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Werner Kozek1, Götz Pfander2, Jörn Ungermann1,3, and Georg Zimmermann2

1Siemens AG, Information & Communication Networks, D-81359 München
2Institut f. Angewandte Mathematik, Universität Hohenheim, D-70593 Stuttgart

3Institut f. Geometrie und praktische Mathematik, RWTH Aachen, D-52351 Aachen

werner.kozek@icn.siemens.de, joern@kawo2.rwth-aachen.de,{pfander,gzim}@uni-hohenheim.de

Abstract— In this paper we compare different trans-
multiplexer structures with respect to the ISI/ICI occur-
ing for typical time–invariant channels. In particular we
consider wavelet–type, Gabor-type (the class containing
OFDM and DMT) and Wilson-type (offset-QAM/OFDM)
transmultiplexer. We present both theoretical results
(based on a recently developed perturbation theory of co-
herent Riesz bases) and numerical simulations.
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I. I NTRODUCTION

MULTICARRIER –modulation (MCM) is among the
most popular concepts for data transmission over dis-

persive communication channels. FFT–based versions of
MCM [1] are the basis for the wireless standard HIPER-
LAN/2 [2] and the digital subscriber line standard ADSL [3].
The latter case means baseband modulation called discrete
multi–tone (DMT) which is up to a frequency shift mathemat-
ically equivalent to the passband realization called orthogonal
frequency division multiplex (OFDM).

One of the key ideas underlying these standard MCM re-
alizations is the use of a guard time that contains a cyclic
prefix which in essence converts the action of the linear time–
invariant channel to a cyclic convolution. Such a cyclic con-
volution is diagonalized by the DFT, hence the equalization
reduces to a simple scalar multiplication (frequency domain
equalization). The simple equalization comes at the cost of (i)
a loss of modulation efficiency (redundancy of transmission
signal) and (ii) poor spectral concentration of the subcarriers.

Alternative approaches to MCM are based on filterbank
(wavelet) theory, which opens up quite different avenues to
highly structured and thus efficiently realizable transmission
signal sets. The most prominent structures correspond ei-
ther to a linear (“constant-B”) or logarithmic (“constant-Q”)
type partitioning of the frequency axis. In [4] the authors
suggest the use of what they call discrete wavelet multitone
(DWMT). However, the concrete filter bank design of [4]
is obviously constant-B in contrast to the constant-Q type
wavelet transform defined by the mathematical community
[5], [6]. DWMT can be characterized as consisting of paruni-
tary DFT filter banks at the transmitter and receiver. This im-
plies in particular nonredundancy of the transmission signal

with the undesired consequence of intersymbol/interchannel
interference (ISI/ICI).

A different nonredundant transmission signal set has been
suggested in [7] consisting of so–called channel adapted
wavelet packets which depart from a strictly logarithmic or
linear frequency scale. However, the level of adaptivity in [7]
is unrealistically high and neglects practical problems (such
as the enormous overhead when changing a transmultiplexer
during data transmission ). Another approach with total adap-
tivity on a sound information theoretical basis has been pro-
posed in [8] but it leads to general filter banks (full matrix
multiplications) which is not practically feasible.

Redundancy in the transmission signal set corresponds to
Hilbert space completeness within the band. Incomplete,
nonorthogonal systems of transmission signals for a constant-
B type (FFT–based) MCM scheme where introduced in [9].
Another interesting alternative to the standard OFDM scheme
is offset-QAM/OFDM scheme which is claimed to yield ex-
cellent spectral concentration [10] with nonredundant trans-
mission signal.

In this paper we report about recent mathematical results
[11] concerning the robustness of prominent function sys-
tems w.r.t. linear distortions (perturbation) caused by typi-
cal time–invariant channels. We show that the Gabor struc-
ture underlying OFDM, DMT, DWMT is matched to time–
invariant channels in a deep mathematical sense (consistent
with the intuitive motivation that led to MCM schemes). On
the other hand we show that one can exclude existence of
a “magic wavelet” that outperforms existing MCM schemes
w.r.t. implementation efficiency (computational cost of mod-
ulation and equalization).

II. T HE SHIFT–INVARIANT MCM SETUP

The transmission signal of a shift–invariant MCM scheme
as depicted in Figure 1 can be formulated as

x(t) =
∞∑

k=−∞

N−1∑

l=0

ck,lgl(t− kT )

where ck,l are information bearing complex coefficients
(“QAM symbols”) andgl(t) is a finite set of transmission
pulses. The received signaly(t) is given by a linearly dis-
torted version of the transmission signalx(t) and additive
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noisen(t):
y(t) = (Hx) (t) + n(t)

The standard receiver strategy is based on an inner product
representation of the received QAM symbols:

ĉk,l =
∫ ∞

−∞
y(t)γl(t− kT )dt = 〈y,TkT γl〉

where we have introduced the receiver pulse shapesγl(t) and

a time-shift operatorTτ acting as(Tτ t)(t)
def
= x(t− τ). To

achieve perfect reconstruction in the case of an ideal channel
one has to require a biorthogonality condition as follows:

〈TkT gl,Tk′T γl′〉 = δk,k′δl,l′

The structure and amount of ISI/ICI is governed by the effec-
tive channel matrix:

Qg,γ,H(k − k′, l, l′)
def
= 〈HTkT gl,Tk′T γl′〉 , (II.1)

which (as suggested by our notation) can be shown to be
block–Toeplitz. In the ideal case the matrix is diagonal

Qg,γ,H(k − k′, l, l′) = λlδl,l′δk,k′

and, for zero noise, the symbols can be recovered by a scalar
multiplicationck,l = 1

λl
ĉk,l.

Fig. 1. The considered MCM scheme

Practically important shift-invariant biorthogonal systems
are defined by the action of unitary operators on one specific
prototype pulse (mother wavelet). In particular we consider
one of the following structures:
• Gabor systemscorrespond to a rectangular tiling of the
time–frequency plane (constant–B), thegl are modulated ver-
sions of a prototype functiong0:

gl(t) = g0(t)ei2π ρ
T lt. (II.2)

Note that in order to have existence of orthonormal bases one
has necessarilyρ ≥ 1.
• The real-valuedWilsonbases [10] have a structure related
to but different from the WH systems (m ∈ [0,M − 1], N =
4M + 1): g0(t) = g(t) ,

gm,1(t) = g(t)
√

2 cos(2π 2m
T x),

gm,2(t) = g(t−T
2 )
√

2 cos(2π 2m−1
T x) ,

gm,3(t) = g(t)
√

2 sin(2π 2m−1
T x),

gm,4(t) = g(t−T
2 )
√

2 sin(2π 2m
T t) ,

Wilson bases correspond to an offset–QAM/OFDM which
allows FFT–based realization. A recently developed theory
allows the design of pulsesg(t) with improved frequency lo-
calization [10].
• DyadicWaveletbases [6] are defined as (m ∈ [0, M ], n ∈
[0, 2m − 1], N = 2M+1 − 1):

g(n)
m (t) = 2m/2g0

(
2m(t−n

T

2m
)
)
.

Wavelet bases are known to combine relatively good fre-
quency localization with a fast computation algorithm (in
principle faster than FFT).

We assume throughout this paper that the channel distor-
tion corresponds to a translation invariant system, i.e., (all
integrals are overR and Fourier transforms of signals are de-
noted by capital letters)

(Hx)(t) = (h∗x)(t) =
∫

t′
h(t−t′)x(t′) dt′

for someh ∈ L2(R). Sinceh and thusH is not fixed, but
varies from case to case, we consider the following ensemble
of possible impulse responses:

H =
{
h ∈ L2(R) : supp h ⊆ [− τ0

2 , + τ0
2 ],∫

t

|h(t)|2 x dx = 0 , sup |H(f)| = 1
}

.

The three conditions imposed onh seem realistic for the fol-
lowing reasons:
• The receiver does not know when the transmission starts,
so he has to fix the timeT = 0 in some way. Since this is
equivalent to choosing some translate ofh, we may as well
fix h to have vanishing first moment.
• Althoughh does not have compact support, we may cut off
at some point and treat the influence of the remaining part of
h as noise.
• The conditionsup |H(f)| = 1 corresponds to perfect gain
control.

III. O RTHOGONAL PERTURBATIONS

Due to lack of space we cannot perform a detailed statisti-
cal analysis of the general MCM-modell (Fig. 1). With regard
to noise sensivity we just note that orthonormal systems with
arbitrary structure are optimum; biorthogonal Riesz bases
used for MCM need to have an excellent condition number
which implies‖gl−γl‖ ¿ 1 [11]. Hence in what follows we
put the focus on orthonormal systems.

For orthonormal systems the total ISI/ICI can be defined
as an off–diagonal norm of the effective channel matrix

OH,g,g
def
=

K∑

k=−K

N−1∑

l=0

N−1∑

l′=0

|QH,g,g(k, l, l′)|2 (1− δkδl,l′) .

In order to derive useful estimates for the off–diagonal decay
of QH,g,g(k, l, l′) we introduce the orthogonal perturbation
of each individual basis member as follows (compare Fig-
ure 2).
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Fig. 2.

d2
g,H

def
= ‖Hg‖2 − |〈Hg, g〉|2, (III.1)

Here, and in what follows we assume〈g, g〉 = ‖g‖2 = 1.
With the above definitions, it is straightforward to show

OH,g,g ≤
K∑

k=−K

N−1∑

l=0

d2
gk,l,H

,

which means that the sum of all orthogonal perturbations
bounds the total ISI/ICI.

Since the convolutionHg = h ∗ g corresponds to multi-
plication in the Fourier domain,dg,H can be related to the
frequency localization ofg, as the following theorem shows.

Theorem 1:[11] Let g, h ∈ L2(R) with ‖g‖L2 = 1. Then
the orthogonal distortion is given by the following variance

d2
g,H = V

{
H(Ξ)

}
,

whereΞ is a random variable with probability density|G|2,

V
{
H(Ξ)

}
=

∫

ξ

∣∣H(ξ)−E{H(Ξ)}∣∣2 |G(ξ)|2 dξ

with expected valueE{H(Ξ)} =
∫

ξ
H(ξ) |G(ξ)|2 dξ .

Using the expression given in theorem 1, we can find an
upper bound for the orthogonal perturbationdg,H with h ∈
H.

Theorem 2:[11] (Upper Bound) Assume thath is an im-
pulse response inH. Then we have forg ∈ L2(R) with
‖g‖L2 = 1

d2
g,H ≤ (πτ0)2σ2

|G|2 ,

whereσ2
|G|2 is the variance of|G|2, i.e.,

σ2
|G|2 =

∫

f

(f−µ)2 |G(f)|2 df with

µ = µ|G|2 =
∫

f

f |G(f)|2 df .

On the other hand, one must expect that signals which are
not well frequency localized potentially undergo a relatively
strong orthogonal perturbation.

Fig. 3. Bad localized eigenfunction ofH (eigenvalueH0)

For a given convolution operator there might be arbitrarily
bad localized functionsg which are exact eigenfunctions of
this specific operator, sodg,H = 0 for this particularh. Such
a situation is depicted in Fig. 3. But recall that for practical
purposes, we require a family of basis functions that are sta-
ble under the action of allh ∈ H. Therefore, to be able to
show that certain bases are inadequate, we want to determine
a lower bound of

dg = sup
h∈H

dg,H .

The following theorem is based on the uncertainty principle
in so far as it exploits knowledge of a minimum frequency
spread given a maximum temporal support length.

Theorem 3:[11](Lower Bound) Forg ∈ L2(R), ‖g‖L2 =
1, with supp g ⊆ [α, α + T ] for someα ∈ R andT > 0, we
have

d2
g ≥ r2

(
1− 4

3
s

T

τ0

)
for

T

τ0
≤ 1

2s
,

and d2
g ≥ 1

12

(
r τ0

s T

)2

for
T

τ0
>

1

2s
,

with s∈ ]0, 1[ andr∈ [ 12 , 1[.
Based on the above mathematical results we now evaluate

the orthogonal distortion on a logarithmic scale

d′2g = 10 log10 d2
g.

We consider the structures discussed in Section II and assume
validity of a typical maximum support as imposed by the la-
tency constraints for voice communication.
• Gabor bases allow direct application of Theorem 2 because
the frequency localization is invariant w.r.t. modulation such
that in turn

dg = dgl
. (III.2)

For standard pulse functions such as e.g. the Bartlett window
satisfying the support constraint we get by a straightforward
computation:

d′2g ≈ −20dB

• Properly designed Wilson(Offset–QAM/OFDM)–type bases
are known for their excellent localization in areal–valued
sense (i.e., their analytic function shows excellent frequency
localization in the sense of Theorem 2). However, in practical
OFDM systems we use these basis functions with complex
coefficients. In the complex sense the Wilson–type bases do
not satisfy a modulation invariance of the orthogonal pertur-
bation (III.2) rather the frequency localizaton decreases with
increasing modulation index. Based on Theorem 3 one can
show that in a Wilson system with at least 200 carriers there
is at least onegl with d′2gl

≥ −8dB

• In a dyadic wavelet basis, one encounters the problem that,
since scaling on the time side results in reverse scaling on the
frequency side, the frequency localization gets worse with
growing scale index. If we assume to have at least 128 basis
functions per symbol periodT we needM ≥ 7 scale indices
which based on Theorem 3 leads to

d′2
g
(n)
8
≈ −3dB
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IV. SIMULATION RESULTS

To illustrate the theoretical results we consider a numerical
experiment involving a noise–free DSL–channel with loop
length 2km (the impulse response is plotted in Fig. 4).

Fig. 4. The considered impulse response

Figure 5 shows linearly scaled contour plots of the effec-
tive channel matrix for three different orthonormal systems:
nonorthogonal Gabor (OFDM with pulse shaping) without
cyclic prefix, an orthonormal Wilson basis (the prototype de-
signed according to [10] ) and an orthonormal Wavelet ba-
sis (“symmlets” defined in [6, p.250]) (symmlets were best
performing in the sense of this work among a number of
prominent wavelet bases). The poor off–diagonal decay of
the wavelet basis is clearly visible; to show the difference be-
tween Wilson and Gabor, we have furthermore plotted a 1D
slice ofQg,g,H(0, l, l′) in Fig. 6. As expected from the theo-
retical results, the Wilson basis (broken line) shows relatively
poor off–diagonal decay.

Fig. 5. Magnitude of 2D cutQg,g,H(0, l, l′) for the following
bases (a) Gabor , (b) Wilson, (c) Wavelet

Fig. 6. Qg,g,H(0, l, 20) for Gabor (solid), Wilson (broken)

V. CONCLUSIONS

We have studied various different transmultiplexer struc-
tures with numerically efficient implementation. We have
shown that the total ISI/ICI can be bounded by the orthog-
onal perturbation caused by channel. Among the considered
structures, the Gabor structure (constant B-type transmission
signal set) turns out to yield optimum perturbation stability.
The Gabor structure includes standard OFDM implementa-
tions and biorthogonal OFDM with pulse shaping. The opti-
mization of the WH-type transmultiplexers w.r.t. bandwidth
efficiency, peak-to-average ratio, robustness and simplicity of
equalization for typical channel scenarios is the natural open
question for future research.
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