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Chapter 1

Introduction and Motivation

Piecewise constant wavelets were introduced in [?]. The theory and some appli-
cations of these generalized Haar wavelets will be developed in this Thesis.

In [?], Benedetto and Collela addressed a component of the problem of pre-
dicting epileptic seizures. A satisfactory solution of this problem would provide
maximal lead time in which to predict an epileptic seizure [?, ?]. It was shown
that spectrograms of electrical potential time series derived from brain activi-
ties of patients during seizure episodes exhibit multiple chirps consistent with
the relatively simple almost periodic behavior of the observed time-series[?]. In
the process, electrocorticogram (ECoG) data was used instead of the more com-
mon electroencephalogram (EEG) data. To obtain ECoG data, electrodes are
planted directly on the cortex, eliminating some noise. To analyze the periodic
components in these time-series, a redundant (non-dyadic) wavelet analysis was
used, which the authors referred to as wavelet integer scale processing (WISP).
The waveletgram obtained with respect to the Haar wavelet showed, among other
things, that the almost periodic behavior in the signal resulted in almost periodic
behavior in time as well as in scale in the waveletgram.

In fact, analyzing a periodic signal through the non–normalized continuous
Haar wavelet transformation, we obtain a wavelet transform periodic in time and
in scale.

Continuing the work of Benedetto and Collela, we realized the origin of this
phenomenon (Proposition ??). This led us to the definition of piecewise constant
wavelets (Definition ??).

Motivated by the epileptic seizure problem, we developed a method aimed
at detecting periodic behavior inherent in noisy data. In the case of epileptic
seizures, we aim at detecting periodic behavior in EEG data taken prior to the
seizure, which is similar to the periodic behavior inherent in ECoG or EEG
seizure data. The proposed procedure recognizes interindividual different periodic
behavior in the electrical brain activity during an epileptic seizure. The method
is composed of three steps:

1. ECoG data of an individual patient are analyzed through spectral and
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wavelet methods to extract periodic patterns associated with epileptic seizures of
a specific patient;

2. Using this knowledge of seizure periodicity, we construct an optimal piece-
wise constant wavelet designed to detect the epileptic periodic patterns of the
patient;

3. A fast discretized version of the continuous wavelet transform and wavelet-
gram averaging techniques are used to detect occurrence and period of the seizure
periodicities in the preseizure EEG data of the patient; and the algorithm is for-
mulated to provide real time implementation.

Our procedure is generally applicable to detect locally periodic components
in signals s which can be modeled as

s(t) = A(t)f(h(t)) + N(t), (1.1)

t ∈ I, where f is a periodic signal defined on the time interval I, A is a non–
negative slowly varying function, and h is strictly increasing with h′ slowly vary-
ing. N denotes background activity. For example, in the case of ECoG data,
N is essentially 1/f noise. In the case of EEG data and for t in I, N includes
noise due to cranial geometry and densities [?, ?]. In both cases N also includes
standard low frequency rhythms [?].

If F is a trigonometric polynomial, then the signals described in (??) have
been analyzed by Kronland-Martinet, Seip, Torresani, et al., to deal with the
problem of detecting spectral lines in NMR data [?, ?, ?]. Another technique,
that of computing critical frequencies in ECoG seizure data using waveletgram
striations, was formulated by Benedetto and Colella [?]. These frequencies are
related to the instantaneous frequency [?] h′(t) of s at t; and, with our period
detection and computation problem in mind, 1/h′(t) is the instantaneous period
of s at t.

We shall approach the general case (??) with a method similar to the three
step procedure we proposed to detect epileptic seizures [?]:

1. Non–noisy data are analyzed through spectral and wavelet methods to
extract specific periodic patterns of interest, i.e., f ;

2. We construct an optimal piecewise constant wavelet designed to detect f ;
3. Using our discretized version of the continuous wavelet transform and

waveletgram averaging techniques, we detect occurrence and period of these pe-
riodicities in real time.

The mathematical background for this approach to periodicity detection is
supplied in Chapter ??. Chapter ?? also defines and explains the notation used
in this thesis.

In Chapter ?? we define piecewise constant wavelets and state their key prop-
erty of periodicity preservation: the non–normalized wavelet transforms of pe-
riodic functions taken with respect to a piecewise constant wavelet are periodic
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in time and in scale. We shall show also, that odd and even piecewise constant
wavelets force additional structure on wavelet transforms of periodic functions.

We shall then present one possible approach to design a piecewise constant
wavelet which is particularly apt to detect a specific, known periodic pattern in a
signal. This is done in Chapter ??. The wavelets we obtain, we shall call optimal
piecewise constant wavelets.

The main advantage of our method over Fourier analysis methods, is the
flexibility at hand. This flexibility can be used to request additional properties
of the piecewise constant wavelet of choice. How to do this is shown in Chapter
??.

Our approach to detect periodicities in scale and time in a wavelet transform
is based on calculating certain averages in the wavelet transform, as is illustrated
in Chapter ??. Using this method, we obtain knowledge of appearance and period
of a specific periodic component in the analyzed signal.

The redundancy of discretized versions of the continuous wavelet transforma-
tion offers some robustness to noise, but requires more calculations than needed
to calculate a dyadic wavelet transform. In Chapter ??, we shall present a fast
cascade algorithm which reduces the number of calculations needed to compute
a wavelet transform significantly if our analyzing wavelet is a piecewise constant
wavelet.

In Chapter ?? we shall continue to discuss our discretized version of the
continuous wavelet transformation. It is shown that, under some mild conditions,
the analyzing functions used in our transformation form a frame for l2(Z). This
result is generalized to l2(Zd).

The two main advantages of using piecewise constant wavelets are the fact
that the non–normalized wavelet transforms of periodic functions are periodic
in time and in scale, and the fact that the discretized version of the continuous
wavelet transformation introduced in Chapter ?? allows a fast computation of
the wavelet transform of any function. The question arises whether piecewise
constant wavelets are the only wavelets with these two properties.

The algorithm presented in Chapter ?? relies strongly on the fact that the
wavelet used is piecewise constant. In Chapter ??, we shall classify all wavelets
with the property that the non–normalized wavelet transforms of periodic func-
tions are periodic in time and periodic in scale. We shall also generalize this
result to higher dimensions.
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Chapter 2

Background and Notation

The term wavelet does not possess a unique definition. The following definition
is appropriate for our needs.
Definition 2.1. A wavelet is a complex valued function ψ ∈ L1(R) such that

∫

R

ψ(t) dt = 0.

We shall use an Lp(R)–normalized wavelet transformation Wψ defined as

Wψ : L∞(R) −→ C(R×R+)

f 7→ Wψ
f : (b, a) 7→ a−1/p

∫

R

f(t)ψ(
t− b

a
) dt (2.1)

In some cases though, we shall use a non–normalized wavelet transform, which is
obtained by dropping the normalization factor a−1/p.

The wavelets we shall focus on are elements of L∞(R) ∩ L1(R) and they
will have compact support. Hence, we can extend the domain of the wavelet
transformation to L1

loc(R). L1
loc(R) is the space of locally integrable functions,

that is, the restriction of f ∈ L1
loc(R) to any compact set is an integrable function.

Of interest will be be the subspaces Lp(TT ), p ≥ 1 of L1
loc(R) of T periodic

functions with the property that
∫
TT
|f |p < ∞. Similar conventions are used

in higher dimensions. Even though the d-dimensional torus Td
T will always be

thought of as a subspace of Rd, we shall make the proper algebraic identifications,
and, hence, Td

T \ {0} will denote the torus without all its corners.
Further, ∂A is the boundary of a set A and Ao is the interior of a set A.
For k = (k1, . . . , kd) ∈ Zd we shall write 0 ≤ k < N if 0 ≤ ki < N for

all i = 1, . . . , d. This approach will be carried over to intervals, namely, (x, y) =
(x1, y1)×. . .×(xd, yd), where x, y ∈ Rd. We set |x| = (|x1|, . . . , |xd|) and sign(x) =
(sign(x1), . . . , sign(xd)) for x ∈ Rd.

Certainly, a polynomial p in one complex variable, is said to divide a polyno-
mial q, if there exists a polynomial r such that p · r = q.
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In Chapter ?? it will be necessary to make a distinction between the Fourier
transformation ̂: L1(Rd) −→ C0(R

d) defined on L1(Rd) and the Fourier trans-
formation F : L2(Rd) −→ L2(Rd) defined on L2(Rd).

The Hilbert transform of a function f is formally defined by

H(f)(t) = lim
ε→0

∫

|t−u|≤ε

f(u)

t− u
du.

For f ∈ L2(R) this limit exists for almost every t ∈ R. In Chapter ?? we shall
use the following standard result [?, ?]:
Theorem 2.2. H : L2(R) −→ L2(R) is a well-defined isometry. The Hilbert
transformation and the Fourier transformation are related by

H(f) = F−1 (−i sign(·) · (F(f)))

for all f ∈ L2(R).
In order to generalize some results to higher dimensions, we need some not

necessarily standard notation.
For a = (a1, . . . , ad) ∈ Rd we define p(a) = a1 · . . . · ad. For the vectors

b = (b1, . . . , bd), t = (t1, . . . , td) ∈ Rd, and a = (a1, . . . , ad) ∈ Rd \ S, where

S = {x ∈ Rd : p(x) = 0},

we define the vectors t−b
a
∈ Rd and t ? a ∈ Rd component wise by

t− b

a
=




t1−b1
a1
...

td−bd

ad


 and t ? a =




t1 · a1
...

td · ad


 .

If 0 6= a ∈ R we let

t− b

a
=




t1−b1
a
...

td−bd

a


 .

In the case a ∈ R, ?–multiplication reduces to scalar multiplication.
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Chapter 3

Piecewise Constant Wavelets

We shall introduce the notion of piecewise constant wavelets. There are two
main reasons to restrict ourselves to these generalized Haar functions. First,
they allow a fast computation of a discretized version of the continuous wavelet
transformation by means of a cascade algorithm. The second reason is presented
in Proposition ?? and Proposition ??.
Definition 3.1. A piecewise constant wavelet of degree M is a complex valued
function ψ ∈ L1(R) such that

∫
R

ψ(t) dt = 0, and such that there exist M ∈ R
and si ∈ R with ψ|[si,si+1) = ci ∈ C for all i ∈ Z and Msi ∈ Z for all i ∈ Z.

Note that the assumptions imply that piecewise constant wavelets are bounded,
and that the coefficients are summable, i.e., {ci}i∈Z ∈ l1(Z).

The first observation in our approach to period detection and computation is
the following fact.
Proposition 3.2. Let f ∈ L1(TT ), i.e., f is T–periodic and integrable on [0, T ],
and let ψ be a piecewise constant wavelet of degree M . Then

a1/pWψ
f (b, a) =

∫

R

f(t)ψ(
t− b

a
) dt

is T–periodic in b and MT–periodic in a.
This theorem can be proven via a direct calculation. A similar calculation is

carried out in the proof of Proposition ??. Proposition ?? is also a corollary of
Theorem ??.

I shall provide an example to illustrate Theorem ??.
Example 3.3. We choose f ∈ L1(TT ) to be a simple sine function

f(·) = sin(2π(γ ·+θ)),

where γ, θ ∈ R, and we choose our analyzing wavelet to be the centered Haar
wavelet

ψ = 1[− 1
2
,0) + 1[0, 1

2
).
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In this case, we obtain the non–normalized wavelet transform

a
1
p Wψ

f (b, a) = a−
1
p

2

πγ
sin2(

πγa

2
) cos(2π(γb + θ)),

b ∈ R, a ∈ R+. A segment of a
1
p Wψ

f (b, a) for θ = 0 and γ = 1 is shown in Figure
??.

0
1

2
3

4
5

0

2

4

6

8

10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

TIME
SCALE

Figure 3.1. Non–normalized Haar wavelet transform of a sine function.

Figure ?? illustrates the cause for periodicity in time, based on our example
where f is a simple sine function and ψ is the centered Haar wavelet. For a
fixed scale, moving the wavelet by a full period across time, does not change the
innerproduct

〈f, ψ(
· − b

a
)〉 = a

1
p Wψ

f (b, a).

Figure ?? illustrates the cancellations leading to periodicity in scale in this
example. In general, these are due to the fact that

∑
ci = 0.

Proposition ?? implies that if the signal s has the particular form s(t) =
Af(ct) for constants A and c, then the relative maxima of a1/pWψ

s (b, a) form a
lattice in time–scale space. The horizontal (time) distance between two neigh-
boring vertices of the lattice is 1/c, and the vertical (scale) distance between two
neighboring vertices is M/c.
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Figure 3.2. Periodicity in time.
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Figure 3.3. Periodicity in scale is caused by cancellations in the continuous
wavelet transform.

This regularity displays redundancy in the following way: Each rectangle of
size 1/c×M/c in the waveletgram contains all the information in the waveletgram.

Additional structure of ψ can force additional features upon the wavelet trans-
form of periodic functions, as can be seen in the following proposition:
Proposition 3.4. Let f ∈ L1(TT ), and let ψ be a piecewise constant wavelet of
degree M .
a. Suppose ψ is even, i.e. ψ(−t) = ψ(t) for t ∈ R. Then

a
1
p Wψ

f (b, a) =

∫

R

f(t)ψ(
t− b

a
) dt = −(MT − a)

1
p Wψ

f (b,MT − a)

for 0 < a < MT .
b. Suppose ψ is odd, i.e. −ψ(−t) = ψ(t) for t ∈ R. Then

a
1
p Wψ

f (b, a) = (MT − a)
1
p Wψ

f (b, MT − a)

for 0 < a < MT .
Proof. a. Since ψ is a piecewise constant wavelet of degree M and since ψ

is even, there exist si ∈ R such that ψ|[s−(i+1),s−i) = ψ|[si,si+1) = ci, i ∈ Z and
ci ∈ C, and s−i = −si for i ∈ Z.
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We compute

(MT − a)1/p Wψ
f (b,MT − a) + a1/pWψ

f (b, a)

=

∫

R

f(t)ψ(
t− b

MT − a
) dt +

∫

R

f(t)ψ(
t− b

a
) dt

=
∑
i≥0

ci(

∫ (MT−a)si+1+b

(MT−a)si+b

f(t) dt +

∫ (MT−a)s−i+b

(MT−a)s−(i+1)+b

f(t) dt

+

∫ asi+1+b

asi+b

f(t) dt +

∫ as−i+b

as−(i+1)+b

f(t) dt)

=
∑
i≥0

ci(

∫ MTsi+1−asi+1+b

MTsi−asi+b

f(t) dt +

∫ −MTsi+asi+b

−MTsi+1+asi+1+b

f(t) dt

+

∫ asi+1+b

asi+b

f(t) dt +

∫ −asi+b

−asi+1+b

f(t) dt)

=
∑
i≥0

ci(

∫ −asi+1+b+MT (si+1−si)

−asi+b

f(t) dt +

∫ asi+b+MT (si+1−si)

asi+1+b

f(t) dt

+

∫ asi+1+b

asi+b

f(t) dt +

∫ −asi+b

−asi+1+b

f(t) dt)

=
∑
i≥0

ci(

∫ −asi+1+b+MT (si+1−si)

−asi+1+b

f(t) dt +

∫ asi+b+MT (si+1−si)

asi+b

f(t) dt)

=
∑
i≥0

ci(

∫ MT (si+1−si)

0

f(t) dt +

∫ MT (si+1−si)

0

f(t) dt)

=
∑
i≥0

ci2M(si+1 − si)

∫ T

0

f(t) dt

= M

∫

R

ψ(t) dt

∫ T

0

f(t) dt

= 0.

b. Since ψ is odd, there exist si ∈ R such that −ψ|[s−(i+1),s−i) = ψ|[si,si+1) = ci,
i ∈ Z and ci ∈ C. and s−i = −si for i ≥ 0.
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We compute

(MT − a)1/p Wψ
f (b,MT − a)− a1/pWψ

f (b, a)

=

∫

R

f(t)ψ(
t− b

MT − a
) dt−

∫

R

f(t)ψ(
t− b

a
) dt

=
∑
i≥0

ci(

∫ (MT−a)si+1+b

(MT−a)si+b

f(t) dt−
∫ (MT−a)s−i+b

(MT−a)s−(i+1)+b

f(t) dt

−
∫ asi+1+b

asi+b

f(t) dt +

∫ as−i+b

as−(i+1)+b

f(t) dt)

=
∑
i≥0

ci(

∫ MTsi+1−asi+1+b

MTsi−asi+b

f(t) dt−
∫ −MTsi+asi+b

−MTsi+1+asi+1+b

f(t) dt

−
∫ asi+1+b

asi+b

f(t) dt +

∫ −asi+b

−asi+1+b

f(t) dt)

=
∑
i≥0

ci(

∫ −asi+1+b+MT (si+1−si)

−asi+b

f(t) dt−
∫ asi+b+MT (si+1−si)

asi+1+b

f(t) dt

−
∫ asi+1+b

asi+b

f(t) dt +

∫ −asi+b

−asi+1+b

f(t) dt)

=
∑
i≥0

ci(

∫ −asi+1+b+MT (si+1−si)

−asi+1+b

f(t) dt−
∫ asi+b+MT (si+1−si)

asi+b

f(t) dt)

=
∑
i≥0

ci(

∫ MT (si+1−si)

0

f(t) dt−
∫ MT (si+1−si)

0

f(t) dt)

= 0.

Note that in part b we did not use the fact that
∫
R

ψ(t) dt = 0 explicitly. Never-
theless,

∫
R

ψ(t) dt = 0 since ψ is odd. ¤
Can we use these observations to detect occurrence and period of periodic

components in a signal? For example, can we develop a method which detects
the bi–periodic structure in waveletgrams, and might these methods have an
advantage over simpler methods applied directly to a periodic signal?

We shall present one approach based on Proposition ?? to detect periodic
components in signals in Chapter ?? and Chapter ??. There, we shall attempt
to detect lattice patterns of relative maxima in waveletgrams and to measure
the distance between those points to disclose the periodic behavior of the signal.
Averaging techniques should then reduce the effect of noise in the case s(t) =
Af(ct) + N(t).

We also have some flexibility at hand. In fact, the wavelet transform of a
fixed periodic signal can be manipulated by choosing a specific piecewise constant
wavelet intelligently. One way of doing so is illustrated in Chapter ??.
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Chapter 4

Constructing Optimal Piecewise Constant

Wavelets

We shall construct piecewise constant wavelets to detect a specific periodic func-
tion f in a noisy signal s(t) = Af(ct) + N(t), tıI ⊂ R. An optimal piecewise
constant wavelet is chosen such that we achieve good readability of the wavelet-
gram Wψ

f .

To apply averaging methods to detect bi–periodic behavior in Wψ
s (Chapter

??), we want Wψ
f to be well localized. This will result in a lattice pattern of

relative maxima in time–scale space. For a given periodic signal f , we shall show
the existence of an optimal piecewise constant wavelet, which guarantees these
relative maxima to be as large as possible.

4.1 Existence of Optimal Piecewise Constant

Wavelets

Before being more precise with respect to the term optimal piecewise constant
wavelet, we need to introduce certain restrictions.

We begin by letting M=1 and by fixing N ∈ N. We consider piecewise
constant wavelets ψc with compact support of the form

ψc|[i,i+1) = ci for i = 0, . . . , N − 1, c = (c0, c1, . . . , cN−1) ∈ CN . (4.1)

Additionally, we require

0 =

∫

R

ψc(t) dt =
N−1∑
i=0

ci, (4.2)

and we normalize ψc so that

‖ψc‖L2(R) = ‖c‖l2(CN ) = 1. (4.3)

11



Equation (??) allows us to achieve the periodicity properties asserted in
Proposition ??. Note that (??) is equivalent to the condition that

c ∈ H = {x ∈ CN :
N−1∑
i=0

xi = 〈x, (1, 1, . . . , 1, 1)〉 = 0}.

H is an N − 1 dimensional subspace, i.e., a hyperplane. Equation (??) is a
standard normalization constraint in constructing wavelets. For ψc it can be
expressed as

c ∈ S2N−1 = {x ∈ CN : ‖x‖l2(CN ) = 1}.
We shall design a wavelet which has a clear single peak in the (0, T ] ×

(0,MT ] = (0, T ] × (0, T ] cell of the waveletgram. The following theorem shows
how to achieve a maximal peak.
Theorem 4.1. Let p > 1 and f ∈ L∞(R), or p ≥ 1, f ∈ L1(TT ), and each
x ∈ R is a Lebesque point of f . Let N ∈ N.
a. There exist (b0, a0) ∈ R×R+ such that

a
− 1

p

0 ‖PH(kb0,a0)‖l2(CN ) = max
(b,a)∈R×R+

a−
1
p ‖PH(kb,a)‖l2(CN )

where kb,a = (kb,a,0, . . . kb,a,N−1) ∈ CN is defined by

kb,a,i =

∫ (i+1)a+b

ia+b

f(t) dt

and PH is the orthogonal projection of CN onto the hyperplane H.
b. For this (b0, a0) we set

c0 =
PH(kb0,a0)

‖PH(kb0,a0)‖l2(CN )

.

The piecewise constant wavelet ψc0 satisfies (??),(??), and (??), and

|Wψc0

f (b0, a0)| ≥ |Wψc

f (b, a)| (4.4)

for all (b, a) ∈ R×R+ and all ψc satisfying (??),(??),(??).
Before proving Theorem ??, we shall recall some elementary facts concerning

orthogonal projections of finite dimensional vector spaces and provide a useful
lemma.

Suppose U is a subspace of the finite dimensional vector space V . For every
vector v ∈ V there are unique vectors u ∈ U and w ∈ U⊥ = {v ∈ V : 〈u, v〉 =
0 for all u ∈ U} such that v = u + w. The orthogonal projection PU on V is
defined by PU(v) = u, where u is chosen as above.
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Let {e1, e2, . . . , el} be an orthonormal basis of U and {e1, . . . , el, el+1, . . . , en}
be an orthonormal basis of V. For v ∈ V we have v =

∑n
i=1〈v, ei〉ei and, by

definition and the orthogonality of {e1, . . . , en},

PU(v) =
l∑

i=1

〈v, ei〉ei = v −
n∑

i=l+1

〈v, ei〉ei.

Lemma 4.2. Let U be an l-dimensional subspace of CN . Let v ∈ CN and let PU

be the orthogonal projection of CN onto U. Then

|〈u, v〉| ≤ 〈 PU(v)

‖PU(v)‖l2(CN )

, v〉

for all u ∈ U ∩ S2N−1.
Proof. Using the Cauchy–Schwartz inequality, we obtain for all u ∈ U ∩S2N−1

|〈u, v〉| = |〈u, PU(v)〉|
≤ ‖u‖l2(CN ) ‖PU(v)‖l2(CN )

= ‖PU(v)‖l2(CN )

= 〈 PU(v)

‖PU(v)‖l2(CN )

, PU(v)〉

= 〈 PU(v)

‖PU(v)‖l2(CN )

, v〉.

¤
Proof of Theorem ??.

STEP 1. Let us first fix (b, a) ∈ (0, T ]× (0, T ]. We want to construct cb,a ∈ CN

such that

|Wψ
cb,a

f (b, a)| ≥ |Wψc

f (b, a)| (4.5)

for all ψc satisfying conditions (??),(??),(??). After finding cb,a we shall choose
the ”optimal” (b0, a0) and let c = cb0,a0 .

Note that for c ∈ CN

Wψc

f (b, a) = a−
1
p

N−1∑
i=0

ci

∫ (i+1)a+b

ia+b

f(t) dt.

Setting

kb,a,i =

∫ (i+1)a+b

ia+b

f(t) dt

13



and kb,a = (kb,a,0, . . . kb,a,N−1), we have

Wψc

f (b, a) = a−
1
p

N−1∑
i=0

cikb,a,i = a−
1
p 〈c, kb,a〉. (4.6)

Note that conditions (??) and (??) on ψc are equivalent to the following restriction
on c:

c ∈ {x ∈ CN :
∑

xi = 0, ‖x‖l2(CN ) = 1, } = H ∩ S2N−1.

Given the vector kb,a we can optimize (??) by projecting kb,a onto the hyperplane
H and normalizing the result (Lemma ??), i.e., letting PH : CN −→ CN be the
orthogonal projection of CN onto H, we obtain as best choice of cb,a,

cb,a =
PH(kb,a)

‖PH(kb,a)‖l2(CN )

,

and ψcb,a fulfills (??). ¥
Explicitly, we have

PH(kb,a) = kb,a − 〈kb,a, N
− 1

2 (1, 1, . . . , 1)〉N− 1
2 (1, 1, . . . , 1)

= kb,a − 1

N

N−1∑
i=0

kb,a,i (1, 1, . . . , 1)

= kb,a − 1

N

N−1∑
i=0

∫ (i+1)a+b

ia+b

f(t) dt (1, 1, . . . , 1)

= kb,a − 1

N

∫ Na+b

b

f(t) dt (1, 1, . . . , 1),

and therefore

cb,a,i =
kb,a,i − 1

N

∫ Na+b

b
f(t) dt

‖PH(kb,a)‖l2(CN )

,

i = 0, . . . , N − 1 are the optimal choices of values for the piecewise constant
wavelet in the case that b and a are fixed.
STEP 2. It remains to show the existence of (b0, a0) such that

|Wψ
cb0,a0

f (b0, a0)| ≥ |Wψ
cb,a

f (b, a)| (4.7)

for all (b, a) ∈ R ×R+ where cb0,a0 and cb,a are chosen as above. This, together
with (??), will conclude the proof, see (??).
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Since cb,a ∈ H, we have

|Wψ
cb,a

f (b, a)| = |a− 1
p 〈cb,a, kb,a〉|

= a−
1
p |〈cb,a, PH(kb,a)〉

= a−
1
p |〈 PH(kb,a)

‖PH(kb,a)‖l2(CN )

, PH(kb,a)〉|

= a−
1
p ‖PH(kb,a)‖l2(CN ) ,

and hence, we need to show the existence of (b0, a0) such that

a
− 1

p

0 ‖PH(kb0,a0)‖l2(CN ) ≥ a−
1
p ‖PH(kb,a)‖l2(CN )

for all (b, a) ∈ R×R+.
To see this, first note that ‖PH(kb,a)‖l2(CN ) is T periodic in b. This is the case

since kb,a is T periodic in b, i.e., for i = 1, . . . , n we have

kb+T,a,i =

∫ (i+1)a+b+T

ia+b+T

f(t) dt =

∫ (i+1)a+b

ia+b

f(u− T )du =

∫ (i+1)a+b

ia+b

f(u)du

= kb,a,i.
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‖PH(kb,a)‖l2(CN ) is also T periodic in a, in fact, we compute

‖PH(kb,a+T )‖2
l2(CN ) =

N−1∑
i=0

(

∫ (i+1)(a+T )+b

i(a+T )+b

f(t) dt− 1

N

∫ N(a+T )+b

b

f(t) dt)2

=
N−1∑
i=0

(

∫ (i+1)a+iT+T+b

ia+iT+b

f(t) dt− 1

N

∫ Na+b

b

f(t) dt

− 1

N

∫ Na+b+NT

Na+b

f(t) dt)2

=
N−1∑
i=0

(

∫ (i+1)a+T+b

ia+b

f(t) dt− 1

N

∫ Na+b

b

f(t) dt

− 1

N
N

∫ T

0

f(t) dt)2

=
N−1∑
i=0

(

∫ (i+1)a+b

ia+b

f(t) dt +

∫ T

0

f(t) dt

− 1

N

∫ Na+b

b

f(t) dt−
∫ T

0

f(t) dt)2

=
N−1∑
i=0

(

∫ (i+1)a+b

ia+b

f(t) dt− 1

N

∫ Na+b

b

f(t) dt)2

= ‖PH(kb,a)‖2
l2(CN ) .

Since a−
1
p is monotonely decreasing for a → ∞ and by the periodicity of

‖PH(kb,a)‖l2(CN ) in time and scale, it suffices to show the existence of (b0, a0) ∈
[0, T ]× (0, T ] such that

a
− 1

p

0 ‖PH(kb0,a0)‖l2(CN ) ≥ a−
1
p ‖PH(kb,a)‖l2(CN )

for all (b, a) ∈ [0, T ]× (0, T ].

It is easy to see that a−
1
p ‖PH(kb,a)‖l2(CN ) is continuous on [0, T ]× (0, T ] and

we shall show that, if p > 1 and f ∈ L∞(R), or p ≥ 1, f ∈ L1(TT ), and each

x ∈ R is a Lebesque point of f , a−
1
p ‖PH(kb,a)‖l2(CN ) has a continuous extension

to [0, T ]× [0, T ] and therefore it obtains a maximum on [0, T ]× [0, T ]. We shall
further show that this maximum is obtained in [0, T ] × (0, T ]. In fact, we shall
verify that for all b ∈ R

lim
a→0+

a−
1
p ‖PH(kb,a)‖l2(CN ) = 0. (4.8)

To see this, we need to consider two cases. Recall that the ith entry in the vector

PH(kb,a) is given by a−
1
p (kb,a,i − 1

N

∫ Na+b

b
f(t) dt).
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CASE 1. Let p > 1 and f ∈ L∞(R). We compute for b ∈ R

0 ≤ lim
a→0+

|a− 1
p (kb,a,i − 1

N

∫ Na+b

b

f(t) dt)|

= lim
a→0+

a1− 1
p |1

a

∫ (i+1)a+b

ia+b

f(t) dt− 1

aN

∫ Na+b

b

f(t) dt|

≤ lim
a→0+

a1− 1
p (1 + N) ‖f‖L∞(R)

= 0.

CASE 2. Let p ≥ 1 and let f ∈ L1(TT ), such that each x ∈ R is a Lebesque
point of f .

For p = 1 and for all b ∈ R we note that

lim
a→0+

a−1(kb,a,i − 1

N

∫ Na+b

b

f(t) dt)

= lim
a→0+

a−1(

∫ (i+1)a+b

ia+b

f(t) dt− 1

N

∫ Na+b

b

f(t) dt)

= lim
a→0+

a−1(

∫ (i+1)a+b

b

f(t) dt

−
∫ ia+b

b

f(t) dt)− 1

N

∫ Na+b

b

f(t) dt)

= (i + 1) lim
a→0+

1

(i + 1)a

∫ (i+1)a+b

b

f(t) dt

−i lim
a→0+

1

ia

∫ ia+b

b

f(t) dt− lim
a→0+

1

N

∫ Na+b

b

f(t) dt

= (i + 1) lim
h→0+

1

h

∫ b+h

b

f(t) dt

−i lim
h→0+

1

h

∫ b+h

b

f(t) dt− lim
h→0+

1

h

∫ b+h

b

f(t) dt

= 0.

Using the addition property of limits in the third step of the previous cal-
culation is a priori valid for almost every b. This is the case since f ∈ L1(TT )

and therefore the limit limh→0+
1
h

∫ b+h

b
f(t) dt exist for all Lebesque points b ∈ R.

Therefore, by hypothesis, the limit exists everywhere.

For p > 1 we have a−
1
p = a−1a1− 1

p . Since a1− 1
p → 0 as a → 0+ we have

lim
a→0+

a1− 1
p |a−1(kb,a,i − 1

N

∫ Na+b

b

f(t) dt)| = 0.
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In both cases, the componentwise convergence of lima→0+ a−1PH(kb,a), to-
gether with the continuity of norms and the fact that‖av‖ = |a| ‖v‖, gives (??).

Let (b, a) ∈ R×R+ and let ψc satisfy (??),(??),(??), using (??) and (??) we
obtain

|Wψ
cb0,a0

f (b0, a0)| = a
− 1

p

0 ‖PH(kb0,a0)‖l2(CN )

≥ a−
1
p ‖PH(kb,a)‖l2(CN )

= |Wψ
cb,a

f (b, a)|
≥ |Wψc

f (b, a)|. (4.9)

¥
¤

Our result leads to the following construction algorithm for optimal piecewise
constant wavelets. First find b and a such that

a−
1
p ‖PH(kb,a)‖2

l2(CN ) = a−
1
p

N−1∑
i=0

(kb,a,i − 1

N

∫ Na+b

b

f(t) dt)2

= a−
1
p

N−1∑
i=0

(

∫ (i+1)a+b

ia+b

f(t) dt− 1

N

∫ Na+b

b

f(t) dt)2

is maximal. Then let

ci = cb,a,i =
kb,a,i − 1

N

∑N−1
i=0 kb,a,i

‖PH(kb,a)‖l2(CN )

=

∫ (i+1)a+b

ia+b
f(t) dt− 1

N

∫ Na+b

b
f(t) dt

‖PH(kb,a)‖l2(CN )

.

If a0 = T/N , ψ
cb,T/N

b,T/N fills out exactly one period of f , i.e., supp ψb,a = ”supp f”.
In this special case we have

1

N

∫ NT/N+b

b

f(t) dt =
1

N

∫ T+b

b

f(t) dt =
1

N

∫ T

0

f(t) dt

which is independent of b.
Note that the optimization process depends on the choice of p.

4.2 Examples

Example ?? and Example ?? illustrate how to apply Theorem ??.
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Example 4.3. Figure ??.A shows the 1–periodic signal sin(2πx) + sin(4πx) +
sin(6πx) + sin(8πx) + sin(10πx) + sin(12πx), sampled at 20 samples per unit.
Fixing N = 8, we calculate k(b, a) = ‖PH(kb,a)‖l2(CN ) for this signal. The result
is displayed in Figure ??.B.

Figure 4.1. A: sin(2πx)+sin(4πx)+sin(6πx)+sin(8πx)+sin(10πx)+sin(12πx),
sampled at 20 samples per unit. B: k(b, a) = ‖PH(kb,a)‖l2(CN ) for N = 8.

Figure ?? illustrates the dependence of the piecewise constant wavelet on the
choice of the normalization constant p. For different p, but the same signal f , we

obtain different maxima in a
1
p ‖PH(kb,a)‖l2(CN ), whose location indicate the opti-

mal piecewise constant wavelet for the Lp – normalized wavelet transformations.
Figure ??.A and Figure ??.B display the optimal piecewise constant wavelets for
p = 1 to p = 2.4. For p > 2.4 we continue to obtain the same wavelet as for
p = 2.4. The optimal piecewise constant wavelets for p = 1, p = 1.75, p = 2, and
p = 2.2 are shown separately below Figure ??.A and ??.B.
Example 4.4. Theorem ?? is applied to the epileptic seizure problem in Figure
??. After simulating an expected period, in our case the seizure period of an
individual patient, we define the periodic function F associated with the seizure
period. F is sampled at 130 samples per period for subsequent calculations with
the projection PH . We choose N = 5 and calculate k(b, a) = ‖PH(kb,a)‖l2(CN ).
For the normalization constants p = 1, p = 1.35, and p = 2, we obtain distinct
optimal piecewise constant wavelets.
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Figure 4.2. Optimal piecewise constant wavelets for sin(2πx) + sin(4πx) +
sin(6πx) + sin(8πx) + sin(10πx) + sin(12πx), p = 1 to p = 2.4, N = 8.
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Figure 4.3. Construction of the optimal piecewise constant wavelet in the epilep-
tic seizure case.
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Chapter 5

Optimal Piecewise Constant Wavelets with

Additional Properties

In some applications, the signal might have features we want to bear in mind
when constructing ”optimal” piecewise constant wavelets.
Problem 5.1. Suppose, the periodic signal is symmetric or almost ”symmetric”
with respect to a reference point t0 ∈ [0, T ] (”odd signal”) or symmetric with
respect to a reference axis t = t0 (”even signal”). We would like the constructed
wavelet to have the corresponding symmetric form, i.e., we would like to construct
an optimal even piecewise constant wavelet or an optimal odd piecewise constant
wavelet in order to capitalize on Proposition ??.
Problem 5.2. We would like the waveletgram obtained through the constructed
piecewise constant wavelet to be resistant to some specific background behavior
in the signal.
Problem 5.3. Our signal might carry two periodic components which we want
to analyze separately. Here, the goal is to construct a pair of piecewise constant
wavelets which are sensitive in detecting one of the components and overlooking
the other.
Problem 5.4. One period of the signal might have parts where it is slowly
varying and other parts with high variance. The associated wavelet should focus
toward the fast varying part and allow many different values there, while in other
parts a few values might be sufficient.

The question of whether we can construct piecewise constant wavelets which
take into account a specific feature of the signal has to be answered individually.
Nevertheless, a small contribution to the general case can be made.

Theorem ?? generalizes Theorem ?? and presents a useful tool in solving
problems as stated above. Proposition ?? and Proposition ?? use this theorem to
give useful solution to problems of the kind described in Problem ?? and Problem
??, respectively. They further illustrate how solutions to some problems can be
found. The method is based on Lemma ?? and the fact that the optimization
process in Theorem ?? can be applied if we replace H by any subspace U of CN

with U ⊂ H.
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Theorem 5.5. Let p > 1 and f ∈ L∞(R), or p ≥ 1, f ∈ L1(TT ), and each
x ∈ R is a Lebesque point of f . Let N ∈ N and let kb,a and H be defined as in
Theorem ??. If U is a subspace of CN , then there exists (b0, a0) ∈ R×R+ such
that

a
− 1

p

0 ‖PU∩H(kb0,a0)‖l2(CN ) = max
(b,a)∈R×R+

a−
1
p ‖PU∩H(kb,a)‖l2(CN ) ,

where PU∩H is the orthogonal projection of CN onto the subspace U ∩ H. By
setting

c0 =
PU∩H(kb0,a0)

‖PU∩H(kb0,a0)‖l2(CN )

,

we obtain

|Wψc0

f (b0, a0)| ≥ |Wψc

f (b, a)|

for all (b, a) ∈ R×R+, c ∈ U , and ψc satisfying (??),(??),(??).
Proof. The first steps of the proof of Theorem ?? can easily be generalized to

the setting of Theorem ?? by replacing H by U ∩H.
It remains to show that the maximum exists. For this, note that we proved

that kb,a is T periodic in b. This implies that PU∩H(kb,a) is T periodic in b.
Essentially, we also showed that PH(kb,a) is T periodic in a. By the definition of
orthogonal projections we have

PU∩H(kb,a) = PU(PH(kb,a))

and therefore PU∩H(kb,a) is T periodic in a.
We can conclude the existence of the maximum by continuing to follow the

proof of Theorem ?? and by using the fact that

‖PU∩H(kb,a)‖l2(CN ) ≤ ‖PH(kb,a)‖l2(CN ) .

¤
Solving a given problem can be approached by defining the subspace U such

that c ∈ U if and only if ψc has the desired properties. Of course, such a subspace
might not exist.

The problem described in Problem ?? can be quantified and resolved in the
following way.
Proposition 5.6.
a. For k = 1, . . . , N , define vk ∈ C2N by vi

k = δi,k − δ2N−i+1,k for i = 1, . . . , 2N .
Let U e = span {v1, . . . , vN}⊥. Then c ∈ U if and only if ψc is even.
b. For k = 1, . . . , N , define vk ∈ C2N by vi

k = δi,k + δ2N−i+1,k for i = 1, . . . , 2N .
Let U o = span {v1, . . . , vN}⊥. Then c ∈ U if and only if ψc is odd.
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Proof. We shall prove part a. The proof of part b is similar.
Clearly, c ∈ U e if and only if c⊥vk for k = 1, . . . , N , i.e.,

0 = 〈c, vk〉 = ck − c2N−k+1 for k = 1, . . . , N

This holds if and only if ck = c2N−k+1, that is, if and only if ψc is even. ¤
Let us discuss further possible features of piecewise constant wavelets. The

property c ∈ H implies that if f is a constant function, then Wψc

f (b, a) = 0 for all

(b, a) ∈ R×R+. The tophat wavelet ψtop is defined by top = 1√
6
(1,−2, 1) and has

the property that if f is a linear function, Wψtop

f (b, a) = 0 for all (b, a) ∈ R×R+.
The Haar wavelet does not posses this property. We are led to the question of
whether it is possible to construct a subspace U ⊂ CN such that for any c ∈ U
we have the property that Wψc

f (b, a) = 0 for all (b, a) ∈ R × R+ and for any
polynomial f of degree less or equal some given n. The answer to this question
is affirmative as the following proposition shows.
Proposition 5.7. For n ≤ N − 2, define vk = (1k, 2k, 3k, . . . , Nk) ∈ CN for
k = 0, . . . , n and Un = span {v0, . . . , vn}⊥. Then c ∈ Un if and only if ψc has
the property that for any polynomial f of degree less or equal n Wψc

f (b, a) = 0 for
(b, a) ∈ R×R+.

Proof. For n ≤ N − 2, let

Mn = {c ∈ CN : Wψc

f ≡ 0 for any polynomial f with deg(f) ≤ n}.

We need to show that Mn = Un for n ≤ N − 2. Note that Mn is a vector space
for n ≤ N − 2. In fact, if c, d ∈ Mn, and λ ∈ C, then

Wψλc+d

f (b, a) = a−
1
p

∫
ψλc+d(

t− b

a
)f(t) dt

= a−
1
p

N−1∑
i=0

(λci + di)

∫ (i+1)a+b

ia+b

f(t) dt

= λ a−
1
p

N−1∑
i=0

ci

∫ (i+1)a+b

ia+b

f(t) dt + a−
1
p

N−1∑
i=0

di

∫ (i+1)a+b

ia+b

f(t) dt

= λWψc

f (b, a) + Wψd

f (b, a)

= 0 + 0 = 0.

Clearly, by definition, Mn ⊂ Mn−1 for 1 ≤ n ≤ N − 2, and Un ⊂ Un−1 for
1 ≤ n ≤ N−2; in fact, span{v0, . . . , vn−1} ⊂ span{v0, . . . , vn−1, vn}, and therefore

Un = span{v0, . . . , vn−1, vn}⊥ ⊂ span{v0, . . . , vn−1}⊥ = Un−1.
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Also, dim Un + 1 = dim Un−1 for 1 ≤ n ≤ N − 2, since {v0, . . . , vk} is a set of
k + 1 linear independent vectors, and therefore

dim Un = N − dim(span{v0, . . . , vn−1, vn}) = N − (n + 1)

= N − n− 1 = N − (n− 1 + 1)− 1

= N − dim(span{v0, . . . , vn−1})− 1

= dim Un−1 − 1.

We shall prove that Mn = Un for 1 ≤ n ≤ N − 2 by induction.
For n = 0, we have U0 = H = M0 and the result holds. Let us assume the

result is true for n− 1, i.e., Mn−1 = Un−1. By the induction hypothesis and the
definition of Mn, we have Mn ⊂ Mn−1 = Un−1.

To show Mn = Un, it suffices to prove

Un ⊂ Mn (5.1)

and

Un−1 \Mn 6= ∅. (5.2)

In fact, assuming (??) and (??), we have Un ⊂ Mn ( Un−1, and, since dim Un +
1 = dim Un−1 and Mn is a vector space, we obtain Un = Mn.

To show (??), i.e., Un ⊂ Mn, let us first calculate Wψc

f for f(t) = tn and

c ∈ CN :
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Wψc

f (b, a) = a−
1
p

N−1∑
i=0

ci

∫ (i+1)a+b

ia+b

tn dt

= a−
1
p

1

n + 1

N−1∑
i=0

ci((ia + b + a)n+1 − (ia + b)n+1)

= a−
1
p

1

n + 1

N−1∑
i=0

ci(
n+1∑

k=0

(
n + 1

k

)
(ia + b)n+1−kak − (ia + b)n+1)

= a−
1
p

1

n + 1

N−1∑
i=0

ci

n∑

k=0

(
n + 1

k

)
(ia + b)kan+1−k

= a−
1
p

1

n + 1

N−1∑
i=0

ci

n∑

k=0

(
n + 1

k

) k∑

l=0

(
k

l

)
(ia)lbk−lan+1−k

= a−
1
p

1

n + 1

N−1∑
i=0

n∑

k=0

k∑

l=0

(
n + 1

k

)(
k

l

)
ci(ia)lbk−lan+1−k

= a−
1
p

1

n + 1

n∑

k=0

k∑

l=0

(
n + 1

k

)(
k

l

)
bk−lan+1−kal

N−1∑
i=0

cii
l

= a−
1
p

1

n + 1

n∑

k=0

k∑

l=0

(
n + 1

k

)(
k

l

)
bk−lan+1−k+l〈c, vl〉

= a−
1
p

1

n + 1

n∑

l=0

n∑

k=l

(
n + 1

k

)(
k

l

)
bk−lan+1−k+l〈c, vl〉

= a−
1
p

1

n + 1

n∑

l=0

Sl(b, a)〈c, vl〉,

where

Sl(b, a) =
n∑

k=l

(
n + 1

k

)(
k

l

)
bk−lan+1−k+l

for l = 0, . . . , n.
Now, let c ∈ Un and let f be a polynomial with deg f ≤ n. Then f(t) =

g(t) + λtn, where g is a polynomial with deg g ≤ n− 1 and λ ∈ C.
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Since Un ⊂ Un−1 implies c ∈ Un−1, we compute

Wψc

f (b, a) = a−
1
p

∫
ψc(

t− b

a
)f(t) dt

= a−
1
p

∫
ψc(

t− b

a
)(g(t) + λtn) dt

= a−
1
p

∫
ψc(

t− b

a
)g(t) dt +

∫
ψc(

t− b

a
)λtn) dt

= Wψc

g (b, a) + 0 = 0,

and therefore Un ⊂ Mn, i.e., (??) is obtained.
It remains to prove (??), i.e., to show that

Un−1 \Mn 6= ∅.

In fact, let c in Un−1 − Un 6= ∅. For f(t) = tn we have

Sl(0, 1) =
n∑

k=l

(
n + 1

k

)(
k

l

)
0k−l1n+1−k+l

=

(
n + 1

n

)(
n

l

)
1

= (n + 1)

(
n

l

)

for l = 0, . . . , n, and, therefore,

Wψc

f (0, 1) = 1−
1
p

1

n + 1

n∑

l=0

Sl(0, 1)〈c, vl〉

=
1

n + 1

n∑

l=0

(n + 1)

(
n

l

)
〈c, vl〉

=

(
n

n

)
〈c, vn〉

= 〈c, vn〉
6= 0.

This holds since c ∈ Un−1, and therefore 〈c, vl〉 = 0 for l = 0, . . . , n − 1, and
since c /∈ Un, and therefore 〈c, vn〉 6= 0. This proves that c /∈ Mn, and therefore
c ∈ Un−1 −Mn. ¤
Example 5.8. For N = 3, u± = ± 1√

6
(1,−2, 1) define the only normalized real

valued piecewise constant wavelet with 2 vanishing moments. Earlier, we referred
to u+ as tophat wavelet.
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Example 5.9. Let us fix N = 5 and let us construct a piecewise constant wavelet
ψc such that Wψc

f ≡ 0 for any f being a polynomial of degree less or equal 3.
To solve this, we need to find an orthonormal basis of

U3 = span{(1, 1, 1, 1, 1), (1, 2, 3, 4, 5), (1, 4, 9, 16, 25), (1, 8, 27, 64, 125)}⊥.

Clearly dim U3 = 1, therefore we are looking for a single vector u, ‖u‖l2(CN ) = 1

such that u⊥w for all w ∈ U3⊥.
For this, using Gram–Schmidt orthogonalization, we construct an orthonor-

mal basis B of W . We obtain

B = { 1√
5
(1, 1, 1, 1, 1),

1√
10

(−2,−1, 0, 1, 2),
1√
14

(2,−1,−2,−1, 2),

1√
10

(−1, 2, 0,−2, 1)}.

Again, using Gram-Schmidt orthogonalization to complete B to a orthonor-
mal basis B′ of R5 we get

B′ = { 1√
5
(1, 1, 1, 1, 1),

1√
10

(−2,−1, 0, 1, 2),
1√
14

(2,−1,−2,−1, 2),

1√
10

(−1, 2, 0,−2, 1),
1√
70

(1,−4, 6,−4, 1)}.

This implies u = 1√
70

(1,−4, 6,−4, 1).
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Chapter 6

Periodicity Detection

In this chapter, we shall develop an approach to detect lattice patterns of rela-
tive maxima in periodic waveletgrams. If this pattern is the result of periodic
components in the analyzed signal, it can reveal occurrence and period of these
components. Our approach is based on averaging methods.

We shall consider both, non–normalized as well as Lp(R)-normalized, 1 ≤ p <
∞, versions of the continuous wavelet transformation, i.e.,

Wψ
f (b, a) = a−

1
p

∫

R

ψc(
t− b

a
)f(t) dt,

(b, a) ∈ R×R+, in the normalized case.
In Section ??, we shall discuss methods arising for general piecewise constant

wavelets (Proposition ??). In Section ??, we shall show how to use Proposition
?? if the wavelet we are using is even or odd. Section ?? is devoted examples.

6.1 Using a Piecewise Constant Wavelet

Let f be a T0–periodic function, and let ψc be an even piecewise constant wavelet
of degree one, i.e., ψc|[i,i+1) = ci for i = 0, . . . , N − 1, c = (c0, c1, . . . , cN−1) ∈ CN ,
N fixed.

Proposition ?? implies that the waveletgram of the non–normalized wavelet
transform Wf is identical on each cell

[b + iT0, b + (i + 1)T0]× [jMT0, (j + 1)MT0]

for i ∈ Z and j ∈ N0. Figure ?? shows a non–normalized wavelet transform in
topographical form.

6.1.1 Non–normalized Wavelet Transform

If R, Q ∈ N, then the periodicities of the non–normalized wavelet transform
imply that
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Figure 6.1. Time–scale periodicity in topographical form. .

Wψc

f (b, a) =
1

(Q + 1)(2R + 1)

R∑
r=−R

Q∑
q=0

Wψc

f (b, a)

=
1

(Q + 1)(2R + 1)

R∑
r=−R

Q∑
q=0

Wψc

f (b + rT0, a + qT0). (6.1)

Suppose we are given a noisy signal s of the form s(t) = f(t) + N(t) where f
is T0–periodic and N is noise. In order to gain knowledge of the period T0 of f ,
we define the average

UR,Q
s (b, a, T ) =

1

(Q + 1)(2R + 1)

R∑
r=−R

Q∑
q=0

Wψc

s (b + rT, a + qT )

where T ∈ R+, a ∈ (0, T ), and b ∈ [0, T ). Clearly, by Proposition ?? and
Equation (??), we have

UR,Q
f (b, a, T0) = Wψc

f (b, a)

for the periodic signal f . Define

ZR,Q
s (T ) = sup

a∈[0,T ),b∈[0,T )

|UR,Q
s (b, a, T )|.

Therefore,

ZR,Q
f (T0) = sup

a∈[0,T ),b∈[0,T )

|Wψc

f (b, a)|,

which we maximized in Chapter ??. Further, we expect that ZR,Q
f (T ) is ”small”

for T 6= k · T0, k ∈ N and Q and R large.
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Note that for the noisy signal s = f + N , we further expect that

ZR,Q
s (T0) ≈ sup

a,b∈(0,T )

|Wψc

f (b, a)|

and ZR,Q
s (T ) is small if T 6= T0.

6.1.2 Normalized Wavelet Transform

In order to analyze an Lp(R), 1 ≤ p < ∞ normalized wavelet transform,we define

vQ(a, T ) = a
1
p

Q∑
q=0

(a + qT )−
1
p ,

where a, T ∈ R+. We compute

Wψc

f (b, a) = Wψc

f (b, a)
1

vQ(a, T0)
a

1
p

Q∑
q=0

(a + qT0)
− 1

p

=
1

vQ(a, T0)

Q∑
q=0

(a + qT0)
− 1

p a
1
p Wψc

f (b, a)

=
1

vQ(a, T0)

Q∑
q=0

(a + qT0)
− 1

p (a + qT0)
1
p Wψc

f (b, a + qT0)

=
1

vQ(a, T0)

Q∑
q=0

Wψc

f (b, a + qT0)

=
1

vQ(a, T0)

Q∑
q=0

1

2R + 1

R∑
r=−R

Wψc

f (b + rT0, a + qT0)

=
1

vQ(a, T0)(2R + 1)

R∑
r=−R

Q∑
q=0

Wψc

f (b + rT0, a + qT0).

As in the non–normalized case, we use this to define

V R,Q
s (b, a, T ) =

1

vQ(a, T )(2R + 1)

R∑
r=−R

Q∑
q=0

Wψc

s (b + rT, a + qT )

for any signal s, where T ∈ R+, a ∈ (0, T ), and b ∈ [0, T ).
For the T0–periodic signal f we have

V R,Q
f (b, a, T0) = Wψc

f (b, a).
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Thus, defining

ZR,Q
s (T ) = sup

a∈[0,T ),b∈[0,T )

|V R,Q
s (b, a, T )|,

for any signal s, we have

ZR,Q
f (T0) = sup

a∈[0,T ),b∈[0,T )

|Wψc

f (b, a)|.

Note that, in this case, the assertion that ZR,Q
f (T ) is ”small” for T 6= T0 and

Q,R large, is supported by the fact that if a, T ∈ R+, then

lim
Q→∞

vQ(a, T ) = lim
Q→∞

a
1
p

Q∑
q=0

(a + qT )−
1
p

= a
1
p lim

Q→∞

Q∑
q=0

(
1

a + qT
)

1
p

= ∞.

6.2 Using an Even or Odd Piecewise Constant

Wavelet

Let f be a T0 periodic function, and let ψc be either an even piecewise constant
wavelet of degree 1, i.e., ψc|[i,i+1) = ψc|[−i−1,−i) = ci for i = 0, . . . , N − 1, c =
(c0, c1, . . . , cN−1) ∈ CN , or an odd piecewise constant wavelet of degree 1, i.e.,
ψc|[i,i+1) = −ψc|[−i−1,−i) = ci for i = 0, . . . , N − 1, c = (c0, c1, . . . , cN−1) ∈ CN ,
where N is fixed.

Due to Proposition ??, the non–normalized wavelet transform Wψc

f is in both
cases essentially the same, i.e., the same up to a flip and a sign, on the cells

[b + iT0, b + (i + 1)T0]× [jMT0/2, (j + 1)MT0/2]

for i ∈ Z and j ∈ N0. Figure ?? shows the resulting waveletgram.

6.2.1 Non–normalized Wavelet Transform

Now we define the following alternative for averaging:

UR,Q
f (b, a, T ) =

1

2(Q + 1)(2R + 1)

R∑
r=−R

Q∑
q=0

(Wψc

f (b + rT, a + qT )

±Wψc

f (b + rT, T − a + qT )),
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Figure 6.2. Time–scale periodicity for odd or even wavelets in topographical
form.

where T ∈ R+, a ∈ (0, T/2) and b ∈ [0, T ). Here, and in the following, ± denotes
− if ψc is even and + if ψc is odd.

By Proposition ??, we have

UR,Q
f (b, a, T0) =

1

2(Q + 1)(2R + 1)

R∑
r=−R

Q∑
q=0

(Wψc

f (b + rT0, a + qT0)

±Wψc

f (b + rT0, T0 − a + qT0))

=
1

2(Q + 1)(2R + 1)

R∑
r=−R

Q∑
q=0

(Wψc

f (b, a)±Wψc

f (b, T0 − a))

=
1

2(Q + 1)(2R + 1)

R∑
r=−R

Q∑
q=0

(Wψc

f (b, a) + Wψc

f (b, a))

= Wψc

f (b, a)

for any T0 periodic function f .
We precede as before by defining the test statistic

ZR,Q
s (T ) = sup

a∈[0,T/2),b∈[0,T )

|UR,Q
s (b, a, T )|

for any signal s.

6.2.2 Normalized Wavelet Transform

If we are using an Lp(R), 1 ≤ p < ∞ normalized wavelet transform, let us define

vQ(a, T ) = a
1
p

Q∑
q=0

((a + qT )−
1
p + (T − a + qT )−

1
p ), a, T ∈ R+.
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and as before

V R,Q
s (b, a, T ) =

1

vQ(a, T )(2R + 1)

R∑
r=−R

Q∑
q=0

(Wψc

s (b + rT, a + qT )

±Wψc

f (b + rT, T − a + qT ))

with T ∈ R+, a ∈ (0, T ) and b ∈ [0, T ).
For T = T0, we get

V R,Q
s (b, a, T0) =

1

vQ(a, T0)(2R + 1)

R∑
r=−R

Q∑
q=0

(Wψc

s (b + rT0, a + qT0)

±Wψc

f (b + rT0, T0 − a + qT0))

=
1

vQ(a, T0)(2R + 1)

R∑
r=−R

Q∑
q=0

(Wψc

s (b, a + qT0)

±Wψc

f (b, T0 − a + qT0))

=
1

vQ(a, T0)(2R + 1)

R∑
r=−R

Q∑
q=0

((a + qT0)
− 1

p (a + qT0)
1
p Wψc

s (b, a + qT0)

±(T0 − a + qT0)
− 1

p (T0 − a + qT0)
1
p Wψc

f (b, T0 − a + qT0))

=
1

vQ(a, T0)(2R + 1)

R∑
r=−R

Q∑
q=0

((a + qT0)
− 1

p a
1
p Wψc

s (b, a))

(±)(±)(T0 − a + qT0)
− 1

p a
1
p Wψc

f (b, a))

= Wψc

f (b, a)
1

vQ(a, T0)(2R + 1)

R∑
r=−R

a
1
p

Q∑
q=0

((a + qT0)
− 1

p

+(T0 − a + qT0)
− 1

p )

= Wψc

f (b, a)
1

vQ(a, T0)(2R + 1)

R∑
r=−R

vQ(a, T0)

= Wψc

f (b, a).

We can conclude as in Section ??.

6.3 Examples

In Example ??, Example ??, and Example ?? we apply this method to the signals
introduced in Example ?? and Example ??.
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Example 6.1. Figure ??.A shows the original signal sin(2πx) + sin(4πx) +
sin(6πx) + sin(8πx) + sin(10πx) + sin(12πx), and Figure ??.B represents the
absolute value of its Fourier transform. Figure ??.C displays the normalized
(p = 1.75) wavelet transform of this signal, obtained using the optimal piecewise
constant wavelet displayed in Figure ?? (N = 8). ZR,Q

F (T ) is then calculated
for T = 1, . . . , 25 and shown in Figure ??.D. The location of the maximum of Z
implies the occurence of the periodic signal with period length of 20 samples.

0 100 200 300 400 500 600 700 800
−5

0

5
A

B 

0 5 10 15 20 25
0

1

2

3

4

5
D

Period in Samples
Z(T

)

C

Figure 6.3. A: sin(2πx)+sin(4πx)+sin(6πx)+sin(8πx)+sin(10πx)+sin(12πx).
B: Absolute value of its discrete Fourier transform. C: Wavelet transform using
the optimal piecewise constant wavelet obtained for p = 1.75 and N = 8. D:
ZR,Q

F (T ).

This technique can also be applied successfully to synthesized noisy data as
is illustrated in Example ??.
Example 6.2. In this case white noise is added to the signal in Example ??
which is displayed in Figure ??. The same wavelet as in Example ?? is applied.
The location of the maximum of Z is clearly visible in Figure ??.D.
Example 6.3. The seizure signal F constructed in Example ?? and shown in
Figure ?? has a periodicity characterized by its construction using 13 samples per
period. We compute the p = 1.35 normalized wavelet transform of F . ZR,Q

F (T )
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Figure 6.4. A: sin(2πx)+sin(4πx)+sin(6πx)+sin(8πx)+sin(10πx)+sin(12πx)+
white noise. B: Absolute value of its discrete Fourier transform. C: Wavelet
transform using the optimal piecewise constant wavelet obtained for p = 1.75
and N = 8 in Figure ??. D: ZR,Q

F (T ).

is then calculated for T = 1, . . . , 20. The maximum of Z in Figure ?? implies the
occurrence of the periodic signal with period length of 13 samples.
Remark 6.4. In [?], we shall make quantitative estimates for evaluating signal
to noise ratios in such experiments.
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Figure 6.5. The waveletgram of the signal shown in Figure ?? sampled at 13
samples per period, and the function ZR,Q

F (T ) indicating the periodicity of 13
samples.
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Chapter 7

Implementation

In order to apply the results of the preceding chapters to the real (digital) world,
we need to discretize our results.

Let us assume that we sampled a signal f and obtained the sequence {f [n]}n∈Z.
Let ψ be a piecewise constant wavelet of degree 1. To avoid confusing notation,
we let

ψ = (. . . , ψ [−1] , ψ [0] , ψ [1] , . . .)

be the vector representing ψ, i.e., ψ [k] = ψ(k) = ck for k ∈ Z.
We shall replace our continuous wavelet transform

Wψ
f (b, a) = a−1/p

∫

R

f(t)ψ(
t− b

a
) dt

with the following discretized version

Wψ
f [n,m] = m−1/p

∑

k∈Z

f [k]ψ(
k − n

m
) = m−1/p

∑

k∈Z

f [k]ψ

[⌊
k − n

m

⌋]
, (7.1)

m ∈ Z+ and n ∈ Z. bxc denotes the largest integer less or equal x. The second
equality of (??) is a consequence of the fact that ψ is a piecewise constant wavelet
of degree 1.

We can easily rewrite (??) in the more convenient form:

Wψ
f [n,m] = m−1/p

∑

k∈Z

f [k]ψ

[⌊
k − n

m

⌋]

= m−1/p




...
...

...
...

+ f [n] ψ [0] + . . . + f [n + m− 1] ψ [0]

+ f [n + m] ψ [1] + . . . + f [n + 2m− 1] ψ [1]

+ f [n + 2m] ψ [2] + . . . + f [n + 3m− 1] ψ [2]
...

...
...

...




= m−1/p
∑
r∈Z

(
m−1∑

l=0

f [n + mr + l]

)
ψ [r] . (7.2)
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To serve as an example, we shall prove a discrete version of Proposition ??.
Proposition 7.1. Let ψ be a piecewise constant wavelet of degree 1, and let
{f [n]}n∈Z be a T–periodic sequence, T ∈ Z+, i.e., f [n + T ] = f [n] for all n ∈ Z.
Then m1/pWψ

f [n,m] is T–periodic in n and T–periodic in m.
Proof. The T–periodicity in n follows directly from (??) and the fact that

f [n + T ] = f [n] for all n ∈ Z. Further, setting c =
∑T−1

l=0 f [l], we obtain

(m + T )1/pWψ
f [n,m + T ] =

∑
r∈Z

(
m+T−1∑

l=0

f [n + (m + T )r + l]

)
ψ [r]

=
∑
r∈Z

(
m+T−1∑

l=0

f [n + mr + l]

)
ψ [r]

= m1/pWψ
f [n, m] +

∑
r∈Z

(
m+T−1∑

l=m

f [n + mr + l]

)
ψ [r]

= m1/pWψ
f [n, m] + c

∑
r∈Z

ψ [r]

= m1/pWψ
f [n, m].

¤
To analyze a signal through a ”continuous” wavelet transform is expensive,

since we need to calculate a large number of coefficients Wψ
f [n, m]. This causes

redundancy and robustness to noise. For large m, the elementary operations
needed to calculate Wψ

f [n,m] are of order m. The restriction to piecewise constant
wavelets gives rise to a recursive procedure to obtain these coefficients. This
reduces the number of calculations needed significantly. In fact, if ψ is supported
on [0, N ], to obtain Wψ

f [n, m] from Wψ
f [n − 1,m] or Wψ

f [n,m − 1] requires only

N multiplications regardless of how large m and hence the support of ψ[b ·−n
m
c]

is. We shall explain why.
In the remainder of this section, we shall omit the normalization factor m−1/p.

This factor is certainly independent of wavelet and signal and would be multiplied
to Wψ

f [n,m] in the last step of an implementation.

Let us begin with the trivial case, obtaining Wψ
f [n,m] from Wψ

f [n−1,m]. We
have

Wψ
f [n,m] − Wψ

f [n− 1,m]

=
∑
r∈Z

(
m−1∑

l=0

f [n + mr + l]−
m−1∑

l=0

f [n− 1 + mr + l]

)
ψ [r]

=
N−1∑
r=0

(f [n + mr + m− 1]− f [n− 1 + mr]) ψ [r] .
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To obtain Wψ
f [n,m] from Wψ

f [n, m− 1] for scales m ≥ N is best understood
through Figure ?? and Figure ??. Again, many products appearing in the sum-
mation of Wψ

f [n,m] in (??) contributed already to Wψ
f [n,m− 1]. We need only

to make a few adjustments.
In Figure ??, we write the part of the signal f that is relevant to obtain

Wψ
f [n,m] in a rectangular pattern with N rows and m columns. We obtain the

non–normalized coefficient Wψ
f [n, m] by multiplying the r-th row by ψ [r − 1] for

r = 1, . . . , N and by adding the results. This is illustrated in Figure ??.

f [n-mN+1] f [n-mN+2] f [n-m(N-1)]

f [n-m(N-1)+1] f [n-m(N-1)+2] f [n-m(N-2)]

f [n-m +1] f [n-m+2] f [n]

ψ[0]

ψ[1]

ψ[N − 1]

Figure 7.1. Contributions of f [n−mN + 1], . . . , f [n] to Wψ
f [n,m].

In Figure ?? we illustrate the contribution of the same segment of f to
Wψ

f [n,m− 1].

f [n-mN+1] f [n-mN+2] f [n-m(N-1)]

f [n-m(N-1)+1] f [n-m(N-1)+2] f [n-m(N-2)]

f [n-m +1] f [n-m+2] f [n]

ψ[N-1]ψ[N-2]

ψ[N-2]ψ[N-3]

ψ[1]ψ[0]

ψ[0]

Figure 7.2. Contributions of f [n−mN + 1], . . . , f [n] to Wψ
f [n,m− 1].
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The difference Wψ
f [n,m]−Wψ

f [n,m− 1] is easily calculated; it is

Wψ
f [n,m]−Wψ

f [n,m− 1] = ψ [0]
N−1∑

l=0

f [n−mN + l]

+ (ψ [1]− ψ [0])
N−1∑

l=1

f [n−m(N − 1) + l]

+ . . .

+ (ψ [N − 1]− ψ [N − 2])f [n].

Implementing this procedure, we would use the vector
(ψ [0] , ψ [1]−ψ [0] , . . . , ψ [N − 1]−ψ [N − 2]), in order to reduce redundant cal-
culations.
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Chapter 8

Piecewise Constant Wavelets and Frames

In this chapter, we shall address the question, whether the discrete wavelet trans-
formation obtained in Chapter ?? is frame related.

Before doing this, we shall recall the following basic definition.
Definition 8.1. A family of functions {ϕi}i∈I in a Hilbert space H is a frame,
if there exist A > 0 and B < ∞ such that for all f ∈ H

A ‖f‖2
H ≤

∑
i∈I

|〈f, ϕi〉|2 ≤ B ‖f‖2
H . (8.1)

If A is chosen maximal and B is chosen minimal such that (??) holds, we call A
the lower and B the upper framebound.

This is clearly equivalent to the fact that the linear map

L : H −→ l2(I)
f 7−→ {〈f, ϕi〉}i∈I

is norm bounded above and below, and hence is invertible on its range. Each
element f ∈ H is therefore fully represented by the coefficients {〈f, ϕi〉}i∈I and
can be reconstructed from the coefficients by inverting the operator L.

8.1 Wavelet Frames for l2(Z)

Considering a discrete signal as an element of l2(Z) we are interested whether
the analysis vectors used in our discretized wavelet transform form a frame for
H = l2(Z). Here, our analysis frame elements are integer dilates and translates
of one vector, given by the values taken by a given piecewise constant wavelet
of degree 1. Alternatively, they can be seen as sampled versions of a piecewise
constant wavelet.

We sample piecewise constant wavelets in the following way (see also Chapter
??): Let ψ ∈ L2(R) be a piecewise constant wavelet of degree 1. Let

ψ = (. . . , ψ [−1] , ψ [0] , ψ [1] , . . .)

41



be the vector representing ψ, i.e., ψ [k] = ψ(k) for k ∈ Z.
Discretizing ψm,n(·) = ψ( ·−n

m
) for (m,n) ∈ Z+ × Z we get

ψm,n[·] = ψ

[⌊ · − n

m

⌋]
,

where bxc denotes the largest integer smaller than x.
We define

ψm,n[·] = m− s
2 ψ

[⌊ · − n

m

⌋]
.

We are interested in classifying piecewise constant wavelets ψ ∈ L2(R) such
that for a given s ∈ R+ the family

{
ψm,n

}
m∈Z+,n∈Z

is a frame for l2(Z). We shall

see that the normalization factor m− 3
2 will play a special role.

Remark 8.2. Our procedure can be related to the quasi affine frames discussed
in [?, ?]. In their work, Ron and Shen analyzed the coarse part of a signal with
the set of analyzing functions {2−mψ( t−n

2m )}n∈Z,m∈Z+ . The scaling factor 2−m is
necessary, since we are expanding the dyadic wavelet set {2−m

2 ψ( t−2mn
2m )}n∈Z,m∈Z+ .

In our approach, we are expending the wavelet set further, i.e., we are using the
set {m− 3

2 ψ( t−n
m

)}n∈Z,m∈Z+ .
In the following, let the Dirichlet functions dm be defined by

dm(γ) =
m−1∑

l=0

e−2πilγ.

Note that then

|dm(γ)|2 =

(
sin(πmγ)

sin(πγ)

)2

.

We obtain the following theorem characterizing ψ ∈ l2(Z) such that
{
ψm,n

}
m∈Z+,n∈Z

is a frame for l2(Z).
Theorem 8.3. Let ψ ∈ L2(R) be any piecewise constant wavelet.The following
are equivalent:
i. The family

{
ψm,n

}
m∈Z+,n∈Z

is a frame for l2(Z).

ii. There exists A > 0 and B < ∞ such that

A ≤
∑

m∈Z+

m−s|dm(γ)ψ̂(mγ)|2 ≤ B (8.2)

for almost all γ ∈ [0, 1].
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In this case

A = essinfγ∈T

{ ∑

m∈Z+

m−s|dm(γ)ψ̂(mγ)|2
}

is the lower, and

B =

∥∥∥∥∥
∑

m∈Z+

m−s|dm(γ)ψ̂(mγ)|2
∥∥∥∥∥

L∞(T)

is the upper framebound.
Proof. Let us first calculate the Fourier transform of ψm,n:

ψ̂m,n(γ) =
∑

k∈Z

ψm,n[k]e−2πikγ

=
∑

k∈Z

m− s
2 ψ

[⌊ · − n

m

⌋]
e−2πikγ

=
∑

k∈Z

m− s
2 ψ

[⌊ ·
m

⌋]
e−2πi(k+n)γ

= m− s
2 e−2πinγ




...
...

...
...

+ ψ [−1] e−2πi(−m)γ + . . . + ψ [−1] e−2πi(−1)γ

+ ψ [0] e−2πi0γ + . . . + ψ [0] e−2πi(m−1)γ

+ ψ [1] e−2πimγ + . . . + ψ [1] e−2πi(2m−1)γ

...
...

...
...




= m− s
2 e−2πinγ

(
m−1∑

l=0

e−2πilγ

) (∑

k∈Z

ψ [k] e−2πimkγ

)

= m− s
2 e−2πinγdm(γ)ψ̂(mγ).

By Plancherel’s theorem we have

〈f, ψm,n〉l2(Z) = 〈f̂ , ψ̂m,n〉L2(T)
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and hence
∑

(m,n)∈
Z+×Z

|〈f, ψm,n〉l2(Z)|2 =
∑

(m,n)∈
Z+×Z

|〈f̂ , ψ̂m,n〉L2(T)|2

=
∑

(m,n)∈
Z+×Z

|
∫

T

f̂(γ)m− s
2 e−2πinγdm(γ)ψ̂(mγ) dγ|2

=
∑

(m,n)∈
Z+×Z

m−s|
∫

T

(
f̂(γ)dm(γ)ψ̂(mγ)

)
e−2πinγ dγ|2

=
∑

m∈Z+

m−s

∫

T

|f̂(γ)dm(γ)ψ̂(mγ)|2 dγ (8.3)

=

∫

T

|f̂(γ)|2
∑

m∈Z+

m−s|dm(γ)ψ̂(mγ)|2 dγ.

Note that (??) follows by applying Plancherel’s theorem to the function

f̂(·)dm(·)ψ̂(m ·). This is justified, since both, i and ii, imply that f̂(·)dm(·)ψ̂(m ·) ∈
L2(T). To interchange summation and integration in (??), we are applying the
monotone convergence theorem. The result follows immediately. ¤

This theorem gives us a criterion, (??), to check whether {ψm,n}(m,n)∈Z+×Z

is a frame for l2(Z). This criterion is easily checked if we restrict ourselves to
wavelets ψ with compact support, i.e., ψ satisfy the property that ψ[k] = 0 for
k 6= 0, 1, . . . , N − 1. This compactness condition is satisfied in all applications.
Theorem 8.4. Let ψ ∈ l2(Z) satisfy the condition that ψ[k] = 0 for k 6=
0, 1, . . . , N − 1. The following are equivalent:
i. The family

{
ψm,n

}
m∈Z+,n∈Z

is a frame for l2(Z).

ii. The polynomial 1 + z + z2 + . . . + zn does not divide ψ [0] + ψ [1] z + ψ [2] z2 +
. . . + ψ [N − 1] zN−1 for all n ≤ N − 1 and either

∑
ψ [k] = 0 and s = 3 or∑

ψ [k] 6= 0 and s > 3.
This theorem follows from Theorem ?? and the following lemmata.
Note that the tophat wavelet mentioned in Example ?? as well as the wavelet

1√
70

(1,−4, 6,−4, 1), which is mentioned in Example ??, do satisfy the condition
ii of Theorem ??.
Lemma 8.5. Let ψ satisfy the property that ψ[k] = 0 for k 6= 0, 1, . . . , N − 1.
The following are equivalent:
i. The function Gs satisfies

Gs(γ) =
∞∑

m=1

m−s|dm(γ)ψ̂(mγ)|2 6= 0

for all γ ∈ (0, 1).

44



ii. The polynomial 1 + z + z2 + . . . + zn does not divide ψ [0] + ψ [1] z + ψ [2] z2 +
. . . + ψ [N − 1] zN−1 for all n ≤ N − 1.

Proof. i =⇒ ii. We shall first show that the condition, pn(z) = 1 + z + z2 +
. . . + zn does not divide ψ [0] + ψ [1] z + ψ [2] z2 + . . . + ψ [N − 1] zN−1 for all
n ≤ N − 1, is necessary.

Suppose

pn0(z)q(z) = ψ [0] + ψ [1] z + ψ [2] z2 + . . . + ψ [N − 1] zN−1

for some integer n0 and some polynomial q. Then

Gs

(
1

n0

)
=

∞∑
m=1

m−s

(
sin(πm 1

n0
)

sin(π 1
n0

)

)2 ∣∣∣pn0(e
−2πi m

n0 )
∣∣∣
2 ∣∣∣q(e−2πi m

n0 )
∣∣∣
2

.

If n0 divides m, we have
sin(πm 1

n0
)

sin(π 1
n0

)
= 0.

Otherwise, e
−2πi m

n0 is a nontrivial n0
th root of 1 and hence

pn0(e
−2πi m

n0 ) = 0.

Therefore Gs(
1
n0

) = 0, and necessity has been shown.
ii =⇒ i. Assume there exists a γ0 ∈ (0, 1) such that Gs(γ0) = 0.

CASE 1. γ0 /∈ Q

Since sin(πmγ0) 6= 0 for all m ≥ 1 we must have ψ̂(mγ0) = 0 for all m ≥ 1.

The function ψ̂ has finitely many zeros γ0, . . . , γs in (0, 1). Since ψ̂ is 1−periodic,
there exists for every m ≥ 1 a γkm and an integer lm such that

γkm + lm = mγ0.

Picking γi such that for m1 6= m2, we have

m1γ0 − lm1 = γi = m2γ0 − lm2 .

Solving for γ0, we get

γ0 =
lm1 − lm2

m1 −m2

,

contradicting γ0 /∈ Q!
CASE 2. γ0 ∈ Q

Let 0 6= p < q ∈ Z+ such that γ0 = p
q

and (p, q) = 1.

45



Gs(γ0) = 0 implies that for all m ∈ Z+ either sin
(
πmp

q

)
= 0 or ψ̂

(
mp
q

)
= 0.

But sin
(
πmp

q

)
6= 0 for m < q, since otherwise we would have for some m < q,

mp
q

= l ∈ Z+. p
q

= l
m

then contradicts (p, q) = 1 since m < q.
We have

{
mp

q
,m = 1, . . . , q − 1

}
=

{
1

q
, . . . ,

q − 1

q

}

modulus 1

,

since if m1p
q

= m2p
q
− l with 1 ≤ m1 < m2 ≤ q − 1, we obtain l

m1−m2
= p

q

contradicting (p, q) = 1 since m1 −m2 < q.

Hence we have ψ̂(m
q
) = 0 for m = 1, 2, . . . , q − 1 and therefore e−2πi m

q ,m =

1, . . . , q − 1, are zeros of ψ [0] + ψ [1] z + ψ [2] z2 + . . . + ψ [N − 1] zN−1, i.e.,
1 + z + z2 + . . . + zq−1 divides ψ [0] + ψ [1] z + ψ [2] z2 + . . . + ψ [N − 1] zN−1. ¤
Lemma 8.6. Let ψ satisfy the property that ψ[k] = 0 for k 6= 0, 1, . . . , N − 1 and∑

ψ [k] = 0. The following are equivalent:
i. The family

{
ψm,n

}
m∈Z+,n∈Z

is a frame for l2(Z).

ii. The polynomial 1 + z + z2 + . . . + zn does not divide ψ [0] + ψ [1] z + ψ [2] z2 +
. . . + ψ [N − 1] zN−1 for all n ≤ N − 1 and s = 3.

Proof. By hypothesis we know that the polynomial

ψ [0] + ψ [1] z + . . . + ψ [N − 1] zN−1

has a zero at 1. Factoring out 1− z we obtain for some q ∈ C[z]

(1− z)q(z) =
∑

k=1

ψ [k] zk.

Setting q(z) =
∑N−1

k=0 ckz
k (in fact ck =

∑k
l=0 ψ [l]) and evaluating on the torus,

we obtain

ψ̂(γ) = (1− e−2πiγ)
N−1∑

k=0

cke
−2πikγ

= e−πiγ(eπiγ − e−πiγ)
N−1∑

k=0

cke
−2πikγ

= e−πiγ2i sin(πγ)
N−1∑

k=0

cke
−2πikγ.

Setting

p(γ) =

∣∣∣∣∣
N−1∑

k=0

cke
−2πikγ

∣∣∣∣∣

2
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we have

|ψ̂(γ)|2 = 4 sin2(πγ)p(γ).

ii =⇒ i. We assume that 1 + z + z2 + . . . + zn does not divide ψ [0] + ψ [1] z +
ψ [2] z2 + . . . + ψ [N − 1] zN−1 for all n ≤ N − 1 and s = 3.

Since

|dm(γ)|2 =

(
sin(πmγ)

sin(πγ)

)2

,

we obtain

G3(γ) =
∞∑

m=1

1

m3

4 sin4(πmγ)

sin2(πγ)
p(mγ)

= 4
γ2

sin2(πγ)
γ

∞∑
m=1

sin4(πmγ)

(mγ)3
p(mγ).

The function

f(x) =
sin4(πx)

x3
p(x),

x ∈ R+ is continuous, bounded, of order O(x−3), x → ∞, and Riemann inte-
grable. Hence we have

lim
γ→0

γ

∞∑
m=1

sin4(πmγ)

(mγ)3
p(mγ) =

∫ ∞

0

f(x) dx. (8.4)

Since

lim
γ→0

4
γ2

sin2(πγ)
=

4

π2

we have

lim
γ→0

G3(γ) =
4

π2

∫ ∞

0

f(x) dx. (8.5)

Further, we have

G3(1− γ) =
∞∑

m=1

1

m3

4 sin4(πm(1− γ))

sin2(π(1− γ))
p(m(1− γ))

=
∞∑

m=1

1

m3

4 sin4(πmγ)

sin2(πγ)
p(−mγ))

= 4
γ2

sin2(πγ)
γ

∞∑
m=1

sin4(πmγ)

(mγ)3
p(−mγ).
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Similarly to (??), (??) we have

lim
γ→1

G3(γ) = lim
γ→0

G3(1− γ) =
4

π2

∫ ∞

0

sin4(πx)

(x)3
p(−x) dx. (8.6)

Since G3 is continuous on (0, 1), we can now extend it continuously to [0, 1],
hence, G3 is bounded.

For this direction of the proof it remains to show that G3 is bounded away
from 0. Our hypothesis together with Lemma ?? implies that G3 is nonzero on
(0, 1). Clearly ψ 6≡ 0 and hence

∫ ∞

0

sin2(πx)

(x)3
|ψ̂(±x)|2 dx > 0,

and by (??) and (??), G3(0), G3(1) > 0.
The continuity of G3 on [0, 1] implies that G3 is bounded away from zero. We

observed earlier that G3 is bounded above, hence we can apply Lemma ?? and
obtain that

{
ψm,n

}
m∈Z+,n∈Z

is a frame for l2(Z).

i =⇒ ii. The condition 1 + z + z2 + . . . + zn does not divide ψ [0] + ψ [1] z +
ψ [2] z2 + . . . + ψ [N − 1] zN−1 for all n ≤ N − 1 is necessary since else, we could
find γ0 ∈ (0, 1) such that Gs(γ0) = 0

The necessity of choosing s = 3 follows from the following argument: Choosing
s = 3 + ε, −3 < ε ≤ 1, ε 6= 0, we obtain for γ ∈ (0, 1)

G3+ε(γ) = 4γε γ2

sin2(πγ)
γ

∞∑
m=1

sin4(πmγ)

(mγ)3+ε
p(mγ). (8.7)

Similarly to (??), we choose

f(x) =
sin4(πx)

x3+ε
,

and obtain, since the factor γε dominates the right hand side of (??),

lim
γ→0

Gs(γ) =

{
0, ε > 0
∞, ε < 0

(8.8)

Further observe that G3+ε1 ≥ G3+ε2 for general ε1 ≤ ε2. Hence (??) holds for
all ε 6= 0. This completes the proof of the necessity of our conditions. ¤
Lemma 8.7. Let ψ satisfy the property that ψ[k] 6= 0 for k 6= 0, 1, . . . , N − 1 and∑N−1

k=0 ψ [k] 6= 0. The following are equivalent:
i. The family

{
ψm,n

}
m∈Z+,n∈Z

is a frame for l2(Z).

ii. The polynomial 1 + z + z2 + . . . + zn does not divide ψ [0] + ψ [1] z + ψ [2] z2 +
. . . + ψ [N − 1] zN−1 for all n ≤ N − 1 and s > 3.
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Proof. ii =⇒ i. We assume 1+z+z2 + . . .+zn does not divide ψ [0]+ψ [1] z+
ψ [2] z2 + . . . + ψ [N − 1] zN−1 for all n ≤ N − 1 and s > 3.

Since ψ̂ is a 1–periodic continuous function, we can find an upper bound W

for |ψ̂|. We have

m−s|dm(γ)ψ̂(mγ)|2 ≤ W 2m−s+2,

and, since s− 2 > 1,

Gs(γ) =
∞∑

m=1

m−s|dm(γ)ψ̂(mγ)|2

is defined through a uniformly converging series of continuous functions and is
therefore continuous on [0, 1], and, hence, bounded above. Further

0 < |
N−1∑

k=0

ψ [k] |2 = Gs(0) = Gs(1) < ∞

and by hypothesis and Lemma (??) we have Gs 6= 0 also on [0, 1]. Hence Gs

bounded away from 0.
i =⇒ ii. In order to prove the necessity of s > 3, we suppose the opposite.

We obtain, applying Fatou’s Lemma to (??),

lim
γ→0

Gs(γ) = lim
γ→0

∞∑
m=1

m−s|dm(γ)ψ̂(mγ)|2 (8.9)

≥
∞∑

m=1

lim
γ→0

m−s|dm(γ)ψ̂(mγ)|2

= |
N−1∑

k=0

ψ [k] |2
∞∑

m=1

1

ms
m2

= ∞,

and hence Gs has no upper bound. ¤
Remark 8.8. We can use Theorem ?? to obtain frames for some vector spaces
of functions defined on R. For example, we shall construct frames for the Paley–
Wiener spaces

PWΩ(R) = {f ∈ L2(R) : suppF(f) ⊆ [−Ω, Ω]},
with Ω > 0 [?, ?]. Paley–Wiener spaces are closed subspaces of L2(R), and, hence,
Hilbert spaces with the innerproduct 〈·, ·〉L2(R). In order to simplify notation, we
shall only consider the case Ω = 1

2
. This is done without loss of generality.
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Defining hk(·) = sin(π(·−k))
π(·−k)

∈ PW 1
2
(R) we obtain an orthonormal basis {hk}k∈Z

of PW 1
2
(R). Furthermore f(k) = 〈f, hk〉 for f ∈ PW 1

2
(R) and k ∈ Z, and, hence,

{f(k)}k∈Z ∈ l2(Z). The classical sampling theorem implies

f =
∑

k∈Z

f(k)hk.

Let ψ ∈ l2(Z) be chosen such that
{
ψm,n

}
m∈Z+,n∈Z

is a frame with frame

bounds A and B. Define
ϕm,n =

∑

k∈Z

ψm,n(k)hk

for m ∈ Z+, n ∈ Z. The function ϕm,n ∈ PW 1
2
(R) is well-defined, since ψm,n ∈

l2(Z) for all m ∈ Z+, n ∈ Z, and since {hk}k∈Z is an orthonormal set. For
f ∈ PW 1

2
(R), m ∈ Z+, and n ∈ Z, we compute

〈f, ϕm,n〉L2(R) =

∫

R

f(t)
∑

k∈Z

ψm,n(k)hk(t) dt

=
∑

k∈Z

ψm,n(k)

∫

R

f(t) dthk(t)

= 〈f [·], ψm,n〉l2(Z).

This results in

A ‖f‖2
L2(R) = A ‖f [·]‖2

l2(Z) ≤
∑

m∈Z+,n∈Z

|〈f [·], ψm,n〉l2(Z)|2

=
∑

m∈Z+,n∈Z

|〈f, ϕm,n〉L2(R)|2

=
∑

m∈Z+,n∈Z

|〈f [·], ψm,n〉l2(Z)|2

≤ B ‖f [·]‖2
l2(Z) = B ‖f‖2

L2(R) ,

and, hence, {ϕm,n}m∈Z+,n∈Z is a frame for PW 1
2
(R).

8.2 Examples

Example 8.9. Let ψ be the Haar wavelet, i.e., ψ[m] = 1
2
(δ0[m]− δ1[m]) for m ∈

Z. For s = 3, ψ fulfills the hypothesis of Theorem ??, and, hence,
{
ψm,n

}
m∈Z+,n∈Z

is a frame for l2(Z). To find the framebounds of this frame, we shall study the
corresponding function G3, which is given by

G3(γ) =
∑

m∈Z+

m−3 sin4(πmγ)

sin2(πγ)
,
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and is shown in Figure ??.
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Figure 8.1. G3(γ) for the Haar wavelet ψ.

As lower framebound we obtain

A = lim
γ→0+

G3(γ) =
1

π2

∫ ∞

0

sin4(πx)

x3
dx = ln(2) ≈ 0.6931,

and as upper framebound we have

B = G3

(
1

2

)
=

∑

m∈Z+

m odd

m−3 =
7ζ(3)

8
≈ 1.0518.

Example 8.10. The Haar scaling function ϕ has as associated vector ϕ[m] =
δ0[m]. Theorem ?? asserts that

{
ϕm,n

}
m∈Z+,n∈Z

is a frame for l2(Z) if s > 3. For

s = 4, the function

G4(γ) =
∑

m∈Z+

m−4 sin2(πmγ)

sin2(πγ)

is associated to ϕ. This function is shown in Figure ??.
As framebounds we obtain

B = lim
γ→0+

G4(γ) =
∑

m∈Z+

m−2 =
π2

6
≈ 1.6449

and

A = G4

(
1

2

)
=

∑

m∈Z+

m odd

m−4 =
π4

96
= 1.0147.
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Figure 8.2. G4(γ) for the Haar scaling function ϕ.

Example 8.11. Let ψ be the wavelet mentioned in Example ??, i.e., ψ[m] =
1√
70

(δ0[m]−4δ1[m]+6δ2[m]−4δ3[m]+δ4[m]) for m ∈ Z. For s = 3, ψ, we obtain,

using Theorem ??, that
{
ψm,n

}
m∈Z+,n∈Z

is a frame for l2(Z). We obtain

G3(γ) =
∑

m∈Z+

m−3 28

70

sin10(πmγ)

sin2(πγ)
,

which is shown in Figure ??.
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Figure 8.3. G3(γ) for the wavelet obtained in Example ??.

As lower framebound we obtain

A = lim
γ→0+

G3(γ) =
28

70π2

∫ ∞

0

sin10(πx)

x3
dx =

28(160 ln(4)− 81 ln(9)− 5 ln(25))

1960π2

≈ 0.9905,
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and as upper framebound we have

B = G3

(
1

2

)
=

28

70

∑

m∈Z+

m odd

m−3 =
25ζ(3)

10
≈ 3.8466.

8.3 Wavelet Frames for l2(Zd)

We shall proceed similarly to the approach in Section ??. The Hilbert space we
are interested in is the space of square summable multidimensional discrete signals
H = l2(Zd). Our goal is to characterize vectors ψ ∈ l2(Zd) such that, for some
normalization factor, its translates and ”dilates” form a frame for H = l2(Zd).
Again, the frame elements can be seen as sampled versions of a piecewise constant
wavelet ψ ∈ L2(Rd).

For ψ ∈ l2(Zd) we define, for n ∈ Zd, m ∈ Z+,

ψm,n[k] = m− s
2 ψ

[⌊
k1 − n1

m

⌋
, . . . ,

⌊
k1 − nd

m

⌋]
, k ∈ Zd.

For m > 0, we define m-dimensional Dirichlet functions by

dm(γ) = dm(γ1) · . . . · dm(γd)

Theorem ?? generalizes to higher dimensions in the following fashion:
Theorem 8.12. For ψ ∈ l2(Zd), the following are equivalent:
i. The family

{
ψm,n

}
m∈Z+,n∈Zd is a frame for l2(Zd).

ii. There exists A > 0 and B < ∞ such that

A ≤
∑

m∈Z+

m−s|dm(γ)ψ̂(mγ)|2 ≤ B (8.10)

for almost all γ = (γ1, . . . , γd) ∈ [0, 1]d.
The framebounds can be obtained in exactly the same matter as in the one

dimensional case (Theorem ??).
Proof. We can generalize the proof of Theorem ??. Calculating the Fourier

transform of ψm,n, we obtain
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ψ̂m,n(γ) =
∑

k∈Zd

m− s
2 ψ

[⌊
k1 − n1

m

⌋
, . . . ,

⌊
kd − nd

m

⌋]
e−2πi〈k,γ〉

=
∑

k∈Zd

m− s
2 ψ

[⌊
k1

m

⌋
, . . . ,

⌊
kd

m

⌋]
e−2πi〈k+n,γ〉

= m− s
2 e−2πi〈n,γ〉

( ∑

0≤l<m

e−2πi〈l,γ〉
)(∑

k∈Zd

ψ [k] e−2πim〈k,γ〉
)

(8.11)

= m− s
2 e−2πi〈n,γ〉dm(γ)ψ̂(mγ).

We obtain (??) by observing that ψ [r] appears as the coefficient of e−2πi〈mr+l,·〉,
0 ≤ l < m.

Again, we have

∑

(m,n)∈Z+×Zd

|〈f, ψm,n〉l2(Z+×Z)|2 =

∫

Td

|f̂(γ)|2
∑

m∈Z+

m−s|dm(γ)ψ̂(mγ)|2 dγ.

¤
Our next objective is to characterize piecewise constant wavelets satisfying

the criterion in Theorem ??. The restriction to piecewise constant wavelets with
compact support does not allow a generalization to higher dimensions of Lemma
??. The reason for this is that it is not easy to control the zero sets of the

trigonometric polynomial ψ̂ appearing in

Gs(·) =
∞∑

m=1

m−s|dm(·)ψ̂(m ·)|2.

Hence, we shall not be able to give a full characterization of piecewise constant
wavelets with compact support in Rd such that {ψm,n}m∈Z+,n∈Zd is a frame for
l2(Zd).

Nevertheless, we can state some necessary conditions for {ψm,n}m∈Z+,n∈Zd

to be a frame for l2(Zd). Before stating this result, let us recall that 0 ∈ Td

represents the equivalence class of all ”corners” of Td.
Theorem 8.13. Let ψ ∈ l2(Zd) be such that ψ [k] 6= 0 only for 0 ≤ k ≤ N − 1
and such that {ψm,n}m∈Z+,n∈Zd is a frame for l2(Zd) with normalization factor
m−s. Then:
a. ψ̂(γ) 6= 0 for all γ ∈ ∂Td − {0}.
b. If ψ̂(0) =

∑
k∈Zd ψ[k] = 0 then necessarily s = 2d + 1, and if

∑
k∈Zd ψ[k] 6= 0,

then necessarily s > 2d + 1.
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Proof. We shall first show b. For the case that ψ̂(0) 6= 0 we proceed as in
Lemma ??. If s ≤ 2d + 1, then setting t = (t, . . . , t) we compute

lim
t→0

Gs(t) = lim
t→0

∞∑
m=1

m−s|dm(t)ψ̂(mt)|2

≥
∞∑

m=1

lim
t→0

m−s|dm(t)ψ̂(mt)|2

= |ψ̂(0)|2
∞∑

m=1

1

ms
m2d

= ∞,

and hence Gs has no upper bound.

Let us now assume that ψ̂(0) = 0. Since by hypothesis ψ 6= 0, we can find

some γ = (γ1, . . . , γd) ∈ (Td)
o

such that ψ̂(γ) 6= 0.
As in the proof of Lemma ?? we shall rewrite Gs, and we shall study Gs(tγ),

for t > 0. We have

Gs(tγ) =
∞∑

m=1

m−s|dm(tγ)ψ̂(mtγ)|2

=

( ∏

i=1,...,d

(tγi)
2

sin2(πtγi)

)
t

∞∑
m=1

1

ms−2d−1

( ∏

i=1,...,d

sin2(πmtγi)

(mtγi)2

)
|ψ̂(mtγ)|2

tm
.

We shall apply the same trick as in the proof of Lemma ?? to the function

f(x) =
∏

i=1,...,d

sin2(πxγi)

(xγi)2

|ψ̂(xγ)|2
x

.

Note that this function is again integrable, since the function we obtain by re-

stricting ψ̂ to the half line tγ, t ∈ R+, vanishes at 0. Clearly, for s = 2d + 1 we
do not encounter problems while, by the same argument as in (??), for any other
s we either violate the upper or lower framebound of our frame {ψm,n}m∈Z+,n∈Zd .

It remains to prove part a. To do this, let us assume that there exists a

γ = (γ1, . . . , γq−1, 0, γq+1) 6= 0 such that ψ̂(γ) = 0.
Let z be the set of indices such that γi = 0 for i ∈ z, l = |z| ≤ d − 1.

Define γt by (γt)i = t if i ∈ z and (γt)i = γi if i /∈ z. Hence for t ∈ To we have
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γt ∈ (Td)
o
, γt

t→0−→ γ, and

Gs(γt) =
t2l

sin2l(πt)

(∏

i/∈z

γ2
i

sin2(πγi)

)
t2

·
∞∑

m=1

1

ms−2l+2

sin2l(πmγ)

(mt)2l

(∏

i/∈z

sin2(πmγi)

(mγi)2

)
|ψ̂(mtγ)|2

(tm)2
.

Setting

f(x) =

(
sin(πx)

x

)2l

we have that

lim
γ→0

t

∞∑
m=0

(
sin(πmt)

mt

)2l ∫
f

and we obtain for small t the following bound:

t

∞∑
m=1

1

ms−2l−2

sin2l(πmγ)

(mt)2l

(∏

i/∈z

sin2(πmγi)

(mγi)2

)
|ψ̂(mtγ)|2

(tm)2
<

(∫
f + 1

) ∏

i/∈z

1

γ2
i

C,

where C is an upper bound of

|ψ̂(mtγ)|2
(tm)2

.

Further we are using the fact, that s ≥ 2d+1 and l ≤ d− 1 imply s− 2l− 2 ≥ 1.
Hence,

lim
γ→0

Gs(γt) = 0,

contradicting the existence of a lower bound of Gs. ¤
Corollary 8.14. Let ψ ∈ l2(Zd) be such that ψ [k] 6= 0 only for 0 ≤ k ≤ N −1,
and {ψm,n}m∈Z+,n∈Zd is a frame for l2(Zd), and such that ψ is separable in the
following sense: there exist non empty index sets E, F with E ∪ F = {1, . . . , d}
and E ∩ F = ∅, such that w = fEfF , and where fE only depends on xi, i ∈ E

and fF only depends on xi, i ∈ F . Then ψ̂(0) 6= 0.
Proof. Assume w = fEfF , where E, F, fE, fF are chosen as described above,

and assume ψ̂(0) = 0. Then ψ̂ = f̂E f̂F and either f̂E(0) = 0 or f̂F (0) = 0.

Without loss of generality, let f̂E(0) = 0. But then ψ̂(α) = 0, where αi = 0 if
i ∈ E and αi = 1

2
if i ∈ F . This contradicts Theorem ??, part a. ¤

Corollary ?? implies, that for s = 2d+1, we cannot produce a single piecewise
constant wavelets such that {ψm,n}m∈Z+,n∈Zd is a frame for l2(Zd) through forming
simple tensors of lower dimensional wavelets. A similar problem is well known
for dyadic wavelets.
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8.4 Examples

We shall discuss a few piecewise constant wavelets for d = 2, starting with some
which have the property that {ψm,n}m∈Z+,n∈Zd is not a frame for l2(Zd) for all
possible choices of s.
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Figure 8.4. A: The wavelet described in Example ??. B: The wavelet described
in Example ??.

Example 8.15. Let w[1, 0] = 1, w[0, 1] = −1, and w[n] = 0 for n 6= [1, 0], [0, 1].
This wavelet is displayed in Figure ??.A. In this case ŵ(γ1, γ2) = e−2πiγ1−e−2πiγ2

for (γ1, γ2) ∈ R̂2 and therefore ŵ(γ1, γ1) = 0 for γ1 ∈ R̂. In particular ŵ(m
2
, m

2
) =

0 for all m ∈ Z+ and so Gs(
1
2
, 1

2
) = 0 for all s ∈ R+. Hence {ψm,n}m∈Z+,n∈Zd

does not possess a lower framebound. G5 in this case is shown in Figure ??.

Example 8.16. Let w[0, 0] = 2, w[0, 1] = w[1, 0] = w[0,−1] = w[−1, 0] = 1
and w[n] = 0 for n 6= [0, 0], [1, 0], [0, 1], [−1, 0], [0,−1]. (See Figure ??.B.) A short
calculation shows that

ŵ(γ1, γ2) = |e−2πiγ1 − (−1)|2 + |e−2πiγ2 − (−1)|2 − 2

for (γ1, γ2) ∈ R̂2. Hence ŵ(1
3
, 1

3
) and ŵ(2

3
, 2

3
) = 0, and therefore Gs(

1
3
, 1

3
) = 0 for

all s ∈ R+. Hence {ψm,n}m∈Z+,n∈Zd is not a frame for l2(Zd). G6 in this case is
shown in Figure ??.

Example 8.17. Let w[0, 0] = −3, w[0, 1] = w[1, 0] = w[1, 1] = 1 and w[n] = 0
for n 6= [0, 0], [1, 0], [0, 1], [1, 1]. This wavelet is shown in Figure ??.A. Numerical
experiments imply that, for s = 5, {ψm,n}m∈Z+,n∈Zd is a frame for l2(Zd). As
approximate lower framebound we obtain A = 3.87 and as approximate upper
framebound, we obtain B = 22.53. The resulting function G5 is supplied in
Figure ??.
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Figure 8.5. G5 in Example ??.

Example 8.18. Let w[0, 0] = −1, w[1, 0] = −2, w[0, 1] = 2, w[1, 1] = 4 and
w[n] = 0 for n 6= [0, 0], [1, 0], [0, 1], [1, 1]. Figure ??.B shows this wavelet. For
s = 6, we obtain as numerical approximation A = 1.02 as lower framebound, and
B = 82.10 as upper framebound. This implies that {ψm,n}m∈Z+,n∈Zd is a frame
for l2(Zd). The function G6 is supplied in Figure ??.
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Figure 8.6. G6 in Example ??.
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Figure 8.7. A: The wavelet described in Example ??. B: The wavelet described
in Example ??.
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Figure 8.8. G5 in Example ??.
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Figure 8.9. G6 in Example ??.
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Chapter 9

Classification of wavelets with periodic

waveletgrams

9.1 The Fundamental Theorem

The following theorem completely classifies all wavelets which have the property
that the non–normalized wavelet transform of any periodic function f ∈ L∞(R) is
periodic in scale. Recall that continuous wavelet transforms of periodic functions
are always periodic in time. In this section, we shall use a non–normalized wavelet
tranformation.
Theorem 9.1. Let ψ ∈ L1(R). The following are equivalent:
i. Wψ

f (b, a) =
∫
R

f(t)ψ( t−b
a

) dt is 1–periodic in a for all f ∈ L∞(T). (P)

ii. ψ̂(0) = 0 and ψ has the form

ψ(·) =
∑
n∈Z

en1(n,n+1)(·) +
∑
n∈Z

bn ln | · −n|,

where {bn}, {en − en−1} ∈ l1(Z) and {en − πi
∑

k≤n bk} ∈ l2(Z).
Remark 9.2. Theorem ??, as well as most results and remarks in this chapter,
has a trivial generalization to S–periodic functions. If ψ ∈ L1(R) has the property
that Wψ

f (b, a) is T–periodic in a for all f ∈ L∞(TS), then ψ̃(·) = ψ(S
T
·) has

property (P). To check this, we let f ∈ L∞(T), and, hence, f̃(·) = f( ·
S
) ∈

L∞(TS), and compute

W ψ̃
f (b, a + 1)−W ψ̃

f (b, a) =

∫

R

ψ̃(
t− b

a + 1
)f(t) dt−

∫

R

ψ̃(
t− b

a
)f(t) dt

=

∫

R

ψ(
St− Sb

Ta + T
)f(t) dt−

∫

R

ψ(
St− Sb

Ta
)f(t) dt

=

∫

R

ψ(
t− Sb

Ta + T
)f(

t

S
) dt−

∫

R

ψ(
t− Sb

Ta
)f(

t

S
) dt

= Wψ

f̃
(Sb, Ta + T )−Wψ

f̃
(Sb, Ta)

= 0.
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Hence ψ̃ has the form

ψ̃(·) =
∑
n∈Z

en1(n,n+1)(·) +
∑
n∈Z

bn ln | · −n|,

where {bn}, {en− en−1} ∈ l1(Z) and {en− πi
∑

k≤n bk} ∈ l2(Z). Consequently, ψ
has the form

ψ(·) =
∑
n∈Z

en1(Tn
S

, Tn+T
S

)(·) +
∑
n∈Z

bn ln

∣∣∣∣
T · −Sn

S

∣∣∣∣ ,

where {bn}, {en − en−1} ∈ l1(Z) and {en − πi
∑

k≤n bk} ∈ l2(Z).
To prove Theorem ??, we need to establish various lemmata (Lemma ??,

Lemma ??, Lemma ??, Lemma ??, Lemma ??, and Lemma ??).
Lemma 9.3. Let ψ ∈ L1(R). The following are equivalent:
i. Wψ

f (b, a) =
∫
R

f(t)ψ( t−b
a

) dt is 1–periodic in a for all f ∈ L∞(T).

ii. There exists a continuous function ϕ on R, 1–periodic on R̂+ and 1–periodic
on R̂−, such that

ψ̂(γ) =
ϕ(γ)

γ

for γ ∈ R̂ \ {0} and ψ̂(0) = 0.
Proof. i =⇒ ii. Let us assume Wf (b, a) =

∫
R

f(t)ψ( t−b
a

) dt is T = 1 periodic
in a for all f ∈ L∞(T).

Then, for fixed b ∈ R and a ∈ R+, we obtain

0 = Wψ
f (b, a)−Wψ

f (b, a + 1)

=

∫

R

f(t)ψ(
t− b

a
) dt−

∫

R

f(t)ψ(
t− b

a + 1
) dt

=

∫

R

f(t)(ψ(
t− b

a
)− ψ(

t− b

a + 1
)) dt

=
∑
n∈Z

∫ 1

0

f(t− n)(ψ(
t− n− b

a
)− ψ(

t− n− b

a + 1
)) dt

=
∑
n∈Z

∫ 1

0

f(t)(ψ(
t− n− b

a
)− ψ(

t− n− b

a + 1
)) dt (9.1)

=

∫ 1

0

∑
n∈Z

f(t)(ψ(
t− n− b

a
)− ψ(

t− n− b

a + 1
)) dt

=

∫ 1

0

f(t)
∑
n∈Z

(ψ(
t− n− b

a
)− ψ(

t− n− b

a + 1
)) dt. (9.2)
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We can interchange the sum and the integral in (??) using the Bounded Conver-
gence Theorem on the partial sums, since for all l

|Sl(t)| = |
∑

|n|≤l

(ψ(
t− n− b

a
)− ψ(

t− n− b

a + 1
))|

≤
∑
n∈Z

(|ψ(
t− n− b

a
)|+ |ψ(

t− n− b

a + 1
)|),

where the latter expression is in L1(T) since ψ ∈ L1(R).
Our calculation shows that if Wψ

f is periodic in scale for all f ∈ L∞(T) we
obtain

S(t) =
∑
n∈Z

(ψ(
t− n− b

a
)− ψ(

t− n− b

a + 1
)) dt = 0.

For all m ∈ Z we have

0 = Ŝ[m]

=

∫ 1

0

S(t)e−2πimt dt

=

∫ 1

0

∑
n∈Z

(ψ(
t− n− b

a
)− ψ(

t− n− b

a + 1
))e−2πimt dt (9.3)

=
∑
n∈Z

∫ 1

0

(ψ(
t− n− b

a
)− ψ(

t− n− b

a + 1
))e−2πimt dt

=
∑
n∈Z

(

∫ 1

0

ψ(
t− n− b

a
)e−2πimt dt−

∫ 1

0

ψ(
t− n− b

a + 1
)e−2πimt dt)

=
∑
n∈Z

(

∫ 1−b−n
a

0−b−n
a

ψ(u)e−2πim(au+n+b)a du−
∫ 1−b−n

a+1

0−b−n
a+1

ψ(u)e−2πim((a+1)u+n+b)(a + 1) du)

=
∑
n∈Z

(

∫ 1−b−n
a

0−b−n
a

ψ(u)e−2πim(au+b)a du−
∫ 1−b−n

a+1

0−b−n
a+1

ψ(u)e−2πim((a+1)u+b)(a + 1) du)

=

∫

R

ψ(u)e−2πim(au+b)a du−
∫

R

ψ(u)e−2πim((a+1)u+b)(a + 1) du

= e−2πimb(a

∫

R

ψ(u)e−2πimaudu− (a + 1)

∫

R

ψ(u)e−2πim(a+1)udu)

= e−2πimb(aψ̂(ma)− (a + 1)ψ̂(m(a + 1))).

Interchanging sum and integral in (??) is justified by the bounded convergence
theorem.
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This calculation implies that we have for all a ∈ R+ and all m ∈ Z

aψ̂(ma)− (a + 1)ψ̂(m(a + 1)) = 0,

and in particular ψ̂(0) = 0. If we let

ϕ(γ) = γψ̂(γ)

for γ ∈ R̂, and take m = 1, we obtain for γ ∈ R̂+ that

ϕ(γ)− ϕ(γ + 1) = γψ̂(γ)− (γ + 1)ψ̂(γ + 1) = 0.

Hence, ϕ(γ) = ϕ(γ + 1) for all γ ∈ R̂+. For γ ∈ R̂− and a = −γ > 0, we set
m = −1 and obtain

ϕ(γ)− ϕ(γ − 1) = γψ̂(γ)− (γ − 1)ψ̂(γ − 1)

= γψ̂((−1)(−γ))− (γ − 1)ψ̂((−1)(−γ + 1)

= (−1)(−γψ̂((−1)(−γ))− (−γ + 1)ψ̂((−1)(−γ + 1)

= (−1)(aψ̂(ma)− (a + 1)ψ̂(m(a + 1))

= 0.

Hence, ϕ(γ) = ϕ(γ − 1) for all γ ∈ R̂− and ii holds.
ii =⇒ i. Conversely, if statement ii holds, we have for m > 0

aψ̂(ma)− (a + 1)ψ̂(m(a + 1)) = a
ϕ(ma)

ma
− (a + 1)

ϕ(m(a + 1))

m(a + 1)

=
1

m
(ϕ(ma)− ϕ(ma + m))

= 0,

since m, am > 0 and by the 1–periodicity of ϕ on R̂+. Similarly, for m < 0,

aψ̂(ma)− (a + 1)ψ̂(m(a + 1)) =
1

m
(ϕ(ma)− ϕ(ma + m)) = 0,

since now m, am < 0 and the 1–periodicity of ϕ on R̂− applies.
Also Ŝ[0] = 0 since ψ̂(0) = 0.

Therefore Ŝ[m] = 0 for all m ∈ Z. By the uniqueness theorem for Fourier
transformations we have S = 0 in L1(T). The periodicity in scale follows, since

Wψ
f (b, a)−Wψ

f (b, a + 1) =

∫ 1

0

f(t)S(t) dt = 0.

Therefore i holds. ¤
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Remark 9.4.
a. This result implies that if ψ satisfies property (P), then ψ̂ has the form:

ψ̂(γ) =
ϕ1(γ)

γ
+ H(γ)

ϕ2(γ)

γ
,

where ϕ1 and ϕ2 are 1–periodic on all of R̂, and H denotes the Heaviside function,
i.e., H(γ) = 1(0,∞).

b. If ψ has property (P), then ψ̂(γ) = O( 1
γ
) and ψ̂(γ) 6= o( 1

γ
) as |γ| → ∞.

c. No absolutely continuous function ψ can have property (P), since in this case

ψ̂(γ) = o( 1
γ
), |γ| → ∞.

d. Proposition ?? is a corollary of this result.
From the proof of Lemma ??, in particular from (??), we can deduce the

following corollary:
Corollary 9.5. Let ψ ∈ L1(R). For fixed f ∈ L∞(T), Wψ

f is 1–periodic in
scale if and only if, for all a ∈ R+ and all b ∈ R,

∫ 1

0

f(t)
∑
n∈Z

(ψ(
t− n− b

a
)− ψ(

t− n− b

a + 1
)) dt = 0.

Remark 9.6. This corollary can be helpful, if we are interested in picking up
one specific periodic component f ∈ L∞(T) in a signal that carries other periodic
components besides f . The fact that for g 6= f ∈ L∞(T) the wavelet transform of
g might not be periodic implies that the components of g in a signal get blurred in
the waveletgram. This can be helpful to distinguish periodic signals of different
shapes.

Lemma ?? and Lemma ?? will be used to prove Lemma ??:
Lemma 9.7. For all 0 < ε < 1 and γ ∈ R̂ we have

∣∣∣∣∣
∫ 1

ε

ε

sin(2πtγ)

t
dt

∣∣∣∣∣ ≤ 5π.

Proof. Let us assume, without loss of generality, that γ > 0. For k ∈ N0 let

Ck = (−1)k

∫ k+1

k

sin(πx)

x
dx

Clearly,
∞∑

k=0

(−1)kCk =

∫ ∞

0

sin(πx)

x
dx =

π

2
,

and

0 < . . . < Ck+1 < Ck < . . . < C0 =

∫ 1

0

sin(πx)

x
dx <

∫ 1

0

π dx = π.
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We obtain for any positive integer r and any integer s > r

0 <
s−1∑

l=r

(C2l − C2l+1) =
2s−1∑

l=2r

(−1)lCl < C2r < π.

For γ and ε fixed, choose r such that r < γε < r+1 and s such that s < γ
ε

< s+1.
Then

∣∣∣∣∣
∫ 1

ε

ε

sin(2πtγ)

t
dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ 2γ

ε

2εγ

sin(πx)

x
dx

∣∣∣∣∣

≤
∣∣∣∣∣
∫ 2(r+1)

εγ

sin(πx)

x
dx

∣∣∣∣∣ +

∣∣∣∣
∫ 2s

2(r+1)

sin(πx)

x
dx

∣∣∣∣

+

∣∣∣∣∣
∫ γ

ε

2s

sin(πx)

x
dx

∣∣∣∣∣

≤
∫ 2(r+1)

2r

∣∣∣∣
sin(πx)

x

∣∣∣∣ dx +
2s−1∑

l=2(r+1)

(−1)lCl

+

∫ 2(s+1)

2s

∣∣∣∣
sin(πx)

x

∣∣∣∣ dx

≤ C2r + C2r+1 + π + C2s + C2s+1

≤ 5π.

¤
Lemma 9.8. Let ψ ∈ L1(R) be such that for all γ ∈ R̂+, resp. for all γ ∈ R̂−,

ψ̂(γ) =
ϕ(γ)

γ

with ϕ 1–periodic on R̂. Then ϕ ∈ A(T) and hence, the Fourier Series S
(
ϕ
)
(γ) =∑

n∈Z bne−2πnγ, γ ∈ R̂, converges to ϕ absolutely and uniformly, i.e., {bn} ∈
l1(Z).

Before proving this Lemma, we shall recall a few basic facts from Harmonic
Analyis. Let w denote the Fejér Kernel, i.e., for x ∈ R,

w(x) =
1

2π

(
sin

(
x
2

)
x
2

)2

.

Clearly, w ∈ L1(R) ∩ C1(R) and w′ ∈ L1(R), since

w′(x) = sin(
x

2
)

[
cos

(
x
2

)
(

x
2

)2 − sin
(

x
2

)
(

x
2

)2

]
,
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and therefore w′(x) = O( 1
x2 ), |x| → ∞. The Fourier transform of w is

ŵ(γ) = max{0, 1− |γ|},

γ ∈ R̂.
The de la Vallée – Poussin Kernel v is then defined by:

v(x) = 4w(2x)− w(x),

, x ∈ R. As before, v ∈ L1(R) ∩ C1(R) and v′ ∈ L1(R). Clearly,

v̂(γ) = 2ŵ(
γ

2
)− ŵ(γ),

and therefore v̂(γ) = 1 for γ ∈ [−1, 1] and v̂(γ) = 0 for γ ∈ [−2, 2]c. Note that
since v, v′ ∈ L1(R) and

v̂′(γ) = iγv̂(γ),

γ ∈ R̂, we have γv̂(γ) ∈ A(R̂).
Proof. Fix γ0 ∈ [1, 2), resp., γ0 ∈ [−2, 1). Define

vγ0(x) =
1

8
v(

x

8
)e2πiγ0x,

x ∈ R. Then ,clearly,
v̂γ0(γ) = v̂(8(γ − γ0)),

γ ∈ R̂, v̂γ0(γ) = 1 for γ ∈ [γ0 − 1
8
, γ0 + 1

8
], and supp(v̂γ0) ⊂ [γ0 − 1

4
, γ0 + 1

4
] ⊂

[3
4
, 9

4
] ⊂ R̂+, resp., supp(v̂γ0) ⊂ R̂−. As before, γv̂γ0(γ) ∈ A(R̂).

Since ψ̂ ∈ A(R̂) we have v̂γ0(γ)ϕ(γ) = γv̂γ0(γ)ψ̂(γ) ∈ A(R̂). Therefore,
by a Theorem of Wiener ([?], [?], page 202, [?], page 56), v̂γ0ϕ ∈ A(T). Since
ϕ = v̂γ0ϕ in a neighborhood of γ0, we have ϕ ∈ Aloc(γ0)(T). This result holds
for any γ0 ∈ [1, 2], resp., [−2,−1), and hence ϕ ∈ Aloc(T). By Wiener’s local
membership theorem we have ϕ ∈ A(T)[?].

Therefore, we can write ϕ(γ) =
∑

n∈Z bne
−2πnγ with {bn} ∈ l1(Z) and the

result is proven. ¤
Recall that F : L2(R) −→ L2(R) denotes the L2(R)-Fourier transformation.

Lemma 9.9. Let ψ ∈ L2(R) be such that for all γ ∈ R̂ \ {0}

F(ψ)(γ) =
ϕ(γ)

γ
,

where ϕ ∈ A(T). Then ψ has the form

ψ(·) =
∑
n∈Z

πian sign(· − n) =
∑
n∈Z

cn1(n,n+1)(·),
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where
ϕ(γ) =

∑
n∈Z

ane−2πinγ,

and
cn = 2πi

∑

k≤n

an,

where {cn} ∈ l2(Z). The convergence is pointwise for t /∈ Z, as well as in L2(R).
Thus, for cn = 2πi

∑
k≤n an we have the F–pairing,

∑
n∈Z

cn1(n,n+1)(t) ←→ 1

γ

∑
n∈Z

ane
−2πinγ. (9.4)

Proof. Clearly, ψ̂ ∈ L2(R̂) since ψ ∈ L2(R). Thus, we can apply the L2–
inversion formula

ψ(t) = lim
N→∞

∫ N

−N

ψ̂(γ)e2πiγt dγ,

with convergence of this limit in L2(R). We have

ϕ(γ) =
∑
n∈Z

ane
−2πinγ
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with {an} ∈ l1(Z) since ϕ ∈ A(T). We obtain

ψ(t) = lim
N→∞

∫ N

−N

ψ̂(γ)e2πiγtdγ

= lim
N→∞

∫ N

−N

1

γ

(∑
n∈Z

ane−2πinγ

)
e2πiγt dγ

= lim
N→∞

∫
1
N
≤|γ|≤N

1

γ

(∑
n∈Z

ane
−2πinγ

)
e2πiγt dγ

= lim
N→∞

∫
1
N
≤|γ|≤N

∑
n∈Z

an
e2πi(t−n)γ

γ
dγ

= lim
N→∞

∑
n∈Z

an

∫
1
N
≤|γ|≤N

e2πi(t−n)γ

γ
dγ (9.5)

= lim
N→∞

∑
n∈Z

an

∫
1
N
≤|γ|≤N

(
cos(2π(t− n)γ)

γ
+ i

sin(2π(t− n)γ)

γ

)
dγ

= i lim
N→∞

∑
n∈Z

an

∫
1
N
≤|γ|≤N

sin(2π(t− n)γ)

γ
dγ

= i
∑
n∈Z

an lim
N→∞

∫
1
N
≤|γ|≤N

sin(2π(t− n)γ)

γ
dγ (9.6)

= i
∑
n∈Z

an





π for t > n
0 for t = n
−π for t < n



 .

Note that (??) is true since {an} ∈ l1(Z) (Lemma ??), and (??) holds due to
Lemma ??.

Further note that for t ∈ (k, k + 1) we have

ψ(t) =
∑
n∈Z

πian sign(t− n)

=
∑

n≤k

πian −
∑

n≥k+1

πian

=
∑

n≤k

πian +
∑
n∈Z

πian −
∑

n≥k+1

πian

= 2πi
∑

n≤k

an

= ck.

Finally, we have ‖{cn}‖l2(Z) = ‖ψ‖L2(R) < ∞ and therefore {cn} ∈ l2(Z). ¤
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Remark 9.10. The result can be proven in a seemingly more elegant way using
tempered distributional calculus.

The following theorem is a corollary to Lemma ??.
Theorem 9.11. Let ψ ∈ L1(R) be such that for γ ∈ R̂

ψ̂(γ) =
ϕ(γ)

γ

where ϕ is 1–periodic on R̂ and ψ̂(0) = 0. Then ψ is a piecewise constant wavelet
of degree 1. In fact,

ψ(·) =
∑
n∈Z

πian sign(· − n) =
∑
n∈Z

cn1(n,n+1)(·)

where
ϕ(γ) =

∑
n∈Z

ane−2πinγ,

γ ∈ R̂, and

cn = 2πi
∑

k≤n

ak.

Proof. Lemma ?? implies that since ψ ∈ L1(R), ψ̂(0) = 0, and for γ ∈ R̂

ψ̂(γ) =
ϕ(γ)

γ

we have ϕ ∈ A(T). Then Lemma ?? implies the result. Note that since ψ ∈
L1(R) ∑

n∈Z

|cn| = ‖ψ‖L1(R) < ∞,

and therefore {cn} ∈ l1(Z). ¤
To obtain the main result, we need two more lemmata:

Lemma 9.12. Let ψ ∈ L2(R) be such that for γ ∈ R̂

F(ψ)(γ) = H(γ)
ϕ(γ)

γ
,

where ϕ ∈ A(T). Then there exists {dn} ∈ l2(Z) and {bn} ∈ l1(Z) such that∑
n∈Z bn = 0 and

ψ(·) =
1

2

∑
n∈Z

dn1(n,n+1)(·) +
∑
n∈Z

bn ln | · −n|

with pointwise convergence for t /∈ Z, as well as convergence in L2(R).
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Thus, if dn = 2πi
∑

k≤n bk, we have the F–pairing

∑
n∈Z

dn1(n,n+1)(t) +
∑
n∈Z

bn ln |t− n| ←→ H(γ)
1

γ

∑
n∈Z

bne−2πinγ. (9.7)

Proof. Let Θ(γ) = ϕ(γ)
γ

, ϕ(γ) =
∑

n∈Z bne
−2πinγ. Clearly Θ ∈ L2(R̂). Let

H : L2(R) −→ L2(R)

denote the Hilbert transformation.
Lemma ?? implies

F−1(Θ) =
∑
n∈Z

dn1(n,n+1),

where
dn = 2πi

∑

k≤n

bk

and {dn} ∈ l2(Z). Define

g =
1

2
F−1(Θ)− 1

2i
H(F−1(Θ)).

Clearly, g ∈ L2(R), and

F(g) =
1

2
Θ− 1

2i
F(F−1(−i sign F(F−1(Θ))))

=
1

2
Θ +

1

2
sign Θ

= HΘ.

Hence
g = F−1(HΘ).
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Further, for t /∈ Z

H(F−1(Θ))(t) = lim
ε→0

1

π

∫

|t−u|≥ε

F−1(Θ)(u)

t− u
du

= lim
ε→0

1

π

∫

|t−u|≥ε

∑
n∈Z dn1(n,n+1)(u)

t− u
du

= − lim
ε→0

1

π

∫

|x|≥ε

∑
n∈Z dn1(n,n+1)(t− x)

x
dx

= − lim
ε→0

1

π

∫

|x|≥ε

∑
n∈Z dn1(t−n−1,t−n)(x)

x
dx

= − 1

π

∑
n∈Z

dn

∫ t−n

t−n−1

1

x
dx

= − 1

π

∑
n∈Z

dn(ln |t− n| − ln |t− n− 1|)

= − 1

π

∑
n∈Z

(dn − dn−1) ln |t− n|

= − 1

π

∑
n∈Z

(2πi
∑

k<n

ak − 2πi
∑

k<n−1

ak) ln |t− n|

= − 1

π

∑
n∈Z

2πibn ln |t− n|

= −2i
∑
n∈Z

bn ln |t− n|.

Therefore, we have for t /∈ Z

g(t) =
1

2
F−1(Θ)(t)− 1

2i
H(F−1(Θ))(t)

=
1

2

∑
n∈Z

dn1(n,n+1)(t) +
∑
n∈Z

bn ln |t− n|.

¤
Lemma 9.13. Let ψ ∈ L1(R) have the property that ψ̂(0) = 0 and for t /∈ Z,

ψ(t) =
∑
n∈Z

en1(n,n+1)(t) +
∑
n∈Z

bn ln |t− n|

where {an}, {bn} ∈ l1(Z), and {cn} ∈ l2(Z) such that

an =
1

2πi
(en − en−1)− 1

2
bn,
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and
cn = en − πi

∑

k≤n

bk.

Then ψ ∈ L2(R).
Proof. We shall prove this technical result in four steps.

STEP 1. There exists C1 such that |en| ≤ C1 for all n ∈ Z.
By hypothesis we have

an =
1

2πi
(en − en−1)− 1

2
bn,

and we obtain for all N ∈ Z+

2πi
∑

1≤n≤N

an =
∑

1≤n≤N

(en − en−1)− πi
∑

1≤n≤N

bn

= eN − e1−1 − πi
∑

1≤n≤N

bn.

Therefore for all N ∈ Z+, since {an} and {bn} ∈ l1(Z), we have for all N ∈ Z+

|eN − e0| = |πi
∑

1≤n≤N

bn + 2πi
∑

1≤n≤N

an|

≤ π(
∑

1≤n≤N

|bn|+ 2
∑

1≤n≤N

|an|)

≤ π(‖{bn}‖l1(Z) + 2 ‖{an}‖l1(Z)).

Setting
C1 = π(‖{bn}‖l1(Z) + 2 ‖{an}‖l1(Z)) + |e0|

we obtain for positive N
|eN | ≤ C1.

Clearly, the same bound holds for negative N and |e0|. ¥
For n ∈ Z define

gn(t) =
∑

k 6=n

bk ln |t− k| = ψ(t)− bn ln |t− n| − en−11(n−1,n)(t)− en1(n,n+1)(t),

t ∈ [n− 1
2
, n + 1

2
], where the sum converges pointwise.

STEP 2. There exists C2 such that |g′n| ≤ C2 on [n− 1
2
, n + 1

2
] for all n ∈ Z.

Fix n ∈ Z. For N 6= n let

SN(t) = bN ln |t−N |.
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Clearly SN is continuously differentiable on the interval [n− 1
2
, n + 1

2
] and

|SN
′(t)| = |bN

1

t−N
| ≤ |bN

1
1
2

| = 2|bN |.

Since {bn} ∈ l1(Z), we can define

hn(t) =
∑

k 6=n

bk
1

t−N

with uniform convergence on [n− 1
2
, n+ 1

2
]. Hence, gn is continuously differentiable

on [n− 1
2
, n + 1

2
] and g′n = hn. Letting C2 = 2 ‖{bn}‖l1(Z) we have

|g′n(t)| ≤ C2

for t ∈ [n− 1
2
, n + 1

2
]. ¥

STEP 3. There exist N > 0 and C6 such that |gn| ≤ C6 on [n− 1
2
, n + 1

2
] for all

n for which |n| ≥ N .
There exists N such that for all n ≥ N there exists a tn ∈ [n− 1

2
, n− 1

4
] such

that ψ(tn) ≤ 1. This statement holds since if there were infinitely many nk with
ψ(t) ≥ 1 for all t ∈ [nk − 1

2
, nk − 1

4
] we would obtain

∫
|ψ| ≥

∑

k∈N

∫ nk− 1
4

nk− 1
2

1 = ∞,

which contradicts the hypothesis that ψ ∈ L1(R).
Let |bn| ≤ C4 for all n ∈ Z, and set C5 = 1 + C4 ln 4 + 2C1. We obtain

|gn(tn)| = |ψ(tn)− bn ln |tn − n| − en−11(n−1,n)(tn)− en1(n,n+1)(tn)|
≤ 1 + |bn| ln 4 + |en−1|+ |en|
≤ 1 + C4 ln 4 + 2C1

= C5.

For t ∈ [n − 1
2
, n + 1

2
] and setting C6 = C2 + C5 we have for some ξn ∈

[min{t, tn}, max{t, tn}]

|gn(t)| ≤ |gn(t)− gn(tn)|+ |gn(tn)|
≤ |(t− tn)g′n(ξn)|+ |gn(tn)|
≤ C6.

¥
STEP 4.

{∫ n+ 1
2

n− 1
2

|ψ|2
}
∈ l1(Z) and therefore ψ ∈ L2(R).
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For n ∈ Z define for t ∈ [n− 1
2
, n + 1

2
]

g̃n(t) =
∑

k 6=n

bk ln |t− k|+ en−11(n−1,n)(t) + en1(n,n+1)(t) = ψ(t)− bn ln |t− n|.

Hence, for |n| ≥ N , we obtain

|g̃n(t)| ≤ C1 + C6 for t ∈ [n− 1

2
, n +

1

2
].

We shall first show
{∫ n+ 1

2

n− 1
2

|g̃n|
}
∈ l1(Z). Note that

∫ n+ 1
2

n− 1
2

|bn ln |t− n|| dt = |bn|
∫ 1

2

− 1
2

| ln |t|| dt

= 2|bn|
∫ 1

2

0

| ln |t|| dt

= |bn|(ln 2 + 1),

and therefore
{∫ n+ 1

2

n− 1
2

|bn ln |t− n|| dt
}
∈ l1(Z). Since

∫ n+ 1
2

n− 1
2

|g̃n(t)| dt =

∫ n+ 1
2

n− 1
2

|ψ(t)− bn ln |t− n|| dt

≤
∫ n+ 1

2

n− 1
2

|ψ(t)| dt +

∫ n+ 1
2

n− 1
2

|bn ln |t− n|| dt

and
{∫ n+ 1

2

n− 1
2

|ψ|
}
∈ l1(Z), we obtain

{∫ n+ 1
2

n− 1
2

|g̃n|
}
∈ l1(Z).

The following calculation will conclude our proof:

∫ n+ 1
2

n− 1
2

|ψ(t)|2 dt =

∫ n+ 1
2

n− 1
2

|g̃n(t) + bn ln |t− n||2 dt

≤
∫ n+ 1

2

n− 1
2

|g̃n(t)|2 + 2|g̃n(t)bn ln |t− n||+ |bn ln |t− n||2 dt

≤ (C1 + C6)

∫ n+ 1
2

n− 1
2

|g̃n(t)| dt

+2(C1 + C6)

∫ n+ 1
2

n− 1
2

|bn ln |t− n||+ C4|bn|
∫ 1

2

− 1
2

| ln |t||2 dt

The elements on the right hand side form an l1(Z) sequence, and therefore{∫ n+ 1
2

n− 1
2

|ψ|2
}
∈ l1(Z) and ψ ∈ L2(R). ¥
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¤
Now we can procede to state and proof the main result, which was earlier

stated as Theorem ??.
Theorem 9.14. Let ψ ∈ L1(R). The following are equivalent:
i. Wψ

f (b, a) =
∫
R

f(t)ψ( t−b
a

) dt is 1–periodic in a for all f ∈ L∞(T).

ii. ψ̂(0) = 0 and ψ has the form

ψ(·) =
∑
n∈Z

en1(n,n+1)(·) +
∑
n∈Z

bn ln | · −n|,

where {bn}, {en − en−1} ∈ l1(Z), and {en − πi
∑

k≤n bk} ∈ l2(Z).
Proof. i =⇒ ii. We apply Lemma ?? and obtain

ψ̂(γ) =
ϕ1(γ)

γ
+ H(γ)

ϕ2(γ)

γ

and ψ̂(0) = 0, where ϕ1 and ϕ2 are 1–periodic. By Lemma ?? we have ϕ1 and
ϕ1 + ϕ2 ∈ A(T), and, hence, ϕ1 and ϕ2 ∈ A(T). Let us denote

ϕ1(γ) =
∑
n∈Z

ane
−2πinγ and ϕ2(γ) =

∑
n∈Z

bne
−2πinγ.

Since ψ̂(0) = 0, we have ψ̂, ϕ1(γ)
γ

, and H(γ)ϕ2(γ)
γ

are bounded and of order

O( 1
γ
), |γ| → ∞, and are therefore in L2(R̂). We can calculate ψ = F−1(ψ̂), using

the linearity of F−1, Lemma ??, and Lemma ??,

ψ(t) = F−1(ψ̂)(t)

= F−1(
ϕ1(γ)

γ
)(t) + F−1(H(γ)

ϕ2(γ)

γ
)(t)

=
∑
n∈Z

cn1(n,n+1)(t) +
∑
n∈Z

1

2
dn1(n,n+1)(t) +

∑
n∈Z

bn ln |t− n|

=
∑
n∈Z

(cn +
1

2
dn)1(n,n+1)(t) +

∑
n∈Z

bn ln |t− n|,

where dn = 2πi
∑

k≤n bk and cn = 2πi
∑

k≤n ak. Let en = cn + 1
2
dn.

Clearly, {bn} ∈ l1(Z) and {an} ∈ l1(Z), where

an =
1

2πi
(cn − cn−1) =

1

2πi
(en − 1

2
dn − en−1 +

1

2
dn−1) =

1

2πi
(en − en−1)− 1

2
bn.

Therefore, {en − en−1} ∈ l1(Z).

Further, since
∑

n∈Z cn1(n,n+1) = F−1(ϕ1(γ)
γ

) ∈ L2(R), we have {cn} ∈ l2(Z),
where

cn = 2πi
∑

k≤n

ak =
∑

k≤n

((ek − ek−1)− πibk) = en − πi
∑

k≤n

bk.
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Therefore ii holds.
ii =⇒ i. Let ψ ∈ L1(R) be of the form

ψ(t) =
∑
n∈Z

en1(n,n+1)(t) +
∑
n∈Z

bn ln |t− n|

with {bn} and {en − en−1} ∈ l1(Z), and {en − πi
∑

k≤n bk} ∈ l2(Z). Let

an =
1

2πi
(en − en−1)− 1

2
bn

and
cn = en − πi

∑

k≤n

bk.

Define, for n ∈ Z,

dn = 2πi
∑

k≤n

bk.

Then

cn = en − 1

2
dn

and

an =
1

2πi
(cn − cn−1).

By Lemma ?? we obtain ψ ∈ L2(R).
Let

ψ1(t) =
∑
n∈Z

cn1(n,n+1)(t).

Clearly, ψ1 ∈ L2(R) since {cn} ∈ l2(Z) and ‖ψ1‖L2(R) = ‖{cn}‖l2(Z). Further, let

ψ2(t) =
1

2

∑
n∈Z

dn1(n,n+1)(t) +
∑
n∈Z

bn ln |t− n|.

Since ψ ∈ L2(R) and ψ1 ∈ L2(R) we have ψ2 = ψ − ψ1 ∈ L2(R).
We can apply Lemma ?? to ψ1 and Lemma ?? to ψ2, and conclude that F(ψ1)

and F(ψ2) are 1–periodic on R̂+ and 1–periodic on R̂−.
Hence,

ψ̂ = F(ψ) = F(ψ1 + ψ2) = F(ψ1) + F(ψ2)

is 1–periodic on R̂+ and 1–periodic on R̂−.
Since ψ̂(0) = 0 by hypothesis, we can apply Lemma ??, and i follows. ¤

Remark 9.15. It is easy to give a formal proof for the direction i =⇒ ii in the
previous theorem. For this we need to use Proposition ??, as well as the following
calculation for ψ ∈ L1(R) defined by

ψ(t) =
∑
n∈Z

bn ln |t− n|,
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where
∑

n∈Z bn = 0:

ψ(
t− b

a
) =

∑
n∈Z

bn ln

∣∣∣∣
t− b

a
− n

∣∣∣∣

=
∑
n∈Z

bn ln

∣∣∣∣
t− b− na

a

∣∣∣∣

=
∑
n∈Z

bn (ln |t− b− na| − ln |a|)

=
∑
n∈Z

bn ln |t− b− na| .

Therefore,

Wψ
f (b, a + 1) =

∫ (∑
n∈Z

bn ln |t− b− n(a + 1)|
)

f(t) dt

=
∑
n∈Z

bn

∫
ln |t− b− n(a + 1)| f(t) dt

=
∑
n∈Z

bn

∫
ln |t− b− na| f(t + n) dt

=
∑
n∈Z

bn

∫
ln |t− b− na| f(t) dt

=

∫ (∑
n∈Z

bn ln |t− b− na|
)

f(t) dt

= Wψ
f (b, a).

Remark 9.16. Note that there is no redundancy in the three conditions
a. {bn} ∈ l1(Z)
b.{en − en−1} ∈ l1(Z)
c.{en − πi

∑
k≤n bk} ∈ l2(Z).

To see this, first let {en} = {0} and bn = 1
n2+1

for n ∈ Z. These sequences

satisfy a and b but not c. The sequences, defined by {bn} = {0} and en = 1
n

for n positive and odd and en = 0 otherwise, fulfill conditions a and c, but not
condition b. Last, {en} = {0} and bn = (−1)n 1

n
for n positive and bn = 0

otherwise, define sequences satisfying b and c, but not a.
Remark 9.17. For background on representation theory see [?, ?, ?]. Let
GL(Lp(R)) denote the group of invertible bounded linear operators on Lp(R)
which are continuous in the strong operator topology. Let G be the ax + b
group. Recall that G is a locally compact, non-abelian Lie group, topologically
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isomorphic to R×R+, with group operation (b, a) ◦ (b′, a′) = (b + ab′, aa′). The
linear representation Up of G on Lp(R) is given by

Up : G → GL(Lp(R))

(b, a) 7→ Up(b, a)

and

Up(b, a)(ψ)(·) = a−
1
p ψ(

· − b

a
).

We define the subgroup G+ of G by G+ = {(b, a) ∈ G, a > 0}, and let U+
p be the

linear representation obtained by restricting Up to G+.
The left transformation of a function ψ with respect to U+

p is, up to a mod-
ulation, the continuous wavelet transformation defined in Chapter ??, see (??).
In fact, if f is in the dual space of Lp(R), i.e., f ∈ Lp(R)′, 1 ≤ p < ∞, and
(b, a) ∈ G+, we have

Wψ

f
(b, a) = 〈U+

p (b, a)(ψ), f〉.
U+

p is a reducible linear representation on Lp(R) for 1 ≤ p < ∞, in fact,

Vp = {ψ ∈ Lp(R) : supp ψ̂ ⊂ R̂+} is a closed linear subspace of Lp(R) for
1 ≤ p < ∞ with the property that U+

p (b, a)(ψ) ∈ Vp for all ψ ∈ Vp and all
(b, a) ∈ G+. It can be shown that U+

p is an irreducible linear representation on
Vp for 1 ≤ p < ∞. V2 is referred to as Hardy space.

Nevertheless, Up is an irreducible linear representation on Lp(R) for 1 ≤ p <
∞. For p = 1, U1 is irreducible on the closed linear subspace Ṽ1 = {ψ ∈ L1(R) :

ψ̂(0) = 0} of L1(R). The left transformation of U1 differs from the wavelet
transformation in Theorem ?? only in the scaling domain we use, i.e., using
R \ {0} instead of R+. But in this case, the analogous of property (P) forces

that ψ̂(γ) = ϕ(γ)
γ

, where ϕ is periodic on R̂ (Proof of Lemma ??). Theorem ??
implies that ψ has in this case the more canonical form

ψ(t) =
∑
n∈Z

cn1(n,n+1),

where {cn} ∈ l1(Z).
We obtain a more canonical result after adjusting the underlying group repre-

sentation in a way, such that the underlying group representation is irreducible.
This leads to the question, whether we can formulate a representation theoretical
theorem which would generalize Theorem ??.

This idea is not supported by the following observation. The representation
U+

1 : G+ −→ GL(V +
1 ) is irreducible, but any ψ ∈ V +

1 that satisfies property (P)

in this setting, has a Fourier transform of the form ψ̂(γ) = H(γ)ϕ(γ)
γ

, where ϕ is
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periodic on R̂. Hence, ψ is not of the form ψ(t) =
∑

n∈Z cn1(n,n+1), but of the
form

ψ(t) =
∑
n∈Z

en1(n,n+1)(t) +
∑
n∈Z

bn ln |t− n|,

where {bn}, ∈ l1(Z) and {dn} = {2πi
∑

k≤n bk} ∈ l2(Z). See Lemma ??.

9.2 Examples

We shall construct two wavelets ψ ∈ L1(R) which are not piecewise constant,
but which have the property that for all f ∈ L∞(T), Wψ

f is 1–periodic in scale.
Example 9.18. Consider

ψ(t) = ln |t| − ln |t− 1| = ln

∣∣∣∣
t

t− 1

∣∣∣∣ ,

t 6= 0, 1. This function clearly satisfies ii of Theorem ??, but note that ψ /∈ L1(R).
In fact, we can apply the sum criterion for integrals, since ψ is positive and
decreasing on [2,∞), and calculate

N∑
n=2

(ln |n| − ln |n− 1|) = ln 2− ln 1 + ln 3− ln 2 + ... + ln N − ln(N − 1)

= ln N −→∞ as N −→∞.

Therefore,
∫
|ψ(t)| dt ≥

∫ ∞

1

|ψ(t)| dt =

∫ ∞

1

ψ(t) dt ≥
∞∑

n=2

ψ(n) = ∞,

and ψ /∈ L1(R).
Let us now correct this problem and construct ψ ∈ L1(R) with {bn} 6= {0}.

Let

ψ(t) =
∑

|n|≥2

ln

∣∣∣∣
n

n + 1

∣∣∣∣1(n,n+1) + ln |t| − ln |t− 1|.

Then b0 = 1, b1 = −1, bn = 0 for n 6= 0,−1 and {bn} ∈ l1(Z). Let en = ln
∣∣ n
n+1

∣∣
for |n| ≥ 2. Further

an = en − en−1 =

(
ln

∣∣∣∣
n

n + 1

∣∣∣∣− ln

∣∣∣∣
n− 1

n

∣∣∣∣
)

= − ln

∣∣∣∣
(n + 1)(n− 1)

n2

∣∣∣∣

= − ln

∣∣∣∣1−
1

n2

∣∣∣∣
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Figure 9.1. Example ?? of a wavelet ψ satisfying Theorem ??.

for |n| ≥ 2 and, hence, {en − en−1} ∈ l1(Z).
For |n| ≥ 3 we have

en − πi
∑

k≤n

bk = en.

Therefore, {bn}, and {en} fulfill the necessary requirements. Further, since∫
R

ψ(t) dt = 0, ψ satisfies condition ii of Theorem ??.
It remains to show that ψ ∈ L1(R). For this, observe that on the positive

part of the real axis

∫ ∞

2

|ψ(t)| dt ≤ lim
N→∞

N∑
n=2

ψ(n)

= lim
N→∞

N∑
n=2

(ln

∣∣∣∣
n

n + 1

∣∣∣∣ + ln |n| − ln |n− 1|)

= lim
N→∞

N∑
n=2

(ln

∣∣∣∣
n

n + 1

∣∣∣∣− ln

∣∣∣∣
n− 1

n

∣∣∣∣)

= lim
N→∞

− ln

∣∣∣∣
1

2

∣∣∣∣ + ln

∣∣∣∣
N

N + 1

∣∣∣∣
= ln 2.

A similar calculation holds for the negative part of the real axis and, therefore,
Theorem ?? applies and Wψ

f is 1–periodic in scale for all f ∈ L∞(T).
Example 9.19. We shall construct ψ ∈ L1(R) satisfying condition ii of Theorem
?? and which has the property that in its representation given in Theorem ??,
part i, {en} = {0}.
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Figure 9.2. Example ?? of a wavelet ψ satisfying Theorem ??.

Let

ψ(t) = ln |t + 1| − ln |t + 2|+ ln |t− 1| − ln |t− 2|
= ln

∣∣∣∣
(t + 1)(t− 1)

(t + 2)(t− 2)

∣∣∣∣

= ln

∣∣∣∣
t2 − 1

t2 − 4

∣∣∣∣ .

ψ is monotonically decreasing for |t| → ∞. Hence, we can apply the sum
criteria to show ψ ∈ L1(R). We have

∑

3≤|n|≤N

|ψ(n)| = 2
∑

3≤n≤N

|ψ(n)|

= 2
∑

3≤n≤N

−(ln(n + 1)− ln(n + 2))

+2
∑

3≤n≤N

(ln(n− 1)− ln(n− 2))

= 2(ln 4− ln(N + 2)− ln 1 + ln(N − 1))

= 2 ln 4− 2 ln

(
N + 2

N − 1

)
.

Hence

lim
N→∞

∑

3≤|n|≤N

|ψ(n)| = 2 ln 4.
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9.3 Generalization of the fundamental theorem

to Rd

In order to generalize Theorem ?? to higher dimensions, we need to clarify some
terms. For example, there is more than one way to define a periodic function on
Rd. The basic techniques applied in the one-dimensional case generalize to the
following setting. Here, {ei} will denote the Euclidean basis of Rd. Confusion
with the coefficient sequence {en}n∈Z, which we obtained in the previous section,
should not arise. A d-quadrant Q ⊂ Rd is a maximal connected subset of Rd \S,
where S = {x ∈ Rd : p(x) = x1 · . . . · xd = 0}. See Chapter ?? for more of the
notation used in this section.
Definition 9.20. A function f defined on D ⊆ Rd is T–periodic, T = (T1, . . . , Td) ∈
Rd, if f(x + Tiei) = f(x) for all x ∈ D where x + Tiei ∈ D for all i = 1, ..., d.

Hence, f is T–periodic on each d–quadrant, T = (T1, . . . , Td) ∈ Rd, if f(x +
Tiei) = f(x) for all x and x + Tiei being in the same d–quadrant.

The wavelet transformation we shall use, has domain Rd × (R+)d, is not
normalized, and is defined by:

Wψf(b, a) =

∫

Rd

f(t)ψ(
t− b

a
) dt.

Note, that the vector t−b
a

has been defined in Chapter ??.
In Remark ?? we shall discuss the necessity to scale in each coordinate of

Rd separately. Using only the scaling domain R+, which is embedded in (R+)d

by means of a → (a, . . . , a), we cannot achieve a complete classification theorem
similar to Theorem ??.

We shall again classify all wavelets with the property that the non–normalized
wavelet transform of any periodic function f ∈ L∞(Rd) is periodic in scale. As
in the one-dimensional case, continuous wavelet transforms of periodic functions
are always periodic in ”time”.

Note that, defying convention, we are continuing to use t = (t1, . . . , td) ∈ Rd

as main variable.
Let M = {m ∈ Zd : mi ∈ {+1,−1} for i = 1, . . . , d}.

Theorem 9.21. Let ψ ∈ L1(Rd). The following are equivalent:
i. Wψf(b, a) =

∫
Rd f(t)ψ( t−b

a
) dt is 1–periodic in a for all f ∈ L∞(Td).

ii. ψ̂(k) = 0 for k ∈ Zd ∩ S and ψ has the form:

ψ(t) =
∑
m∈M

∑

n∈Zd

cm
n

∏
i

mi=1

1(ni,ni+1)(ti)
∏

i
mi=−1

ln | ti − ni

ti − ni − 1
|,

t = (t1, . . . , td) ∈ Rd, where {cm
n }n ∈ l2(Zd) such that there exist Zd sequences
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{am
n }n ∈ l1(Zd) with the property that for all k ∈ Zd and all m ∈ M ,

cm
k =

∑

p(n−k)≥0

am
n .

The proof of this theorem is very similar to the proof of Theorem ??, and,
hence, we shall skip many details.
Lemma 9.22. Let ψ ∈ L1(Rd). The following are equivalent:
i. Wψf(b, a) =

∫
Rd f(t)ψ( t−b

a
) dt is 1–periodic in a for all f ∈ L∞(Td).

ii. There exists a continuous function ϕ, 1–periodic on each d–quadrant, such
that

ψ̂(γ) =
ϕ(γ)

p(γ)
for γ ∈ R̂d \ S

and ψ̂(m) = 0 for m ∈ Zd ∩ S.
Proof. i =⇒ ii. We assume that Wf (b, a) =

∫
Rd f(t)ψ( t−b

a
) dt is 1–periodic in

a for all f ∈ L∞(Td).
The condition Wf (b, a) = Wf (b, a + ek) for k = 1, . . . , d and all f ∈ L∞(Td)

implies that for k = 1, . . . , d

Sk(t) =
∑
n∈Z

(ψ(
t− n− b

a
)− ψ(

t− n− b

a + ek

)) dt = 0.

The main calculation (??) in the proof of Lemma ?? can be easily generalized.
Hence, for all m ∈ Zd and k = 1, . . . , d

0 = Ŝk[m] = e−2πi〈m,b〉(p(a)ψ̂(m ? a)− p(a + ek)ψ̂(m ? (a + ek)).,

a ∈ (R+)d. For m ∈ Zd ∩ S, let k0 be such that mk0 = 0, and let a = 1 − ek0 .
Then

0 = (p(a)ψ̂(m ? a)− p(a + ek)ψ̂(m ? (a + ek)) = −ψ̂(m),

and the second part of ii is shown.
As before, we define ϕ(γ) = p(γ)ψ̂(γ) for gamma ∈ R̂d.
In order to show that ϕ is 1–periodic on each d–quadrant, observe that for

γ ∈ R̂d − S, γ is in the same d–quadrant as γ + sign(γk)ek for each k = 1, . . . , d.

In fact, the assertion that ϕ(γ) = ϕ(γ + sign(γk)ek) for all γ ∈ R̂d \ S and all
k = 1, . . . , d is equivalent to the fact that ϕ is 1–periodic in each d–quadrant.

If γ ∈ R̂d − S, a = |γ| and m = sign(γ), then we obtain

ϕ(γ) = ϕ(sign(γ)| ? γ|) = ϕ(sign(γ) ? (|γ|+ ek)) = ϕ(γ + sign(γk)ek)

for each k = 1, . . . , d, and the proof that i =⇒ ii is complete.
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ii =⇒ i. If ii holds we have for a ∈ (R+)d, m ∈ Zd \ S, and k = 1, . . . , d that
∣∣∣Ŝk[m]

∣∣∣ =
∣∣∣p(a)ψ̂(m ? a)− p(a + ek)ψ̂(m ? (a + ek))

∣∣∣

=

∣∣∣∣p(a)
ϕ(m ? a)

p(m ? a)
− p(a + ek)

ϕ(m ? (a + ek))

p(m ? (a + ek)

∣∣∣∣

=

∣∣∣∣
1

p(m)
(ϕ(m ? a)− ϕ(m ? a + m))

∣∣∣∣
= 0

since m and m + a ? m are always in the same d–quadrant. Also Ŝk[m] = 0 for

m ∈ Zd ∩ S since ψ̂(m) = 0 for m ∈ Zd ∩ S by hypothesis.

Therefore Ŝk[m] = 0 for all m ∈ Z and all k = 1, . . . , d. The periodicity in
scale follows in the same way as in the proof of Theorem ??. ¤
Remark 9.23. Our d-dimensional classification Theorem (Theorem ??) implies
that if the wavelet ψ has a specific form, then the non–normalized wavelet trans-
form of any periodic signal is periodic in scale (R+)d. Certainly, if we restrict the
scaling domain to R+, which is embedded in (R+)d by means of a 7→ (a, . . . , a),
we obtain wavelet transforms defined on Rd × R+ which are again periodic in
scale.

Nevertheless we cannot classify all wavelets such that the wavelet transform
defined on Rd × R+ of any periodic functions on Rd is in turn periodic in scale.

To see this, we shall refer to the proof of Lemma ??. Observe that the
periodicity condition of wavelet transforms on Rd × R+, now only implies that
for all m ∈ Zd we have

adψ̂


a




m1
...

m1





 = (a + 1)dψ̂


(a + 1)




m1
...

m1







= (a + 1)dψ̂


a




m1
...

m1


 +




m1
...

m1







This condition is not sufficiently strong to imply that ψ has a representation
similar to the one obtained in Theorem ??.ii.

In fact, choosing as scaling domain (R+)d, we obtained that pψ̂ is periodic in

each d–quadrant. So if we know ψ̂ on [0, 1]d, we actually know ψ̂ on all of (R+)d.

Choosing as scaling domain R+, we only know that the values of ψ̂ on [0, 1]d

determine the values on the thick diagonal lines in Figure ??. The collection of
all non horizontal and non vertical lines in Figure ?? show the areas on which the
values of ψ̂ are determined by values taken closer to the origin in the waveletgram.
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Figure 9.3. Predetermined lines in the first 2–quadrant of the domain of the
Fourier transform of ψ, as explained in Remark ??.

The following lemmata will be used in the proof of Theorem ??.
Lemma 9.24. Let ψ ∈ L1(Rd) be such that for all γ in the d–quadrant Q of R̂d

we have

ψ̂(γ) =
ϕ(γ)

γ
,

where ϕ is 1–periodic on R̂. Then ϕ ∈ A(Td) and, hence, the Fourier se-
ries S

(
ϕ
)
(γ) =

∑
n∈Zd bne−2πi〈n,γ〉 converges to ϕ absolutely and uniformly, i.e.,

{bn} ∈ l1(Z).
Here, F denotes the L2(Rd)-Fourier transformation.

Lemma 9.25. Let ψ ∈ L2(Rd) be such that, for all γ ∈ R̂d,

F(ψ)(γ) =
ϕ(γ)

p(γ)

where ϕ ∈ A(Td). Then

ψ(·) = (iπ)d
∑

n∈Zd

anp(sign(· − n)) =
∑

n∈Zd

cn1(n,n+1)(·),

where
ϕ(γ) =

∑

n∈Zd

ane
−2πi〈n,γ〉

and
cn = 2(πi)d

∑

p(n−k)≥0

an,
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and where {cn} ∈ l2(Z). The convergence is pointwise for t /∈ Zd, as well as in
L2(Rd).

Thus, we have the F–pairing

∑

n∈Zd

cn1(n,n+1)(t) ←→ 1

p(γ)

∑

n∈Zd

ane−2πi〈n,γ〉 (9.8)

Proof. For N ∈ Z+, let AN = {γ ∈ R̂d : ‖γ‖∞ < N and BN = {γ ∈ AN :

d(γ, S) > 1/N}. Since ψ̂ ∈ L2(R̂d) we can apply the L2–inversion formula to
obtain

ψ(t) = lim
N→∞

∫

AN

ψ̂(γ)e2πi〈t,γ〉 dγ,

with convergence of this limit in L2(Rd). Similar to the proof of Lemma ??, we
obtain

ψ(t) = lim
N→∞

∫

BN

1

p(γ)

( ∑

n∈Zd

ane
−2πinγ

)
e2πiγt dγ

= lim
N→∞

∑

n∈Zd

an

∫

BN

e2πi〈t−n,γ〉

p(γ)
dγ

= lim
N→∞

∑

n∈Zd

an

d∏

k=1

∫
1
N
≤|γk|≤N

e2πi(tk−nk)γk

γk

dγk

= id
∑

n∈Zd

an

d∏

k=1





π for tk > nk

0 for tk = nk

−π for tk < nk





= (iπ)d
∑

n∈Zd

anp(sign(t− n)).

We can change the order of the integral, the limit, and the sum by the same
arguments presented in the proof of Lemma ??.

For t ∈ (k, k + 1) we have the following calculation analogous to the one
dimensional case:

ψ(t) = (πi)d
∑

n∈Zd

πian sign(t− n)

= (πi)d
∑

p(n−k)≥0

an + (πi)d
∑

n∈Zd

an − (πi)d
∑

p(n−k)<0

an

= 2(πi)d
∑

p(n−k)≥0

an

= ck.
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In particular,
‖{cn}‖l2(Zd) = ‖ψ‖L2(Rd) < ∞,

and therefore {cn} ∈ l2(Zd). ¤
In order to handle the general case, ψ̂ = ϕ

p
with ϕ being only periodic on each

d–quadrant, we need the following Lemma.
Lemma 9.26. Let ϕ be periodic in each d–quadrant. Let M = {m ∈ Zd : mi ∈
{+1,−1} for i = 1, . . . , d} and define the Heaviside functions Hm ∈ L∞(Rd),
m ∈ M , by

Hm(x) =
∏

i
mi=−1

sgn(xi),

x = (x1, . . . , xd) ∈ Rd. There exist 1–periodic function ϕm, m ∈ M such that

ϕ =
∑
m∈M

Hmϕm. (9.9)

The set {Hm}m∈M is minimal in the following sense. There exists no set
of functions {Fi}i∈I , |I| < |M | = 2d, such that we can decompose a function
periodic in each d–quadrant into periodic function analogous to (??). This is
obvious, since Rd has 2d d–quadrants and |M | = 2d.

Proof of Lemma ??. Let us enumerate the 2d d–quadrants of Rd by setting
Qn = {x ∈ Rd : sgn(xi) = sgn(ni) for i = 1, . . . , d} for n ∈ M .

We shall construct cn
m ∈ {+1,−1} for m, n ∈ M such that 2d1Qn =

∑
m,n∈M cn

mHm

for n ∈ M .
Assuming this, for each n ∈ M we let ϕ̃n be the 1–periodic continuation of

ϕ · 1Qn to all of Rd. By setting ϕm = 2−d
∑

n∈M cn
mϕ̃n we obtain

ϕ =
∑
n∈M

1Qnϕ̃n

=
∑
n∈M

∑
m∈M

2−dcn
mHmϕ̃n

=
∑
m∈M

Hm

(∑
n∈M

2−dcn
mϕ̃n

)

=
∑
m∈M

Hmϕm.

It remains to construct the required cn
m ∈ {+1,−1} for m,n ∈ M . Let us

begin by setting n = 1 = (1, . . . , 1). We let c1
m = 1 for all m ∈ M . Since each

Hm is constant on each d–quadrant, it suffices to show
∑

m∈M Hm(k) = 2dδ1,k for
k ∈ M .
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First observe that clearly Hm(1) = 1 for all m ∈ M and hence
∑

m∈M Hm(1) =
2d. To show

∑
m∈M Hm(k) = 0 for k 6= 1, we shall use induction with respect to

d.
For d = 1 we have H1(−1) + H−1(−1) = 1− 1 = 0. Suppose the result holds

for d − 1, d > 1. Let M̃ = {m ∈ Zd−1,mi ∈ {+1,−1} for i = 1, . . . , d − 1} and
for m = (m1, . . . , md) ∈ M define m̃ = (m1, . . . , md−1) ∈ M̃ . Observe that

Hm(k) =

{
Hm̃(k̃) for md = 1

sign(kd)Hm̃(k̃) for md = −1
.

}

and therefore
∑
m∈M

Hm(k) = sign(kd)
∑

m̃∈M̃

Hm̃(k̃) +
∑

m̃∈M̃

Hm̃(k̃)

= (sign(kd) + 1)
∑

m̃∈M̃

Hm̃(k̃)

= 0,

since either kd = −1 or k̃ 6= 1, in which case
∑

m̃∈M̃ Hm̃(k̃) = 0.
For the general case, n 6= 1, let cn

m = Hm(n) and observe that
∑
m∈M

Hm(n)Hm(k) =
∑
m∈M

Hm(n ? k) = δ1,n?k = δn,k

since n ? k = 1 if and only if n = k. ¤
Now we can write ψ̂ =

∑
m∈M Hm

ϕm

p
where all ϕm, m ∈ M are periodic on all

of Rd. In our final lemma we calculate the inverse Fourier transforms of Hm
ϕm

p

for m ∈ M .
Lemma 9.27. Let ψ ∈ L2(Rd) such that for γ ∈ R̂d and some m ∈ M

F(ψ)(γ) = Hm(γ)
ϕ(γ)

p(γ)

with ϕ ∈ A(Td) ,ϕ(γ) =
∑

n∈Zd ane
−2πi〈n,γ〉. Letting cn = 2 (πi)d

πr

∑
p(n−k)≥0 an,

r = |{i,mi = −1}|, we get {cn} ∈ l2(Z) and

ψ(t) =
id

πd−r

∑

n∈Zd

cn

∏
i

mi=1

1(ni,ni+1)(ti)
∏

i
mi=−1

ln | ti − ni

ti − ni − 1
|,

t = (t1, . . . , td) ∈ Rd. The convergence is pointwise for t /∈ Zd, as well as in
L2(Rd).

That is, we have the F–pairing:

∑

n∈Zd

cn

∏
i

mi=1

1(ni,ni+1)(ti)
∏

i
mi=−1

ln | ti − ni

ti − ni − 1
| ←→ Hm(γ)

1

p(γ)

∑

n∈Zd

ane
−2πi〈n,γ〉
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To prove this lemma in an elementary fashion, we need some observations
with respect to partial Fourier and Hilbert transformations.

For k = 1, . . . , d, let
Fk : L2(Rd) −→ L2(Rd)

be the partial Fourier transformation. Fk(f) is defined for almost every γ ∈ R̂d

by

Fk(f)(γ) = lim
N→∞

∫ N

−N

f(x1, . . . , xd)e
−2πixkγk dxk.

This is well defined, since for f ∈ L2(Rd), by Tonelli’s Theorem

|f(x1, . . . , xk−1, ·, xk+1, . . . , xd)|2

is integrable for almost every xk = (x1, . . . , xk−1, xk+1, . . . , xd) (as a subset of
Rd−1) and we have

‖Fk(f)‖L( bRd) =

∫

Rd−1

∫
bR |Fk(f)(x1, . . . , xk−1, γ, xk+1, . . . , xd)|2 dγ dxk

=

∫

Rd−1

∫

R

|f(x1, . . . , xd)|2 dxk dxk (9.10)

= ‖f‖2
L2(Rd)

to obtain (??) we applied the Parseval–Plancherel Theorem. The calculation also
showed that Fk is continuous for all k = 1, . . . , d.

We can apply a similar argument to any continuous operator on L2(R) to
obtain continuous operators on L2(Rd). The only modification we need, is to use
the continuity of the operator instead of Parseval–Plancherel to guarantee that
the new operator is well defined and continuous. In particular, we shall apply
this to the Hilbert transformation, by defining for k = 1, . . . , d

Hk : L2(Rd) −→ L2(Rd)

to be the Hilbert transformation with respect to the k–th variable.
Observe now that if k 6= l we have FkHl = HlFk. This is trivial for separable

functions in L2(Rd). The set of linear combinations of such functions is dense in
L2(Rd), hence, by continuity, the operators commute on all of L2(Rd).

For separable functions with compact support, we have clearly F = F1 ◦
. . . ◦ Fd. The linear span of these functions is again dense in L2(Rd), and hence
F = F1 ◦ . . . ◦ Fd holds for all of L2(Rd).
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Proof of Lemma ??: Fix m ∈ M . We need to obtain F−1
(
Hm

ϕ
p

)
. In fact

F−1

(
Hm

ϕ

p

)

= F−1
d ◦ . . . ◦ F−1

1




∏
i

mi=−1

sgn(xi)

(
F1 ◦ . . . ◦ Fd

(
F−1

(
ϕ

p

)))



=
◦∏
i

mi=−1

Hi

(
F−1

(
ϕ

p

))
.

Let c̃k = 2(πı)d
∑

p(n−k)≥0 an, {i1, . . . , ir} = {i, mi = 1}. For permissible

t ∈ Rd, we have

F−1

(
Hm

ϕ

p

)
(t)

= lim
εi1
→0

. . . lim
εir→0

1

πr

∫

|ti1−ui1
|≥εi1

. . .

∫

|tir−uir |≥εir

F−1
(

ϕ
p

)
(u)

∏r
l=1(til − uil)

duir . . . dui1

= lim
εi1
→0

. . . lim
εir→0

1

πr

∫

|ti1−ui1
|≥ε1

. . .

∫

|tir−uir |≥εr

∑
n∈Zd c̃n1(n,n+1)(u)∏r

l=1(til − uil)
duir . . . dui1

=
1

πr

∑

n∈Zd

c̃n

∏
i

mi=1

1(ni,ni+1)(ti)
∏

i
mi=−1

lim
εi→0

∫

|ti−ui|≥εi

1(ni,ni+1)(ui)

ti − ui

dui

=
∑

n∈Zd

cn

∏
i

mi=1

1(ni,ni+1)(ti)
∏

i
mi=−1

(ln |ti − ni| − ln |ti − ni − 1|).

We used the fact that cn = 2 (πi)d

πr

∑
p(n−k)≥0 an = 1

πr c̃n. ¤
We can now proceed to state and prove the main result.

Theorem 9.28. Let ψ ∈ L1(Rd). The following are equivalent:
i. Wψf(b, a) =

∫
Rd f(t)ψ( t−b

a
) dt is 1–periodic in a for all f ∈ L∞(Td).

ii. ψ̂(k) = 0 for k ∈ Zd ∩ S and ψ can be written in the form:

ψ(t) =
∑
m∈M

∑

n∈Zd

cm
n

∏
i

mi=1

1(ni,ni+1)(ti)
∏

i
mi=−1

ln | ti − ni

ti − ni − 1
|,

, t = (t1, . . . , td) ∈ Rd, where {cm
n }n ∈ l2(Zd), such that there exists {am

n }n ∈
l1(Zd) such that for all k ∈ Zd

cm
k =

∑

p(n−k)≥0

am
n ,
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and such that for

ϕm(γ) =
∑

n∈Zd

am
n e2πi〈n,γ〉

ϕm

p
is bounded.
Note that the main difference between Theorem ?? and Theorem ?? are the

conditions we obtain on the sequences that are involved. The conditions in The-
orem ?? are significantly harder to check.

Proof. i =⇒ ii: Lemma ?? and Lemma ?? imply that ψ̂(k) = 0 for k ∈ Zd∩S
and

ψ̂ =
∑
m∈M

Hm
ϕm

p

with ϕm ∈ A(Td) for m ∈ M . Since ψ̂ is continuous, we have, by the construction
in Lemma ??, that Hm

ϕm

p
are bounded for all m ∈ M , and hence clearly Hm

ϕm

p
∈

L2(R̂d). Therefore, by Lemma ?? and Lemma ?? we have

ψ(t) =
∑
m∈M

∑

n∈Zd

cm
n

∏
i

mi=1

1(ni,ni+1)(ti)
∏

i
mi=−1

ln | ti − ni

ti − ni − 1
|

with {c1
n}n = {a1

n}n ∈ l1(Zd) and for m 6= 1 we have {cm
n }n ∈ l2(Zd). Further,

ϕm(γ) =
∑

n∈Zd am
n e−2πi〈γ,n〉 ∈ A(Td) and for k ∈ Zd

cm
k =

∑

p(n−k)≥0

am
n .

Therefore ii holds.
ii =⇒ i: Since ϕm(γ) =

∑
n∈Zd am

n e−2πi〈γ,n〉 ∈ A(Td), and ϕm

p
is bounded for

all m ∈ M , we have Hm
ϕm

p
∈ L2(R̂d) for all m ∈ M . This allows us to apply

Lemma ??, and Lemma ?? then supplies the result. ¤
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