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Abstract—We derive some interesting properties of finite Ga-
bor frames and apply them to the sampling or identification
of operators with bandlimited Kohn-Nirenberg symbols, or
equivalently those with compactly supported spreading functions.
Specifically we use the fact that finite Gabor matrices are
full Spark for an open, dense set of window vectors to show
the existence of periodically weighted delta trains that identify
simultaneously large operator classes. We also show that sparse
delta trains exist that identify operator classes for which the
spreading support has small measure.

I. INTRODUCTION

A. Operator Sampling

The goal in operator identification is to determine an
operator completely from its action on a single input function
or distribution. If the operator models a linear (time-varying)
communication channel, then the problem is one of channel
identification and can be thought of as a generalization of
the fact that the impulse response of a time-invariant com-
munication channel modeled as a convolution operator can
be determined from the response of the channel to a unit
impulse. The question of determining which operators can
be identified was addressed in foundational and pioneering
work of T. Kailath ([3], [4], [5]) and P. Bello ([1]) who
determined that the identifiability of a communication channel
is characterized by the area of the support of its so-called
spreading function. This work has been extended and placed
on a firm mathematical footing in [6] and [8].

To be specific and to fix ideas for this paper, we restrict
our attention to the class of Hilbert-Schmidt operators H on
L2(R). Any such operator can be represented as a pseudod-
ifferential operator as

Hf(x) =

∫
σH(x, ξ)f̂(ξ) e2πixξ dξ.

σH(x, ξ) ∈ L2(R2) is the Kohn-Nirenberg (KN) symbol of
H . The spreading function ηH(t, ν) of the operator H is the
symplectic Fourier transform of the KN symbol, viz.

ηH(t, ν) =

∫∫
σH(x, ξ) e−2πi(νx−ξt) dx dξ

and we have the representation

Hf(x) =

∫∫
ηH(t, ν)TtMνf(x) dν dt

where Ttf(x) = f(x − t) is the time-shift operator and
Mνf(x) = e2πiνx f(x) is the frequency-shift operator. In this
sense, an operator H whose spreading function has compact
support can be said to have a bandlimited symbol. This moti-
vates the following definition. Given a compact set S ⊆ R2,
we define the operator Paley-Wiener space OPW (S) to be
the set of all Hilbert-Schmidt operators H on L2(R) with
supp ηH ⊆ S. Identifiability of an operator H therefore means
informally that there exists a distribution g such that H is
completely determined by Hg. To be more precise, suppose
that H is some class of linear operators with common domain.
We say that g identifies H if whenever H1, H2 ∈ H and
H1g = H2g (or equivalently (H1−H2)g = 0) then H1 = H2.
If H is a linear space, then g identifies H if and only if H ∈ H
and Hg = 0 implies H = 0. However, these notions are not
equivalent if H is not a linear space.

The following theorem was proved in [8] following Bello’s
work.
Theorem 1. If |S| < 1 then OPW (S) is identifiable, and if
|S| > 1 then OPW (S) is not identifiable. In the former case
an identifier has the form g =

∑
n cn δnT for some T > 0

and periodic sequence c = (cn).
Since in this case, the operator is being “sampled” by a suc-

cession of evenly-spaced weighted impulses, and because the
theory bears many formal analogies to the classical sampling
of bandlimited functions, this procedure is called operator
sampling. Indeed, it is shown in [9] that classical sampling
is in fact a special case of operator sampling.

B. Gabor Matrices

Definition 2. Given L ∈ N, let ω = e2πi/L and define the
translation operator T on (x0, . . . , xL−1) ∈ CL by

Tx = (xL−1, x0, x1, . . . , xL−2),

and the modulation operator M on CL by

Mx = (ω0x0, ω
1x1, . . . , ω

L−1xL−1).

Define the full Gabor system matrix G(c) to be the L × L2

matrix given by

G(c) = [ D0WL D1WL · · · DL−1WL ]

where Dk is the diagonal matrix with diagonal T kc, and where
WL is the L × L Fourier matrix WL = (e2πinm/L)L−1

n,m=0.
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The finite Gabor system with window c is the collection
{MpT qc}L−1

q,p=0.

For generic vectors c ∈ CL, the finite Gabor system with
window c is a tight frame for CL, and in fact is a so-called
full Spark frame. In particular the following holds.

Theorem 3. [7] Suppose that L is prime. Then there is an
open, dense set of c ∈ CL with the property that every square
submatrix of G(c) has nonzero determinant. In particular, this
implies that every collection of columns in G(c) has full rank.

Outline of Proof: Given any N ×N submatrix, M , of G(c),
det(M) is a homogeneous polynomial of degree L in the
variables c0, c1, . . . , cL−1, and it is sufficient to show that this
polynomial does not vanish identically, and for that it suffices
to show that there is a monomial in det(M) with a nonzero
coefficient. In the proof such a monomial, pM , is constructed
recursively as follows.

If N = 1 then M is simply a multiple of a single variable
cj and we define pM = cj . If N > 1, let cj be the variable of
lowest index appearing in M . Choose any entry of M in which
cj appears, eliminate from M the row and column containing
that entry, and call the remaining matrix M ′. Define pM =
cj pM ′ . The coefficient of pM in detM is a product of minors
of WL. Since L is prime, by Chebotarëv’s Theorem, such
minors never vanish.

C. Operator Sampling and Gabor Matrices

To illustrate the connection between operator sampling
and Gabor matrices, we outline the proof of the sufficiency
direction of Theorem 1 ([8], [9]).

Suppose that |S| < 1 is compact, and assume without loss
of generality that S is contained in the first quadrant. Choose
L prime so large that S ⊆ [0,

√
L]2 and S meets no more than

L rectangles of the form

Rq,m = [0, 1/
√
L]2 + (q/

√
L,m/

√
L).

In the sequel, let TΩ = 1/
√
L. For any sequence c = (cn)

with period L, a straightforward calculation ([9], [8]) yields

Z(t, ν) = G(c) η(t, ν) (1)

where

Z(t, ν) = [e−2πipq/L e−2πiνTp (Z1/Ω ◦H)g(t+ Tp, ν)]L−1
p=0 ,

Z1/Ωf(t, ν) =
∑
n∈Z f(t − n/Ω) e2πinν/Ω is the Zak trans-

form, and

η(t, ν) = [e−2πiqm/L e−2πiνTq ηH(t+ Tq, ν + Ωm)]L−1
q,m=0.

Note that (1) is a linear system of L equations in L2 unknowns,
the coefficients of which are a discrete Gabor system. Because
S meets no more than L rectangles Rq,m, (1) reduces to
a system of L equations in L unknowns, with the reduced
matrix G0(c) an L × L submatrix of G(c). We now invoke
Theorem 3 to assert that there is a choice of c ∈ CL making
G0(c) invertible.

II. OPERATORS WITH UNKNOWN SPREADING SUPPORT

Theorem 3 says that the set of vectors c for which every
square submatrix of G(c) is invertible is dense and open. Since
there are only finitely many such submatrices, there exists a
dense, open set of c ∈ CL such that all square submatrices of
G(c) are invertible. Hence c can be chosen independently of
S, depending only on L.
Definition 4. Given Σ > 0 and 0 ≤ ∆ ≤ 1, define the
operator class HΣ(∆) to be the collection of operators H in
OPW ([−Σ,Σ]2) such that supp ηH is contained in no more
than Σ Jordan regions (that is, Jordan curves together with
their interiors) with total area no more than ∆ − 1/Σ, and
whose boundaries have total length no more than Σ.

Note that HΣ(∆) is not a linear space, but has the property
that the spreading supports admit uniformly good coverings
by squares. A more general version of the following theorem
appears in [9] (see [2] for a characterization in the case of
fixed L.).

Theorem 5. Let Σ > 0 be given. Then for every suffi-
ciently large prime L, there is a c ∈ CL such that with
g =

∑
n cn δn/

√
L, if H ∈ HΣ(1) and Hg = 0, then

H = 0. It follows immediately that if ∆ ≤ 1/2, then whenever
H1, H2 ∈ HΣ(∆), and H1g = H2g then H1 = H2.

Proof: An argument in [9] shows that if H ∈ HΣ(1), then
the conditions in Definition 6 on supp ηH imply that as long
as 1/

√
L + 1/L < 1/(4Σ2), then supp ηH is guaranteed to

meet at most L rectangles Rq,m. Since L is now fixed, we can
choose c ∈ CL with the property that all square submatrices
of G(c) are invertible. This combined with (1) implies the
result.

The conclusion of Theorem 5 is not sufficient by itself to
allow the recovery from Hg of the spreading function of H .
However, it is shown in [9] and in [2] that if ∆ ≤ 1/2, and
H ∈ HΣ(∆), the support set of H can be determined and H
can be stably recovered from Hg. Heckel and Boelcskei go
further in [2] and show that for almost every operator H ∈
HΣ(∆) with ∆ ≤ 1, the support set of H can be determined
and H can be stably recovered from Hg. Once the support set
is known, explicit formulas for reconstructing the spreading
function and impulse response of H from Hg are given in
[9].

III. EFFICIENT OPERATOR SAMPLING

It is easy to see that any c satisfying the conclusion of
Theorem 3 must have full support, that is, ‖c‖0 = L where
‖c‖0 is the number of nonzero entries in c. However, for
a given operator class, there is an advantage to choosing a
c that has minimal support. First, having some or most of
the ck vanish would mean that the matrix G(c) in (1) would
be sparse, and hence the reduced matrix G0(c) that must be
inverted to recover the spreading function would be sparse as
well. In fact, the quantity ‖c‖0/L is the fraction of nonzero
entries in G(c). Second, a vector c with small support would
mean that the identifier g would require fewer deltas to be
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transmitted per unit time. This is analogous to reducing the
“sampling rate” in operator sampling. Third, note that

suppHg(x) ⊆
⋃

y∈supp(g)

suppκ(x, y)

and hence that if ‖c‖0 is small, in particular if in each period
c vanishes but for a few contiguous indices, then in each time
interval of length TL, Hg would have small support thereby
reducing the amount of time spent measuring the channel.

A. Invertibility of Gabor Submatrices.

Definition 6. Let G(c) be an L × L2 Gabor system matrix,
and let G0(c) be an L×N submatrix of G(c) corresponding
to a collection of N ≤ L columns of G(c). Define

µ = min{‖c‖0 : G0(c) has full rank}.

We associate to G0(c) the L-tuple τ = (τ0, τ1, . . . , τL−1),
where τk is the number of columns of G0(c) chosen from
the submatrix DkWL. The total number of columns chosen is
given by ‖τ‖1, the number of submatrices DkWL from which
any columns are chosen by ‖τ‖0, and the largest number of
columns chosen from any submatrix DkWL by ‖τ‖∞.

Part (1) of the following theorem is proved in [9].
Theorem 7 Suppose that the L-vector τ describes a collection
of columns chosen from a full Gabor matrix.
(1) If L is prime then µ ≤ (‖τ‖1 − ‖τ‖0) + 1.
(2) For any L ∈ N, µ ≥ ‖τ‖∞.

Proof: (1) Let L be prime, and assume that columns are
chosen from G(c) according to the vector τ . By definition,
there will be at least one column chosen from ‖τ‖0 distinct
submatrices DkWL of G(c). This means that there are exactly
‖τ‖0 distinct rows in which the variable c0 formally appears.
Choose those rows and the remaining ‖τ‖1 − ‖τ‖0 rows
arbitrarily, and let M be the resulting ‖τ‖1×‖τ‖1 submatrix.
Proceeding now with the construction of the monomial pM
defined above, it follows that pM will contain exactly ‖τ‖0
factors of c0 plus at most ‖τ‖1 − ‖τ‖0 other distinct factors.
Hence pM will be a monomial with at most ‖τ‖1 −‖τ‖0 + 1
distinct variables appearing. Hence the variables not chosen
can be set to zero and the polynomial detM will still
not vanish identically. Hence there is a choice of c with
‖c‖0 ≤ ‖τ‖1 −‖τ‖0 + 1 for which detM 6= 0, and the result
follows.

(2) Let L ∈ N be given and suppose that columns are chosen
from G(c) according to the vector τ . Let ‖τ‖1 rows be chosen
from the submatrix G0(c), and call the resulting ‖τ‖1×‖τ‖1
matrix M . Any diagonal of M must have τk entries chosen
from τk distinct rows of each submatrix DkWL. Hence every
term in the expansion of det(M) is a multiple of a monomial
with at least τk distinct variables appearing in it. Therefore,
if more than ‖τ‖∞ of the ck are zero, then the polynomial
det(M) will vanish identically. Hence µ ≥ ‖τ‖∞.
Remark (a) The bounds on µ in Theorem 7 cannot be
improved. For example, if one column is chosen from distinct

submatrices DkWL, then the vector τ will have ‖τ‖1 non-
zero entries each of which is 1 and . Hence ‖τ‖1 = ‖τ‖0, and
‖τ‖∞ = 1. Letting c0 = 1, c1 = c2 = · · · = cL−1 = 0, and
letting the rows of M be those of G0(c) in which c0 appears
gives

µ = ‖τ‖∞ = (‖τ‖1 − ‖τ‖0) + 1.

If all ‖τ‖1 columns are chosen from one submatrix DkWL,
then ‖τ‖0 = 1 and ‖τ‖1 = ‖τ‖∞. If fewer than ‖τ‖1 of the
ck are nonzero, then any choice of ‖τ‖1 rows of G0(c) will
contain at least one identically zero row. This means that

µ ≥ (‖τ‖1 − ‖τ‖0) + 1 = ‖τ‖1 = ‖τ‖∞.

Moreover, if L is prime we once again have equality ([7]).

(b) The following example will show that for arbitrarily large
L there are vectors τ that avoid both extremes, that is, for any
choice of submatrix G0(c), ‖τ‖∞ < µ < ‖τ‖1 − ‖τ‖0 + 1.
More specifically, the following theorem holds.
Theorem 8 For every L ∈ N large enough, there is an L-
vector τ describing a choice of columns of a full Gabor matrix
G(c) such that ‖τ‖∞ < µ. Moreover, if L is prime, then also
µ < ‖τ‖1 − ‖τ‖0 + 1.

Proof: In order to construct this vector τ , first choose P, R ∈
N such that P ≤ R and

R+ P − 1

RP
<

1

2
.

Note that these imply that at least R ≥ P ≥ 3. Given L ∈ N
with L ≥ 9, we can write L = PR + j uniquely for some
0 ≤ j ≤ R− 1. Define the L-vector τ as follows. Let τk = 2
for 0 ≤ k ≤ R− 1, and for k = mR− 1, 2 ≤ m ≤ P , and let
τk = 0 otherwise. Then ‖τ‖0 = R + P − 1, ‖τ‖∞ = 2, and
‖τ‖1 = 2(R+P − 1). We will show that ‖τ‖∞ = 2 < 3 ≤ µ
and that in case L is also prime, µ ≤ R < R + P = ‖τ‖1 −
‖τ‖0 + 1. We describe the matrix G0(c) pictorially in the
figure below. Each column in the figure that starts with N −k
represents two columns chosen from the submatrix DkWL. A
generalized diagonal of the matrix G0(c) corresponds to the
choice of two indices from each column and one from each
row.

0 N−1 . . . N−R+1 N−2R+1 . . . N−PR+1
1 0 . . . N−R+2 N−2R+2 . . . N−PR+2
2 1 . . . N−R+3 N−2R+3 . . . N−PR+3
3 2 . . . N−R+4 N−2R+4 . . . N−PR+4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
R−2 R−3 . . . N−1 N−R−1 . . . N−(P−1)R−1
R−1 R−2 . . . 0 N−1 . . . N−(P−2)R−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
2R−1 2R−2 . . . R 0 . . . N−(P−3)R−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
3R−1 3R−2 . . . 2R R . . . N−(P−4)R−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
PR−1 PR−2 . . . (P−1)R (P−2)R . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
N−1 N−2 . . . N−R N−2R . . . N−PR

,

In order to see the first inequality, let G0(c) be an L ×
2(R+ P − 1) matrix described by τ . Specifically, we choose
2 columns from each submatrix DkWL of G(c) for all those
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k for which τk = 2. Now suppose that ‖c‖0 = 2 and assume
without loss of generality that c0 and ck0 are the only non-zero
entries of c. We will show that any choice of 2(R + P − 1)
rows of G0(c) will contain a zero row, which will imply that
µ ≥ 3.

Note that each of the variables c0 and ck0 appears in at most
R+P−1 rows of G0(c). Therefore, if a choice of 2(R+P−1)
rows of G0(c) were not to contain a zero row, then we must be
able to choose R+P −1 rows containing c0 and an additional
R+P − 1 rows containing ck0 . We will show that this is not
possible by showing that there must be at least one row of
G0(c) in which both c0 and ck0 appear. Specifically, we will
show that all of the variables c1, c2, . . . , cL−1 appear at least
once in the first R rows of G0(c). Clearly, c0 also appears in
each of these rows.

In the pair of columns of G0(c) chosen from the matrix
D0WL, the variables c1, . . . , cR−1 appear in the first R
rows. Given 1 ≤ m ≤ P , consider the pair of columns
of G0(c) chosen from the matrix DmR−1WL. It is not
hard to see that in the first R rows of these columns, the
variables c(P−m)R+j+1, . . . , cP−(m−1))R+j appear. Conse-
quently, as m runs from 1 through P , all of the variables
cj+1, . . . , cPR+j will appear in the first R rows of G0(c).
This completes the first part of the proof.

Now suppose that L is prime. We will show that µ ≤ R
by showing that we can choose 2(R+ P − 1) rows of G0(c)
in such a way that the monomial pM of the resulting square
matrix M , as described in the proof of Theorem 3, will have
no more than R distinct variables cj appearing in it.

First, choose the R + P − 1 rows of G0(c) in which c0
appears. For all 1 ≤ m ≤ P − 1, note that c1 appears in row
mR+1, c2 appears in row mR+2 and in general, ck appears in
row mR+k for k = 1, 2, . . . , R−1. Note also that c0 does not
appear in these rows. Therefore, choose those (P − 1)(R− 1)
rows of G0(c). Note that (R+P−1)+(P−1)(R−1) = RP >
2(R+P −1) by our assumption at the beginning of the proof.
This means that by choosing rows in this way, and eliminating
some if necessary, we arrive at a square sub-matrix M of
G0(c). The corresponding monomial pM will have R+P −1
factors of c0 and at most P − 1 factors of c1, c2, . . . , cR−1,
resulting in no more than R distinct variables appearing in
pM . Hence µ ≤ R < R+ P = ‖τ‖1 − ‖τ‖0 + 1.

Theorem 9. Let L prime be fixed, and let N ≤ L. There
exists a c ∈ CL with ‖c‖0 ≤ N such that for any vector τ
with ‖τ‖1 = N and every L×N matrix G0(c) with associated
distribution vector τ has full rank. In fact, the collection of all
such c considered as vectors in CN constitutes a dense, open
subset of CN .

Proof: By Theorem 7, for every vector τ with ‖τ‖1 = N , there
is a c ∈ CL with the property that ‖c‖0 ≤ N and that G0(c)
has full rank. We will first show that such a c can always be
chosen such that cN = cN+1 = · · · = cL−1 = 0. To see this,
consider a matrix G0(c), and set cN through cL−1 to zero. In
this case, every column of G0(c) will have N nonvanishing
entries. We can therefore follow the algorithm outlined in

the proof of Theorem 3 and observe that at each step in the
algorithm, there will always be a row of the remaining matrix
in which a variable cj with 0 ≤ j ≤ N − 1 appears, for if
not, this would imply that one of the columns of G0(c) had
fewer than N nonvanishing entries. Choosing now these N
rows, and letting M denote the resulting N ×N submatrix of
G0(c), it follows that in the monomial pM , only variables cj
with 0 ≤ j ≤ N − 1 will appear and hence the polynomial
detM will be a homogeneous polynomial of degree N in the
variables c0, c1, . . . , cN−1.

Therefore, any choice of c0, c1, . . . , cN−1 that avoids the
zero set of the polynomial detM will ensure that G0(c) has
full rank. The set of such choices constitutes a dense open
set in CN . Since there are only finitely many vectors τ with
‖τ‖1 = N and only finitely many associated L×N matrices
G0(c), the collection of such c is the intersection of finitely
many dense open subsets of CN . Since this is also a dense
open set, the result follows.

IV. IMPLICATIONS FOR OPERATOR SAMPLING

Theorem 10. Let Σ > 0, 0 ≤ ∆ < 1 be given. Then for every
sufficiently large prime L, there is a c ∈ CL with ‖c‖0/L ≤ ∆
such that the operator class HΣ(∆) is identifiable by g =∑
n cn δn/

√
L.

Proof. As in the proof of Theorem 5, we can choose a prime
L sufficiently large that for any H ∈ HΣ(∆), supp ηH meets
at most ∆L rectangles Rq,m. For this L, we have seen that it
is possible to choose c ∈ CL such that ‖c‖0 ≤ ∆L and such
that any collection of no more than ∆L columns of the Gabor
matrix G(c) is linearly independent. Hence the operator H is
completely determined by Hg where g =

∑
n cnδn/

√
L and

‖c‖0/L ≤ ∆.
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