proof of Proposition 3.8 relies on algebraic notation and does not
give good insight from the point of view of Fourier analysis. For this reason,
and for completeness sake, we give a streamlined version of Meshulam’s proof
of Proposition 3.8. See also [LM05] for an elegant and non-inductive proof of
Theorem 3.7.

But first, note that if G ∼= H × G/H, then Proposition 3.8 can be proven

using the fact that then Ĝ ∼= Ĥ × Ĝ/H, and, therefore, f̂ can be calculated by
performing two partial Fourier transforms. For example, such argument can be
applied to G = Zm × Zn

∼= Zmn, gcd(m,n) = 1, and H = Zm×{e}. Even simpler
is the special case discussed in Proposition 3.9. We state and prove this result to
illustrate the main idea used to prove Proposition 3.8.

We can use the following tensor argument to motivate the upcoming proposi-
tion. Let G ' H1 ×H2. Let f ∈ CG be the tensor product f1 ⊗ f2, f1 ∈ CH1 , f2 ∈
CH2 . Then

‖f‖0 = ‖f1‖0 · ‖f2‖0.
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The Fourier transform of f is computed in the following way,

f̂(ξ1, ξ2) =
∑

x1∈H1,x2∈H2

f1(x1)f2(x2)〈(ξ1, ξ2), (x1, x2)〉

=
∑

x1∈H1,x2∈H2

f1(x1)f2(x2)〈ξ1, x1〉〈ξ2, x2〉

=
∑
x1∈H1

f1(x1)〈ξ1, x1〉
∑
x2∈H2

f2(x2)〈ξ2, x2〉

= f̂1(ξ1) · f̂2(ξ2)

Thus f̂ = f̂1 ⊗ f̂2. Therefore,

‖f̂‖0 = ‖f̂1‖0 · ‖f̂2‖0.

Hence, for product groups we can show existence of admissible pairs (‖f‖0, ‖f̂‖0)
by looking at the building blocks of the group.

Proposition 3.9 Let A1 ⊆ G1 and A2 ⊆ G2 and f ∈ CG1×G2 be given with
supp f ⊆ A1×A2. Then ‖f̂‖0 ≥ θ(G1, |A1|) θ(G2, |A2|).

Proof. We picture f as a |G1|×|G2| matrix and note that supp f ⊆ A1×A2

implies that f has exactly |G2\A2| zero columns and |A2| columns with at least
|G1\A1| zeros.

The function F1f is obtained by applying the G1–Fourier transformation to
each column. Hence, F1f has |G2\A2| zero columns and, at most, |G1|−θ(G1, |A1|)
zeros in the remaining A2 columns. It is easy to see that in the scenario which
leads to the weakest bound for ‖f̂‖0, we have |G1| − θ(G1, |A1|) zeros in each of
these |A2| columns and that they are lined up to form |G1|− θ(G1, |A1|) zero rows
in F1f . In this case, the remaining θ(G1, |A1|) rows contain exactly |G2\A2| zeros,
that is, |A2| nonzero elements.

Now, we calculate Ff by taking a G2–Fourier transform along each row of
F1f . As a result, |G1| − θ(G1, |A1|) zero rows remain, and in the other θ(G1, |A1|)
rows, at least θ(G2, |A2|) zeros are present. We conclude that

‖f̂‖0 ≥ θ(G1, |A1|) θ(G2, |A2|).

�
The property that the G = G1×G2–Fourier transformation “splits” into a

G1–Fourier transformation and a G2–Fourier transformation is the basis of the
simple proof of Proposition 3.9. In the proof of Proposition 3.8 we shall see that
the general case follows from small adjustments to the arguments used to prove
Proposition 3.9.

Proof of Proposition 3.8. Let H = {xi} be a subgroup of G and, abusing
notation, we let {xj} be a set of coset representatives of the quotient group G/H.

11



Then each element in G has a unique representation as xi+xj. We let H⊥ denote

the characters {ξj ∈ Ĝ : ξj(H) = 1}. H⊥ is a subgroup of Ĝ, and we denote by

{ξi} a set of coset representatives of the quotient group Ĝ/H⊥. Every element

ξ ∈ Ĝ has a unique decomposition as ξi+ξj.

The Pontryagin duality theorem implies Ĝ/H⊥ ∼= Ĥ. This allows us to assign

a character ξ′i ∈ Ĥ to each ξi ∈ Ĝ/H⊥ with ξ′i1+ξ
′
i2

= (ξi1+ξi2)
′ [Kat76].1 Further,

〈ξi, xi〉G = 〈ξ′i, xi〉H for all xi ∈ H and all ξi ∈ Ĝ/H⊥. Similarly, we use Ĝ/H ∼= H⊥

to assign to each ξj an element ξ′j ∈ Ĝ/H with 〈ξj, xj〉G = 〈ξ′j, xj+H〉G/H for all
xj.

For f ∈ CG and any ξ = ξi+ξj ∈ Ĝ, we calculate

f̂(ξ) = f̂(ξi+ξj) =
∑
xj

∑
xi

f(xi+xj)〈ξi+ξj, xi+xj〉G

=
∑
xj

∑
xi

f(xi+xj)〈ξi, xi〉G〈ξi, xj〉G〈ξj, xi〉G〈ξj, xj〉G

=
∑
xj

(∑
xi

f(xi+xj)〈ξ′i, xi〉H

)
〈ξi, xj〉G 〈ξ′j, xj+H〉G/H

where the last equality follows since ξj ∈ H⊥ implies 〈ξj, xi〉G = 1.

We set f1(ξ′i, xj) :=
∑
xi∈H

f(xi+xj)〈ξ′i, xi〉H , which, for fixed xj, is the H–Fourier

transform FH on the coset xj+H in G, and f2(ξ′i, xj) = f1(ξ′i, xj)〈ξi, xj〉G. Further

f1 and f2 have the same support sets. We summarize that f̂ can be obtained from
f via two partial Fourier transformations and an enclosed unitary multiplication
operator, as illustrated in Figure 1.

Let us now fix f ∈ CG with ‖f‖0 ≤ k and ‖f̂‖0 = θ(G, k).
Let t := |{xj : supp f ∩ (xj+H) 6= ∅}|. Note that the support of f contains

at most k elements which are distributed among t cosets of H. Hence, there must
be a coset xj0+H which contains s′ ≤ s = bk

t
c elements of supp f . Therefore,

‖f2(·, xj0)‖0 = ‖FHf(·+ xj0)‖0 ≥ θ(H, s′) ≥ θ(H, s)

This implies that Ξ = {ξi ∈ Ĝ/H⊥ : f2(ξ′i, ·) 6≡ 0} satisfies |Ξ| ≥ θ(H, s). In fact,
the definition of t implies that for ξi ∈ Ξ, we have 0 < supp f2(ξ′i, ·) ≤ t. We
conclude

θ(G, k) = ‖f̂‖0 =
∑
ξi

‖FG/Hf2(ξ′i, ·)‖0 ≥
∑
ξi∈Ξ

‖FG/Hf2(ξ′i, ·)‖0 ≥ θ(H, s)θ(G/H, t).

�

In the following, we discuss the question whether the inequality (9) in Theo-
rem 3.7 is sharp, or, more precisely, we shall check whether for some given Abelian

1In particular, in the case G = Zmn, gcd(m, n) = 1, Z⊥m ∼= Zn and Z⊥m ∼= Zn.
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G/H
=
{xj+H}

H = {xi}

∗ ∗
∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗

Support set of f

G/H
=
{xj+H}

Ĥ = {ξ′i}

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

Support set of f2

H⊥

=
{ξj}

Ĥ = {ξ′i}
∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

Support set of f̂

Figure 1: Illustration of the proof of Proposition 3.8 for G = Z10×Z6 and k = 17.
The function f2 is obtained by the application of H–Fourier transformations to the
rows of f which is succeeded by an unitary multiplication operator . To calculate
f̂ we apply G/H–Fourier transformations to the columns of f2. For clarity, we

choose synthetic support sets of f , f2, and f̂ . Here t = 6 and s = b17
6
c = 2.

group G and (k, l) chosen with l ≥ θ(G, k) ≥ |G|
d1d2

(d1 + d2− k) there exists a func-

tion f ∈ CG with ‖f‖0 = k and ‖f̂‖0 = l. This question has been considered

earlier in [FKLM05] where the set
{

(‖f‖0, ‖f̂‖0), f ∈ G
}

has been described for
G = Z6 and G = Z8.

First, we state an affirmative positive result for cyclic groups. It follows from
Example 5.6 in [Smi90] and the proof of Proposition 4.5 in [Kut03].
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Proposition 3.10 Let G = Zn, n ∈ N. If 0 < k, l ≤ |G| satisfy l + k ≥ |G| + 1,

then there exists a function f ∈ CG with ‖f‖0 = k and ‖f̂‖0 = l.

However, it does not hold for other types of groups, as the following example
for Z2×Z2 shows, We show that for f ∈ CZ2×Z2 with ‖f‖0 = 3, ‖f̂‖0 6= 2. Without
loss of generality we assume f = (a, b, c, 0)T .

f̂ =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 f =


a+ b+ c
a− b+ c
a+ b− c
a− b− c

 ,

which we can rewrite as a matrix

f̂ =

(
a+ b+ c a− b+ c
a+ b− c a− b− c

)
If the two zero entries are in the same row or column, then either b = 0 or c = 0.
If they are in one of the two diagonals, then c± b = 0, implying a = 0.

Y−pr Y−nu Y−co ? N−co N−nu N−pr

Figure 2: Color coding which is used in Figures 3–7 to describe subsets of N2 or
N3. The color determines whether a given value is in the set under discussion. Y-pr
indicates that there is proof that the corresponding value is in the set considered.
Y-nu implies that there is numerical evidence that the value is in the set and Y-co
indicates that we conjecture that the value is in the set. N-pr indicates that there
is proof that the corresponding value is not in the set, and N-nu and N-co are
defined accordingly. The color adjacent to ? implies that no judgement is made
here.

The numerical results collected in Figure 3 are based on Lemma 3.5 and they
show that the set of all possible pairs (‖f‖0, ‖f̂‖0) is not easily described in general.
The computations needed to obtain Figure 3 are quite involved. For example, the
computations showing that there is no vector on Z16 with five nonzero entries and
whose Fourier transform has nine nonzero entries include the calculation of the
singular values of

(
16
5

)(
16
7

)
= 49969920 five by seven matrices.

In addition, we give all possible pairs (‖f‖0, ‖f̂‖0) for the group G = Z6 and
give a partial result for the groups G = Z2p for p ≥ 5 prime.

Proposition 3.11 For 1 ≤ k, l ≤ 6 exists f ∈ CZ6 with ‖f‖0 = k and ‖f̂‖0 = l if
and only if kl ≥ 6 and (k, l) 6= (3, 3).
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Proof. Theorem 3.1 and Proposition 3.10 cover all cases except those for which
(k, l) ∈ {(2, 4), (3, 3), (4, 2)}. For ω = e2πi/6, we have F(1,−1, 0, 1,−1, 0)T =
(0, 0, 1−ω2, 0, 1−ω4, 0)T , and only the case (k, l) = (3, 3) remains to be excluded.

The assumption ‖f‖0 = 3 leads to three different cases.

Case 1. If f = (c0, 0, c2, 0, c4, 0)T then f̂(ξ) = f̂(ξ+3) and if f = (0, c1, 0, c3, 0, c5)T

then f̂(ξ) = −f̂(ξ + 3). In either case, ‖f̂‖0 is even and cannot be 3.

Case 2. If two entries whose indices differ by 3 are both nonzero, then the support
of the Fourier transform cannot be 3 either. To see this, consider without loss of
generality, f = (c0, ∗, ∗, c3, ∗, ∗)T . Then, for ck, located at position k, being the
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Figure 3: The set
{

(‖f‖0, ‖f̂‖0), f ∈ CG\{0}
}

for the groups (from left to right)
Z4, Z2

2, Z6, Z8; Z2 × Z4, Z3
2, Z9, Z2

3; Z10, Z12, Z2 × Z6, Z14; Z15, Z16, Z2 × Z8; Z2
4,

Z2
2 × Z4, Z4

2. The color code used is described in Figure 2. The graphs are based
on the results in Section 3.

third nonzero entry, we have

f̂ =


c0 + c3 + ck

c0 − c3 + ωkck,
c0 + c3 + ω2kck
c0 − c3 + ω3kck
c0 + c3 + ω4kck
c0 − c3 + ω5kck

 (10)

If three coordinates of f̂ are 0, then two of the respective sums in (10) contain
either both c0 + c3 or both c0 − c3. Without loss of generality, we assume that
f̂(l1) = c0+c3+ωl1kck 6= 0 6= c0+c3+ωl2kck = f̂(l2), l1 < l2. Since ck 6= 0 we have
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ωl1k = ωl2k and ω(l2−l1)k = 1. Since k = 1, 2, 4 or 5, we must have 3 divides l1− l2,
but that is a contradiction, as of two entries with distance 3, one must contain the
summand c3 − c0 and one c0 + c3.

Case 3. If all three nonzero entries are adjacent, then f̂ must have three adjacent
entries as well, as otherwise, we could just exchange the roles of f and f̂ and return
to Case 1 or Case 2. Without loss of generality we assume f = (c0, c1, c2, 0, 0, 0).

A modulation in f results in a translation in f̂ , so without loss of generality, we
can also assume the first three entries of f̂ to be 0. Hence,( 1 1 1

1 ω ω2

1 ω2 −ω

)(
c0
c1
c2

)
= 0 but det

( 1 1 1
1 ω ω2

1 ω2 −ω

)
= −1 6= 0

and, therefore, f = 0. �
The following result for Z2p, p ≥ 5 prime, shows that the bound in Theorem 3.7

is not sharp, a fact that was observed for the case G = Z8 in [FKLM05].

Proposition 3.12 For p ≥ 5 prime there exists no f ∈ CZ2p with ‖f‖0 = 3 and

‖f̂‖0 = p−1.

Proof. The group Zpq has (p−1)(q−1) automorphisms, each of them mapping
one of the (p−1)(q−1) elements of order pq to 1. The p−1 automorphisms on
the group Z2p = {0, 1, 2, . . . , 2p−1} will allow us to consider only f with well-
“concentrated” nonzero entries.

Every automorphism σ on Zpq induces an automorphism σ̃ on the character

group Ẑpq, which satisfies 〈σ̃(ξ), x〉 = 〈ξ, σ−1(x)〉. Further,

f̂◦σ(ξ) =
1

pq

∑
x∈Zpq

f(σ(x))〈ξ, x〉

=
1

pq

∑
y∈Zpq

f(y)〈ξ, σ−1(y)〉

=
1

pq

∑
y∈Zpq

f(y)〈σ̃(ξ), y〉

= f̂(σ̃(ξ))

Let f ∈ CZ2p , p ≥ 5 prime, be given with ‖f‖0 = 3. Then at least two of the
addresses of the non-zero elements have the same parity. By a translation of f
we can move those elements to positions 0, 2k, where k ∈ Z2p. The support of f̂
is not affected by this. If k is odd, then k is a generator of Z2p and we choose σ1

with σ1(k) = 1. If k is even, then p+ k is odd and we pick σ1 with σ1(p+ k) = 1.

In either case σ1(2k) = 2. The corresponding automorphism σ̃1 in Ẑ2p will affect

supp f̂ , but ‖f̂‖0 does not change.
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Let the third non-zero element have address r. If σ1(r) 6= p+1, then there
are either p − 1 adjacent zeroes among the addresses 3, . . . , p + 1 or among p +
1, . . . , 2p− 1.

In case that σ1(r) = p+1, then we apply another automorphism σ2 in a similar
way as above. If p+1

2
is a generator for Z2p, then σ2(p+1

2
) = 1, σ2(2) = σ2(4p+1

2
) =

4σ2(p+1
2

) = 4, and σ2(p+ 1) = σ2(2p+1
2

) = 2σ2(p+1
2

) = 2. Otherwise, we choose σ2

such that σ2(p+ p+1
2

) = 1, so σ2(p+1) = 2σ2(p+ p+1
2

) = 2 and σ2(2) = 2σ2(p+1) =
4. In both cases, supp (f◦σ2◦σ1) = {0, 2, 4}, so the vector contains a string of at
least p− 1 consecutive zeros on addresses 5, . . . , 2p− 1.

The following lemma from [DS89] implies that ‖f̂◦σ′◦σ‖0 > p−1 and, therefore,

‖f̂‖0 ≥ p.

Lemma 3.13 If f̂ has N nonzero elements, then f cannot have N consecutive
zeros.

�

4 Uncertainty principles for short–time Fourier

transforms on finite Abelian groups

We now turn to discuss minimum support conditions on time-frequency represen-
tations of elements in CG, in particular, for the short–time Fourier transform of a
function f ∈ CG with respect to a window g ∈ CG. For background on uncertainty
principles in joint time-frequency representations see [Grö03, HL05].

But first, we consider the simplest joint time–frequency representation of f
which is given by the tensor product f⊗f̂ . Similarly, in electrical engineer-
ing the so-called Rihaczek distribution R : G×Ĝ −→ C given by Rf(x, ω) =

f(x)f̂(ω) 〈ω, x〉 is considered. Theorem 3.1 implies that ‖Rf‖0 = ‖f⊗f̂‖0 =

‖f‖0‖f̂‖0 ≥ |G|. Figure 4 lists all possible pairs (‖f‖0, ‖Rf‖0) for f ∈ CZ4 and
f ∈ CZ2

2 .
The following result resembles Theorem 3.1. It is given for functions on the

real line as so-called weak uncertainty principle in [Grö03].

Proposition 4.1 ‖Vgf‖0 ≥ |G| for f, g ∈ CG\{0} with equality for f = g = δ.

Proof. Clearly ‖Vδδ‖0 = |G|. For f, g ∈ CG\{0},

|G| ‖f‖2
2 ‖g‖2

2 = ‖Vgf‖2
2 ≤ ‖Vgf‖0 ‖Vgf‖2

∞ ≤ ‖Vgf‖0 ‖f‖2
2 ‖g‖2

2

and the result follows. �
We shall now seek lower bounds on ‖Vgf‖0 depending on ‖f‖0, ‖f̂‖0, ‖g‖0, and

‖ĝ‖0.
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Figure 4: For groups G = Z4 and Z2
2 all possible pairs (‖f‖0, ‖Rf‖0) are col-

ored red, those pairs that are not achieved by some f ∈ CG are colored blue in
accordance with the color code given in Figure 2.

Proposition 4.2 For f, g ∈ CG\{0}, we have

‖Vgf‖0 ≥ max{ θ(G, ‖g‖0) θ(G, ‖f̂‖0) , θ(G, ‖f‖0) θ(G, ‖ĝ‖0) } , (11)

and, therefore,

‖Vgf‖0 ≥ 1
2

(
θ(G, ‖g‖0) θ(G, ‖f̂‖0) + θ(G, ‖f‖0) θ(G, ‖ĝ‖0)

)
, (12)

and

‖Vgf‖0 ≥
√
θ(G, ‖f‖0) θ(G, ‖f̂‖0) θ(G, ‖g‖0) θ(G, ‖ĝ‖0) . (13)

Proof. We shall prove ‖Vgf‖0 ≥ θ(G, ‖f‖0)θ(Ĝ, ‖ĝ‖0). Then (11) follows from

‖Vgf‖0 = ‖Vĝf̂‖0 and θ(G, k) = θ(Ĝ, k) for any k, or, alternatively from ‖Vgf‖0 =
‖Vfg‖0. Further, (11) implies (12) and (13) since the maximum of two positive
numbers dominates their arithmetic and geometric means.

To see (11), observe first that the so-called symplectic Fourier transformation
Fs = R ◦F−1

Ĝ
◦FG, that is, the composition of a Fourier transformation FG on G,

an inverse Fourier transformation F−1

Ĝ
on Ĝ, and the axis transformation R : F 7→

F ◦
(

0 1
1 0

)
obeys the same uncertainty principle as the Fourier transformation

19



1 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6
6 3 4 5 6 2 4 5 6 2 3 4 5 6 2 3 4 5 6 1 2 3 4 5 6

1 6 6 24 18 12 6 30 18 12 6 30 24 18 12 6 30 24 18 12 6 36 30 24 18 12 6
2 3 24 20 20 20 20 25 16 16 16 25 20 15 12 12 25 20 15 10 8 30 25 20 15 10 5
2 4 18 20 15 15 15 25 15 12 12 25 20 15 10 9 25 20 15 10 6 30 25 20 15 10 5
2 5 12 20 15 10 10 25 15 10 8 25 20 15 10 6 25 20 15 10 5 30 25 20 15 10 5
2 6 6 20 15 10 5 25 15 10 5 25 20 15 10 5 25 20 15 10 5 30 25 20 15 10 5
3 4 18 16 15 15 15 20 12 12 12 20 16 12 9 9 20 16 12 8 6 24 20 16 12 8 4
3 5 12 16 12 10 10 20 12 8 8 20 16 12 8 6 20 16 12 8 4 24 20 16 12 8 4
3 6 6 16 12 8 5 20 12 8 4 20 16 12 8 4 20 16 12 8 4 24 20 16 12 8 4
4 4 18 15 15 15 15 15 12 12 12 15 12 9 9 9 15 12 9 6 6 18 15 12 9 6 3
4 5 12 12 10 10 10 15 9 8 8 15 12 9 6 6 15 12 9 6 4 18 15 12 9 6 3
4 6 6 12 9 6 5 15 9 6 4 15 12 9 6 3 15 12 9 6 3 18 15 12 9 6 3
5 5 12 10 10 10 10 10 8 8 8 10 8 6 6 6 10 8 6 4 4 12 10 8 6 4 2
5 6 6 8 6 5 5 10 6 4 4 10 8 6 4 3 10 8 6 4 2 12 10 8 6 4 2
6 6 6 5 5 5 5 5 4 4 4 5 4 3 3 3 5 4 3 2 2 6 5 4 3 2 1

Table 2: Numerical representation of (11) for G = Z6. Rows represent possible

pairs (‖f‖0, ‖f̂‖0), columns possible pairs (‖g‖0, ‖ĝ‖0), and the table entries give
the lower bound on ‖Vg‖0.

on the group G×Ĝ. For f, g ∈ CG, we calculate

FsVgf(r, ρ) =
∑
x∈G

∑
ξ∈Ĝ

Vgf(x, ξ)〈ρ, x〉〈ξ, r〉

=
∑
x∈G

∑
ξ∈Ĝ

∑
t∈G

f(t)g(t− x) 〈ξ, t〉 〈ρ, x〉〈ξ, r〉

=
∑
x∈G

∑
t∈G

f(t)g(t− x) 〈ρ, x〉
∑
ξ∈Ĝ

〈ξ, r − t〉

= |G|
∑
x∈G

f(r)g(r − x) 〈ρ, x〉

= |G|〈ρ, r〉f(r)ĝ(ρ)

and note that suppFsVgf = supp f×supp ĝ. Proposition 3.9 implies that ‖Vgf‖0 =

‖F−1
s

(
FsVgf

)
‖0 ≥ θ(G, ‖f‖0)θ(Ĝ, ‖ĝ‖0). �

For G = Z6, we list in Table 2 the lower bounds on ‖Vgf‖0 given by (11) for

different values of ‖f‖0, ‖f̂‖0, ‖g‖0 and ‖ĝ‖0.

Corollary 4.3 For f, g ∈ CZp\{0}, p prime,

‖Vgf‖0 ≥ max{ (p+1−‖g‖0)(p+1−‖f̂‖0) , (p+1−‖f‖0)(p+1−‖ĝ‖0) }

and ‖Vgf‖0 ≥ (p+1)2−1
2
(p+1)(‖f‖0+‖f̂‖0+‖g‖0+‖ĝ‖0)+1

2

(
‖f̂‖0‖g‖0 + ‖f‖0‖ĝ‖0

)
.

Now, we give an improvement to the lower bound on ‖Vgf‖0 that is given in
Corollary 4.3.

Proposition 4.4 Let G = Zp, p prime. For f, g ∈ CG\{0},

‖Vgf‖0 ≥
{
|G|(|G|+ 1)− ‖f‖0‖g‖0 if ‖f‖0 + ‖g‖0 > |G|;
|G|(|G|+ 1)− (|G|+ 1− ‖f‖0)(|G|+ 1− ‖g‖0) if ‖f‖0 + ‖g‖0 ≤ |G|.
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Proof. Note that for all x ∈ G, Vgf(x, ·) = 〈f, π(x, ·)g〉 represents the Fourier
transform of a vector of the form f · Txḡ, that is,

Vgf(x, ξ) = 〈f, π(x, ξ)g〉 =
∑
y∈G

f(y)g(y − x)〈ξ, y〉 = f̂ · Txḡ(ξ) x ∈ G, ξ ∈ Ĝ .

As long as f ·Txḡ 6= 0, Theorem 3.3 applies and so ‖f ·Txḡ‖0 +‖f̂ · Txḡ‖0 ≥ |G|+1.
For K := {x : f · Txḡ 6= 0} we get

‖Vgf‖0 =
∑
x∈K

‖f̂ · Txḡ‖0 ≥ |K|(|G|+1)−
∑
x∈G

‖f ·Txḡ‖0 = |K|(|G|+1)−‖f‖0‖g‖0,

where
∑
x∈G

‖f · Txḡ‖0 = ‖f‖0‖g‖0 follows from a simple counting argument.

We shall now estimate |K| using the Cauchy-Davenport inequality, which states
that for non-empty subsets A and B of G = Zp, p prime, |A+B| ≥ min(|A|+|B|−
1, |G|), where A + B = {a + b : a ∈ A, b ∈ B} [Kár05]. Now K = {x : f · Txḡ 6=
0} = {x : {(supp ḡ)+x}∩supp f 6= ∅} = supp f−supp ḡ. We set A = supp f,B =
supp ḡ, and obtain |K| = |supp f − supp ḡ| ≥ min(‖f‖0 + ‖g‖0 − 1, |G|).

If ‖f‖0 + ‖g‖0 ≥ |G|+ 1, then |K| = |G| and, hence, ‖Vgf‖0 ≥ |G|(|G|+ 1)−
‖f‖0‖g‖0. If ‖f‖0 + ‖g‖0 ≤ |G|, then |K| ≥ ‖f‖0 + ‖g‖0 − 1 and so

‖Vgf‖0 ≥ (‖f‖0 + ‖g‖0 − 1)(|G|+ 1)− ‖f‖0‖g‖0

= |G|(|G|+ 1)− (|G|+ 1− ‖f‖0)(|G|+ 1− ‖g‖0) .

�

1 2 3 4 5 10 15 20 25

1

5

1

2

3

4

5‖f‖0

‖g‖0 ‖Vgf‖0

Figure 5: The set
{

(‖f‖0, ‖g‖0, ‖Vgf‖0), f, g ∈ CG\{0}
}

for G = Z5. The color
code used is described in Figure 2. The graphs are based on Proposition 4.4 and
Theorem 4.5.

The lower bound on ‖Vgf‖0 given in Proposition 4.4 is illustrated for G = Z5 in
Table 5. To establish results similar to Proposition 3.11 for the short–time Fourier
transformations for a given group G analytically is quite tedious since it requires
to check all combinations of ‖f‖0 and ‖g‖0. For the case G = Z3, however, we
have assembled all possible and impossible combinations in Figure 6. A derivation
of the entries can be found in the appendix.
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1
2

3

1

2

3‖g‖0

‖f‖0 ‖Vgf‖0

Figure 6: Same as Figure 5 for G = Z3.

4.1 Groups of prime order

In the following, we shall fix the window g and vary only the analyzed function f .
First we provide a short–time Fourier transform version of Theorem 3.3.

Theorem 4.5 Let G = Zp, p prime. For almost every g ∈ CG, we have

‖f‖0 + ‖Vgf‖0 ≥ |G|2 + 1 (14)

for all f ∈ CG \ {0}. Moreover, for 1 ≤ k ≤ |G| and 1 ≤ l ≤ |G|2 with k + l ≥
|G|2 + 1 there exists f with ‖f‖0 = k and ‖Vgf‖0 = l.

We picture this result for G = Z5 and G = Z7 in Figure 7. Note that The-
orem 4.5 follows from Proposition 3.4 together with Theorem 4 from [LPW05]
which we state as

Theorem 4.6 For almost every g ∈ CZp, p prime, we have that every minor of
AZp,g is nonzero.

Outline of a proof of Theorem 4.6. It suffices to show that each square subma-
trix (AZp,g)A,B has determinant nonzero for almost every g.

To this end, choose A ⊆ Zp and B ⊆ Zp×Ẑp with |A| = |B| and set PA,B(z) =
det(AZp,z)A,B, z = (z0, z1, . . . , zp−1). To show that PA,B 6= 0, we shall locate a term
in the polynomial in standard form which has a nonzero coefficient. To construct
this term, we determine first the maximal possible exponent of z0 in one of the
terms of P that are not trivially zero. Next, we determine the maximal exponent
that z1 can have in a monomial where the maximal exponent of z0 is attained and
so on.

Using generalized Vandermonde determinants, it can then be shown that the
coefficient of this “maximal” term within PA,B can be expressed as a product of
different minors of the discrete Fourier matrix WZp . For p prime, all these minors
are nonzero, so the polynomial P has a nonzero coefficient for this “maximal
term”, hence is not identically 0, and nonzero almost everywhere. We have P =∏
A,B: |B|=|A|

PA,B 6≡ 0, which implies that for g /∈ ZP = {z : P (z) = 0}, every minor

of AZp,g is nonzero. Since P 6≡ 0, ZP has Lebesgue measure 0. �
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Clearly, this proof of Theorem 4.6 is based on Chebotarev’s Theorem on roots
of unity. Also, Chebotarev’s Theorem on roots of unity and therefore Theorem 3.3
can be obtained as a corollary to Theorem 4.6 as shown in the Appendix.

It is easy to see that if g ∈ CZp satisfies (14) then ‖g‖0 = ‖ĝ‖0 = p, that is,

g(x) 6= 0 for all x ∈ Zp and ĝ(ξ) 6= 0 for all ξ ∈ Ẑp [LPW05]. In addition, we have

Proposition 4.7 There exists a unimodular g ∈ CZp, p prime, that is, a g with
|g(x)| = 1 for all x ∈ G satisfying the conclusions of Theorem 4.5.

Proof. Theorem 4.6 implies that all minors of AZp,g are nonzero polynomials
in the polynomial ring C[z0, ..., zn−1]. Let P be the product of all these minor
polynomials, which, by assumption, is nonzero. We have to show that P (g) 6= 0
for some g ∈ CZp with |g(x)| = 1 for all x ∈ Zp.

This follows since the only polynomial P with P (g) = 0 whenever |g(x)| = 1
for all x ∈ Zp is trivial, that is, P ≡ 0, which we show below using induction over
the number of variables n.

The case n = 1 follows since any nonzero polynomial in one variable has only
finitely many zeros; only P ≡ 0 vanishes for all z ∈ S1 = {z : |z| = 1}. Next, we
consider a polynomial P of n variables which we regard as a polynomial in zn−1

with coefficients in the polynomial ring C[z0, ..., zn−2], that is,

P (zn−1) = Qm(z0, ..., zn−2)zmn−1 +Qm−1(z0, ..., zn−2)zm−1
n−1 + · · ·+Q0(z0, ..., zn−2)

For any fixed (c0, . . . , cn−2) ∈ (S1)n−1 we have

Qm(c0, ..., cn−2)zmn−1 +Qm−1(c0, ..., cn−2)zm−1
n−1 + · · ·+Q0(c0, ..., cn−2) = 0

for all zn−1 ∈ S1, hence, all its coefficients Qk(c0, ..., cn−2), k = 0, . . . ,m vanish.
In other words, we have that Qk ∈ C[z0, ..., zn−2], k = 0, . . . ,m vanish on (S1)n−1,
which, by induction hypothesis, implies that all Qk ≡ 0 and therefore P ≡ 0. �

Table 3 together with Lemma 3.5 show that the condition “G = Zp with p
prime” is necessary for the existence of g ∈ CG satisfying (14).

Proposition 4.8 If |G| is not prime, then AG,g has zero minors for all g ∈ CG.

Proof. Let |G| = k ·m, k,m 6= 1. We consider only G = Zkm, the general case
follows since the Fourier matrix WG for any non-cyclic G is a Kronecker product
of Fourier matrices of cyclic groups.

For a primitive |G|-th root of unity ω, we have (ωk)m = ω|G| = 1, so the
discrete Fourier matrix WG has a 1 in its (k,m)-entry. Now the matrix given
by the first |G| columns of AG,g results from WG by multiplying the i-th row by
ci. So the minor given by the columns 0 and k and the rows 0 and m of A is

det
(

c0 c0
cm cm

)
= 0. Hence AG,g has a zero minor. �
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4.2 Groups of non-prime order

Recall Proposition 4.1, namely, the fact that for any G the estimates |G| ≤
‖Vgf‖0 ≤ |G|2 are sharp. In other words, for all G and 0 < k ≤ |G| we have

min
g∈CG\{0}

min
{
‖Vgf‖0 : f ∈ CG and 0 < ‖f‖0 ≤ k

}
= |G| ,

and
max

g∈CG\{0}
max

{
‖Vgf‖0 : f ∈ CG and 0 < ‖f‖0 ≤ k

}
= |G|2 .

Certainly, ‖Vgf‖0 = |G| is a rare event. In fact, it is reasonable to assume that
‖Vgf‖0 = |G|2 for almost every pair (f, g). We shall now address the question
whether for an appropriately chosen window g, we can achieve ‖Vgf‖0 ≥ l for
some |G| < l ≤ |G|2 and all f ∈ CG.

1 2 3 4 5
1 125 0 0 0 0
2 0 3000 0 0 0
3 0 0 23000 0 0
4 0 0 0 63250 0
5 0 0 0 0 53130

1 2 3 4 5 6
1 216 216 0 0 0 0
2 0 9234 1368 0 0 0
3 0 0 141432 2106 0 0
4 0 0 0 881469 0 0
5 0 0 0 0 2261952 0
6 0 0 0 0 0 1947792

Table 3: Count of numerically computed ranks of minors of AZ5,g and AZ6,g for ran-
domly generated g. Columns correspond to the dimension of square submatrices
and rows to the rank of submatrices considered.

To this end, we define for 1 ≤ k ≤ |G|,

φ(G, k) := max
g∈CG\{0}

min
{
‖Vgf‖0 : f ∈ CG and 0 < ‖f‖0 ≤ k

}
. (15)

Using this notation, Theorem 4.5 indicates that φ(Zp, k) = p2− k+ 1 for p prime.
Taking max and min is justified due to the compactness of the unit ball in CG. In
fact, we have

Proposition 4.9 For almost every g ∈ CG, min
0<‖f‖0≤k

‖Vgf‖0 = φ(G, k) for all

k ≤ |G|.

In the following, we setQA,B(z) = det(AG,z)
∗
A,B(AG,z)A,B, z = (z0, z1, . . . , z|G|−1),

for A ⊆ G and B ⊆ G×Ĝ. QA,B is a homogeneous polynomial in z0, z1, . . . , z|G|−1

of degree 2|A|.

Lemma 4.10 The vector g ∈ CG satisfies min
0<‖f‖0≤k

‖Vgf‖0 ≥ l if and only if

QA,B(g) 6= 0 for all A ⊆ G with |A| = k and all B ⊆ G×Ĝ with |B| = |G|2− l+ 1.
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Proof. Fix A ⊆ G with |A| = k and g ∈ CG. Then g satisfies ‖Vgf‖0 ≥ l
for all f with supp f ⊆ A if and only if 〈f |A, π(λ)g|A〉 = 〈f, π(λ)g〉 6= 0 for at

least l elements λ ∈ G×Ĝ for all f with supp f ⊆ A, that is, for at most |G|2 − l
vectors in {π(λ)g} we have 〈f, π(λ)g〉 = 0 for supp f ⊆ A. This is equivalent
to {π(λ)g|A}λ∈B spans CA whenever |B| = |G|2 − l + 1. That is, if and only if
rank (AG,g)A,B = |A| for all B with |B| = |G|2 − l + 1. But this is equivalent to
QA,B(g) 6= 0 for all |B| = |G|2 − l + 1. The result follows since for each f with
‖f‖0 ≤ k exists A ⊆ G with |A| = k and supp f ⊆ A. �

Proof of Proposition 4.9. Lemma 4.10 and min
0<‖f‖0≤k

‖Vgk
f‖0 ≥ φ(G, k), k ≤ |G|,

for some gk ∈ CG\{0} imply that QA,B 6≡ 0 for all pairs A ⊆ G and B ⊆ G×Ĝ
with |B| = |G|2 − φ(G, |A|) + 1. Hence, Q =

∏
A,B: |B|=φ(G,|A|)+1

QA,B 6≡ 0. This

implies that Q(g) 6= 0 for almost every g ∈ CG and therefore, for almost every
g ∈ CG we have min

0<‖f‖0≤k
‖Vgf‖0 ≥ φ(G, k) for all k ≤ |G|, from which the desired

equality follows. �
To obtain bounds on φ(G, k) for groups of non-prime order, we shall follow the

roadmap used in to show Theorem 3.7 [Mes06]. The proof is inductive and the
induction step is based on

Proposition 4.11 Let H be a subgroup of the finite Abelian group G. For k ∈ N
exist s, t ∈ N with st ≤ k such that

φ(G, k) ≥ φ(H, s)φ(G/H, t) (16)

Proof. In the following, we express the short–time Fourier transformation for
functions defined on G as two consecutive short–time Fourier transformations. We
apply again the notation from the proof of Theorem 3.7, that is, H = {xi} = {yi}
and {xj} = {yj} is a set of coset representatives of the quotient group G/H. As

before H⊥ = {ξj ∈ Ĝ : ξj(H) = 1} and {ξi} is a set of coset representatives of

Ĝ/H⊥.
Set

φH(G, k) = max
g1∈CH , g2∈CG/H

min
{
‖Vg1⊗g2f‖0 : f ∈ CG and 0 < ‖f‖0 ≤ k

}
,

where g1⊗g2(xi + xj) = g1(xi)g2(xj + H). Clearly φ(G, k) ≥ φH(G, k), so (16)
follows from φH(G, k) ≥ φ(H, s)φ(G/H, t), which we shall show below. First, note
that a similar argument as is used in Proposition 4.9 gives that for almost every
pair (g1, g2),

φH(G, k) = min
0<‖f‖0≤k

‖Vg1⊗g2f‖0, 1 ≤ k ≤ |G|.
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Therefore, we can pick g1 and g2 so that for all possible k, s, t,

φH(G, k) = min
0<‖f‖0≤k

‖Vg1⊗g2f‖0,

φ(H, s) = min
0<‖f1‖0≤s

‖Vg1f1‖0,

φ(G/H, t) = min
0<‖f2‖0≤t

‖Vg2f2‖0 . (17)

We fix x = xi+xj and ξ = ξi+ξj, and compute as in the proof of Proposition 3.8

Vg1⊗g2f(x, ξ)

=
∑
yj

∑
yi

f(yi+yj) g1(yi−xi) g2(yj−xj +H) 〈ξi, yi〉H〈ξi, yj〉G〈ξj, yj +H〉G/H

=
∑
yj

g2(yj−xj +H) 〈ξi, yj〉G〈ξj, yj +H〉G/H
∑
yi

f(yi+yj) g1(yi−xi)〈ξi, yi〉H

where we used ξj ∈ H⊥, that is, 〈ξj, yi〉G = 1. For

FH(xi, ξi, yj) := 〈ξi, yj〉G
∑
yi

f(yi+yj) g1(yi−xi) 〈ξi, yi〉H

we have
FH(xi, ξi, yj) = 〈ξi, yj〉GVg1T−yj

f(xi, ξ
′
i)

and Vgf(x, ξ) =
(
Vg2FH(xi, ξi, ·)

)
(xj+H, ξj).

We fix now f such that ‖f‖0 ≤ k. Let t = |{yj : supp f ∩ yj+H 6= ∅}|.
If for some yj, supp f ∩ yj + H = ∅, then FH(· , · , yj) ≡ 0 too. Therefore,
‖FH(xi, ξi, · )‖0 ≤ t and using (17) we obtain ‖Vg2FH(xi, ξi, · , · )‖0 ≥ φ(G/H, t).
Also, by distributing supp f over t cosets of H in G, there is a coset yj0+H with
|supp f ∩ yj0+H| = s ≤ k/t. Because FH(· , · , yj0) is, up to a nonzero factor, the
partial short–time Fourier transform of T−yj0

f with window g1 on that coset,

‖FH(· , · , yj0)‖0 = ‖Vg1T−yj0
f‖0 ≥ φ(H, s).

We have obtained that the set Λ = {(xi, ξ′i) ∈ H×Ĥ : FH(xi, ξi, yj0) 6= 0} has at
least φ(H, s) elements so

‖Vgf(xi+xj, ξi+ξj)‖0 =
∑

(xi,ξ′i)∈H×Ĥ

‖Vgf(xi, ξi, · , ·)‖0

≥
∑

(xi,ξi)∈Λ

‖Vg2FH(xi, ξi, · , ·)‖0

≥ φ(H, s)φ(G/H, t) .

This inequality holds for all Vgf with 0 < ‖f‖0 ≤ k and therefore, φH(G, k) ≥
φ(H, s)φ(G/H, t). �
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Theorem 4.12 For any finite Abelian group G and k ≤ |G|, let d1 be the largest
divisor of |G| which is less than or equal to k and let d2 be the smallest divisor of
|G| which is larger than or equal to k. Then

φ(G, k) ≥ |G|
2

d1d2

(d1 + d2 − k). (18)

Proof. The function v(n, k) = nu(n, k) = n2

d1d2
(d1 +d2−k), is submultiplicative

since u(n.k) = n
d1d2

(d1 +d2−k) in [Mes06] is submultiplicative, in other words, we
have v(a, b)v(c, d) ≥ v(ac, bd). We proceed by induction on |G| = n. Suppose (18)
holds for |G| = 1, . . . , n−1. If n is prime, then Proposition 4.5 implies v(n, k) =
n(1+n−k) < n2−k+1 = φ(Zp, k) for all k. Else, we choose a nontrivial divisor d
of n, and let H be a subgroup of G of order d. By Proposition 4.11, there exist s, t
with 1≤s≤d, 1≤t≤min{k

s
, n
d
} such that φ(G, k) ≥ φ(H, s)φ(G/H, t). Therefore,

φ(G, k) ≥ v(d, s)v(n
d
, t) ≥ v(n, st) ≥ v(n, k). �

For the case G = Zpq, we can improve this estimate by finding the convex hull
of all pairs (|H|, |G/H|) for all subgroups H of G as in [Mes06].

Proposition 4.13 Let G = Zpq with q < p and p, q prime. Then

φ(G, k) ≥
{
p2(q2 − k + 1) if k < q;
(p2 − k

q
+ 1)(q2 − q + 1) else.

(19)

Proof. Proposition 3.8 implies that there exists s, t such that st ≤ k and
φ(G, k) ≥ φ(H, s)φ(G/H, t). For G = Zpq and |H| = p, we have φ(H, s) = p2−s+1
and φ(G/H, t) = q2 − t+ 1. As st ≤ k, we can find t ∈ R such that q ≥ t ≥ t and
p ≥ k

t
≥ s. Hence,

φ(G, k) ≥ (p2 − s+ 1)(q2 − t+ 1) ≥ (p2 − k
t

+ 1)(q2 − t+ 1) .

So φ(G, k) must exceed the minimum of M(u) = (p2 − k
u

+ 1)(q2 − u + 1),
where u ranges from k

p
to q since we assume k

u
≤ p and u ≤ q. We have M ′(u) =

−(p2 + 1) + k(q2+1)
u2 = 0 if and only if u = ±

√
k q

2+1
p2+1

. As M(u)→ −∞ for u→ 0+

and u → ∞, the only positive extremum is a maximum and the minimum is

attained in a boundary point. A simple calculation gives that M(q) ≤M
(
k
p

)
.

For k < q, the condition 1 ≤ s, 1 ≤ t, implies that t ranges only from 1 to k.
The same arguments as used above show again that the minimum is attained at
a boundary point and that M(1) ≥M(k). �

At k = q, the two lower bounds in (19) coincide and lead to what a geometric
argument shows to be the optimal value that can be obtained using g = g1⊗g2. So
the two straight lines give a convex hull similar to [Mes06]. However, as expected,
the computational results are better than those given in (19), since since tensor
windows cannot be used to find optimal bounds for φ(G, k). See Table 4 for an
illustration of (19) for G = Z6.
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‖f‖0 1 2 3 4 5 6
Theorem 4.12 36 18 12 10 8 6

Proposition 4.13 36 26 25 23 22 20
Numerical results 36 33 32 32 32 31

Table 4: Lower bounds for ‖Vgf‖0 given by Theorem 4.12 and Proposition 4.13
for G = Z6 and by numerical experiments and randomly chosen g ∈ CZ6 .

4.3 Outlook

For |G| prime, Theorem 4.5 characterizes all pairs (‖f‖0, ‖Vgf‖0), f ∈ CG which
are achieved for almost every window function g ∈ CG. However, for general
Abelian groups it is quite difficult to establish lower bounds for ‖Vgf‖. Further,
our limited numerical results for cyclic groups indicate a close correspondence
between the achieved pairs (‖f‖0, ‖f̂‖0) and the achieved pairs (‖f‖0, ‖Vgf‖0) for
a given window g. Consequently, we pose

Question 4.14 For every cyclic group G and almost every g ∈ CG, is it true that{
(‖f‖0, ‖Vgf‖0), f ∈ CG\{0}

}
=
{

( ‖f‖0 , ‖f̂‖0+|G|2−|G| ), f ∈ CG\{0}
}

?

The basis for this question is illustrated in Figure 7 by considering the cyclic
groups Z4, Z5, Z6, Z7, and Z8. The statement does not hold for noncyclic groups;
for example, in the diagram for Z2

2 in Figure 7 the existence of 4×4 zero minors
in AG,g in (4) that is, the minor given by columns 1,3,13,14, leads to the possible
pair (4, 12).

We state some preliminary observations regarding Question 4.14.
For example, the technique used to prove Theorem 4.5 possesses certain degrees

of freedom, that is, we only need to show that a particular product of minors is
nonzero. Nevertheless, these degrees of freedom do not allow us to give a positive
answer to Question 4.14. For example, for G = Z4, we can choose the 4 × 4
submatrix

M(z) =
(
AZ4 , (z0, z1, z2, z3)

)
{0,1,4,12},{0,1,2,3} =

(
z0 z0 z3 z1
z1 −z1 z0 z2
z2 z2 z1 z3
z3 −z3 z2 z0

)

In this submatrix, none of the monomials that is “maximal” in the sense described
above, namely the monomials z3

0z2, z3
1z3, z3

2z0, and z3
3z1, has a nonzero coefficient

in the polynomial P (z0, z1, z2, z3) = detM(z) = −2z2
0z

2
1 − 2z2

1z
2
2 − 2z2

0z
2
3 − 2z2

2z
2
3 −

4z0z1z2z3 6≡ 0.
Using Proposition 3.6, we derive a partial result on nonzero minors of AZn,g.

Proposition 4.15 For every n, any minor of the full Gabor system matrix AZn,g,
where the columns corresponding to each fixed translation are adjacent with respect
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Figure 7: The set
{

(‖f‖0, ‖Vgf‖0), f ∈ CG\{0}
}

for appropriately chosen g for
the groups Z4,Z2

2,Z5,Z6,Z7,Z8. The color coding from Figure 2 is applied in
accordance with numerical experiments based on Lemma 3.5.

to modulation is nonzero for almost every g. The same holds for a minor corre-
sponding to a submatrix of size n×n, where the columns corresponding to each
fixed modulation are adjacent with respect to translation.

Proof. As in the proof of Theorem 4.6, choose A ⊆ G and B ⊆ G×Ĝ with
|A| = |B| and set PA,B(z) = det(AZn,z)A,B, z = (z0, z1, . . . , zn−1). In that proof, we
identified a “maximal” term within PA,B, the coefficient of which can be expressed
as a product of different minors of the discrete Fourier matrix WZn . Each of these
minors arise from the columns of PA,B(z) that correspond to a specific translation.
By assumption, these columns are adjacent with respect to modulation in AZn,z.
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So each of these minors is a minor of the DFT matrix corresponding to adjacent
columns, where each row is multiplied by some factor zi. Using the multilinearity of
the determinant, we can pull the factors outside. By Proposition 3.6, we conclude
that these minors of the DFT-matrix are nonzero, hence also their product. So
the ”maximal” term has a nonzero coefficient.

To obtain the dual statement, take the Fourier transform of each column of
AZn,g. By linearity, the resulting matrix can have no size-n zero minors either,
as that would mean that one column of the corresponding submatrix is a linear

combination of other columns. As M̂ξTxg = TξM−xĝ, the resulting matrix will
correspond to AZn,ĝ, except that modulations and translations have exchanged
their roles. So modulation adjacency becomes translation adjacency, which implies
the dual statement. �

5 Applications

We shall now turn to applications of the results stated in Section 4 to communi-
cations engineering and, in the subsequent section, to the problem of recovering
sparse signals from incomplete data.

5.1 Gabor frames, erasures, and the identification of op-
erators

In generic communication systems, information is transmitted in the form of the
entries of a vector f ∈ CG over a channel in such a way that recovery of the
information at the receiver is robust to errors introduced by the channel. Here,
we will focus on two inherent problems. First, we shall discuss transmission over
a channel with erasure, that is, some of the vector entries may be lost during
transmission. Second, we discuss the so-called identification problem for another
class of operators, namely, of linear time–varying operators which play a central
role in wireless and mobile communications. Clearly, knowledge of the operator at
hand would help to counteract disturbances that were caused during transmission.

But first, we give some preliminaries on frames in finite dimensional vector
spaces, which will be used in this section. For details on frames and, in particular,
Gabor frames we refer to the excellent expositions [Chr03, Grö01, KC06]. The
geometry of finite frames is discussed in [BF03].

Definition 5.1 Let G be a finite Abelian group and let K be a finite or countably
infinite index set. A family of functions {ϕk} ⊂ CG with

A‖f‖2
2 ≤

∑
k

|〈f, ϕk〉|2 ≤ B‖f‖2
2 , f ∈ CG,

for positive A and B is called a frame for CG. A is called a lower frame bound
and B is called an upper frame bound of the frame {ϕk}.
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A frame is called tight if we can choose A = B. If we can choose A = B = 1,
then the frame is called Parseval tight frame. If ‖ϕk‖ = C > 0 for all k, then the
frame {ϕk} is called equal norm frame and if in addition C = 1, then we have a
unit norm frame.

In the following, we shall refer to a Gabor system which forms a frame as
Gabor frame. A direct consequence of (2) is

Proposition 5.2 For any g ∈ CG\{0}, the collection {π(λ)g}λ∈G×Ĝ is an equal
norm tight frame for CG with frame bound A = B = |G| ‖g‖2

2.

The usefulness of frames stems largely from the existence of a reconstruction
formula similar to (1) and (2).

Proposition 5.3 Let {ϕk} be a frame for CG. Then exists a so-called dual frame
{ϕ̃k}, with

f =
∑
k

〈f, ϕk〉ϕ̃k =
∑
k

〈f, ϕ̃k〉ϕk , f ∈ CG . (20)

Note that Parseval frames are self dual, that is, we can choose ϕ̃k = ϕk for all k.
Now we are in a position to briefly discuss the recovery of information from a

vector that suffered erasures [CK03, PK05, GK01, SH03]. In data transmission,
rather then sending the information in raw form, that is, sending vector entries
one-by-one, information is being coded prior to transmission. For example, we can
choose a frame {ϕk}k∈K for CG and send the coefficients 〈f, ϕk〉, k ∈ K. If none
of the transmitted coefficients are lost, the receiver can use a dual frame {ϕ̃k} of
{ϕk} and recover f using (20). But even if some coefficients are lost and only
〈f, ϕk〉 is received for k ∈ K ′ ⊂ K, then the information can still be recovered if
and only if {ϕk}k∈K′ remains a frame. This necessitates that |K ′| ≥ |G| = dim CG.

Definition 5.4 A frame F = {ϕk}k∈K in CG is maximally robust to erasures if
the removal of any l ≤ |K| − |G| vectors from F leaves a frame.

Similarly, we give

Definition 5.5 A set of m vectors in CG is in general position, if any collection
of at most |G| of these vectors are linearly independent.

Before giving slight generalizations of results from [LPW05] on Gabor frames
that are maximally robust to erasure in Theorem 5.7, we introduce some vo-
cabulary and notation regarding the previously mentioned operator identification
problem.

Definition 5.6 A linear space of operators H mapping CA to CB is called iden-
tifiable with identifier g ∈ CA if the linear map ϕg : H −→ CB, H 7→ Hg is
injective, that is, if Hg 6= 0 for all H ∈ H\{0}.
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Time–variant communication channels, for example, multipath channels in
wireless telephony, are often modeled through a combination of translation opera-
tors (time–shift, delay) and modulation operators (frequency shifts that are caused

by the Doppler effect). Therefore, identification of HΛ = {
∑
λ∈Λ

cλπ(λ), cλ ∈ C} for

Λ ⊆ G×Ĝ is quite a relevant goal (see [PRT07] and references therein).

Theorem 5.7 For g ∈ CG\{0}, the following are equivalent:

1. Every minor of AG,g of order |G| is nonzero.

2. The vectors from the Gabor system {π(λ)g}λ∈G×Ĝ are in general position.

3. The Gabor system {π(λ)g}λ∈G×Ĝ is an equal norm tight frame which is max-
imally robust to erasures.

4. For all f ∈ CG\{0} we have ‖Vgf‖0 ≥ |G|2−|G|+1.

5. For all f ∈ CG, Vgf(λ), and, therefore, f , is completely determined by its
values on any set Λ with |Λ| = |G|.

6. HΛ is identifiable by g if and only if |Λ| ≤ |G|

For |G| prime, Theorem 4.5 ensures the existence of g ∈ CG which satisfy parts
1-6 in Theorem 5.7 and Proposition 4.7 allows us to choose g to be unimodular.
A positive answer to Question 4.14 would also confirm the existence of g ∈ CZn

satisfying Theorem 5.7, part 4, and therefore Theorem 5.7, parts 1-6, for cyclic
groups.

Remark 5.8 To our knowledge, the only known equal norm tight frames that are
maximally robust to erasures are so-called harmonic frames (see Conclusions in
[CK03]). Harmonic frames for Cn with m ≥ n elements are obtained by deleting
identical m−n components of the characters of Zm [CK03]. Similarly, Theorem 4.6
together with Propostition 4.7 provides us with equal norm tight frames with p2

elements in Cn for n ≤ p. Namely, we can choose a g ∈ (S1)p and remove p − n
components of the equal norm tight frame {π(λ)g}λ∈G×Ĝ in order to obtain an
equal norm tight frame which is maximally robust to erasure. Note that this
frame is not a Gabor frame proper. Reducing the number of vectors in the frame
to m ≤ p2 vectors leaves an equal norm frame which is maximally robust to
erasure but which might not be tight. This holds for harmonic frames too. With
the restriction to frames with p2 elements, p prime, we have shown the existence
of Gabor frames which share the usefulness of harmonic frames when it comes to
transmission of information through erasure channels.

Background and more details on frames and erasures can be found in [CK03,
GK01, SH03] and the references cited therein.
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5.2 Signals with sparse representations

In Section 5.1 we discussed the recovery of signals or operators from |G| known
complex numbers. Here, we will use the functions φ and θ which were defined
in Section 3.2 and Section 4.2 to refine some of these findings. That is, we show
that a function/signal which can be represented as a linear combination of a small
number of pure frequencies or of a small number of time–frequency shifts of a
fixed function g, can be recovered from fewer than |G| of its values. Our brief
discussion is based on the most basic ideas and results from the theory of sparse
signal recovery [Don06, Rau07, CRT06].

There exist a number of entry points to the theory of sparse signal recovery.
Here, we shall consider dictionaries D = {g0, g1, . . . , gN−1} of N vectors in Cn, or
equivalently, in CG. For k ≤ n = |G| we shall examine the sets

ΣDk = {f ∈ Cn : f = MD c =
∑
r

crgr, with ‖c‖0 ≤ k} .

The central question is: how many values of f ∈ ΣDk need to be known (or stored),
in order that c ∈ CN with f =

∑
r crgr and ‖c‖0 ≤ k, and therefore f , is uniquely

determined by the known data?
To this end, we set

ψ(D, k) = min
{
‖f‖0 : f ∈ ΣDk

}
,

and observe the following well known result.

Proposition 5.9 Any f ∈ ΣDk is fully determined by any choice of n−ψ(D, 2k )+1
values of f .

Note that unlike in Theorem 5.7, we do not assume knowledge of the set supp c
for c with MDc = f , ‖f‖0 in Proposition 5.9 and in the following.

Proof. Assume that for some B ⊂ Cn with |B| = n−ψ(D, 2k )+1, two co-
efficient vectors c1, c2 ∈ CN exist that satisfy rBMDc1 = rBf = rBMDc2 and
‖c1‖0, ‖c2‖0 ≤ k. Then ‖c2 − c1‖0 ≤ 2k with ‖MD(c2 − c1)‖0 ≤ n − |B| =
n− (n−ψ(D, 2k )+1) = ψ(D, 2k )−1, a contradiction. �

A classical dictionary for CG is DG = {ξ}ξ∈Ĝ, where G is a finite Abelian group.
Then

ψ(D, k) = min
{
‖f‖0 : f ∈ ΣDk

}
= min

{
‖f̂‖0 : ‖f‖0 ≤ k

}
= θ(G, k) .

This equality together with Proposition 5.9 demonstrates the relevance of the
results cited in Section 3 for the recovery of signals with limited spectral content.
For example, Theorem 3.7 shows that for any finite Abelian group of order 16 we
have θ(G, 6) ≥ 3. In fact, our computations that are illustrated in Figure 3 show

that θ(G, 6) = 4 for |G| = 16, and, hence, any f ∈ ΣDG
3 = {f : ‖f̂‖0 ≤ 3} can

be recovered from any choice of |G| − θ(G, 2 · 3) + 1 = 16 − 4 + 1 = 13 values of
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f . For f ∈ Σ
DZ17
3 on the other side, Theorem 3.3 implies that f is already fully

determined by |Z17| − θ(Z17, 2 · 3) + 1 = 17− (17− 6 + 1) + 1 = 6 of its values.
The results in Section 4 involving the function φ are relevant to determine

vectors which have sparse representations in the dictionary DAG,g
which consists

of the columns of AG,g. In fact, we have F ∈ Σ
DAG,g

k if and only if F = Vgf for
some f ∈ CG with ‖f‖0 ≤ k and, therefore,

ψ(DAG,g
, k) = min

{
‖Vgf‖0 : ‖f‖0 ≤ k

}
= φ(G, k) .

For |G| prime for example, this leads to the following short–time Fourier transform
version of Theorem 1.1 in [CRT06].

Theorem 5.10 Let g ∈ CZp, p prime, satisfy the conclusion of Theorem 4.5.
Then any f ∈ CZp with ‖f‖0 ≤ 1

2
|Λ|, Λ ⊂ Zp×Ẑp, is uniquely determined by Λ

and rΛVgf .

In terms of sparse representations, the Gabor frame dictionary {π(λ)g}λ∈G×Ĝ
of time–frequency shifts of a prototype vector g, that is, the dictionary consisting
of the rows of AG,g, appears to be more interesting. Rudimentary numerical ex-
periments based on Lemma 3.5 give some indication that for any Abelian group
G, and almost every g ∈ CG, we have for k ≤ |G|,

ψ({π(λ)g}λ∈G×Ĝ, k) = θ(G, k).

Note that this does not hold for all Abelian groups of finite order. For example, for
any g ∈ CZ2×Z2 we have ψ({π(λ)g}λ∈(Z2×Z2)×(Z2×Z2), 4) = 0 while θ(Z2×Z2, 4) = 1.

For |G| prime, Theorem 4.6 implies that ψ({π(λ)g}λ∈G×Ĝ, k) = p − k + 1 =
θ(G, k), and analogous to Theorem 5.10, we obtain

Theorem 5.11 Let g ∈ CZp, p prime, satisfy the conclusion of Theorem 4.5.
Then any f ∈ CZp with f =

∑
λ∈Λ cλπ(λ)g, Λ ⊂ Zp×Ẑp is uniquely determined by

B and rBf whenever |B| ≥ 2|Λ|.

Note that similar to before, the recovery of f from 2|Λ| samples of f in Theo-
rem 5.11 does not require knowledge of Λ.

6 Appendix

6.1 Justification of Figure 6

Let ω = e2πi/3. For ‖f‖0 = 1, we calculate

V(a,b,c)(d, 0, 0) = (da, ω2da, ωda, dc, ω2dc, ωdc, db, ω2db, ωdb)

So in any case, ‖Vgf‖0 = 3‖g‖0, which justifies all cases involving ‖f‖0 = 1 or
‖g‖0 = 1.
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For the case ‖f‖0 = 2 and ‖g‖0 = 2, we note ‖V(1,1,0)(1,−1, 0)‖0 = 8 and
‖V(1,1,0)(1, 10, 0)‖0 = 9, which justifies the two red fields. Now assume that there
are f and g with ‖f‖0 = ‖g‖0 = 2 and ‖Vgf‖0 ≤ 7. Then Vgf has at least
two zero entries. Note that the scalar product of f and another vector with
support size 2 can only vanish, if supp f = supp g. So the zero entries in Vgf
must correspond to the same translation. If we set without loss of generality
f = (a, b, 0), g = (c, d, 0), then zeros at two different modulations Mj1 and Mj2

imply ac+ ωj1bd = 0 = ac+ ωj2bd, which clearly admits no nontrivial solution.
For the case ‖f‖0 = 2 and ‖g‖0 = 3 which is equivalent to the case ‖f‖0 =

3 and ‖g‖0 = 2, we note that ‖V(1,1,1)(1,−1, 0)‖0 = 6, ‖V(2,−4,8)(2, 1, 0)‖0 = 7,
‖V(1,2,3)(2,−1, 0)‖0 = 8 and ‖V(1,2,3)(1, 2, 0)‖0 = 9, which justifies the four red
fields. Now assume, there are f and g with ‖f‖0 = 2, ‖g‖0 = 3 and ‖Vgf‖0 ≤ 5.
Then Vgf has at least four zero entries, in particular two that correspond to the
same translation. Without loss of generality, we assume that this is the zero-
translation and that f is supported in the first two coordinates, that is, f =
(a, b, 0), g = (c, d, e). Then we get as before ac + ωj1bd = 0 = ac + ωj2bd which
has no nontrivial solutions.

For the case ‖f‖0 = 3 and ‖g‖0 = 3, we note that ‖V(1,1,1)(1, 1, 1)‖0 = 3,
‖V(1,1,1)(1, 1,−2)‖0 = 6, ‖V(1,2,5)(10, 5, 2)‖0 = 7, ‖V(1,2,3)(−5, 1, 1)‖0 = 8 and
‖V(1,2,3)(1, 2, 3)‖0 = 9, which justifies the five red fields. Multiplying f or g by
a constant does not change ‖Vgf‖0, so we can normalize f(0) = g(0) = 1. Hence
we can set f = (1, a, b), g = (1, c, d). Then again, ‖Vgf‖0 ≤ 5 implies that Vgf
has two zero entries that correspond to the same translation and we shall assume
without loss of generality and for the remainder of this section that those appear
at x = 0 and ξ = 1, 2, that is, we have

1 + ωac̄+ ω2bd̄ = 0 = 1 + ω2ac̄+ ωbd̄

and hence bd̄ = ac̄ = 1 and g =
(
1, 1

ā
, 1
b̄

)
.

Before continuing, we state

Lemma 6.1 Let S be a shearing on CZ3×Z3, that is, S translates the (x = 1)-row
of an element in C3×3 by 1 and the (x = 2)-row by 2. Then given f, g ∈ CZ3, there
exist f̃ , g̃ ∈ CZ3, such that suppVg̃f̃ is the image of supp (Vgf) under S.

Proof. Suppose, two vectors f = (u, v, w) and g = (x, y, z) are given, and
consider the vectors f̃ = (u, v, ωw) and g̃ = (x, y, ωz). Then

Vg̃f̃(0, ξ) = ux+ ωξvy + ω2ξ(ωw)(ωz) = ux+ ωξvy + ω2ξzw = Vgf(0, ξ) ,

Vg̃f̃(1, ξ) = uy + ωξvωz + ω2ξ(ωw)(x) = uy + ωξ+1vz + ω2ξ+2xw = Vgf(1, ξ + 1) ,

and

Vg̃f̃(2, ξ) = uωz + ωξvx+ ω2ξωwy = ω(uz + ωξ+2vx+ ω2ξ+1wy) = ωVgf(2, ξ + 2) .
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As a multiplication by ω does not change the support, we get the sheared image
of the original support set as desired. �

We now use Lemma 6.1 to show that in the case ‖f‖0 = ‖g‖0 = 3, no support
size of 4 is possible. In fact this would imply that the short–time Fourier transform
has five zeroes, so there is a second row with two zeroes (without loss of generality
the row x = 1). By shearing we can move them to ξ = 1, 2 without changing the
first row, that is,

1
a

+ ω a
b

+ ω2b = 0 = 1
a

+ ω2 a
b

+ ωb .

This implies 1
a

= a
b

= b and hence a = 1, a = ω or a = ω2, and b = a
accordingly. This reduces to the the example for ‖Vgf‖0 = 3 given above. Thus,
‖Vgf‖0 = 4 is impossible.

For a support size of 5, we can use the same argument to exclude that the
remaining two zeroes occur at the same x. So in addition to the two zeros for
x = 0, we can have zeroes at x = 1, 2 and either ξ = 0 for both or ξ = 1 for both.
All other combinations can be reduced to these two by shearing and conjugation
(using ω2 = ω̄).

These two cases correspond to solving

a+ ωk b
a

+ ω2k 1
b

= 0 = 1
a

+ ωk a
b

+ ω2kb

for k = 0, 1. These equations can be solved exactly using Mathematica. The only
solutions are modulations of shearings of the solution with ‖Vgf‖0 = 3 considered
above. So again, it follows that a short–time Fourier transform with support size
5 is not possible.

6.2 Proof of Chebotarev’s Theorem 3.3 based on Tho-
erem 4.6.

Fix A, Ã ⊆ Zp with |A| = |Ã|. We have to show that the restricted Fourier

transformation FA→Ã : CA → CÃ is an isomorphism. For g such that AZp,g has
no zero minors, define Mg : Cp −→ Cp to be the pointwise multiplication operator
with the vector g. Since g has no zero components, M is an isomorphism, and,
moreover, Mg restricts to an isomorphism on CA. Set B = {0} × Ã. Therefore,

Vg : CA −→ CB is an isomorphism since |B| = |Ã|. The result follows since the
restricted Fourier transformation FA→Ã is nothing but P ◦ Vg ◦Mg where P is the

projection of B = {0} × Ã onto Ã.
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[Grö03] K. Gröchenig. Uncertainty principles for time-frequency representa-
tions. In Advances in Gabor analysis, Appl. Numer. Harmon. Anal.,
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