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Abstract. We study the orthogonal perturbation of various coherent function systems
(Gabor systems, Wilson bases, and wavelets) under convolution operators. This problem
is of key relevance in the design of modulation signal sets for digital communication over
time–invariant channels. Upper and lower bounds on the orthogonal perturbation are
formulated in terms of spectral spread and temporal support of the prototype, and by
the approximate design of worst case convolution kernels. Among the considered bases,
the Weyl–Heisenberg structure which generates Gabor systems turns out to be optimal
whenever the class of convolution operators satisfies typical practical constraints.

1. Introduction

A coherent function system is built from a finite number of prototype functions by
the group action of unitary operators such as translation, modulation and/or scaling.
The inherent structure of such systems leads to computationally efficient design and
implementation of frames or Riesz bases. The most prominent coherent function systems
are wavelet and Gabor systems. Both structures are potential candidates in the two
fundamental applications of modern digital communication:

• Source coding (signal compression): The coherent function system conveyes the
transform step which aims at decorrelating the data prior to quantization. In
near-to-lossless compression completeness is a must, hence the function system
is required to be a frame.

• Modulation (signal synthesis): The channel input signal is synthesized as a linear
combination of certain basis functions whose coefficients are bearing the informa-
tion. Here, injectivity of this synthesis mapping is crucial, therefore one actually
wants to use a Riesz basis for some closed subspace of the underlying Hilbert
space (on which the channel acts as a linear operator).

In both applications, the performance is reflected by an operator diagonalization prob-
lem; the operator corresponds either to the correlation of the source or to the action of
the channel, respectively. Since the a priori knowledge of the underlying operator is in-
complete, we are looking for eigenbases which simultaneously diagonalize the class of all
possible operators. This is only possible if this operator class is commutative, and even
if this is the case, the resulting eigenbases might be unstructured or might not satisfy
practical side constraints. The eigenfunctions of convolution operators, for example, are
complex exponentials of infinite duration. Nevertheless, when considering convolution
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operators whose impulse responses are of finite duration, we can circumvent the problem
of infinite duration and achieve exact diagonalization using a Weyl–Heisenberg system
with cyclic prefix (see the remark in Section 3, and Section 4.1).

In this paper, we concentrate on modulation. As transmission bases, we consider
shift-invariant Riesz systems gk,l defined by

(1.1) gk,l(x) = gl(x−ak), k ∈ Z , l = 0, 1, . . . , N−1 ,

where a > 0 is the time shift, each gl has compact support (fulfilling latency constraints
as found in speech communication for example), and the family has one of the following
specific structures:

• Gabor or Weyl–Heisenberg systems [8] correspond to a rectangular tiling of the
time–frequency plane, the gl are modulated versions of a prototype function g0:

gl(x) = g0(x)e2πiblx .

Note that in order to have existence of Riesz families, one necessarily has b ≥ 1/a.
• The real-valued Wilson bases [2, 5] have a structure related to but different from

the Weyl–Heisenberg systems:

g0(x) = g(x) ,

g(1)
m (x) = g(x)

√
2 cos(2π 2m

a
x) , g(2)

m (x) = g(x−a
2
)
√

2 cos(2π 2m−1
a

x) ,

g(3)
m (x) = g(x)

√
2 sin(2π 2m−1

a
x) , g(4)

m (x) = g(x−a
2
)
√

2 sin(2π 2m
a

x) ,

m = 1, . . . , M (i.e., N = 4M+1) .

• The popular dyadic wavelet bases [4, 13]:

g(n)
m (x) = 2m/2g0

(
2m(x−n

a

2m
)
)
, m = 0, 1, . . . ,M , n = 0, 1, . . . , 2m−1

(i.e., N = 2M+1−1) .

The transmission signal is given by a doubly-indexed series

f(x) =
∞∑

k=−∞

N−1∑

l=0

ck,l gl(x−ak) ,

where ck,l are the information bearing complex-valued coefficients. In digital communi-
cation applications these coefficients are elements of a finite alphabet (“QAM Constella-
tion”), but for our purpose it is more appropriate to assume a Hilbert space setting, i.e.,
{ck,l} ∈ `2.

After transmission over a physical communication channel, the received signal can be
split up into a linearly transformed version of the transmitted signal and statistically
independent additive noise n, so we obtain

r(x) = (K f)(x) + n(x) .

We assume throughout this paper that the channel distortion corresponds to a translation
invariant system, i.e.,

(K f)(x) = (Kh f)(x) = (h∗f)(x) =

∫

R
h(x−y) f(y) dy

for some h ∈ L2(R) ∩ L1(R). It should be emphasized, however, that strict translation
invariance is always an approximation whose validity has to be checked for the critical
time scale in question. In the present context the critical scale is the length of the (finite
support) prototype function g0 which is short enough that K can well be considered as a
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convolution operator. Since h and thus Kh are not fixed, but will vary from case to case,
we consider the following ensemble of possible impulse responses:
(1.2)

H =
{
h ∈ L2(R) : supp h ⊆ [−x0

2
, +x0

2
] ,

∫

R
|h(x)|2 x dx = 0 , ‖ĥ‖L∞ = sup |ĥ(ξ)| = 1

}
.

The three conditions imposed on h seem realistic for the following reasons:

• The receiver does not know when the transmission starts, so he has to fix the
time t = 0 in some way. Since this is equivalent to choosing some translate of h,
we may as well fix |h|2 to have vanishing first moment.

• Although h does not have compact support, we may cut it off at some point and
treat the influence of the remaining part as noise.

• Consequently, we have h ∈ L1(R), so ĥ ∈ L∞(R̂), and we may normalize h in
some arbitrary way by assuming an appropriate amplifier.

Outline of the paper. In the following section, we introduce the concept of orthogonal
perturbation, and derive upper and lower bounds on this quantity for a given function
under a class of channel operators. These bounds are formulated in terms of the spectral
variance and the temporal support of the prototype function. The lower bound is obtained
by the approximate design of a worst case operator via an interpolation procedure.

In Section 3, we numerically compare the three above-mentioned structures of coherent
Riesz bases using these upper and lower bounds. The numerical parameters we use are
chosen to be compatible with the digital subscriber loop setup.

Finally, in Section 4, we illustrate the performance of these Riesz bases when perturbed
by a realization of a twisted copper cable impulse response. This comparison shows the
validity and importance of the theoretical results obtained in Section 2.

Notation. For the Fourier transformation, we use the normalization

f̂(ξ) =

∫

R
f(x) e−2πiξx dx for ξ ∈ R̂ = R.

Consequently, we can define the inverse Fourier transformation via

∨
g(x) =

∫
bR g(ξ) e2πiξx dξ

to obtain (f̂)∨ = f .
We define the translation operator by

(τ y f)(x) = f(x−y) ,

it has the property
(τ η ϕ̂)∨ = e2πiηx ϕ .

For A ⊂ R we define the characteristic function of A by

χA(x) =

{
1 if x ∈ A
0 if x /∈ A

.

2. Orthogonal Perturbations

As mentioned in the introduction, an optimal function system {gk,l} would consist of
eigenfunctions of Kh. Since this is impossible to achieve for all h of arbitrary support,
we aim for approximate eigenfunctions and use the orthogonal perturbation of the gl by
Kh as a measure of stability, i.e.,

dg,h =
∥∥Khg − P<g>(Khg)

∥∥
L2 ,
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where P<g> is the orthogonal projection onto the span of g, given by P<g>(Khg) =
〈Khg,g〉
〈g,g〉 g (cf., Figure 1).

©©©©©©©©©©©*

→
g

¡
¡

¡
¡

¡
¡µ−→

Khg
A
AA
dg,h
p

Figure 1.

Assuming 〈g, g〉 = ‖g‖2 = 1, we obtain by the Pythagorean theorem

(2.1) d2
g,h = ‖Khg‖2 − |〈Khg, g〉|2 .

Since the convolution Khg = h ∗ g corresponds to multiplication in the Fourier domain,
dg,h can be related to the frequency localization of g, as the following lemma shows.

Lemma 2.1. Let g, h ∈ L2(R) with ‖g‖L2 = 1. Then

(2.2) d2
g,h = V

{
ĥ(Ξ)

}
,

where Ξ is a random variable with probability density |ĝ|2, i.e., the variance V of ĥ(Ξ) is
given by

V
{
ĥ(Ξ)

}
=

∫
bR
∣∣ĥ(ξ)−E{ĥ(Ξ)}

∣∣2 |ĝ(ξ)|2 dξ,

where E is the expected value

E{ĥ(Ξ)} =

∫
bR ĥ(ξ) |ĝ(ξ)|2 dξ .

Proof.

d2
g,h = ‖h∗g‖2

L2(R) −
∣∣〈h∗g, g〉L2(R)

∣∣2

= ‖ĥ · ĝ‖2
L2(bR)

−
∣∣〈ĥ · ĝ, ĝ〉L2(bR)

∣∣2

=

∫
bR |ĥ(ξ) ĝ(ξ)|2 dξ −

∣∣∣∣
∫
bR ĥ(ξ) ĝ(ξ) ĝ(ξ) dξ

∣∣∣∣
2

=

∫
bR |ĥ(ξ)|2 |ĝ(ξ)|2 dξ −

∣∣∣∣
∫
bR ĥ(ξ) |ĝ(ξ)|2 dξ

∣∣∣∣
2

= E
{|ĥ(Ξ)|2}−

∣∣ E{ĥ(Ξ)}
∣∣2

= E
{∣∣ĥ(Ξ)− E{ĥ(Ξ)}

∣∣2} .

¤

Upper bound. Using the identity (2.2), we can find an upper bound for the orthogonal
perturbation dg,h for all h ∈ H. For simplicity, we define

dg = sup
h∈H

dg,h .
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Proposition 2.2. For g ∈ L2(R) with ‖g‖L2 = 1, we have

d2
g ≤ (πx0)

2σ2
|bg|2 ,

where σ2
|bg|2 is the variance of |ĝ|2, i.e.,

σ2
|bg|2 =

∫
bR(ξ−µ)2 |ĝ(ξ)|2 dξ with µ = µ|bg|2 =

∫
bR ξ |ĝ(ξ)|2 dξ .

Proof. We make use of the fact that the expected value of a random variable X minimizes
its variance, meaning

E
{∣∣X − E{X}

∣∣2} ≤ E
{|X − z|2} for all z ∈ C.

Choosing X = ĥ(Ξ) as in Lemma 2.1 and z = ĥ(µ|bg|2) we get

d2
g,h = E

{∣∣ĥ(Ξ)− E{ĥ(Ξ)}
∣∣2}

≤ E
{∣∣ĥ(Ξ)− ĥ(µ)

∣∣2}

=

∫
bR
∣∣ĥ(ξ)− ĥ(µ)

∣∣2 |ĝ(ξ)|2 dξ

≤
∫
bR
(‖ĥ ′‖L∞|ξ−µ|)2 |ĝ(ξ)|2 dξ

= ‖ĥ ′‖2
L∞ σ2

|bg|2 .

By Bernstein’s inequality (e.g., see [14], Ch. XVII, Thm. 7.24), supp h ⊆ [−x0

2
, +x0

2
]

implies

‖ĥ ′‖L∞ ≤ πx0‖ĥ‖L∞ .

Together with ‖ĥ‖L∞ = 1 this proves the claim. ¤
Remark. The upper bound in Proposition 2.2 does not make sense whenever the decay
of |ĝ| is too slow (e.g., if g is not continuous). In that case, we can obtain a more
conservative (though less elegant) bound from the following estimate.

Given an appropriate ε > 0, there is Ω > 0 such that∫

|ξ|≤Ω

|ĝ(ξ)|2 dξ = 1−ε .

Then we can define

ĝΩ =
1√
1−ε

χ[−Ω,+Ω] ĝ

which ensures that |ĝΩ|2 is a probability density with finite variance. Along the same
lines as in the proof of Proposition 2.2 (using µ = µ|bgΩ|2), we obtain

d2
g ≤ (πx0)

2σ2
|bgΩ|2(1−ε) + 4ε .

Lower bound. On the other hand, one must expect that signals which are not well
localized on the frequency side potentially undergo a relatively strong orthogonal pertur-
bation. Clearly, for a given convolution operator there might be arbitrarily bad localized
functions g which are exact eigenfunctions of this specific operator, so dg,h = 0 for this
particular h — but for practical purposes, we require a family of basis functions that
are stable under the action of all h ∈ H. Therefore, to be able to show that certain
families are inadequate, we want to determine a lower bound for dg. To this end, we
shall use the following kind of uncertainty principle obtained by Slepian, Pollak, and
Landau [9, 10, 11].
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Lemma 2.3. Let f ∈ L2(R) with supp f ⊂ [−T
2
, +T

2
]. Then we have for all Ω > 0 that

∫ +Ω/2

−Ω/2

|f̂(ξ)|2 dξ ≤ λ0‖f‖2 ,

where λ0 = λ0(Ω, T ) is the square of the largest eigenvalue of the operator

OΩ,T : L2(R) −→ L2(R) ,

f 7−→
∫ T/2

−T/2

f(x)
sin(πΩ(· − x))

π(· − x)
dx .

A scaling argument shows that λ0 only depends on the product Ω T . The eigenfunctions
of OΩ,T are the so-called prolate spheroidal wave functions, which have been studied
extensively as solutions of the second-order differential equation eigenvalue problem

d

dx

(
(1−x2)

dψ

dx

)
+ (λ− c2x2)ψ = 0

(e.g., see [7]).
We can obtain a somewhat weak upper bound on the operator norm of OΩ,T using the

following lemma [6], whose proof is included for the sake of completeness.

Lemma 2.4. (i) Let A ⊂ R and B ⊂ R̂ be sets of finite measure. Define the operator

PA : L2(R) → L2(R), f 7→ χA f , and the operator QB : L2(R) → L2(R), f 7→ (χB f̂)∨ =
∨

χB ∗ f . Then ‖QBPA‖L(L2) ≤
√

m(A) m(B), where m denotes Lebesgue measure on R.

(ii) For f ∈ L2(R) with supp f ⊆ [α, α + T ] for some α ∈ R, we have
∫ +Ω/2

−Ω/2

|f̂(ξ)|2 dξ ≤ Ω T ‖f‖2
L2 .

Proof. (i) Let f ∈ L2(R). Using the Cauchy–Schwarz inequality and Fubini’s theorem,
we obtain

‖QBPA(f)‖2 =

∫

R

∣∣∣∣
∫

R
χA(y) f(y)

∨
χB(x−y) dy

∣∣∣∣
2

dx

≤
∫

R

(‖χA‖L2 ‖f(·) ∨
χB(x−·)‖)2

dx

= m(A)

∫

R
|f(y)|2

∫

R
| ∨χB(x−y)|2 dx dy

= m(A) m(B) ‖f‖2
L2 .

(ii) Since P[α,α+T ]f = f , we have
∫ +Ω/2

−Ω/2

|f̂(ξ)|2 dξ =
∥∥(

Q
[−Ω

2
,+

Ω
2

]
(f)

)∧∥∥2

L2 =
∥∥Q

[−Ω
2

,+
Ω
2

]
P[α,α+T ]f

∥∥2

L2 ≤ Ω T ‖f‖2
L2 .

¤
In order to find a lower bound on d2

g, we construct a particular family of convolution
operators Kh with h ∈ H.

Lemma 2.5. There exist constants s∈ ]0, 1[ and r∈ [1
2
, 1[ such that for any N ∈ N,

there is hN ∈ H with

(2.3) ĥN ≤ k̂ on [−2N−1
x0

, 0] and ĥN ≥ k̂ on [0, +2N−1
x0

],
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where k̂ : R̂→ R is given by

k̂(ξ) =





−r, for ξ ≤ − s
x0

,

r x0

s
ξ, for ξ ∈ [− s

x0
, + s

x0
],

+r, for ξ ≥ + s
x0

(compare Figure 2).

Proof. Without loss of generality, we may assume that x0 = 1; the general case follows
easily by dilation.

Consider the Bartlett window (“triangle function”)

ϕ(x) = (2− 4|x|) · χ
[−1

2
,+

1
2
]
(x)

with Fourier transform

ϕ̂(ξ) =

(
sin(πξ/2)

πξ/2

)2

= sinc2(πξ
2

) .

Obviously, ϕ ∈ H. Note that ϕ̂ has the interpolation property

ϕ̂(2n) = δ0,n for n ∈ Z.

We use ϕ̂ to interpolate the sequence

(. . . , 0, 0, 0,−1,−1, . . . ,−1,−1︸ ︷︷ ︸
N

, +1, +1, . . . , +1, +1︸ ︷︷ ︸
N

, 0, 0, 0, . . . )

on the odd integers, obtain

ĥN =
N∑

n=1

ϕ̂(ξ − (2n−1))− ϕ̂(ξ + (2n−1)) ,

and claim that this ĥN satisfies the inequalities (2.3).

2N-1

-1

1

+s x0

-s x0

x0

+r

-r

Figure 2. Graphs of ĥN and k̂.

For ξ ∈ [1, 2N−1], we have ξ−1
2

+ n ≥ n, so

N∑
n=1

ϕ̂(ξ + (2n−1)) =
N∑

n=1

sinc2
(
π( ξ−1

2
+n)

) ≤
N∑

n=1

1

π2n2
≤ 1

6
.
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On the other hand, making use of the identity
∑

n∈Z
sinc2(π(t−n)) ≡ 1 ,

we have for ξ ∈ [1, 2N−1], i.e., ξ+1
2
∈ [1, N ],

N∑
n=1

ϕ̂(ξ − (2n−1)) =
N∑

n=1

sinc2
(
π( ξ+1

2
−n)

)

= 1−
0∑

n=−∞
sinc2

(
π( ξ+1

2
−n)

)−
∞∑

n=N+1

sinc2
(
π( ξ+1

2
−n)

)

≥ 1−
0∑

n=−∞

1

π2(1−n)2
−

∞∑
n=N+1

1

π2(N−n)2
= 1− 1

6
− 1

6
= 2

3
.

Consequently,

ĥN(ξ) =
N∑

n=1

sinc2
(
π( ξ+1

2
−n)

)−
N∑

n=1

sinc2
(
π( ξ−1

2
+n)

) ≥ 2
3
− 1

6
= 1

2
for ξ ∈ [1, 2N−1].

For ξ ∈ [0, 1], we use sin2(π
2
(ξ−2n+1)) = sin2(π

2
(ξ+2n−1)) = cos2(π

2
ξ) to obtain

ĥN(ξ) =
N∑

n=1

sin2
(
π( ξ+1

2
−n)

)

π2( ξ+1
2
−n)2

− sin2
(
π( ξ−1

2
+n)

)

π2( ξ−1
2

+n)2

=
cos2(π

2
ξ)

π2

N∑
n=1

(
1

(ξ−2n+1)/2

)2

−
(

1

(ξ+2n−1)/2

)2

=
cos2(π

2
ξ)

π2

N∑
n=1

4
(ξ+2n−1)2 − (ξ−2n+1)2

(ξ−2n+1)2(ξ+2n−1)2

=
N∑

n=1

16 cos2(π
2
ξ) ξ (2n−1)

π2((2n−1)2−ξ2)2
.

Since for ξ ≥ 0, each summand is nonnegative, we see that

ĥN(ξ) ≥ ĥ1(ξ) =

(
4 cos(π

2
ξ)

π(1− ξ2)

)2

ξ for ξ ∈ [0, 1].

Furthermore, sin(π
2
ξ) ≥ ξ on [0, 1] implies

cos(π
2
ξ) =

∫ 1

ξ

π
2

sin(π
2
η) dη ≥

∫ 1

ξ

π
2
η dη = π

4
(1− ξ2) ≥ 0 for ξ ∈ [0, 1],

so we know that
4 cos(

π
2

ξ)

π (1−ξ2)
≥ 1, i.e.,

ĥN(ξ) ≥ ξ for ξ ∈ [0, 1].

Since the sinc2-function is even, the functions ĥN are odd, so ĥN satisfies the conditions
stated in the lemma for r = s = 1

2
.

It remains to show that hN ∈ H. Since ĥN =
∑

n an τn ϕ̂ is equivalent to hN =∑
n ane

2πinxϕ, we have supp hN ⊆ supp ϕ = [−1
2
, +1

2
]. By construction, ĥN is real valued
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and odd, so hN is (imaginary valued and) odd, which implies that |hN |2 is even and
therefore has vanishing first moment. Finally, since ϕ̂ ≥ 0, we have

∣∣ĥN(ξ)
∣∣ ≤

N∑
n=1

ϕ̂(ξ−(2n+1)) + ϕ̂(ξ+(2n−1)) ≤
∑

n∈Z
sinc2

(
π( ξ+1

2
−n)

)
= 1

with ĥN(1) = 1 by the interpolating properties of ϕ̂, so ‖ĥN‖L∞ = 1. ¤
Remark. It is worth noting that the above estimates are rather crude. Numerical ex-
periments show that we actually have r

.
= 0.8 and s

.
= 0.56 for N ≥ 7. An alternative

approach is interpolation with the sinc-function itself of the sequence

(. . . , 0, 0,−1
2
,−1,−1, . . . ,−1, 0, +1, . . . , +1, +1, +1

2
, 0, 0, , . . . )

on the integers. This yields r
.
= 0.900 and s

.
= 0.956.

Proposition 2.6. For g ∈ L2(R), ‖g‖L2 = 1, with supp g ⊆ [α, α + T ] for some α ∈ R
and T > 0, we have

d2
g ≥ r2

(
1− 4

3
s

T

x0

)
for

T

x0
≤ 1

2s
,

and d2
g ≥ 1

12

(
r x0

s T

)2

for
T

x0
>

1
2s

,

where r and s are the constants from Lemma 2.5.

Proof. Let g ∈ L2(R) have the assumed properties and recall that

d2
g,h = E

{∣∣ĥ(Ξ)− E{ĥ(Ξ)}
∣∣2} ,

where Ξ is a random variable with probability density |ĝ|2. The family H is invariant

under modulation, i.e., we may translate ĥ by any ξ ∈ R̂ without leaving H. We know

by Lemma 2.5 that ĥN ≥ 1
2

on [ 1
x0

, 2N−1
x0

], so after fixing M > 0 such that
∫

|ξ|≤M

|ĝ(ξ)|2 dξ > 2
3
,

we have for N ≥ Mx0+1

E
{(

τ−(M+ 1
x0

)ĥN

)
(Ξ)

}
=

∫
bR ĥN(ξ+M+ 1

x0
) |ĝ(ξ)|2 dξ

≥
∫

|ξ|≤M

ĥN(ξ+M+ 1
x0

) |ĝ(ξ)|2 dξ −
∣∣∣∣
∫

|ξ|>M

ĥN(ξ+M+ 1
x0

) |ĝ(ξ)|2 dξ

∣∣∣∣
> 1

2
· 2

3
− 1 · 1

3
= 0 ,

and analogously, by symmetry,

E
{(

τ+(M+ 1
x0

) ĥN

)
(Ξ)

}
< 0 .

Since ĥN is a real-valued element of L1(R, |ĝ|2) and the group of translations acts con-
tinuously on this space, there exists ξN ∈ ]−(M+ 1

x0
), +(M+ 1

x0
)[ such that

E
{(

τ ξN
ĥN

)
(Ξ)

}
= 0 .

Letting ĥ∗N = τ ξN
ĥN , we obtain (for N sufficiently large)

d2
g ≥ d2

g,h∗N
= E

{∣∣ĥ∗N(Ξ)− E{ĥ∗N(Ξ)}
∣∣2}

= E
{∣∣ĥ∗N(Ξ)

∣∣2} =

∫
bR |ĥ∗N(ξ)|2 |ĝ(ξ)|2 dξ
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=

∫
bR |ĥN(ξ)|2 |ĝ(ξ+ξN)|2 dξ ≥

∫

|ξ|≤ 2N−1
x0

|k̂(ξ)|2 |ĝ(ξ+ξN)|2 dξ

≥
( ∫

|ξ|≤ s
x0

(r x0

s
ξ)2 |ĝ(ξ+ξN)|2 dξ +

∫
s

x0
≤|ξ|≤ 2N−1

x0

r2 |ĝ(ξ+ξN)|2 dξ

)

= r2

( ∫

|ξ|≤ s
x0

( ∫ (
x0
s

ξ)2

0

1 dt

)
|ĝ(ξ+ξN)|2 dξ +

∫
s

x0
≤|ξ|≤ 2N−1

x0

|ĝ(ξ+ξN)|2 dξ

)

= r2

( ∫ 1

0

∫
s

x0

√
t≤|ξ|≤ s

x0

|ĝ(ξ+ξN)|2 dξ dt +

∫
s

x0
≤|ξ|≤ 2N−1

x0

|ĝ(ξ+ξN)|2 dξ

)

= r2

∫ 1

0

∫
s

x0

√
t≤|ξ|≤ 2N−1

x0

|ĝ(ξ+ξN)|2 dξ dt

= r2

∫ 1

0

(
1−

∫

|ξ|≤ s
x0

√
t

|ĝ(ξ+ξN)|2 dξ −
∫

|ξ|≥ 2N−1
x0

|ĝ(ξ+ξN)|2 dξ

)
dt

≥ r2

∫ a

0

(
1−

∫

|ξ|≤ s
x0

√
t

|ĝ(ξ+ξN)|2 dξ −
∫

|ξ|≥ 2N−1
x0

|ĝ(ξ+ξN)|2 dξ

)
dt

for a ≤ 1. Since translation of ĝ does not change the support of g, we may apply
Lemma 2.4.(ii) and obtain

∫

|ξ|≤ s
x0

√
t

|ĝ(ξ+ξN)|2 dξ ≤ (
2

s

x0

√
t
) · T .

Furthermore, since |ξN | ≤ M+ 1
x0

, we have
∫

|ξ|≥ 2N−1
x0

|ĝ(ξ+ξN)|2 dξ → 0 as N →∞.

For T
x0
≤ 1

2s
we choose a = 1 and obtain

d2
g ≥ r2

∫ 1

0

(
1− 2 s

x0

√
t T

)
dt = r2

(
1− 4

3
sT
x0

)
;

for T
x0

> 1
2s

, letting a = ( x0

2sT
)2 yields

d2
g ≥ 1

12

(
r x0

s T

)2

.

¤

Remark. To obtain a lower bound for d2
g in Proposition 2.6, we used the upper bound

for ‖QBPA‖L(L2) from Lemma 2.4. But for the case B =
[−Ω

2
, +Ω

2

]
and A = [T, T+α],

Lemma 2.3 provides a sharp upper bound of ‖QBPA‖L(L2) = ‖OΩ,T‖L(L2) in terms of the

largest eigenvalue
√

λ0(Ω, T ) of the operator OΩ,T . Since this eigenvalue only depends
on the product of Ω and T , we shall write λ0(Ω, T ) = λ0(Ω · T ). If in the proof of
Proposition 2.6, we use this sharp bound, we get

d2
g ≥ r2

∫ 1

0

1− λ0

(
(2 s

x0

√
t) · T)

dt .

The graph of this lower bound for d2
g (dashed) as well as the graph of that obtained in

Proposition 2.6 (solid line) are shown in Figure 3 for s = 0.956 and r = 0.9.
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Figure 3. Lower bounds for d2
g.

We also should note that
√

λ0(Ω · T ) is always a simple eigenvalue of the operator
OΩ,T . For Ω · T < 1 (i.e., T

x0
< 1

2s
), the second largest eigenvalue is already considerably

smaller. This reflects the fact that only a number of about Ω · T linearly independent
functions have “approximate duration” [0, T ] and “approximate bandwidth” [−Ω

2
, +Ω

2
]

(see [11]). Consequently, we see that unless we use for g the appropriate spheroidal wave
function itself, d2

g will be significantly bigger than the bound given above.

3. Orthogonal perturbations of coherent families

We now want to compare the three types of coherent families described at the beginning
with respect to their performance under orthogonal perturbation. As for the parameters,
we assume supp h ⊆ [−x0

2
, +x0

2
] and

a = 50 x0 .

Furthermore, we will use

r
.
= 0.9 and s

.
= 1

for the function k̂ from Lemma 2.5 (compare the remark after its proof).
As for the number of elements N in the family, N ≥ 256 seems realistic; in VDSL

applications, N ≈ 2000 is used.

3.1. Weyl–Heisenberg families. Recall that a Weyl–Heisenberg family is generated
by fixing a basic function g0 with supp g0 ⊆ [0, a] and then letting gl(x) = g0(x) e2πiblx.
Thus we have supp gl = supp g0 and |ĝl|2 = τ bl |ĝ0|2. Since the variance is translation
invariant, we have σ2

|bgl|2 = σ2
|bg0|2 for all gl, so the upper bound from Proposition 2.2 holds

uniformly in h ∈ H and l = 0 . . . N−1.
Using for g0 a triangle function, a trapezoidal function, or the polynomial x2(x − a)2

(properly normalized) yields

d2
g

.
= 0.0012 .
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It is worth emphasizing that the main property ensuring this uniform upper bound is
the fact that within a Weyl–Heisenberg family, all ĝl share the same frequency localiza-
tion.

3.2. Wilson bases. In a Wilson basis, we start from a basic function g with supp g ⊆
[0, a]. The Fourier transforms of the elements satisfy

(3.1) |ĝ(j)
m (ξ)|2 = 1

2

∣∣ĝ(ξ+ξ0)± ĝ(ξ−ξ0)
∣∣2,

in particular, for j = 1 we have “+” and ξ0 = 2m
a

. Thus the variance of
∣∣ĝ(1)

m

∣∣2 increases
with m. Using the appropriate hN ∈ H from Lemma 2.5 shows that the orthogonal
perturbation turns bad quickly, as the following result shows (compare Figure 4).

-1

-0.5

0.5

1

Figure 4. Graphs of ĥN and |ĝ(j)
m |2 for large m in a Wilson basis.

Theorem 3.1. In a Wilson basis with at least 200 elements and supp g0 ⊆ [0, a], there
is an element gl with

d2
gl
≥ r2

5

.
= 0.16 .

Proof. Consider first the function g0 with ‖g0‖L2(R) = 1. If d2
g0
≥ r2

5
, there is nothing to

prove. If not, we will make use of the functions hN from Lemma 2.5; by construction, these

are odd. Since the g
(j)
m are real-valued, we know that

∣∣ĝ(j)
m

∣∣2 is even, so E{ĥN(Ξ)} = 0.

Therefore, d2

g
(j)
m ,hN

= V{ĥN(Ξ)} = E{|ĥN(Ξ)|2}. For g0, this implies

r2

5
≥ d2

g0
≥

∫
bR |k̂(ξ)|2 |ĝ0(ξ)|2 dξ ≥

∫

|ξ|≥1/x0

r2 |ĝ0(ξ)|2 dξ ,

i.e.,
∫
|ξ|≥1/x0

|ĝ0(ξ)|2 dξ ≤ 1
5
. Splitting ĝ0 into the center part ĝc = ĝ0 · χ[−1/x0,+1/x0] and

the tails ĝt = ĝ0 − ĝc, we have ‖ĝc‖2
L2 ≥ 4

5
and ‖ĝt‖2

L2 ≤ 1
5
.

If the basis has at least 200 elements, we have to allow m ≥ 50, so for j = 1, the value
ξ0 in (3.1) becomes ξ0 = 2m

a
≥ 2

x0
. Thus we can estimate

∫

ξ≥1/x0

|ĝm,1(ξ)|2 dξ ≥
∫

|ξ−ξ0|≤1/x0

1
2

∣∣ĝ0(ξ−ξ0) + ĝ0(ξ+ξ0)
∣∣2 dξ

≥ 1
2

(‖gc‖ − ‖gt‖
)2 ≥ 1

2

(
2√
5
− 1√

5

)2
= 1

10
.
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By symmetry, the same estimate holds for the integral over the set {|ξ + ξ0| ≤ 1/x0},
and we obtain for N sufficiently large (namely, for 2N−1

x0
≥ ξ0+

1
x0

)

d2

g
(1)
m ,hN

= E{|ĥN(Ξ)|2} ≥ 1
10

(−r)2 + 1
10

(+r)2 ,

which yields the claim. ¤

3.3. Wavelet bases. In a dyadic wavelet basis, we encounter the problem that, since
scaling on the time side results in reverse scaling on the frequency side, the frequency
localization gets worse and worse as the indices grow (compare figure 5). The following
result gives a quantitative estimate of this effect.

-1

-0.5

0.5

1

1.5

2

Figure 5. Graphs of ĥN and |ĝ(n)
m |2 for various m in a wavelet basis.

Theorem 3.2. In a dyadic wavelet family with supp g0 ⊆ [0, Ka] and finest scaling level

M ≥ 7 + log2(K), the elements g
(n)
M on level M satisfy

d2

g
(n)
M

≥ 0.81 (1− 67 · 2−MK) .

Proof. The property supp g0 ⊆ [0, Ka] implies supp g
(n)
M ⊆ [n 2−M Ka, (n+1) 2−M Ka].

For M ≥ 7 + log2(K), we have 2−MKa
x0

≤ 50
128

< 1
2s

, so Proposition 2.6 yields

d2

g
(n)
M

≥ r2
(
1−4

3
s 2−MKa

x0

)
= 0.92

(
1−200

3
2−MK

)
.

¤

When using the orthogonal Daubechies wavelet with four vanishing moments (db4 in
MatLab), we may choose K = 8. If N > 1024, we need M ≥ 11 which yields d2

g
(n)
11

≥ 0.386;

for N > 2048 with M ≥ 12 we obtain d2

g
(n)
12

≥ 0.598.

Remark. The numerical results presented above demonstrate very clearly that the Weyl–
Heisenberg systems outperform the other two types of coherent families by far. Standard-
ized implementations of so-called multicarrier communication systems such as OFDM
(orthogonal frequency division multiplex) or DMT (discrete multi-tone) are based on the
Weyl–Heisenberg structure using indicator functions of different lengths at the transmit-
ter and receiver [8, 13]. There, the transmission basis is usually defined as

gk,l(x) = χ[−x0,T ](x−ak) e2πiblx ,
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where a = T+x0 and b = 1/T ; i.e., a nonorthogonal Riesz basis whose span covers
functions that contain a so-called cyclic prefix of length x0. This means that within the
interval [kT−x0, kT+T ], one has f(x) = f(x+T ) for x ∈ [kT−x0, kT ]. The dual basis at
the receiver can be interpreted to be cutting off the cyclic prefix, since

γk,l(x) = χ[0,T ](x−ak) e2πiblx .

It is straightforward to prove exact diagonalization of convolution operators with h sup-
ported in [0, x0] by this biorthogonal system, i.e., we have

〈
Kh gk,l , γk′,l′

〉
= ĥ

(
l
T

)
δk,k′ δl,l′ .

However, such an exact diagonalization has two disadvantages. On the one hand, it
wastes bandwidth, since the space span{gk,l}k∈Z, l=1...N shrinks with increasing x0. This
effect again becomes negligible when using a large number of tones (large N) and a cor-
respondingly long signal duration a. On the other hand, the use of an indicator function
implies bad frequency localization of the basis functions, this disadvantage can be reduced
by employing pulse shaping [12]. A more detailed discussion of this and other tradeoffs
in the design of Weyl–Heisenberg structured signal sets for digital communication can be
found in [3] and the references therein.

4. Channel matrices

To illustrate the results of Section 2 in a realistic setup, we shall compute the channel
matrix of different exemplary transmission bases with respect to a normalized convolution
operator reflecting a 2km, 0.4mm PE twisted copper wire cable.

Given an orthonormal basis {ei}i∈I of the Hilbert space L2(R) and any bounded oper-
ator K : L2(R) −→ L2(R), we define the bi–infinite Gram matrix GK through

GK
i,j = 〈Kei, ej〉, i, j ∈ I.

The Gram matrix leads to a matrix representation of the operator K: For all f =∑
i∈I ciei ∈ L2(R) we have Kf =

∑
j∈I c̃jej with

c̃j = 〈Kf, ej〉 =
∑

i

ci〈Kei, ej〉 =
∑

i

ciG
K
i,j, j ∈ I,

that is, c̃ = c·GK . As a direct consequence of the definition of GK and the orthonormality
of the family {ei}, we have

d2
ei,K

=
∑

j 6=i

|GK
i,j|2.

In the transmission systems discussed here, we use an orthonormal family {gi}i∈I′ which
is not complete in L2(R). Furthermore, the operator is a convolution operator Kh which
is characterized by its impulse response. Adjusting the definition of the Gram matrix,
we define the channel matrix Gh

i,j = 〈Khgi, gj〉, i, j ∈ I ′, and get

d2
gi,K

≥
∑

j 6=i

|GK
i,j|2.

In order to visualize the channel matrices, we choose a logarithmic scale, i.e., we plot
log |Gh

i,j| and use the gray scale which is shown in Figure 8.
To compare the families discussed within a setting similar to ADSL, we choose a ≈

1000µs and bases capable of transmitting about 2000 real coefficients (1000 imaginary
coefficients) utilizing the baseband [-1,1] MHz.

The impulse response of a 2km, 0.4mm PE twisted copper wire cable sampled at
2 MHz has been calculated according to [1]. The resulting causal impulse response
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has been shifted to improve the performance of all the coherent families discussed here.

Additionally, the impulse response has been normalized so that sup |ĥ(γ)| = 1. The
resulting function h is shown in Figure 6. Figure 7 shows the real and the imaginary part

-10 10 20 30 40 50
Μs

-0.4

-0.2

0.2

0.4

0.6

0.8

y

Figure 6. Channel impulse response h of a 2km 0, 4mm PE twisted copper
wire cable.

of the transfer function of Kh, i.e., Re(ĥ) and Im(ĥ).
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Figure 7. Real and Imaginary part of the transfer function ĥ.

4.1. Weyl–Heisenberg families. We take the normalized characteristic function

g0(t) =
1√
1000

χ[0,1000)(t [µs])

as prototype function and we choose the constants a = 1000µs, b = 1
1000

MHz and L =
1000.
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To illustrate the perturbation characteristics of this system we reorder and renumber
the basis elements according to

gl+1000k = gl,k, l = 0, . . . , 999, k ∈ Z
and calculate the channel matrix Gh

i,j = 〈Khgi, gj〉, for 0 < i < 999 and −1000 < j <

1999. In Figure 9 we display log |Gh
i,j| for 0 < i < 999, 1000 < j < 1999. The restriction

to this segment of the biinfinite channel matrix is justified, since, due to the translation
invariance of the convolution operator Kh, we have Gh

i,j = Gh
i+1000,j+1000 and, assuming

supp h ∈ [−1000, 1000]µs we have Gh
i,j = 0 for |i − j| > 1000. The dominance of the

−15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0  

Figure 8. Gray scale used in the channel matrix images of Figures 9–18.

diagonal of this matrix demonstrates the channel perturbation stability of this basis.
Two segments of Figure 9 are displayed in Figure 10.

−1000 −500 0 500 1000 1500

0

200

400

600

800

Figure 9. Channel matrix of a Weyl–Heisenberg family.
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Figure 10. Details of Figure 9

To demonstrate the effect of the cyclic prefix described in the Remark in Section 3, we
add a cyclic prefix of 30µs in the setting described above, i.e., we set

g0(t) =
1√
1000

χ[−30,1000)(t [µs])
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and choose

γ0(t) =
1√
1000

χ[0,1000)(t [µs]).

In this case, the channel matrix is defined by

GK
i,j = 〈Kei, γj〉.

Due to the fact that {γj}j 6=i is an orthonormal family orthogonal to ei,

d2
ei,h

≥
∑

j,j 6=i

|Gh
i,j|2

still holds. Using again a = 1000µs, b = 1
1000

MHz and L = 1000, we obtain the channel
matrix displayed in Figure 11. Details of this matrix are shown in Figure 12. Note that
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Figure 11. Channel matrix of a Weyl–Heisenberg family using a cyclic
prefix.
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Figure 12. Details of Figure 11

we do not have exact diagonalization, since the duration of the cyclic prefix is smaller
than the duration of the impulse response h (see Figure 6). Nevertheless, a significant
improvement due to the cyclic prefix is obvious.

Remark. The real world requires real valued transmission signals. In the Weyl–Heisenberg
case, not the complex valued function f(x) =

∑
k∈Z

∑N
l=1 ck,lgk,l is used to transmit

information in form of the complex values {ck,l}l=1,...,N,k∈Z but the real valued signal

f̃ = 1
2
(f + f). Nevertheless, an interference of f on f only appears in the baseband and

is negligible when using a window function with decent frequency localization.
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4.2. Wilson bases. In analogy to the Weyl–Heisenberg bases of Section 4.1, we shall
form a Wilson basis using g0(t) = 1√

1000
χ[0,1000)(t [µs]) and a = 1000µs, b = 1

1000
MHz and

M = 499.
We order the elements according to

gn+4l+1997k = g
(n)
l,k , l = 1, . . . , 499, k ∈ Z

and

g1997k = g0,k, k ∈ Z.

A segment of the resulting channel matrix is displayed in Figure 13, and details can
be seen in Figure 14.
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Figure 13. Channel matrix of a Wilson family.
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Figure 14. Details of Figure 13

4.3. Wavelet bases. To obtain an exemplary wavelet system we shall use the orthogonal
Daubechies wavelet with 4 vanishing moments, i.e., g0 = db4, scaled to support [0, 7166]µs
and normalized in the L2(R) sense. Furthermore, we set a = 210 = 1024µs and M = 10

and obtain the transmission family {g(n)
k,m}m=0,1,2,3,....10, n=0,1,....2m−1, k∈Z. The prototype

function g0 is displayed in Figure 15. Figure 16 shows the real and the imaginary part of
the Fourier transform of g0 =db4, i.e., Re(ĝ0) and Im(ĝ0).

We reorder the orthonormal wavelet family according to

g2047k+2m−1+n = g
(n)
k,m.
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Figure 15. g0 in the wavelet basis.
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Figure 16. Real and imaginary part of the Fourier transform of g0.

A segment of the resulting channel matrix is displayed with logarithmic scale in Fig-
ure 17. The wavelet basis elements of the finest scale experience the strongest orthogonal
perturbation, reflecting their poor frequency localization.
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Figure 17. Channel matrix of a wavelet family.

Conclusion

We have shown that among the prominent coherent function systems we discussed
(Gabor bases, Wilson bases, and wavelets), the Gabor bases are best matched to a set of
convolution operators with practical importance.
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Figure 18. Details of Figure 17

Based on this result, the remaining open questions concern the design of Weyl–Heisenberg
structured bases, i.e., finding the most bandwidth efficient tradeoff between frequency lo-
calization achieved through pulse shaping and inclusion of a cyclic prefixof a certain
length.
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