
PERIODIC WAVELET TRANSFORMS AND PERIODICITY
DETECTION

JOHN J. BENEDETTO∗ AND GÖTZ E. PFANDER†
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Abstract. The theory of periodic wavelet transforms presented here was originally developed
to deal with the problem of epileptic seizure prediction. A central theorem in the theory is the
characterization of wavelets having time and scale periodic wavelet transforms. In fact, we prove
that such wavelets are precisely generalized Haar wavelets plus a logarithmic term.

It became apparent that the aforementioned theorem could not only be quantified to analyze
seizure prediction, but could also provide a technique to address a large class of periodicity detection
problems. An essential step in this quantification is the geometric and linear algebra construction of a
generalized Haar wavelet associated with a given periodicity. This gives rise to an algorithm for peri-
odicity detection based on the periodicity of wavelet transforms defined by generalized Haar wavelets
and implemented by wavelet averaging methods. The algorithm detects periodicities embedded in
significant noise.

The algorithm depends on a discretized version W p
ψf(n, m) of the continuous wavelet transform.

The version defined provides a fast algorithm with which to compute W p
ψf(n, m) from W p

ψf(n−1, m)

or W p
ψf(n, m − 1). This has led to the theory of non–dyadic wavelet frames in l2(Z) developed by

the second-named author, and which will appear elsewhere.

1. Introduction. Generalized Haar wavelets were introduced in [4]. The theory
and some applications of these generalized Haar wavelets will be developed in this
paper.

In [3], the authors addressed a component of the problem of predicting epileptic
seizures. A satisfactory solution of this problem would provide maximal lead time
in which to predict an epileptic seizure [24, 25]. It was shown that spectrograms of
electrical potential time series derived from brain activities of patients during seizure
episodes exhibit multiple chirps consistent with the relatively simple almost periodic
behavior of the observed time-series [6]. In the process, electrocorticogram (ECoG)
data was used instead of the more common electroencephalogram (EEG) data. To
obtain ECoG data, electrodes are planted directly on the cortex, eliminating some
noise. To analyze the periodic components in these time-series, a redundant non–
dyadic wavelet analysis was used, which the authors in [3] referred to as wavelet
integer scale processing (WISP). The wavelet transform obtained with respect to the
Haar wavelet showed, among other things, that the almost periodic behavior in the
signal resulted in almost periodic behavior in both time and scale in the wavelet
transform [4].

Mathematically, the non–normalized continuous Haar wavelet transform of a pe-
riodic signal is periodic in time and in scale. Continuing the work in [3], we realized
the origin of this phenomen, and verified the time–scale continuous wavelet trans-
form periodicity of periodic signals for a large class of Haar-type wavelets which we
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call generalized Haar wavelets. These elementary observations and calculations are
the subject of Section 2. Section 3 is more mathematically substantive. In it we
describe all integrable wavelets whose non–normalized continuous wavelet transforms
are 1–periodic in both time and scale for all 1–periodic bounded measurable func-
tions. Naturally, these wavelets include the generalized Haar wavelets, but they can
also have a well–defined logarithmic term. The main results, which are proved us-
ing methods from harmonic analysis, are given on the real line R, but also have a
formulation on d–dimensional Euclidean space Rd [21].

Motivated by the epileptic seizure problem, or more accurately the early detec-
tion problem in our approach, and based on the results in Sections 2 and 3, we have
developed a method aimed at detecting periodic behavior imbedded in noisy environ-
ments. This is the subject of Sections 4 and 5. In Section 4 we construct generalized
Haar wavelets that are optimal as far as detecting prescribed periodicities in given
data. The construction is geometric and invokes methods from linear algebra. We use
these optimal generalized Haar wavelets in Section 5 to design our wavelet periodicity
detection algorithm. The algorithm is based on averaging wavelet transforms, and it
will give perfect periodicity information, as far as pattern and period, for the case of
periodic signals in non–noisy environments. The averaging strategy and use of opti-
mal generalized Haar wavelets optimizes available information for detecting suspected
periodicities in noisy data.

The implementation of the algorithm designed in Section 5 requires the computa-
tion of discretized versions of the continuous wavelet transform. The redundancy in
such discretized versions offers robustness to noise, but more calculations are needed
than to compute a dyadic wavelet transform. In Section 6, we shall present a fast
algorithm which significantly reduces the number of these calculations in case the
analyzing wavelet is a generalized Haar wavelet.

Apropos this description of our paper, the readers who are only interested in
applicable periodicity detection techniques need only read the statements of Theorem
3.1 and Theorem 4.2, and then go directly to Section 5, where Theorem 3.1 is invoked,
and to Section 6. Our point of view and idea for periodicity detection has to be
compared critically with other methods and, in particular, with a variety of spectral
estimation techniques, e.g., see [14, 22].
Notation. We employ standard notation from harmonic analysis and wavelet theory,
e.g., see [2, 9, 15, 16, 28]. In order to avoid any confusion, we begin by reviewing
some of the notation herein in which different choices are sometimes made by others.

The Fourier transform of f ∈ L1(R) is f̂ : R̂→ C where f̂(γ) =
∫

f(t)e−2πitγ dt,
R̂ = R when considered as the domain of the Fourier transform and “

∫
” designates

integration over R. F : L2(R) −→ L2(R̂) is the Fourier transform operator on L2(R).
The Fourier series of a 1–periodic function ϕ : R̂ 7→ C is denoted by S (ϕ) (γ) =∑

ϕ̂[m]e−2πimγ , where ϕ̂[m] =
∫
T ϕ(γ)e2πimγ dγ, T = R̂/Z is the quotient group, and

“
∑

” designates summation over the integers Z. We shall also deal with TT = R̂/TZ
for other values of T besides T = 1. A(R̂) and A(T) are the spaces of absolutely
convergent Fourier transforms on R̂ and absolutely convergent Fourier series on T,
respectively.

R+ and R− are the sets of positive and negative real numbers in R; and R̂+

and R̂− are the sets of positive and negative real numbers in R̂. 1X denotes the
characteristic function of the set X, and the Heaviside function H on R is 1(0,∞).
| . . . | designates absolute value, Lebesgue measure, or cardinality; and the meaning
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will be clear from the context.
Acknowledgement. We gratefully acknowledge fruitful conversations with John
Kitchen, Oliver Treiber, and Stephen Tretter. These discussions most often pertained
to the relationship between our periodicity detection method and classical spectral
estimation methods. We also thank one of the anonymous referees for an invaluable
and expert critique of our material concerning epilepsy.

2. Generalized Haar wavelets. We shall introduce the notion of generalized
Haar wavelets. There are two reasons to consider such wavelets. First, they allow
a fast computation of a discretized version of the continuous wavelet transform by
means of a recursive algorithm. This is the subject of Section 6. The second reason is
presented below in Propositions 2.3 and 2.5, where we obtain time–scale periodicity
for the non–normalized continuous generalized Haar wavelet transform of a periodic
signal.

The term wavelet does not possess a unique definition. The following definition
(part a) is appropriate for our needs.

Definition 2.1. a. A wavelet is a complex valued function ψ ∈ L1(R) with one
vanishing moment, i.e., ψ has the property that

∫
ψ(t) dt = 0.

b. If ψ is a wavelet, the non–normalized continuous wavelet transform Wψ is the
mapping

Wψ : L∞(R) −→ Cb(R× R+)

defined by

Wψf(b, a) =
∫

f(t)ψ( t−b
a ) dt.

Cb(R×R+) is the space of complex–valued bounded continuous functions on R×R+.
Similarly, if 1 ≤ p < ∞, then the Lp(R)–normalized continuous wavelet transform

W p
ψ is the mapping

W p
ψ : L∞(R) −→ C(R× R+)

defined by

W p
ψf(b, a) = a−1/p

∫
f(t)ψ( t−b

a ) dt.

C(R× R+) is the space of complex–valued continuous functions on R× R+.
Fundamental works on wavelet theory are due to Meyer [16], Daubechies [9], and

Mallat [15]. This paper is devoted to the theory and usefulness of wavelets described
in the following definition.

Definition 2.2. A generalized Haar wavelet of degree M is a wavelet with the
property that there exist M ∈ R and si ∈ R such that ψ|[si,si+1) = ci ∈ C and
Msi ∈ Z for all i ∈ Z.

Note that generalized Haar wavelets are bounded functions, and that their coef-
ficients are summable, i.e., {ci}i∈Z ∈ l1(Z).
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The first observation in our approach to periodicity detection and computation
is the following fact.

Proposition 2.3. Let f ∈ L1(TT ), i.e., f is T–periodic and integrable on [0, T ],
and let ψ be a generalized Haar wavelet of degree M . Then Wψf(b, a) is T–periodic
in b and MT–periodic in a.

This result can be proved by a direct calculation. A similar calculation is carried
out in the proof of Proposition 2.5.

Example 2.4. We choose f ∈ L1(TT ) to be f(·) = sin(2π(γ ·+θ)), where γ, θ ∈ R
are fixed, and γ T ∈ Z \ {0}. If the generalized Haar wavelet is the centered Haar
wavelet ψ = 1

[− 1
2 ,0)

+ 1
[0,

1
2 )

, then ψ is of degree 2, and

Wψf(b, a) =
2

πγ
sin2(πγa

2 ) cos(2π(γb + θ)), (2.1)

for all (b, a) ∈ R × R+. Clearly, the right side of (2.1) is T–periodic in b and 2T–
periodic in a.

The graph of Wψf(b, a), for θ = 0 and γ = T = 1, is illustrated in Figure 2.1.
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Fig. 2.1. Non–normalized Haar wavelet transform of a sine function.

Figure 2.2 illustrates the reason for periodicity in time. In fact, for a fixed scale,
moving the wavelet by a full period across time does not change the innerproduct

〈f, ψ( ·−b
a )〉 = Wψf(b, a).

Figure 2.3 illustrates the cancellations leading to periodicity in scale. These are due
to the fact that

∑
ci = 0.

Proposition 2.3 implies that if the signal s has the particular form s(t) = Af(ct)
for constants A and c, then the relative maxima of Wψs(b, a) form a lattice in time–
scale space. The horizontal (time) distance between two neighboring vertices of the
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Fig. 2.2. Periodicity in time.
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Fig. 2.3. Periodicity in scale is caused by cancellations in the continuous wavelet transform.

lattice is 1/c, and the vertical (scale) distance between two neighboring vertices is
M/c. This regularity displays redundancy in the following way: each rectangle of
size 1/c×M/c in the wavelet transform contains all of the information in the whole
wavelet transform.

Additional structure of ψ can force additional features upon the wavelet transform
of periodic functions, as can be seen in the following proposition. This approach will
be discussed further in Section 4.3.

Proposition 2.5. Let f ∈ L1(TT ), and let ψ be a generalized Haar wavelet of
degree M .
a. If ψ is even, i.e., ψ(−t) = ψ(t) for t ∈ R, then Wψf(b, a) = −Wψf(b,MT − a) for
0 < a < MT .
b. If ψ is odd, i.e. −ψ(−t) = ψ(t) for t ∈ R, then Wψf(b, a) = Wψf(b,MT − a) for
0 < a < MT .

Proof. a. Since ψ is a generalized Haar wavelet of degree M and since ψ is even,
there exist si ∈ R such that ψ|[s−(i+1),s−i) = ψ|[si,si+1) = ci, i ∈ Z and ci ∈ C, and
s−i = −si for i ∈ Z.
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We compute

Wψf(b,MT − a) + Wψf(b, a) =
∫

f(t)ψ( t−b
MT−a ) dt +

∫
f(t)ψ( t−b

a ) dt

=
∑

i≥0

ci

(∫ (MT−a)si+1+b

(MT−a)si+b

f(t) dt +
∫ (MT−a)s−i+b

(MT−a)s−(i+1)+b

f(t) dt

+
∫ asi+1+b

asi+b

f(t) dt +
∫ as−i+b

as−(i+1)+b

f(t) dt

)

=
∑

i≥0

ci

(∫ −asi+1+b+MT (si+1−si)

−asi+b

f(t) dt +
∫ asi+b+MT (si+1−si)

asi+1+b

f(t) dt

+
∫ asi+1+b

asi+b

f(t) dt +
∫ −asi+b

−asi+1+b

f(t) dt

)

=
∑

i≥0

ci

(∫ −asi+1+b+MT (si+1−si)

−asi+1+b

f(t) dt +
∫ asi+b+MT (si+1−si)

asi+b

f(t) dt

)

=
∑

i≥0

ci

(∫ MT (si+1−si)

0

f(t) dt +
∫ MT (si+1−si)

0

f(t) dt

)

=
∑

i≥0

ci2M(si+1 − si)
∫ T

0

f(t) dt = M

∫
ψ(t) dt

∫ T

0

f(t) dt = 0,

where the last step follows since
∫

ψ(t) dt = 0.
b. Since ψ is odd, there exist si ∈ R such that −ψ|[s−(i+1),s−i) = ψ|[si,si+1) = ci,

i ∈ Z and ci ∈ C, and s−i = −si for i ∈ Z.
We compute

Wψf(b,MT − a)−Wψf(b, a) =
∫

f(t)ψ( t−b
MT−a ) dt−

∫
f(t)ψ( t−b

a ) dt

=
∑

i≥0

ci

(∫ (MT−a)si+1+b

(MT−a)si+b

f(t) dt−
∫ (MT−a)s−i+b

(MT−a)s−(i+1)+b

f(t) dt

−
∫ asi+1+b

asi+b

f(t) dt +
∫ as−i+b

as−(i+1)+b

f(t) dt

)

=
∑

i≥0

ci

(∫ MTsi+1−asi+1+b

MTsi−asi+b

f(t) dt−
∫ −MTsi+asi+b

−MTsi+1+asi+1+b

f(t) dt

−
∫ asi+1+b

asi+b

f(t) dt +
∫ −asi+b

−asi+1+b

f(t) dt

)

=
∑

i≥0

ci

(∫ −asi+1+b+MT (si+1−si)

−asi+1+b

f(t) dt−
∫ asi+b+MT (si+1−si)

asi+b

f(t) dt

)

=
∑

i≥0

ci

(∫ MT (si+1−si)

0

f(t) dt−
∫ MT (si+1−si)

0

f(t) dt

)
= 0.
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Note that in part b we did not explicitly use the fact that
∫

ψ(t) dt = 0. Never-
theless,

∫
ψ(t) dt = 0 since ψ is odd.

3. Characterization of wavelets with periodic wavelet transforms. The
following theorem completely classifies all wavelets which have the property that the
non–normalized wavelet transform of any periodic function f ∈ L∞(R) is periodic
in scale. Recall that continuous wavelet transforms of periodic functions are always
periodic in time.

Theorem 3.1. Let ψ ∈ L1(R). The following are equivalent:
i. Wψf(b, a) =

∫
f(t)ψ( t−b

a ) dt is 1–periodic in a for all f ∈ L∞(T). (P)
ii. ψ̂(0) = 0 and ψ has the form

ψ(·) =
∑

n∈Z
en1(n,n+1)(·) +

∑

n∈Z
bn ln | · −n|,

where {bn}, {en − en−1} ∈ l1(Z) and {en − πi
∑

k≤n bk} ∈ l2(Z).
Remark 3.2. a. Our proof of Theorem 3.1 is classical and detailed to make it

readily accessible. Some distributional arguments may have saved a few lines, and
some of the lemmas could have been integrated with each other, but we have chosen
to exposit the proof as follows to exhibit each of the steps in elementary terms.

b. Theorem 3.1, as well as most results and remarks in this section, has a trivial
generalization to S–periodic functions. In fact, if ψ ∈ L1(R) has the property that
Wψf(b, a) is T–periodic in a for all f ∈ L∞(TS), then ψ̃ defined by ψ̃(t) = ψ( S

T t) has
property (P). Hence ψ̃ has the form

ψ̃(·) =
∑

n∈Z
en1(n,n+1)(·) +

∑

n∈Z
bn ln | · −n|,

where {bn}, {en− en−1} ∈ l1(Z) and {en−πi
∑

k≤n bk} ∈ l2(Z). Consequently, ψ has
the form

ψ(·) =
∑

n∈Z
en1( T n

S , T n+T
S )(·) +

∑

n∈Z
bn ln

∣∣T ·−Sn
S

∣∣ ,

where {bn}, {en − en−1} ∈ l1(Z) and {en − πi
∑

k≤n bk} ∈ l2(Z).
To prove Theorem 3.1, we need to establish several lemmas (Lemma 3.3, Lemma

3.5, Lemma 3.6, Lemma 3.7, Lemma 3.10, and Lemma 3.11).
Lemma 3.3. Let ψ ∈ L1(R). The following are equivalent:

i. Wψf(b, a) =
∫

f(t)ψ( t−b
a ) dt is 1–periodic in a for all f ∈ L∞(T).

ii. ψ̂(0) = 0 and there exists a continuous function ϕ on R, 1–periodic on R̂+ and
1–periodic on R̂−, such that

∀γ ∈ R̂ \ {0}, ψ̂(γ) =
ϕ(γ)

γ
.

Proof. i =⇒ ii. Let us assume Wψf(b, a) =
∫

f(t)ψ( t−b
a ) dt is T = 1 periodic in a

for all f ∈ L∞(T). Define

∀k ∈ Z, Sk(t) =
∑

|n|≤k

(
ψ( t−n−b

a )− ψ( t−n−b
a+1 )

)
.
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Then, for fixed b ∈ R and a ∈ R+, we obtain

0 = Wψf(b, a)−Wψf(b, a + 1)

=
∑

n∈Z

∫ 1

0

f(t− n)
(
ψ

(
t−n−b

a

)− ψ
(

t−n−b
a+1

))
dt = lim

k→∞

∫ 1

0

f(t)Sk(t) dt. (3.1)

We can interchange the limit and the integral in (3.1) using the Lebesgue dominated
convergence theorem on the partial sums Sk; in fact,

∀k ≥ 0, |Sk(t)| ≤
∑

n∈Z

(
|ψ( t−n−b

a )|+ |ψ( t−n−b
a+1 )|

)
, (3.2)

where the right side of (3.2) is an element of L1(T) since ψ ∈ L1(R).
The calculation in (3.1) shows that if Wψf is 1–periodic in scale for all f ∈ L∞(T),

then

S(t) =
∑

n∈Z

(
ψ( t−n−b

a )− ψ( t−n−b
a+1 )

)
= 0.

Thus, for all m ∈ Z, we have

0 = Ŝ[m] =
∫ 1

0

∑

n∈Z

(
ψ( t−n−b

a )− ψ( t−n−b
a+1 )

)
e−2πimt dt (3.3)

=
∑

n∈Z

(∫ 1

0

ψ( t−n−b
a )e−2πimt dt−

∫ 1

0

ψ( t−n−b
a+1 )e−2πimt dt

)

=
∑

n∈Z

(∫ 1−b−n
a

0−b−n
a

ψ(u)e−2πim(au+n+b)a du

−
∫ 1−b−n

a+1

0−b−n
a+1

ψ(u)e−2πim((a+1)u+n+b)(a + 1) du

)

=
∫

ψ(u)e−2πim(au+b)a du−
∫

ψ(u)e−2πim((a+1)u+b)(a + 1) du

= e−2πimb(aψ̂(ma)− (a + 1)ψ̂(m(a + 1))).

Interchanging the sum and the integral in (3.3) is justified by the Lebesgue dominated
convergence theorem.

Because of (3.3), we have

aψ̂(ma)− (a + 1)ψ̂(m(a + 1)) = 0

for all a ∈ R+ and all m ∈ Z, and in particular ψ̂(0) = 0. If we let

ϕ(γ) = γψ̂(γ)

for γ ∈ R̂, and take m = 1, we obtain for γ ∈ R̂+ that

ϕ(γ)− ϕ(γ + 1) = γψ̂(γ)− (γ + 1)ψ̂(γ + 1) = 0.

Hence, ϕ(γ) = ϕ(γ + 1) for all γ ∈ R̂+. For γ ∈ R̂− and a = −γ > 0, we set m = −1
and obtain

ϕ(γ)− ϕ(γ − 1) = 0.
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Thus, ϕ(γ) = ϕ(γ − 1) for all γ ∈ R̂−, and ii holds.
ii =⇒ i. Conversely, if statement ii holds, we have for m > 0 that

aψ̂(ma)− (a + 1)ψ̂(m(a + 1)) = a
ϕ(ma)

ma
− (a + 1)

ϕ(m(a + 1))
m(a + 1)

=
1
m

(ϕ(ma)− ϕ(ma + m)) = 0,

since m, am > 0 and by the 1–periodicity of ϕ on R̂+. Similarly, for m < 0,

aψ̂(ma)− (a + 1)ψ̂(m(a + 1)) =
1
m

(ϕ(ma)− ϕ(ma + m)) = 0,

since now m, am < 0 and the 1–periodicity of ϕ on R̂− applies. Also, ψ̂(0) = 0 implies
Ŝ[0] = 0.

Hence, Ŝ[m] = 0 for all m ∈ Z. By the uniqueness theorem for Fourier transforms
we have S = 0 in L1(T). Thus, the periodicity in scale follows, since

Wψf(b, a)−Wψf(b, a + 1) =
∫ 1

0

f(t)S(t) dt = 0;

and i is obtained.
Remark 3.4. a. Lemma 3.3 implies that if ψ satisfies property (P), then ψ̂ has

the form

ψ̂(γ) =
ϕ1(γ)

γ
+ H(γ)

ϕ2(γ)
γ

,

where ϕ1 and ϕ2 are 1–periodic on all of R̂, and H denotes the Heaviside function,
i.e., H = 1(0,∞).

b. If ψ has property (P), then ψ̂(γ) = O( 1
γ ) and ψ̂(γ) 6= o( 1

γ ) as |γ| → ∞. In
particular, if ψ has property (P) then it is not absolutely continuous.

c. Equation (3.1) in the proof of Lemma 3.3 implies that, for fixed ψ ∈ L1(R)
and fixed f ∈ L∞(T), Wψf is 1–periodic in scale if and only if

∫ 1

0

f(t)
∑

n∈Z

(
ψ( t−n−b

a )− ψ( t−n−b
a+1 )

)
dt = 0,

for all a ∈ R+ and all b ∈ R. This can be helpful if we are interested in picking out one
specific periodic component f ∈ L∞(T) in a signal that carries other periodic compo-
nents besides f . The fact that for periodic g 6= f ∈ L∞(T) the wavelet transform of
g might not be periodic implies that the components of g in a signal get blurred in
the wavelet transform. This can be helpful to distinguish periodic signals of different
shapes.

Lemma 3.5 and Lemma 3.6 will be used to prove Lemma 3.7, and both Lemma
3.6 and 3.7 are used explicitly in the proof of Theorem 3.1

Lemma 3.5. For all 0 < ε < 1 and γ ∈ R̂ we have
∣∣∣∣∣
∫ 1

ε

ε

sin(2πtγ)
t

dt

∣∣∣∣∣ ≤ 5π.
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The proof is standard and is omitted.
Before stating and proving Lemma 3.6, we shall recall a few facts from harmonic

analysis. Let w denote the Fejér kernel defined as

∀t ∈ R, w(t) =
1
2π

(
sin

(
t
2

)
t
2

)2

.

Clearly, w ∈ L1(R) ∩ C(1)(R) and w′ ∈ L1(R), since

w′(t) = sin( t
2 )

[
cos

(
t
2

)
(

t
2

)2 − sin
(

t
2

)
(

t
2

)2

]
,

and therefore w′(t) = O( 1
t2 ), |t| → ∞. The Fourier transform ŵ of w is

∀γ ∈ R̂, ŵ(γ) = max{0, 1− |γ|}.

The de la Vallée–Poussin kernel v is then defined as

∀t ∈ R, v(t) = 4w(2t)− w(t).

Thus, v ∈ L1(R) ∩ C(1)(R) and v′ ∈ L1(R). Clearly,

v̂(γ) = 2ŵ(γ
2 )− ŵ(γ),

and therefore v̂(γ) = 1 for γ ∈ [−1, 1] and v̂(γ) = 0 for γ /∈ [−2, 2]. Note that since
v, v′ ∈ L1(R) and

∀γ ∈ R̂, v̂′(γ) = iγv̂(γ),

we have γv̂(γ) ∈ A(R̂).
Lemma 3.6. Let ψ ∈ L1(R) be such that for all γ ∈ R̂+, resp., for all γ ∈ R̂−,

ψ̂(γ) =
ϕ(γ)

γ

with ϕ 1–periodic on R̂. Then ϕ ∈ A(T) and, hence, the Fourier Series S
(
ϕ
)
(γ) =∑

n∈Z bne−2πinγ , converges to ϕ absolutely and uniformly, i.e., {bn} ∈ l1(Z).
Proof. Fix γ0 ∈ [1, 2), resp., γ0 ∈ [−2, 1). Define

∀t ∈ R, vγ0(t) = 1
8v( t

8 )e2πiγ0t.

Then, clearly,

v̂γ0(γ) = v̂(8(γ − γ0)),

γ ∈ R̂, v̂γ0(γ) = 1 for γ ∈ [γ0− 1
8 , γ0+ 1

8 ], and supp(v̂γ0) ⊆ [γ0− 1
4 , γ0+ 1

4 ] ⊆ [ 34 , 9
4 ] ⊆ R̂+,

resp., supp(v̂γ0) ⊆ R̂−. As before, γv̂γ0(γ) ∈ A(R̂).
Since ψ̂ ∈ A(R̂) we have v̂γ0(γ)ϕ(γ) = γv̂γ0(γ)ψ̂(γ) ∈ A(R̂). Therefore, by a

theorem of Wiener ([30], [2], page 202, [23], page 56), v̂γ0ϕ ∈ A(T). Since ϕ = v̂γ0ϕ in
a neighborhood of γ0, we have ϕ ∈ Aloc(γ0)(T). This result holds for any γ0 ∈ [1, 2],
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resp., [−2,−1), and hence ϕ ∈ Aloc(T). By Wiener’s local membership theorem we
have ϕ ∈ A(T) [2], page 200, [23].

Therefore, we can write ϕ(γ) =
∑

n∈Z bne−2πnγ with {bn} ∈ l1(Z) and the result
is proven.

Lemma 3.7. Let ψ ∈ L2(R) be such that

∀γ ∈ R̂ \ {0}, F(ψ)(γ) =
ϕ(γ)

γ
,

where ϕ ∈ A(T). Then ψ has the form

ψ(·) =
∑

n∈Z
πian sgn(· − n) =

∑

n∈Z
cn1(n,n+1)(·), (3.4)

where {an} ∈ l1(Z) is the sequence of Fourier coefficients of ϕ and where {cn} ∈ l2(Z)
is defined by cn = 2πi

∑
k≤n an. The convergence on the right hand side of (3.4) is

pointwise for t /∈ Z, as well as in L2(R).
Thus, for cn = 2πi

∑
k≤n an, we have the F–pairing,

∑

n∈Z
cn1(n,n+1)(t) ←→

1
γ

∑

n∈Z
ane−2πinγ . (3.5)

Proof. Clearly, ψ̂ ∈ L2(R̂) since ψ ∈ L2(R). Thus, we can apply the L2–inversion
formula

ψ(t) = lim
N→∞

∫ N

−N

ψ̂(γ)e2πiγt dγ,

with convergence of this limit in L2(R). We also have

ϕ(γ) =
∑

n∈Z
ane−2πinγ

with {an} ∈ l1(Z) since ϕ ∈ A(T). We obtain

ψ(t) = lim
N→∞

∫ N

−N

ψ̂(γ)e2πiγtdγ = lim
N→∞

∫
1
N≤|γ|≤N

1
γ

(∑

n∈Z
ane−2πinγ

)
e2πiγt dγ

= lim
N→∞

∫
1
N≤|γ|≤N

∑

n∈Z
an

e2πi(t−n)γ

γ
dγ = lim

N→∞

∑

n∈Z
an

∫
1
N≤|γ|≤N

e2πi(t−n)γ

γ
dγ

= lim
N→∞

∑

n∈Z
an

∫
1
N≤|γ|≤N

(
cos(2π(t− n)γ)

γ
+ i

sin(2π(t− n)γ)
γ

)
dγ

= i lim
N→∞

∑

n∈Z
an

∫
1
N≤|γ|≤N

sin(2π(t− n)γ)
γ

dγ

= i
∑

n∈Z
an lim

N→∞

∫
1
N≤|γ|≤N

sin(2π(t− n)γ)
γ

dγ

= i
∑

n∈Z
an





π for t > n
0 for t = n
−π for t < n



 ,
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where the interchange of integration and summation is true, since {an} ∈ l1(Z)
(Lemma 3.6), and where the last equation is a consequence of Lemma 3.5.

Further note that for t ∈ (k, k + 1) we have

ψ(t) =
∑

n∈Z
πian sgn(t− n) =

∑

n≤k

πian −
∑

n≥k+1

πian

=
∑

n≤k

πian +
∑

n∈Z
πian −

∑

n≥k+1

πian = 2πi
∑

n≤k

an = ck.

Finally, we have ‖{cn}‖l2(Z) = ‖ψ‖L2(R) < ∞ and therefore {cn} ∈ l2(Z).
The following theorem is a corollary of Lemmas 3.6 and 3.7.
Theorem 3.8. Let ψ ∈ L1(R) be defined by

∀γ ∈ R̂, ψ̂(γ) =
ϕ(γ)

γ
,

where ϕ is 1–periodic on R̂ and ψ̂(0) = 0. Then ψ is a generalized Haar wavelet of
degree 1. In fact,

ψ(·) =
∑

n∈Z
πian sgn(· − n) =

∑

n∈Z
cn1(n,n+1)(·),

where

∀γ ∈ R̂, ϕ(γ) =
∑

n∈Z
ane−2πinγ ,

and {cn} ∈ l1(Z), where

cn = 2πi
∑

k≤n

ak.

Proof. By our hypotheses, Lemma 3.6 implies that ϕ ∈ A(T). The result then
follows from Lemma 3.7. Since ψ ∈ L1(R), we obtain the fact that {cn} ∈ l1(Z) ⊆
l2(Z) by the calculation

∑
n∈Z |cn| = ‖ψ‖L1(R) < ∞.

To obtain the main result Theorem 3.1, restated ahead as Theorem 3.12, we
need two more lemmas (Lemma 3.10 and Lemma 3.11), the first of which requires a
fundamental property of Hilbert transforms stated in Theorem 3.9.

The Hilbert transform of a function f is formally defined by

H(f)(t) = lim
ε→0

∫

|t−u|≤ε

f(u)
t− u

du.

For f ∈ L2(R) this limit exists for almost every t ∈ R. Proofs of this fact and the
following result can be found in [17, 2].

Theorem 3.9. H : L2(R) −→ L2(R) is a well-defined isometry. The Hilbert
transform and the Fourier transform are related by the equation,

∀f ∈ L2(R), H(f) = F−1 (−i sgn(·) · (F(f))) .
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Lemma 3.10. Let ψ ∈ L2(R) have the property that

∀γ ∈ R̂, F(ψ)(γ) = H(γ)
ϕ(γ)

γ
,

where ϕ ∈ A(T). Then there exists {dn} ∈ l2(Z) and {bn} ∈ l1(Z) such that∑
n∈Z bn = 0 and

ψ(·) = 1
2

∑

n∈Z
dn1(n,n+1)(·) +

∑

n∈Z
bn ln | · −n|

with pointwise convergence for t /∈ Z, as well as convergence in L2(R).
Thus, if dn = 2πi

∑
k≤n bk, we have the F–pairing

∑

n∈Z
dn1(n,n+1)(t) +

∑

n∈Z
bn ln |t− n| ←→ H(γ)

1
γ

∑

n∈Z
bne−2πinγ . (3.6)

Proof. Let Θ(γ) = ϕ(γ)
γ , where ϕ(γ) =

∑
n∈Z bne−2πinγ . Clearly Θ ∈ L2(R̂).

Lemma 3.7 implies that

F−1(Θ) =
∑

n∈Z
dn1(n,n+1),

where

dn = 2πi
∑

k≤n

bk

and {dn} ∈ l2(Z). Define

g = 1
2F−1(Θ)− 1

2iH(F−1(Θ)).

Clearly, g ∈ L2(R), and

F(g) = 1
2Θ− 1

2iF(F−1(−i sgn F(F−1(Θ)))) = 1
2Θ + 1

2 sgnΘ = HΘ.

Hence, g = F−1(HΘ). Further, for t /∈ Z, we compute

H(F−1(Θ))(t) = lim
ε→0

1
π

∫

|t−u|≥ε

∑
n∈Z dn1(n,n+1)(u)

t− u
du

= − lim
ε→0

1
π

∫

|x|≥ε

∑
n∈Z dn1(t−n−1,t−n)(x)

x
dx

= − 1
π

∑

n∈Z
dn

∫ t−n

t−n−1

1
x

dx = − 1
π

∑

n∈Z
(dn − dn−1) ln |t− n|

= − 1
π

∑

n∈Z
(2πi

∑

k<n

ak − 2πi
∑

k<n−1

ak) ln |t− n| = −2i
∑

n∈Z
bn ln |t− n|.

Therefore, for such t /∈ Z,

g(t) = 1
2F−1(Θ)(t)− 1

2iH(F−1(Θ))(t) = 1
2

∑

n∈Z
dn1(n,n+1)(t) +

∑

n∈Z
bn ln |t− n|.
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Lemma 3.11. Let ψ ∈ L1(R) have the properties that ψ̂(0) = 0 and that for
t /∈ Z,

ψ(t) =
∑

n∈Z
en1(n,n+1)(t) +

∑

n∈Z
bn ln |t− n|,

where {an}, {bn} ∈ l1(Z), and {cn} ∈ l2(Z) satisfy the conditions

an = 1
2πi (en − en−1)− 1

2bn,

and

cn = en − πi
∑

k≤n

bk.

Then ψ ∈ L2(R).
Proof. We shall prove this result in four steps.

i. There exists C1 such that |en| ≤ C1 for all n ∈ Z.
The hypothesis

an = 1
2πi (en − en−1)− 1

2bn,

yields

2πi
∑

1≤n≤N

an =
∑

1≤n≤N

(en − en−1)− πi
∑

1≤n≤N

bn = eN − e1−1 − πi
∑

1≤n≤N

bn

for all N ≥ 1. Therefore, for all such N , we have

|eN − e0| = |πi
∑

1≤n≤N

bn + 2πi
∑

1≤n≤N

an| ≤ π(
∑

1≤n≤N

|bn|+ 2
∑

1≤n≤N

|an|)

≤ π(‖{bn}‖l1(Z) + 2 ‖{an}‖l1(Z)),

since {an} and {bn} ∈ l1(Z). Setting

C1 = π(‖{bn}‖l1(Z) + 2 ‖{an}‖l1(Z)) + |e0|,

we obtain

∀N ≥ 1, |eN | ≤ C1.

Clearly, the same bound holds for negative N and |e0|, and step i is complete.
For n ∈ Z, define ∀t ∈ [n− 1

2 , n + 1
2 ],

gn(t) =
∑

k 6=n

bk ln |t− k| = ψ(t)− bn ln |t− n| − en−11(n−1,n)(t)− en1(n,n+1)(t).

The sum converges pointwise.
ii. There exists C2 such that |g′n| ≤ C2 on [n− 1

2 , n + 1
2 ] for all n ∈ Z.

Fix n ∈ Z. For k 6= n let

Sk(t) = bk ln |t− k|.



PERIODIC WAVELET TRANSFORMS AND PERIODICITY DETECTION 15

Sk is continuously differentiable on the interval [n− 1
2 , n + 1

2 ], and

∀t ∈ [n− 1
2 , n + 1

2 ], |Sk
′(t)| = |bk

1
t− k

| ≤ 2|bk|.

Since {bn} ∈ l1(Z), we can define

hn(t) =
∑

k 6=n

bk
1

t− k

with uniform convergence on [n − 1
2 , n + 1

2 ]. Hence, gn is continuously differentiable
on [n− 1

2 , n + 1
2 ] and g′n = hn. Letting C2 = 2 ‖{bn}‖l1(Z) we have

|g′n(t)| ≤ C2

for t ∈ [n− 1
2 , n + 1

2 ].
iii. There exist N > 0 and C3 such that |gn| ≤ C3 on [n− 1

2 , n+ 1
2 ] for all n for which

|n| ≥ N .
There exists N such that for all n ≥ N there is a tn ∈ [n − 1

2 , n − 1
4 ] for which

ψ(tn) ≤ 1. This statement holds since, if there were infinitely many nk with ψ(t) ≥ 1
for all t ∈ [nk − 1

2 , nk − 1
4 ], we would obtain

∫
|ψ(t)| dt ≥

∑

k∈N

∫ nk− 1
4

nk− 1
2

dt = ∞,

which contradicts the hypothesis that ψ ∈ L1(R).
Let |bn| ≤ C4 for all n ∈ Z, and set C5 = 1 + C4 ln 4 + 2C1. We obtain

|gn(tn)| = |ψ(tn)− bn ln |tn − n| − en−11(n−1,n)(tn)− en1(n,n+1)(tn)|
≤ 1 + |bn| ln 4 + |en−1|+ |en| ≤ 1 + C4 ln 4 + 2C1 = C5.

Set C3 = C2+C5. Then, for all t∈[n−1
2 , n+1

2 ], there exists ξn∈[min{t, tn}, max{t, tn}],
such that

|gn(t)| ≤ |gn(t)− gn(tn)|+ |gn(tn)| ≤ |(t− tn)g′n(ξn)|+ |gn(tn)| ≤ C3.

iv.
{∫ n+ 1

2
n− 1

2
|ψ(t)|2 dt

}
∈ l1(Z), and therefore ψ ∈ L2(R).

For n ∈ Z and t ∈ [n− 1
2 , n + 1

2 ], we define

g̃n(t) =
∑

k 6=n

bk ln |t− k|+ en−11(n−1,n)(t) + en1(n,n+1)(t) = ψ(t)− bn ln |t− n|.

Hence, for |n| ≥ N , we obtain

∀t ∈ [n− 1
2 , n + 1

2 ], |g̃n(t)| ≤ C1 + C3.

We shall first show that
{∫ n+ 1

2
n− 1

2
|g̃n| dt

}
∈ l1(Z).To begin, note that

∫ n+ 1
2

n− 1
2

|bn ln |t− n|| dt = |bn|
∫ 1

2

− 1
2

| ln |t|| dt = 2|bn|
∫ 1

2

0

| ln |t|| dt = |bn|(ln 2 + 1),
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and therefore
{∫ n+ 1

2
n− 1

2
|bn ln |t− n|| dt

}
∈ l1(Z). Since

∫ n+ 1
2

n− 1
2

|g̃n(t)| dt =
∫ n+ 1

2

n− 1
2

|ψ(t)− bn ln |t− n|| dt

≤
∫ n+ 1

2

n− 1
2

|ψ(t)| dt +
∫ n+ 1

2

n− 1
2

|bn ln |t− n|| dt

and
{∫ n+ 1

2
n− 1

2
|ψ(t)| dt

}
∈ l1(Z), we obtain

{∫ n+ 1
2

n− 1
2
|g̃n(t)| dt

}
∈ l1(Z).

The following calculation concludes the verification of step iv:

∫ n+ 1
2

n− 1
2

|ψ(t)|2 dt =
∫ n+ 1

2

n− 1
2

|g̃n(t) + bn ln |t− n||2 dt

≤
∫ n+ 1

2

n− 1
2

|g̃n(t)|2 + 2|g̃n(t)bn ln |t− n||+ |bn ln |t− n||2 dt

≤ (C1 + C3)
∫ n+ 1

2

n− 1
2

|g̃n(t)| dt

+2(C1 + C3)
∫ n+ 1

2

n− 1
2

|bn ln |t− n||+ C4|bn|
∫ 1

2

− 1
2

| ln |t||2 dt.

The elements on the right hand side form an l1(Z) sequence, and therefore{∫ n+ 1
2

n− 1
2
|ψ(t)|2 dt

}
∈ l1(Z) and ψ ∈ L2(R).

We can now complete the proof of the characterization theorem on R, which was
earlier stated as Theorem 3.1.

Theorem 3.12. Let ψ ∈ L1(R). The following are equivalent:
i. Wψf(b, a) =

∫
f(t)ψ( t−b

a ) dt is 1–periodic in a for all f ∈ L∞(T).
ii. ψ̂(0) = 0 and ψ has the form

ψ(·) =
∑

n∈Z
en1(n,n+1)(·) +

∑

n∈Z
bn ln | · −n|,

where {bn}, {en − en−1} ∈ l1(Z), and {en − πi
∑

k≤n bk} ∈ l2(Z).
Proof. i =⇒ ii. We apply Lemma 3.3 and obtain

ψ̂(γ) =
ϕ1(γ)

γ
+ H(γ)

ϕ2(γ)
γ

and ψ̂(0) = 0, where ϕ1 and ϕ2 are 1–periodic. By Lemma 3.6 we have ϕ1, ϕ1 +ϕ2 ∈
A(T), and, hence, ϕ1, ϕ2 ∈ A(T). Let us write

ϕ1(γ) =
∑

n∈Z
ane−2πinγ and ϕ2(γ) =

∑

n∈Z
bne−2πinγ .

Since ψ̂(0) = 0, we have that ψ̂, ϕ1(γ)
γ , and H(γ)ϕ2(γ)

γ are bounded on R̂ and of

order O( 1
γ ), |γ| → ∞, and are therefore in L2(R̂). We can calculate ψ = F−1(ψ̂),
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using the linearity of F−1, Lemma 3.7, and Lemma 3.10:

ψ(t) = F−1

(
ϕ1(γ)

γ

)
(t) + F−1

(
H(γ)

ϕ2(γ)
γ

)
(t)

=
∑

n∈Z
cn1(n,n+1)(t) +

∑

n∈Z

1
2dn1(n,n+1)(t) +

∑

n∈Z
bn ln |t− n|

=
∑

n∈Z
(cn + 1

2dn)1(n,n+1)(t) +
∑

n∈Z
bn ln |t− n|,

where dn = 2πi
∑

k≤n bk and cn = 2πi
∑

k≤n ak. Let en = cn + 1
2dn.

Since {an}, {bn} ∈ l1(Z), and

an =
1

2πi
(cn − cn−1) =

1
2πi

(en − 1
2dn − en−1 + 1

2dn−1) = 1
2πi (en − en−1)− 1

2bn,

we obtain that {en − en−1} ∈ l1(Z).
Further, since

∑
n∈Z cn1(n,n+1) = F−1(ϕ1(γ)

γ ) ∈ L2(R), we have {cn} ∈ l2(Z),
where

cn = 2πi
∑

k≤n

ak =
∑

k≤n

((ek − ek−1)− πibk) = en − πi
∑

k≤n

bk.

Therefore, ii holds.
ii =⇒ i. Let ψ ∈ L1(R) be of the form

ψ(t) =
∑

n∈Z
en1(n,n+1)(t) +

∑

n∈Z
bn ln |t− n|

with {bn} and {en − en−1} ∈ l1(Z), and {en − πi
∑

k≤n bk} ∈ l2(Z). For n ∈ Z, set

an = 1
2πi (en − en−1)− 1

2bn,

cn = en−πi
∑

k≤n bk, and dn = 2πi
∑

k≤n bk. Then cn = en− 1
2dn and an = 1

2πi (cn−
cn−1). ψ ∈ L2(R) by Lemma 3.11. Let

ψ1(t) =
∑

n∈Z
cn1(n,n+1)(t).

Then, ψ1 ∈ L2(R) since {cn} ∈ l2(Z) and ‖ψ1‖L2(R) = ‖{cn}‖l2(Z). Further, let

ψ2(t) = 1
2

∑

n∈Z
dn1(n,n+1)(t) +

∑

n∈Z
bn ln |t− n|.

Since ψ ∈ L2(R) and ψ1 ∈ L2(R), we have ψ2 = ψ − ψ1 ∈ L2(R).
We can apply Lemma 3.7 to ψ1 and Lemma 3.10 to ψ2, and conclude that F(ψ1)

and F(ψ2) are 1–periodic on R̂+ and 1–periodic on R̂−. Hence,

ψ̂ = F(ψ) = F(ψ1 + ψ2) = F(ψ1) + F(ψ2)

is 1–periodic on R̂+ and 1–periodic on R̂−. Since ψ̂(0) = 0, we can apply Lemma 3.3,
and i follows.
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Remark 3.13. a. It is easy to give a formal proof of Theorem 3.12 for the
direction i =⇒ ii. For this we combine Proposition 2.3 with a comparable calculation
for ψ ∈ L1(R) defined by

ψ(t) =
∑

n∈Z
bn ln |t− n|,

where
∑

n∈Z bn = 0. In fact, noting that

ψ
(

t−b
a

)
=

∑

n∈Z
bn ln |t− b− na| ,

we have

Wψf(b, a + 1) =
∫ (∑

n∈Z
bn ln |t− b− n(a + 1)|

)
f(t) dt

=
∑

n∈Z
bn

∫
ln |t− b− n(a + 1)| f(t) dt

=
∑

n∈Z
bn

∫
ln |t− b− na| f(t + n) dt =

∑

n∈Z
bn

∫
ln |t− b− na| f(t) dt

=
∫ (∑

n∈Z
bn ln |t− b− na|

)
f(t) dt = Wψf(b, a).

b. There is no redundancy in the three conditions a. {bn} ∈ l1(Z); b. {en −
en−1} ∈ l1(Z); c. {en − πi

∑
k≤n bk} ∈ l2(Z).

To see this, first, let {en} = {0} and {bn} = { 1
n2+1} for n ∈ Z. These sequences

satisfy a and b but not c. Next, the sequences {bn} and {en}, defined by {bn} = {0}
and en = 1

n for n positive and odd and en = 0 otherwise, fulfill conditions a and c,
but not condition b. Finally, the sequences {bn} and {en}, defined by {en} = {0} and
bn = (−1)n 1

n for n positive and bn = 0 otherwise, satisfy b and c, but not a.
In the following examples we shall construct wavelets ψ ∈ L1(R) which are not

piecewise constant, but which have the property that Wψf is 1–periodic in scale for
every f ∈ L∞(T).

Example 3.14. Consider

∀t ∈ R \ {0, 1}, ψ0(t) = ln |t| − ln |t− 1| = ln
∣∣∣ t
t−1

∣∣∣ .

This function clearly satisfies condition ii of Theorem 3.12, for, even though ψ0 /∈
L1(R), we see that ψ̂0(0) = 0 in the sense of a Cauchy principal value, since 0 =∫ N

−N+1
ψ0(t) dt for N ≥ 1.

Let us now construct ψ ∈ L1(R), with {bn} 6= {0}, for which condition ii is
satisfied. In fact, set

ψ(t) =
∑

|n|≥2

ln
∣∣∣∣

n

n + 1

∣∣∣∣1(n,n+1)(t) + ln |t| − ln |t− 1|.

Then b0 = 1, b1 = −1, bn = 0 for n 6= 0, 1, and hence {bn} ∈ l1(Z). Further, letting
en = ln

∣∣∣ n
n+1

∣∣∣ for |n| ≥ 2, we have

an = en − en−1 =
(

ln
∣∣∣∣

n

n + 1

∣∣∣∣− ln
∣∣∣∣
n− 1

n

∣∣∣∣
)

= − ln
∣∣∣∣
(n + 1)(n− 1)

n2

∣∣∣∣ = − ln
∣∣∣∣1−

1
n2

∣∣∣∣
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for |n| ≥ 2, and, hence, {en − en−1} ∈ l1(Z). For |n| ≥ 3, we have

en − πi
∑

k≤n

bk = en.

In order to show that ψ ∈ L1(R) observe that on the positive part of the real axis

∫ ∞

2

|ψ(t)| dt ≤ lim
N→∞

N∑
n=2

ψ(n) = lim
N→∞

N∑
n=2

(
ln

∣∣∣∣
n

n + 1

∣∣∣∣− ln
∣∣∣∣
n− 1

n

∣∣∣∣
)

= ln 2.

A similar calculation holds for the negative part of the real axis and, therefore, ψ ∈
L1(R). Finally, using the facts that

∫ N

−N+1
ψ0(t) dt = 0 and

∫ N

−N
ψ(t) − ψ0(t) dt = 0

for N ≥ 1, we obtain ψ̂(0) = 0.
Thus, condition ii of Theorem 3.12 is satisfied, and so Wψf is 1–periodic in scale

for all f ∈ L∞(T).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

t (TIME)

Fig. 3.1. The wavelet ψ ∈ L1(R) of Example 3.14

Example 3.15. We shall construct ψ ∈ L1(R) satisfying condition ii of Theorem
3.12 and which has the further property that in the representation of part ii, {en} =
{0}, i.e., ψ contains no generalized Haar component.

Let

ψ(t) = ln |t + 1| − ln |t + 2|+ ln |t− 1| − ln |t− 2| = ln
∣∣∣∣
t2 − 1
t2 − 4

∣∣∣∣ .

ψ is monotonically decreasing for |t| → ∞. Hence, we can apply the sum criteria to
show ψ ∈ L1(R). Note that

∑

3≤|n|≤N

|ψ(n)| = 2 ln 4− 2 ln
(

N+2
N−1

)
,

and so
∑

3≤|n|
|ψ(n)| = 2 ln 4.
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Fig. 3.2. The wavelet ψ ∈ L1(R) of Example 3.15

4. Optimal generalized Haar wavelets. We shall construct generalized Haar
wavelets to detect a specific periodic function f in a noisy signal s(t) = Af(ct)+N(t),
t ∈ I ⊂ R. In fact, an optimal generalized Haar wavelet ψ is chosen so that we can
identify the periodic components of the wavelet transform W p

ψs.
To apply averaging methods to detect bi–periodic behavior in W p

ψs (Section 5), we
want W p

ψf to be well–localized. This will result in a lattice pattern of relative maxima
in time–scale space. For a given periodic signal f , we shall show the existence of an
optimal generalized Haar wavelet, which guarantees these relative maxima to be as
large as possible.

4.1. Construction of optimal generalized Haar wavelets. Before being
more precise with respect to the term optimal generalized Haar wavelet, we need to
introduce certain restrictions.

We begin by letting M=1 and by fixing N ∈ N. We consider generalized Haar
wavelets ψc with compact support and with the form

ψc|[n,n+1) = cn for n = 0, . . . , N − 1, c = (c0, c1, . . . , cN−1) ∈ CN . (4.1)

Additionally, we require

0 =
∫

ψc(t) dt =
N−1∑
n=0

cn, (4.2)

and we normalize ψc so that

‖ψc‖L2(R) = ‖c‖l2(CN ) = 1. (4.3)

Equation (4.2) allows us to achieve the periodicity properties asserted in Propo-
sition 2.3. Note that (4.2) is equivalent to the condition that

c ∈ H = {x ∈ CN :
N−1∑
n=0

xn = 〈x, (1, 1, . . . , 1, 1)〉 = 0}.

H is an N − 1 dimensional subspace, i.e., a hyperplane. Equation (4.3) is a standard
normalization constraint in constructing wavelets. For ψc it can be expressed as

c ∈ S2N−1 = {x ∈ CN : ‖x‖l2(CN ) = 1}.
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We shall design a wavelet which has a clear single peak in the (0, T ]× (0,MT ] =
(0, T ] × (0, T ] cell of the wavelet transform. Theorem 4.2 shows how to achieve a
maximal peak. We need the following adaptation of the Cauchy–Schwarz inequality
in order to prove Theorem 4.2.

Lemma 4.1. Let U be a k-dimensional subspace of CN . Let v ∈ CN and let PU

be the orthogonal projection of CN onto U. Then

|〈u, v〉| ≤ 〈 PU (v)
‖PU (v)‖l2(CN )

, v〉

for all u ∈ U ∩ S2N−1.
Theorem 4.2. Let p > 1 and f ∈ L∞(R), or let p ≥ 1, f ∈ L1(TT ), and suppose

each x ∈ R is a Lebesgue point of f . Let N ∈ N.
a. There exists (b0, a0) ∈ R× R+ such that

a
− 1

p

0 ‖PH(kb0,a0)‖l2(CN ) = max
(b,a)∈R×R+

a−
1
p ‖PH(kb,a)‖l2(CN ) ,

where kb,a = (kb,a,0, . . . kb,a,N−1) ∈ CN is defined by

kb,a,n =
∫ (n+1)a+b

na+b

f(t) dt

and PH is the orthogonal projection of CN onto the hyperplane H.
b. For this (b0, a0) we set

c0 =
PH(kb0,a0)

‖PH(kb0,a0)‖l2(CN )

.

The generalized Haar wavelet ψc0 satisfies (4.1),(4.2), and (4.3), and

|W p
ψc0 f(b0, a0)| ≥ |W p

ψcf(b, a)| (4.4)

for all (b, a) ∈ R× R+ and all ψc satisfying (4.1),(4.2),(4.3).
Proof. i. Let us first fix (b, a) ∈ (0, T ] × (0, T ]. We want to construct cb,a ∈ CN

such that

|W p
ψcb,a f(b, a)| ≥ |W p

ψcf(b, a)| (4.5)

for all ψc satisfying conditions (4.1),(4.2),(4.3). After finding cb,a we shall choose the
“optimal” (b0, a0) and let c = cb0,a0 .

For c ∈ CN we have

W p
ψcf(b, a) = a−

1
p

N−1∑
n=0

cn

∫ (n+1)a+b

na+b

f(t) dt.

Setting

kb,a,n =
∫ (n+1)a+b

na+b

f(t) dt
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and kb,a = (kb,a,0, . . . kb,a,N−1), we obtain

W p
ψcf(b, a) = a−

1
p

N−1∑
n=0

cnkb,a,n = a−
1
p 〈c, kb,a〉. (4.6)

Note that conditions (4.2) and (4.3) on ψc are equivalent to the following restriction
on c:

c ∈ {x ∈ CN :
∑

xn = 0, ‖x‖l2(CN ) = 1, } = H ∩ S2N−1.

Given the vector kb,a we can optimize (4.6) by projecting kb,a onto the hyperplane
H and normalizing the result (Lemma 4.1), i.e., letting PH : CN −→ CN be the
orthogonal projection of CN onto H, we obtain

cb,a =
PH(kb,a)

‖PH(kb,a)‖l2(CN )

as the best choice of cb,a, and ψcb,a fulfills (4.5).
Explicitly, we have

PH(kb,a) = kb,a − 1
N

∫ Na+b

b

f(t) dt (1, 1, . . . , 1),

and therefore

cb,a,n =
kb,a,n − 1

N

∫ Na+b

b
f(t) dt

‖PH(kb,a)‖l2(CN )

,

n = 0, . . . , N − 1, are the optimal choices of values for the generalized Haar wavelet
in the case that b and a are fixed.
ii. It remains to show the existence of (b0, a0) such that

|W p

ψ
cb0,a0

f(b0, a0)| ≥ |W p
ψcb,a f(b, a)| (4.7)

for all (b, a) ∈ R×R+, where cb0,a0 and cb,a are chosen as above. This, together with
(4.5), will conclude the proof, see (4.9).

Since cb,a ∈ H, we have

|W p
ψcb,a f(b, a)| = |a− 1

p 〈cb,a, kb,a〉| = a−
1
p |〈cb,a, PH(kb,a)〉|

= a−
1
p

∣∣∣∣∣〈
PH(kb,a)

‖PH(kb,a)‖l2(CN )

, PH(kb,a)〉
∣∣∣∣∣ = a−

1
p ‖PH(kb,a)‖l2(CN ) ,

and, hence, we need to show the existence of (b0, a0) such that

a
− 1

p

0 ‖PH(kb0,a0)‖l2(CN ) ≥ a−
1
p ‖PH(kb,a)‖l2(CN )

for all (b, a) ∈ R× R+.
To see this, first observe that ‖PH(kb,a)‖l2(CN ) is T periodic in b. This is the case

since kb,a is T periodic in b, i.e., for n = 0, . . . , N − 1, we have

kb+T,a,n =
∫ (n+1)a+b+T

na+b+T

f(t) dt =
∫ (n+1)a+b

na+b

f(u− T )du =
∫ (n+1)a+b

na+b

f(u)du = kb,a,n.
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‖PH(kb,a)‖l2(CN ) is also T–periodic in a. In fact, we compute

‖PH(kb,a+T )‖2l2(CN )=
N−1∑
n=0

(∫ (n+1)(a+T )+b

n(a+T )+b

f(t) dt− 1
N

∫ N(a+T )+b

b

f(t) dt

)2

=
N−1∑
n=0

(∫ (n+1)a+T+b

na+b

f(t) dt− 1
N

∫ Na+b

b

f(t) dt− 1
N

N

∫ T

0

f(t) dt

)2

=
N−1∑
n=0

(∫ (n+1)a+b

na+b

f(t) dt− 1
N

∫ Na+b

b

f(t) dt

)2

= ‖PH(kb,a)‖2l2(CN ) .

Since a−1/p is monotonely decreasing for a → ∞ and by the periodicity of
‖PH(kb,a)‖l2(CN ) in time and scale, it suffices to show the existence of (b0, a0) ∈
[0, T ]× (0, T ] such that

a
− 1

p

0 ‖PH(kb0,a0)‖l2(CN ) ≥ a−
1
p ‖PH(kb,a)‖l2(CN )

for all (b, a) ∈ [0, T ]× (0, T ].

Note that a−
1
p ‖PH(kb,a)‖l2(CN ) is continuous on [0, T ] × (0, T ]. We shall show

that, if p > 1 and f ∈ L∞(R), or if p ≥ 1, f ∈ L1(TT ), and each x ∈ R is a Lebesgue
point of f , then a−

1
p ‖PH(kb,a)‖l2(CN ) has a continuous extension to [0, T ] × [0, T ],

and therefore it obtains a maximum on [0, T ]× [0, T ]. We shall further show that this
maximum is obtained at some (b0, a0) ∈ [0, T ] × (0, T ]. In fact, we shall verify that
for all b ∈ R

lim
a→0+

a−
1
p ‖PH(kb,a)‖l2(CN ) = 0. (4.8)

The proof of (4.8) is divided into two cases. Recall that the nth entry in the vector
PH(kb,a) is given by a−

1
p (kb,a,n − 1

N

∫ Na+b

b
f(t) dt).

For the first case, let p > 1 and f ∈ L∞(R). For b ∈ R, we compute

0 ≤ lim
a→0+

∣∣∣∣∣a
− 1

p (kb,a,n − 1
N

∫ Na+b

b

f(t) dt)

∣∣∣∣∣

= lim
a→0+

a1− 1
p

∣∣∣∣∣
1
a

∫ (n+1)a+b

na+b

f(t) dt− 1
aN

∫ Na+b

b

f(t) dt

∣∣∣∣∣
≤ lim

a→0+
a1− 1

p (1 + N) ‖f‖L∞(R) = 0.

For the second case, let p ≥ 1, and let f ∈ L1(TT ) have the property that each
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x ∈ R is a Lebesgue point of f . For p = 1 and for all b ∈ R we note that

lim
a→0+

a−1

(
kb,a,n − 1

N

∫ Na+b

b

f(t) dt

)

= lim
a→0+

a−1

(∫ (n+1)a+b

na+b

f(t) dt− 1
N

∫ Na+b

b

f(t) dt

)

= (n + 1) lim
a→0+

1
(n + 1)a

∫ (n+1)a+b

b

f(t) dt− n lim
a→0+

1
na

∫ na+b

b

f(t) dt

− lim
a→0+

1
N

∫ Na+b

b

f(t) dt

= (n + 1) lim
h→0+

1
h

∫ b+h

b

f(t) dt− n lim
h→0+

1
h

∫ b+h

b

f(t) dt− lim
h→0+

1
h

∫ b+h

b

f(t) dt = 0.

Using the addition property of limits in the third step of this calculation is a priori
valid for almost every b. This is the case since f ∈ L1(TT ), and therefore the limit
limh→0+

1
h

∫ b+h

b
f(t) dt exists for all Lebesgue points b ∈ R. Therefore, by hypothesis,

the limit exists everywhere.
For p > 1 in this second case, we have a1− 1

p → 0 as a → 0+, and, hence,

lim
a→0+

a1− 1
p

∣∣∣∣∣a
−1

(
kb,a,n − 1

N

∫ Na+b

b

f(t) dt

)∣∣∣∣∣ = 0.

In both cases, the componentwise convergence of lima→0+ a−1PH(kb,a), together
with the continuity of norms and the fact that‖av‖ = |a| ‖v‖, give (4.8).

Let (b, a) ∈ R × R+ and let ψc satisfy (4.1),(4.2),(4.3). Using (4.5) and (4.7) we
obtain

|W p

ψ
cb0,a0

f(b0, a0)| = a
− 1

p

0 ‖PH(kb0,a0)‖l2(CN )

≥ a−
1
p ‖PH(kb,a)‖l2(CN ) = |W p

ψcb,a f(b, a)| ≥ |W p
ψcf(b, a)|.(4.9)

Remark 4.3. Theorem 4.2 leads to the following construction algorithm for
optimal generalized Haar wavelets. First find b and a such that

a−
1
p ‖PH(kb,a)‖2l2(CN ) = a−

1
p

N−1∑
n=0

(
kb,a,n − 1

N

∫ Na+b

b

f(t) dt

)2

= a−
1
p

N−1∑
n=0

(∫ (n+1)a+b

na+b

f(t) dt− 1
N

∫ Na+b

b

f(t) dt

)2

is maximal. Then let

cn = cb,a,n =
kb,a,n − 1

N

∑N−1
n=0 kb,a,n

‖PH(kb,a)‖l2(CN )

=

∫ (n+1)a+b

na+b
f(t) dt− 1

N

∫ Na+b

b
f(t) dt

‖PH(kb,a)‖l2(CN )

.

If a0 = T/N , ψ
cb,T/N

b,T/N fills out exactly one period of f . In this special case we have

1
N

∫ NT/N+b

b

f(t) dt =
1
N

∫ T+b

b

f(t) dt =
1
N

∫ T

0

f(t) dt,
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which is independent of b.
Note that the optimization process depends on the choice of p.

4.2. Examples of optimal generalized Haar wavelets. Example 4.4 and
Example 4.5 illustrate how to apply Theorem 4.2.

Example 4.4. Figure 4.1. A shows the 1–periodic signal f(x) = sin(2πx) +
sin(4πx) + sin(6πx) + sin(8πx) + sin(10πx) + sin(12πx), sampled at 20 samples per
unit. Fixing N = 8, we calculate k(b, a) = ‖PH(kb,a)‖l2(CN ) for this signal. The result
is displayed in Figure 4.1.B.

Fig. 4.1. A: f(x) = sin(2πx)+ sin(4πx)+ sin(6πx)+ sin(8πx)+ sin(10πx)+ sin(12πx), sampled
at 20 samples per unit. B: k(b, a) =



PH(kb,a)




l2(CN )
for N = 8.

Figure 4.2 illustrates the dependence of the generalized Haar wavelet on the choice
of the normalization constant p. Figure 4.2.A and Figure 4.2.B display the optimal
generalized Haar wavelets for p = 1 to p = 2.4. For p > 2.4 we continue to obtain
the same wavelet as for p = 2.4. The optimal generalized Haar wavelets for p = 1,
p = 1.75, p = 2, and p = 2.2 are shown separately below Figure 4.2.A and 4.2.B.

Example 4.5. Theorem 4.2 is applied to the epileptic seizure problem in Figure
4.3. Our basic assumption is that the precursors of a seizure will be found in the same
periodicities dominant within the seizure itself. Such an assumption implies that what
is being detected is a process with the same dynamics (periodicities) as the seizure,
but in miniature form, and then difficult to detect within the background electric
activity of the brain. After simulating an expected period, in our case the seizure
period of an individual patient, we define the periodic function F associated with the
seizure period. F is sampled at 130 samples per period for subsequent calculations
with the projection PH . We choose N = 5 and calculate k(b, a) = ‖PH(kb,a)‖l2(CN ).
For the normalization constants p = 1, p = 1.35, and p = 2, we obtain distinct optimal
generalized Haar wavelets. This particular simulated sample seizure data is designed
to mimic full blown “3 per second spike and wave” activity, which is characteristic
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Fig. 4.2. Optimal generalized Haar wavelets for sin(2πx) + sin(4πx) + sin(6πx) + sin(8πx) +
sin(10πx) + sin(12πx), p = 1 to p = 2.4, N = 8.

of petit mal “absence” seizures. Realistically, precursors for actual petit mal absence
seizure generally seem to lack this characteristic.
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Fig. 4.3. Construction of the optimal generalized Haar wavelet in the epileptic seizure case.
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4.3. Optimal generalized Haar wavelets with additional properties. In
some applications, the signal might have features we want to replicate or highlight
when constructing “optimal” generalized Haar wavelets. The following problems arise.

Problem 4.6. Suppose, the periodic signal f is symmetric or almost “symmetric”
with respect to a reference point t0 ∈ [0, T ], i.e., f(t0 + t) = −f(t0 − t) for t ∈ R
(“odd signal”), or symmetric with respect to a reference axis t = t0, i.e., f(t0 + t) =
f(t0 − t) for t ∈ R (“even signal”). We would like the constructed wavelet to have
the corresponding symmetric form, i.e., we would like to construct an optimal even
generalized Haar wavelet or an optimal odd generalized Haar wavelet in order to
capitalize on Proposition 2.5.

Problem 4.7. We would like the wavelet transform obtained through the con-
structed generalized Haar wavelet to be resistant to some specific background behavior
in the signal.

Problem 4.8. Our signal might carry two periodic components which we want to
analyze separately. Here, the goal is to construct a pair of generalized Haar wavelets
which are sensitive in detecting one of the components and overlooking the other.

Problem 4.9. One period of the signal might have parts where it is slowly
varying and other parts with high variance. The associated wavelet should focus
toward the fast varying part and allow many different values there, while in other
parts a few values might be sufficient.

The question of whether we can construct generalized Haar wavelets which take
into account a specific feature of a signal has to be answered individually for each
such feature. Nevertheless, a small contribution to the general case is made in the
remainder of this section. In fact, Theorem 4.10 generalizes Theorem 4.2 and is a tool
for solving problems such as those stated above. For example, Proposition 4.11 and
Proposition 4.12 use this theorem to give solutions to problems of the kind described
in Problem 4.6 and Problem 4.7, respectively. They further illustrate how solutions
to some problems can be found. The method is based on Lemma 4.1 and the fact
that the optimization process in Theorem 4.2 can be applied if we replace H by any
subspace U of CN for which U ⊆ H.

Theorem 4.10. Let p > 1 and f ∈ L∞(R), or let p ≥ 1, f ∈ L1(TT ), and
suppose each x ∈ R is a Lebesgue point of f . Let N ∈ N and let kb,a and H be defined
as in Theorem 4.2. If U is a subspace of CN , then there exists (b0, a0) ∈ R×R+ such
that

a
− 1

p

0 ‖PU∩H(kb0,a0)‖l2(CN ) = max
(b,a)∈R×R+

a−
1
p ‖PU∩H(kb,a)‖l2(CN ) ,

where PU∩H is the orthogonal projection of CN onto the subspace U ∩H. By setting

c0 =
PU∩H(kb0,a0)

‖PU∩H(kb0,a0)‖l2(CN )

,

we obtain

|W p
ψc0 f(b0, a0)| ≥ |W p

ψcf(b, a)|
for all (b, a) ∈ R× R+, c ∈ U , and ψc satisfying (4.1), (4.2),(4.3).

Proof. The first steps of the proof of Theorem 4.2 can easily be generalized to the
setting of Theorem 4.10 by replacing H by U ∩H.

It remains to show that the maximum exists. For this, note that we proved that
kb,a is T periodic in b. This implies that PU∩H(kb,a) is T–periodic in b. Essentially,
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we also showed that PH(kb,a) is T–periodic in a. By the definition of orthogonal
projections we have

PU∩H(kb,a) = PU (PH(kb,a)),

and therefore PU∩H(kb,a) is T periodic in a.
We can conclude the existence of the maximum by continuing to follow the proof

of Theorem 4.2 and by using the fact that

‖PU∩H(kb,a)‖l2(CN ) ≤ ‖PH(kb,a)‖l2(CN ) .

Solving a given problem can be approached by defining the subspace U such that
c ∈ U if and only if ψc has the desired properties. Of course, such a subspace might
not exist.

The problem described in Problem 4.6 can be quantified and resolved in the
following way.

Proposition 4.11. a. For k = 1, . . . , N , define vk ∈ C2N by vi
k = δi,k −

δ2N−i+1,k for i = 1, . . . , 2N . Let Ue = span {v1, . . . , vN}⊥. Then c ∈ U if and only if
ψc is even.

b. For k = 1, . . . , N , define vk ∈ C2N by vi
k = δi,k + δ2N−i+1,k for i = 1, . . . , 2N .

Let Uo = span {v1, . . . , vN}⊥. Then c ∈ U if and only if ψc is odd.
Proof. We shall prove part a. The proof of part b is similar.
Clearly, c ∈ Ue if and only if c⊥vk for k = 1, . . . , N , i.e.,

0 = 〈c, vk〉 = ck − c2N−k+1 for k = 1, . . . , N .

This holds if and only if ck = c2N−k+1, that is, if and only if ψc is even.
Let us discuss further possible features of generalized Haar wavelets. The property

c ∈ H implies that if f is a constant function, then W p
ψcf(b, a) = 0 for all (b, a) ∈

R × R+. The tophat wavelet ψtop is defined by top = 1√
6
(1,−2, 1), and has the

property that if f is a linear function, then W p
ψtopf(b, a) = 0 for all (b, a) ∈ R × R+.

The Haar wavelet does not possess this property. We are led to the question of
whether it is possible to construct a subspace U ⊆ CN such that for any c ∈ U we
have the property that W p

ψcf(b, a) = 0 for all (b, a) ∈ R×R+ and for any polynomial
f of degree less or equal some given K. The answer to this question is affirmative as
the following proposition shows.

Proposition 4.12. For K ≤ N − 2, define vk = (1k, 2k, 3k, . . . , Nk) ∈ CN for
k = 0, . . . , K and let UK = span {v0, . . . , vK}⊥. Then c ∈ UK if and only if ψc has
the property that for any polynomial f of degree less or equal K W p

ψcf(b, a) = 0 for
all (b, a) ∈ R× R+.

The proof is omitted.
Using Proposition 4.12 we have the following result.
Proposition 4.13. The generalized Haar wavelet ψc 6= 0 has the property that

for any polynomial f of degree less or equal K, W p
ψcf(b, a) = 0 for all (b, a) ∈ R×R+

if and only if K ≤ N − 2 and the polynomial (x − 1)K+1 divides the polynomial
c0 + c1x + . . . + cN−1x

N−1.
Proof. Let us first assume that ψc 6= 0 has the property that for any polynomial

f of degree less or equal K, W p
ψcf(b, a) = 0 for all (b, a) ∈ R × R+, i.e., c ⊥ vk =

(1k, 2k, 3k, . . . , Nk) for k = 0, . . . , K (Proposition 4.12). Since c 6= 0 and since the
family {vk}k=0,...,N−1 is a basis of CN we have K ≤ N − 2.
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To show that (x − 1)K+1 divides p(x) ≡ c0 + c1x + . . . + cN−1x
N−1, note that

for s = 0, . . . , K, p(s)(1) =
∑N−1

n=0 cnn(n − 1) . . . (n − s + 1) is a linear combination
of

∑N−1
n=0 cnnk = 〈c, vk〉. On the other hand 〈c, vk〉 = 0 for k = 0, . . . , K, and hence

p(s)(1) = 0. This implies that (x− 1)K+1 divides p(x).
Conversely, assuming that K ≤ N − 2 and that (x − 1)K+1 divides p(x) = c0 +

c1x + . . . + cN−1x
N−1, we have 0 = p(s)(1) =

∑N−1
n=0 cnn(n − 1) . . . (n − s + 1) for

s = 0, . . . , K. The fact that 0 = p(s)(1) for s = 0, . . . , k implies c ⊥ vk, and using
Proposition 4.12 we obtain that ψc 6= 0 has the property that, for any polynomial f
of degree less or equal K, W p

ψcf(b, a) = 0 for (b, a) ∈ R× R+

Proposition 4.13 supplies us with generalized wavelets with K + 1 vanishing mo-
ments and with minimal support. Up to a scalar we can read these wavelets from a
modified Pascal triangle.

K = 0 1 −1
K = 1 1 −2 1
K = 2 1 −3 3 −1
K = 3 1 −4 6 −4 1
K = 4 1 −5 10 −10 5 −1
K = 5 1 −6 15 −20 15 −6 1

5. Wavelet periodicity detection algorithm.

5.1. Background and idea. We were led to the formulation of the wavelet pe-
riodicity detection algorithm, described in Section 5.2, through the study of epileptic
seizure prediction problems, see especially [3], cf., [24, 25]. In the case of epileptic
seizure prediction, a goal is to detect periodic behavior in EEG data prior to a seizure,
where this behavior is indicative of the periodic signature of the seizure itself.

Suppose a periodic seizure signature f is determined from reliable ECoG data
obtained by means of a one–time invasive procedure. The following method is a
means to detect precursors of f prior to its full blown occurrence during seizure. This
detection can be observed from non–invasive EEG data subsequent to the original
determination of f . Sufficiently early knowledge of reliable precursors of f allows the
use of external treatments to temper the effects of the seizure when it arrives. Our
method is composed of three steps.

1. ECoG data of an individual patient are analyzed through spectral and wavelet
methods to extract periodic patterns associated with epileptic seizures of a specific
patient;

2. Using this knowledge of seizure periodicity, we construct an optimal generalized
Haar wavelet designed to detect the epileptic periodic patterns of the patient;

3. A fast discretized version of the continuous wavelet transform and wavelet
transform averaging techniques are used to detect occurrence and period of the seizure
periodicities in the preseizure EEG data of the patient; and the algorithm is formu-
lated to provide real time implementation.

Our method is generally applicable to detect locally periodic components in sig-
nals s which can be modeled as

s(t) = A(t)f(h(t)) + N(t), (5.1)

t ∈ I, where f is a periodic signal defined on the time interval I, A is a non–negative
slowly varying function, and h is strictly increasing with h′ slowly varying. N denotes
background activity. For example, in the case of ECoG data, N is essentially 1/f
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noise. In the case of EEG data and for t in I, N includes noise due to cranial
geometry and densities [11, 8]. In both cases N also includes standard low frequency
rythms [18].

If F is a trigonometric polynomial, then the signals described in (5.1) have been
analyzed by Kronland-Martinet, Seip, Torrésani, et al., to deal with the problem of
detecting spectral lines in NMR data [26, 10, 7]. Another technique, that of comput-
ing critical frequencies in ECoG seizure data using wavelet transform striations, was
described in [3]. These frequencies are related to the instantaneous frequency [10]
h′(t) of s at t; and, with our periodicity detection and computation problem in mind,
1/h′(t) is the instantaneous period of s at t.

We shall approach the analysis of (5.1) with a method similar to the aforemen-
tioned three step method, e.g., [5]:

1. Non–noisy data are analyzed through spectral and wavelet methods to extract
specific periodic patterns of interest, i.e., f ;

2. We construct an optimal generalized Haar wavelet designed to detect f ;
3. Using our discretized version of the continuous wavelet transform and wavelet

transform averaging techniques, we detect occurrence and period of these periodicities
in real time.

Essentially, we shall describe an algorithm to detect lattice patterns of relative
maxima in periodic wavelet transforms. The output of the algorithm is the period
of a periodic component in the analyzed signal. The algorithm is based on averaging
methods.

5.2. The algorithm. Let f be a T0–periodic function, and let ψc be an even
generalized Haar wavelet of degree one, i.e., ψc|[n,n+1) = cn for n = 0, . . . , N − 1,
c = (c0, c1, . . . , cN−1) ∈ CN , N fixed.

Proposition 2.3 implies that the wavelet transform of the non–normalized wavelet
transform Wψcf is identical on each cell

[b + nT0, b + (n + 1)T0]× [jMT0, (j + 1)MT0]

for n ∈ Z and j ∈ N0. Figure 5.1 shows a non–normalized wavelet transform in
topographical form.

0

        0

MT/2

MT

   3MT/2

2MT

T  2T

Fig. 5.1. Time–scale periodicity in topographical form.
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5.2.1. Non–normalized wavelet transform. If R,Q ∈ N, then the periodic-
ities of the non–normalized wavelet transform imply that

Wψcf(b, a) =
1

(Q + 1)(2R + 1)

R∑

r=−R

Q∑
q=0

Wψcf(b, a)

=
1

(Q + 1)(2R + 1)

R∑

r=−R

Q∑
q=0

Wψcf(b + rT0, a + qT0). (5.2)

Suppose we are given a noisy signal s of the form s(t) = f(t) + N(t) where f
is T0–periodic and N is noise. In order to gain knowledge of the period T0 of f , we
define the average

UQ,R
ψc s(b, a, T ) =

1
(Q + 1)(2R + 1)

R∑

r=−R

Q∑
q=0

Wψcs(b + rT, a + qT ),

where T ∈ R+, a ∈ (0, T ), and b ∈ [0, T ). Clearly, by Proposition 2.3 and Equation
(5.2), we have

UQ,R
ψc f(b, a, T0) = Wψcf(b, a)

for the periodic signal f . Define

ZQ,R
ψc s(T ) = sup

a∈(0,T ),b∈[0,T )

|UQ,R
ψc s(b, a, T )|.

Therefore,
ZQ,R

ψc f(T0) = sup
a∈(0,T0),b∈[0,T0)

|Wψcf(b, a)|,

which we maximized in Section 4. Further, we expect that ZQ,R
ψc f(T ) is “small” for

T 6= k · T0, k ∈ N and Q and R large.
Note that for the noisy signal s = f + N , we further expect that

ZQ,R
ψc s(T0) ≈ sup

a∈(0,T0),b∈[0,T0)

|Wψcf(b, a)|

and that ZQ,R
ψc s(T ) is small if T 6= T0.

5.2.2. Normalized wavelet transform. In order to analyze an Lp(R) normal-
ized wavelet transform, where 1 ≤ p < ∞, we define

vp,Q(a, T ) = a
1
p

Q∑
q=0

(a + qT )−
1
p ,

where a, T ∈ R+. We compute

W p
ψcf(b, a) = W p

ψcf(b, a)
1

vp,Q(a, T0)
a

1
p

Q∑
q=0

(a + qT0)−
1
p

=
1

vp,Q(a, T0)

Q∑
q=0

(a + qT0)−
1
p a

1
p W p

ψcf(b, a)

=
1

vp,Q(a, T0)

Q∑
q=0

W p
ψcf(b, a + qT0)

=
1

vp,Q(a, T0)(2R + 1)

R∑

r=−R

Q∑
q=0

W p
ψcf(b + rT0, a + qT0).
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As in the non–normalized case, we are motivated to define

V p,Q,R
ψc s(b, a, T ) =

1
vp,Q(a, T )(2R + 1)

R∑

r=−R

Q∑
q=0

W p
ψcs(b + rT, a + qT )

for any signal s, where T ∈ R+, a ∈ (0, T ), and b ∈ [0, T ).
For the T0–periodic signal f we have

V p,Q,R
ψc f(b, a, T0) = W p

ψcf(b, a).

Thus, defining
Zp,Q,R

ψc s(T ) = sup
a∈(0,T ),b∈[0,T )

|V p,Q,R
ψc s(b, a, T )|,

for any signal s, we have

Zp,Q,R
ψc f(T0) = sup

a∈(0,T ),b∈[0,T )

|W p
ψcf(b, a)|.

Note that, in this case, the assertion that Zp,Q,R
ψc f(T ) is “small” for T 6= T0 and Q,R

large, is supported by the fact that if a, T ∈ R+, then

lim
Q→∞

vp,Q(a, T ) = lim
Q→∞

a
1
p

Q∑
q=0

(a + qT )−
1
p = a

1
p lim

Q→∞

Q∑
q=0

(
1

a + qT

) 1
p

= ∞.

5.3. The algorithm for even or odd generalized Haar wavelets. Let f be a
T0 periodic function, and let ψc be either an even generalized Haar wavelet of degree 1,
i.e., ψc|[n,n+1) = ψc|[−n−1,−n) = cn for n = 0, . . . , N − 1, c = (c0, c1, . . . , cN−1) ∈ CN ,
or an odd generalized Haar wavelet of degree 1, i.e., ψc|[n,n+1) = −ψc|[−n−1,−n) = cn

for n = 0, . . . , N − 1, c = (c0, c1, . . . , cN−1) ∈ CN , where N is fixed.
Due to Proposition 2.5, the non–normalized wavelet transform W p

ψcf is in both
cases essentially the same, i.e., the same up to a flip and a sign, on the cells

[b + nT0, b + (n + 1)T0]× [jMT0/2, (j + 1)MT0/2]

for n ∈ Z and j ∈ N ∪ {0}. Figure 5.2 shows the resulting wavelet transform.

0

        0
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Fig. 5.2. Time–scale periodicity for odd or even wavelets in topographical form.
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5.3.1. Non–normalized wavelet transform. Now we define the following al-
ternative for averaging:

UQ,R
ψc f(b, a, T ) =

1
2(Q+1)(2R+1)

∑R
r=−R

∑Q
q=0(Wψcf(b + rT, a + qT )±Wψcf(b + rT, T − a + qT )),

where T ∈ R+, a ∈ (0, T/2), and b ∈ [0, T ). Here, and in the following, ± denotes −
if ψc is even and + if ψc is odd.

By Proposition 2.5, we have

UQ,R
ψc f(b, a, T0) =

1
2(Q + 1)(2R + 1)

R∑

r=−R

Q∑
q=0

(Wψcf(b + rT0, a + qT0)

±Wψcf(b + rT0, T0 − a + qT0))

=
1

2(Q + 1)(2R + 1)

R∑

r=−R

Q∑
q=0

(Wψcf(b, a)±Wψcf(b, T0 − a))

=
1

2(Q + 1)(2R + 1)

R∑

r=−R

Q∑
q=0

(Wψcf(b, a) + Wψcf(b, a)) = Wψcf(b, a)

for any T0 periodic function f .
We proceed as before by defining the test statistic

ZQ,R
ψc s(T ) = sup

a∈(0,T/2),b∈[0,T )

|UQ,R
ψc s(b, a, T )|

for any signal s.

5.3.2. Normalized wavelet transform. If we are using an Lp(R) normalized
wavelet transform for 1 ≤ p < ∞, let us define

vp,Q(a, T ) = a
1
p

Q∑
q=0

((a + qT )−
1
p + (T − a + qT )−

1
p ), a, T ∈ R+.

As before we write

V p,Q,R
ψc s(b, a, T ) =

1
vp,Q(a,T )(2R+1)

∑R
r=−R

∑Q
q=0(W

p
ψcs(b + rT, a + qT )±W p

ψcf(b + rT, T − a + qT )),

with T ∈ R+, a ∈ (0, T ) and b ∈ [0, T ).

For T = T0, we get
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V p,Q,R
ψc s(b, a, T0) =

1
vp,Q(a, T0)(2R + 1)

R∑

r=−R

Q∑
q=0

(W p
ψcs(b + rT0, a + qT0)

±W p
ψcf(b + rT0, T0 − a + qT0))

=
1

vp,Q(a, T0)

Q∑
q=0

(W p
ψcs(b, a + qT0)±W p

ψcf(b, T0 − a + qT0))

=
1

vp,Q(a, T0)

Q∑
q=0

((a + qT0)−
1
p (a + qT0)

1
p W p

ψcs(b, a + qT0)

±(T0 − a + qT0)−
1
p (T0 − a + qT0)

1
p W p

ψcf(b, T0 − a + qT0))

=
1

vp,Q(a, T0)

Q∑
q=0

((a + qT0)−
1
p a

1
p W p

ψcs(b, a))

±(±)(T0 − a + qT0)−
1
p a

1
p W p

ψcf(b, a))

= W p
ψcf(b, a)

1
vp,Q(a, T0)

a
1
p

Q∑
q=0

((a + qT0)−
1
p + (T0 − a + qT0)−

1
p )

= W p
ψcf(b, a).

We can conclude as in Section 5.2.2.

5.4. Examples of the algorithm. In Example 5.1, Example 5.2, and Example
5.3 we apply this method to the signals introduced in Example 4.4 and Example 4.5.

Example 5.1. Figure 5.3A shows the original signal f(t) = sin(2πt)+sin(4πt)+
sin(6πt) + sin(8πt) + sin(10πt) + sin(12πt), and Figure 5.3B represents the absolute
value of its Fourier transform. Figure 5.3C displays the normalized (p = 1.75) wavelet
transform of this signal, obtained using the optimal generalized Haar wavelet displayed
in Figure 4.2 (N = 8). Zp,Q,R

ψc f(T ) is then calculated for T = 1, . . . , 25 and shown in
Figure 5.3D. The location of the maximum of Z implies the occurence of the periodic
signal with period length of 20 samples.

This technique can also be applied successfully to synthesized noisy data as is
illustrated in Example 5.2.

Example 5.2. In this case white noise is added to the signal in Example 4.4
which is displayed in Figure 4.1. The resulting signal is illustrated in Figure 5.4 A.
The same wavelet as in Example 5.1 is applied. The graph in Figure 5.4 D has abscissa
T , representing the number of samples per period, and ordinate Z(T ), representing
Zp,Q,R

ψc s(T ). The graph is automatically generated by the algorithm of Section 5.2.
In this case the maximum of Z(T ) is clearly observed to be at T = 20, even though
this underlying de facto periodicity (from Figure 4.1) is by no means apparent from
direct observation or analysis of Figure 5.4 A.

Example 5.3. The seizure signal F constructed in Example 4.5 and shown in
Figure 4.3 has a periodicity characterized by its construction using 13 samples per
period. We compute the p = 1.35 normalized wavelet transform of F . Zp,Q,R

ψc F (T )
is then calculated for T = 1, . . . , 20. The maximum of Z in Figure 5.5 implies the
occurrence of the periodic signal with period length of 13 samples.

6. The discretized version of the continuous wavelet transform and
implementation. In order to apply the results of the preceding section, we need to
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Fig. 5.3. A: f(t) = sin(2πt)+sin(4πt)+sin(6πt)+sin(8πt)+sin(10πt)+sin(12πt). B: Absolute
value of its discrete Fourier transform. C: Wavelet transform using the optimal generalized Haar

wavelet obtained for p = 1.75 and N = 8. D: Zp,Q,R
ψc f(T ).
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Fig. 5.4. A: s(t) = sin(2πt) + sin(4πt) + sin(6πt) + sin(8πt) + sin(10πt) + sin(12πt)+ white
noise. B: Absolute value of its discrete Fourier transform. C: Wavelet transform using the optimal

generalized Haar wavelet obtained for p = 1.75 and N = 8 in Figure 4.2. D: Zp,Q,R
ψc s(T ).

discretize our results.
Let us assume that we sampled a signal f and obtained the sequence {f [n]}n∈Z.
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Fig. 5.5. The wavelet transform of the signal shown in Figure 4.3 sampled at 13 samples per

period, and the function Zp,Q,R
ψc F (T ) indicating the periodicity of 13 samples.

Let ψ be a generalized Haar wavelet of degree 1. To avoid ambiguous notation, we let

ψ = (. . . , ψ [−1] , ψ [0] , ψ [1] , . . .)

be the vector representing ψ, i.e., ψ [k] = ψ(k) = ck for k ∈ Z.
We shall replace our continuous wavelet transform

W p
ψf(b, a) = a−1/p

∫
f(t)ψ( t−b

a ) dt

with the following discretized version

W p
ψf [n,m] = m−1/p

∑

k∈Z
f [k]ψ(k−n

m ) = m−1/p
∑

k∈Z
f [k]ψ

[⌊
k−n
m

⌋]
, (6.1)

m ∈ Z+ and n ∈ Z. bxc denotes the largest integer less or equal x. The second
equality of (6.1) is a consequence of the fact that ψ is a generalized Haar wavelet of
degree 1. Conditions on ψ so that the family {ψ[b ·−n

m c]}m∈Z+,n∈Z forms a frame for
l2(Z) are discussed in [19, 20].

We can easily rewrite (6.1) in the more convenient form:

W p
ψf [n,m] = m−1/p

∑

k∈Z
f [k]ψ

[⌊
k−n
m

⌋]

= m−1/p




...
...

...
...

+ f [n] ψ [0] + . . . + f [n + m− 1] ψ [0]
+ f [n + m] ψ [1] + . . . + f [n + 2m− 1] ψ [1]
+ f [n + 2m] ψ [2] + . . . + f [n + 3m− 1] ψ [2]

...
...

...
...




= m−1/p
∑

r∈Z

(
m−1∑

l=0

f [n + mr + l]

)
ψ [r] . (6.2)
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To serve as an example, we shall prove a discrete version of Proposition 2.3.
Proposition 6.1. Let ψ be a generalized Haar wavelet of degree 1, and let

{f [n]}n∈Z be a T–periodic sequence, T ∈ Z+, i.e., f [n + T ] = f [n] for all n ∈ Z.
Then m1/pW p

ψf [n,m] is T–periodic in n and T–periodic in m.
Proof. The T–periodicity in n follows directly from (6.2) and the fact that f [n +

T ] = f [n] for all n ∈ Z. Further, setting c =
∑T−1

l=0 f [l], we obtain

(m + T )1/pW p
ψf [n,m + T ] =

∑

r∈Z

(
m+T−1∑

l=0

f [n + (m + T )r + l]

)
ψ [r]

=
∑

r∈Z

(
m+T−1∑

l=0

f [n + mr + l]

)
ψ [r]

= m1/pW p
ψf [n,m] +

∑

r∈Z

(
m+T−1∑

l=m

f [n + mr + l]

)
ψ [r]

= m1/pW p
ψf [n,m] + c

∑

r∈Z
ψ [r] = m1/pW p

ψf [n,m].

To analyze a signal through a “continuous” wavelet transform is expensive, since
we need to calculate a large number of coefficients W p

ψf [n,m]. On the other hand the
redundancy inherent in such calculation provides stability and robustness to noise;
and so it is important to seek fast algorithms. A priori and for large m, the ele-
mentary operations needed to calculate W p

ψf [n,m] are of order m. The restriction
to generalized Haar wavelets gives rise to a recursive procedure to obtain these co-
efficients. This procedure significantly reduces the number of calculations needed.
In fact, if ψ is supported on [0, N ], we shall show that to obtain W p

ψf [n,m] from
W p

ψf [n−1,m] or W p
ψf [n, m−1] requires only N multiplications, regardless of the size

of m and the support of ψ[b ·−n
m c]. For convenience, we shall omit the normalization

factor m−1/p. This factor is certainly independent of both wavelet and signal, and
would be multiplied to W p

ψf [n,m] in the last step of an implementation.
Let us begin with the trivial case, obtaining W p

ψf [n, m] from W p
ψf [n− 1, m]. We

have

W p
ψf [n,m]−W p

ψf [n− 1,m] =
∑

r∈Z

(
m−1∑

l=0

f [n + mr + l]−
m−1∑

l=0

f [n− 1 + mr + l]

)
ψ [r]

=
N−1∑
r=0

(f [n + mr + m− 1]− f [n− 1 + mr]) ψ [r] .

To obtain W p
ψf [n,m] from W p

ψf [n,m − 1] for scales m ≥ N is best understood
through Figure 6.1 and Figure 6.2. Again, many products appearing in the summation
representing W p

ψf [n,m] in (6.2) are already included in W p
ψf [n,m−1]. In Figure 6.1,

we write the part of the signal f that is relevant to obtain W p
ψf [n,m] in a rectangular

pattern with N rows and m columns. We obtain the non–normalized coefficient
W p

ψf [n,m] by multiplying the r-th row by ψ [r − 1] for r = 1, . . . , N and by adding
the results. This is illustrated in Figure 6.1.

In Figure6.2we illustrate the contribution of the same segment of f to W p
ψf [n,m−1].
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f [n-mN+1] f [n-mN+2] f [n-m(N-1)]

f [n-m(N-1)+1] f [n-m(N-1)+2] f [n-m(N-2)]

f [n-m +1] f [n-m+2] f [n]

ψ[0]

ψ[1]

ψ[N − 1]

Fig. 6.1. Contributions of f [n−mN + 1], . . . , f [n] to W p
ψf [n, m].

f [n-mN+1] f [n-mN+2] f [n-m(N-1)]

f [n-m(N-1)+1] f [n-m(N-1)+2] f [n-m(N-2)]

f [n-m +1] f [n-m+2] f [n]

ψ[N-1]ψ[N-2]

ψ[N-2]ψ[N-3]

ψ[1]ψ[0]

ψ[0]

Fig. 6.2. Contributions of f [n−mN + 1], . . . , f [n] to W p
ψf [n, m− 1].

The difference W p
ψf [n, m]−W p

ψf [n, m− 1] is easily calculated:

W p
ψf [n,m]−W p

ψf [n,m− 1] = ψ [0]
N−1∑

l=0

f [n−mN + l]

+ (ψ [1]− ψ [0])
N−1∑

l=1

f [n−m(N − 1) + l]

+ . . . + (ψ [N − 1]− ψ [N − 2])f [n].

Implementing this procedure, we use the vector (ψ [0] , ψ [1]−ψ [0] , . . . , ψ [N − 1]−
ψ [N − 2]) in order to reduce redundant calculations.

Remark 6.2. Besides the theory developed by Pfander [19, 20], there have
been several other interesting formulations dealing with wavelet frames on discrete
groups. These include formulations by Walnut [29], Flornes et al. [12], Steidl [27],
Johnston [13], and Antoine et al. [1]. Our calculations in this section show that
Pfander’s formulation is particularly effective for providing fast algorithms in the case
of generalized Haar wavelets.
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