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Abstract—Operator sampling considers the question of when
operators of a given class can be distinguished by their action
on a single probing signal. The fundamental result in this theory
shows that the answer depends on the area of the support S of the
so-called spreading function of the operator (i.e., the symplectic
Fourier transform of its Kohn-Nirenberg symbol). |S| < 1 then
identification is possible and when |S| > 1 it is impossible. In
the critical case when |S| = 1, the picture is less clear. In this
paper we characterize when regular operator sampling (that is,
when the probing signal is a periodically-weighted delta train) is
possible when S is a parallelogram of area 1.

I. OPERATOR SAMPLING AND THE SPREADING FUNCTION

The goal in operator identification is to determine an
operator completely from its action on a single input function
or distribution. If the operator models a linear communication
channel, then the problem is one of channel identification. It
is well-known that a time-invariant communication channel
is completely determined by its action on a unit impulse.
Identification of time-variant channels has its roots in the work
of T. Kailath and P. Bello ([5], [6], [7], [1]), and has been sig-
nificantly extended in the past decade by the authors and others
(see [8], [12], [16]). If the input function g is a weighted delta-
train, viz. g =

∑
λ∈Λ cλ δλ where Λ ⊆ R is discrete, then we

refer to operator identification as operator sampling, and if g is
a periodically-weighted delta train of the form g =

∑
n cn δnT

for some T > 0 and periodic sequence c = (cn), we refer to
operator identification as regular operator sampling. Regular
operator sampling is a generalization of classical sampling in
the case when the operator class in question is the class of
multiplication operators (see [13]).

In this paper we restrict our attention to the class of Hilbert-
Schmidt operators H on L2(R). Any such operator can be
represented as a pseudodifferential operator as

Hf(x) =

∫
σH(x, ξ)f̂(ξ) e2πixξ dξ.

σH(x, ξ) ∈ L2(R2) is the Kohn-Nirenberg (KN) symbol of
H . The spreading function ηH(t, ν) of the operator H is the
symplectic Fourier transform of the KN symbol, viz.

ηH(t, ν) =

∫∫
σH(x, ξ) e−2πi(νx−ξt) dx dξ

and we have the representation

Hf(x) =

∫∫
ηH(t, ν) TtMνf(x) dν dt

where Ttf(x) = f(x − t) is the time-shift operator and
Mνf(x) = e2πiνx f(x) is the frequency-shift operator. Given
a set S ⊆ R2, we define the operator Paley-Wiener space
OPW (S) to be the set of all Hilbert-Schmidt operators H on
L2(R) with supp ηH ⊆ S.

Definition 1.1: Given S ⊆ R2, we say that the operator class
OPW (S) is weakly identifiable if there exists a distribution
g such that every H ∈ OPW (S) is completely determined
by Hg, that is, if the operator Φg : OPW (S)→ L2(R) given
by H 7→ Hg is injective. We say that OPW (S) is strongly
identifiable if there exist constants A, B > 0 such that for all
H ∈ OPW (S),

A‖H‖HS ≤ ‖Hg‖2 ≤ B ‖H‖HS . (1)

Note that strong identifiability implies that the operator H
depends in a stable way on the output Hg.

The following theorem was proved in [12], (see also [13]).
Theorem 1.2: Let S ⊆ R2 be compact. If |S| < 1

then OPW (S) is strongly identifiable by regular operator
sampling, and if |S| > 1 then OPW (S) is not weakly
identifiable.

II. REGULAR OPERATOR SAMPLING IN THE |S| < 1 CASE

Here we will outline the proof of the sufficiency part of
Theorem 1.2 as it appears in [13]. The proof relies on the
notion of a rectification of the set S.

Definition 2.1: Let S ⊆ R2, |S| ≤ 1, T > 0, and L ∈ N be
given, and let Ω = 1/(LT ). We say that S admits a (T, L)-
rectification if

(a) S is contained in a fundamental domain of the lattice
(1/Ω)Z× (1/T )Z, and

(b) the set
S◦ =

⋃
(k,`)∈Z2

S + (k/Ω, `/T ) (2)

meets at most L rectangles of the form Rq,m = [0, T ]×
[0,Ω] + (qT,mΩ), 0 ≤ q,m < L.

Note that if S is compact then for all T > 0 sufficiently
small and L ∈ N sufficiently large, Definition 2.1(a) is978-1-4673-7353-1/15/$31.00 c©2015 IEEE



satisfied. Also note that since |S| < 1, for all T > 0
sufficiently small and L ∈ N sufficiently large, S can be
covered by rectangles from a T × Ω grid whose total area
is less than 1. By choosing T and L for which both hold it
follows that a (T, L)-rectification for S exists.

Next we have the following lemma that uses the Zak
transform, a fundamental tool of time-frequency analysis (see
[3]).

Definition 2.2: The non-normalized Zak Transform is de-
fined for f ∈ S(R), and a > 0 by

Zaf(t, ν) =
∑
n∈Z

f(t− an) e2πianν .

Now we define a variant of the periodization of a bivariate
function which arises naturally in operator sampling, called the
quasiperiodization. The fundamental property of the quasiperi-
odization that it shares with the ordinary periodization is that
a function supported in a fundamental domain of a lattice can
be recovered from its quasiperiodization with respect to that
lattice (see [13]).

Definition 2.3: Given a bivariate function f(t, ν) and pa-
rameters T,Ω > 0, define the (1/Ω, 1/T )–quasiperiodization
of f , denoted fQP , by

fQP (t, ν) =
∑
k

∑
`

f(t+ k/Ω, ν + `/T ) e−2πiνk/Ω (3)

whenever the sum is defined.
Lemma 2.4: Let T,Ω > 0 be given such that TΩ = 1/L

for some L ∈ N, let (cn) be a period-L sequence. Then with
g =

∑
n cn δnT , (t, ν) ∈ R2, and p = 0, 1, . . . , L−1,

e−2πiνTp (Z1/Ω ◦H)g(t+ Tp, ν)

= Ω

L−1∑
q,m=0

(T qMmc)p e
−2πiνTq ηQPH (t+ Tq, ν + Ωm).

(4)

Here T as an operator on CL represents a shift of indices
modulo L, that is,

T (x0, x1, . . . , xL−1) = (xL−1, x0, x1, . . . , xL−2)

and M as an operator on CL represents modulation, that is,
with ω = e2πi/L

M(x0, x1, . . . , xL−1) = (ω0x0, ω
1x1, . . . , ω

L−1xL−1).

In what follows, we will frequently abuse notation by identi-
fying a vector c ∈ CL with the period-L sequence c = (cn)
in the obvious way.

Letting

ZHg(t, ν)p = (Z1/Ω ◦H)g(t+ pT, ν) e−2πiνpT (5)

and

ηH(t, ν)(q,m) = Ω ηQPH (t+qT, ν+mΩ) e−2πiνqT e−2πiqm/L,
(6)

we have that

ZHg(t, ν)p =

L−1∑
q,m=0

G(c)p,(q,m) ηH(t, ν)(q,m) (7)

where G(c) is the L × L2 Gabor system matrix given by
[G(c)]p,(q,m) = (T qMmc)p.

Identifiability of OPW (S) thus reduces to the question of
whether the underdetermined linear system (7) can be solved.
By restricting (t, ν) to the basic rectangle [0, T ] × [0,Ω], we
observe that at each point, at most L entries of ηH(t, ν)(q,m)

do not vanish, so that solving (7) reduces to solving an L ×
L linear system. One piece of the puzzle remains, namely
ensuring that this system is always solvable. This is the content
of the following lemma.

Lemma 2.5: ([9], [10]) For every L ∈ N there exists a dense,
open subset of c ∈ CL such that every L × L submatrix of
G(c) has full rank.

III. REGULAR OPERATOR SAMPLING AND LATTICE
TILINGS.

The following characterization of operator identification by
regular operator sampling appears in [13].

Theorem 3.1: Let g =
∑
n∈Z cnδnT with period L sequence

c = (cn) chosen so that every L × L submatrix of G(c) has
full rank and let Ω = 1/(LT ). For S ⊆ R2 the following are
equivalent.

(i) The operator class OPW (S) is weakly identifiable by
regular operator sampling with identifier g.

(ii) The operator class OPW (S) is strongly identifiable by
regular operator sampling with identifier g.

(iii) S is a subset of a fundamental domain of the lattice
(1/Ω)Z× (1/T )Z, that is,∑

k,`

χS+(k/Ω,`/T ) ≤ 1 a.e. (8)

and S periodized by the lattice TZ× ΩZ is at most an
L-cover, that is∑

k,`

χS+(kT,`Ω) ≤ L a.e. (9)

It is clear that (8) and (9) are satisfied if S admits a (T, L)-
rectification, but the converse is not true (see [13]). The key
observation here is that if S admits a (T, L)-rectification then
the linear system (7) reduces to the same L×L submatrix of
G(c) for each (t, ν). However (8) and (9) allow for the linear
system (7) to change depending on the point (t, ν).

Note that (9) implies that |S| ≤ 1. This by itself however
is not sufficient for S to be identifiable by regular operator
sampling. Indeed there are examples of sets S with arbitrarily
small area such that (8) is not satisfied for any choice of T > 0
or L ∈ N (see [13]). However, Theorem 3.1 implies that under
the assumption that S is compact, |S| < 1 suffices for strong
identifiability by regular operator sampling. This leaves open
the question of identifiability when |S| = 1.

In this case, it is easy to show that equality must hold in (9).
This in turn is equivalent to the statement that the collection



of sets {S + (kT, `Ω): k, ` ∈ Z} forms an exact L-cover of
the plane. The case of interest to us in this paper is when S is
a parallelogram, that is, when there exists an invertible 2× 2
matrix A such that S = A[0, 1]2. If in addition |S| = 1, then
equality in (9) implies that

L =
∑
k,`

χA[0,1]2+(kT,`Ω)(Ax)

=
∑
k,`

χ[0,1]2+A−1(kT,`Ω)(x).

Therefore, in the parallelogram case, (9) is equivalent to the
statement that {

[0, 1]2 +A−1

(
T 0
0 Ω

)
Z2

}
(10)

forms an exact L-cover of the plane. Since the cover involves
only shifts by the lattice A0Z2 where A0 = A−1 ( T 0

0 Ω ), it
forms what is known as an L-fold lattice tiling of the plane.
A considerable literature exists on this subject, going back to
a conjecture of Minkowski [11], equivalent to the statement
that any lattice tiling of Rn by unit cubes contains two cubes
that share an (n−1)-dimensional face. This result was proved
by Hajós in [4] and in addition he proved that the Minkowski
conjecture also holds for all L-fold lattice tilings in dimension
n ≤ 3. This latter result was in fact proved a few years earlier
by Furtwängler [2]. For the purposes of this paper, we need
only that for an L-fold lattice tiling of R2, two squares must
share an edge. For more information on this topic, see for
example [15], [14], [17].

IV. REGULAR OPERATOR SAMPLING FOR
PARALLELOGRAMS

In [13] some attention is given to the case of operator
sampling when the spreading support S is a parallelogram or
can be rectified by parallelograms. In that paper an example
is given in which S is a parallelogram with |S| = 1 such
that OPW (S) can be identified by operator sampling but not
by regular operator sampling (See Figure 1). Specifically, if
A =

(
2 2√
2
√

2+1/2

)
, then OPW (A[0, 1]2) can be identified

by a non-periodically-weighted delta train, but not by a
periodically-weighted delta train for any value of T and L. The
main result of this paper characterizes when regular operator
sampling of OPW (S) is possible when S is a parallelogram
of unit area.

Theorem 4.1: Suppose that S = A[0, 1]2 where A =
( a11 a12a21 a22 ) with det(A) = 1. Then there exist T > 0 and L ∈ N
such that (8) and (9) hold if and only if a11a21 or a21a22 is
rational.

Proof: (=⇒). Suppose that (9) holds for some T > 0 and
L ∈ N and let Ω satisfy TΩ = 1/L. As observed above, (9)
is equivalent to the statement that (10) forms an L-fold lattice
tiling of the plane by unit squares, and hence two such squares
must share an edge.
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Fig. 1. (a) The the operator class OPW 2(S) with S = (2, 2 ;
√

2,
√

2 +
1/2)[0, 1]2 whose area equals 1 is identifiable by a (non-periodically)
weighted delta train. It is not identifiable using regular operator sampling.
(b) T = 1 periodization of S. For periodic operator sampling to succeed
with S having area 1, we require that the T,Ω periodization of S leads
to an exact L cover of the time-frequency plane. Close examination of the
periodization of S shows that this is not possible.

If a vertical edge is shared, this implies that for some ( pq )
and ( rs ) ∈ Z2, and α ∈ R,

A0

(
p
q

)
=

(
α
β

)
, and A0

(
r
s

)
=

(
1 + α
β

)
.

Subtracting implies that for some ( nm ) ∈ Z2,

A0

(
n
m

)
=

(
1
0

)
.

Therefore,(
nT
mΩ

)
=

(
a11 a12

a21 a22

)(
1
0

)
=

(
a11

a21

)
and nTmΩ = nm

L = a11a21.
If a horizontal edge is shared, then by the same argument

we have for some n, m ∈ Z,

A0

(
n
m

)
=

(
0
1

)
from which it follows that(

nT
mΩ

)
=

(
a12

a22

)
and hence that nTmΩ = nm

L = a12a22.
(⇐=). In order to show that (8) and (9) hold, we will show
that there exists T > 0 and L ∈ N, with TΩ = 1/L, and a
matrix B with integer entries and det(B) = L such that the
collection {

[0, 1]2 +A−1

(
T 0
0 Ω

)
B Z2

}
(11)

tiles the plane. Assuming that we can do this, we have that∑
k,`

χ
[0,1]2+A−1(T 0

0 Ω )B
(
k
`

)(x) = 1 a.e.



which implies that∑
k,`

χ
A[0,1]2+(T 0

0 Ω )B
(
k
`

)(x) = 1 a.e.

By restricting the sum to only those (k, `) ∈ Z2 such that
B
(
k
`

)
= ( LnLm ), in which case(

T 0
0 Ω

)
B

(
k
`

)
=

(
nLT
m/T

)
,

it follows that ∑
n,m

χA[0,1]2+(nLT,m/T ) ≤ 1

which is (8).
To see that (9) holds, note that since the shifts of [0, 1]2

by the vectors A−1 ( T 0
0 Ω )BZ2, tile the plane, and since

det(B) = L, the subgroup Z2/BZ2 consists of exactly L
cosets. Therefore the full collection of shifts of [0, 1]2 by
A−1 ( T 0

0 Ω )Z2 tiles the plane exactly L times. Hence (9) holds.
It remains only to determine the matrix B in each case.

Suppose first that a11a21 = 0. If a11 = 0 then a21 6= 0. Let
T = 1/a21 and Ω = a21/L for any L ∈ N. In this case, let
B =

(
0 −1
L 0

)
so that

A−1

(
T 0
0 Ω

)
B =

(
1 −a22/a21

0 1

)
and it follows that the collection (11) tiles the plane.

If a21 = 0 and a11 6= 0, then let T = a11/L and Ω = 1/a11,
and let B = ( L 0

0 1 ). Then

A−1

(
T 0
0 Ω

)
B =

(
1 −a12/a11

0 1

)
and the result follows as above.

If neither a11 nor a21 = 0 then a11a21 = M/L where M =
M1M2 and M1 and M2 are relatively prime. Let T = a11/M1

and Ω = a21/M2, and choose integers N1 and N2 such that

M1N2 −M2N1 = L. Letting B =

(
M1 N1

M2 N2

)
,

A−1

(
T 0
0 Ω

)
B =

(
1 α
0 1

)
for some α ∈ R and the result follows as before.

A similar argument can be applied when a12a22 is rational.

V. CONCLUSION

In this paper we have given a necessary and sufficient
condition under which a class of operators whose K-N symbol
is bandlimited to a planar parallelogram of unit area can be
identified by a periodically-weighted delta train. This sheds
some light on the problem of operator sampling for classes of
operators whose spreading supports have unit area.
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[4] G. Hajós. Über einfache und mehrfache Bedeckung des n-dimensional
Raumes mit einem Wurfelgitter. Math. Z., 47:427–467 , 1942.

[5] T. Kailath. Sampling models for linear time-variant filters. Technical
Report 352, Massachusetts Institute of Technology, Research Laboratory
of Electronics, 1959.

[6] T. Kailath. Measurements on time–variant communication channels.
IEEE Trans. Inform. Theory, 8(5):229–236, Sept. 1962.

[7] T. Kailath. Time–variant communication channels. IEEE Trans. Inform.
Theory: Inform. Theory. Progress Report 1960–1963, pages 233–237,
Oct. 1963.

[8] W. Kozek and G. E. Pfander. Identification of operators with bandlimited
symbols. SIAM J. Math. Anal., 37(3):867–888, 2006.

[9] J. Lawrence, G. E. Pfander, and D. F. Walnut. Linear independence
of Gabor systems in finite dimensional vector spaces. J. Fourier Anal.
Appl., 11(6):715–726, 2005.

[10] R.-D. Malikiosis. A note on Gabor frames in finite dimensions.
http://arxiv.org/abs/1304.7709, preprint, 2013.

[11] H. Minkowski. Geometrie der Zahlen. Teubner, Leipzig, 1896.
[12] G. E. Pfander and D. Walnut. Measurement of time–variant channels.

IEEE Trans. Info. Theory, 52(11):4808–4820, 2006.
[13] G. E. Pfander and D. Walnut. Sampling and reconstruc-

tion of operators. IEEE Trans. Info. Theory, submitted, 2014.
http://arxiv.org/abs/1503.00628.

[14] R. M. Robinson. Multiple tilings of n-dimensional space by unit cubes.
Math. Z., 166:225–264 , 1979.

[15] S. K. Stein. Algebraic tiling. Amer. Math. Monthly, 81:445-462, 1974.
[16] D. Walnut, G. Pfander, and T. Kailath. Cornerstones of Sampling of

Operator Theory in Excursions in Harmonic Analysis, the February
Fourier Talks at the Norbert Wiener Center, Volume 4, 2015.

[17] C. Zong. What is known about unit cubes. Bull. AMS, 42(2):181-211,
2005.


