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Abstract—We consider phaseless measurements in the case
when the measurement frame is a Gabor frame, that is, the
frame coefficients are of the form of masked Fourier coeffi-
cients where the masks are time shifts of the Gabor window.
This makes measurements meaningful for applications, but at
the same time preserves the flexibility of the frame-theoretic
approach. We are going to present a recovery algorithm
which requires a sufficiently small number of measurements;
it is based on the idea of polarization, which is proposed by
Alexeev, Bandeira, Fickus and Mixon [1], [4].

I. INTRODUCTION

In many areas of imaging science, optical detectors can
only record the squared modulus of the Fraunhofer or
Fresnel diffraction pattern of the radiation that is scattered
from the object at hand. In such setting, the phase of the
optical wave reaching the detector is lost. So, it is needed
to reconstruct a signal from intensity measurements, fre-
quently from the magnitudes of its Fourier coefficients,
only. The problem of recovering a signal from intensity
measurements is called phase retrieval.

For simplicity we consider one-dimensional signals with
finite length only. Formally, we seek to recover a signal
x ∈ CM from measurements of the form

bj = |〈x, ϕj〉|, ϕj ∈ Φ,

where Φ = {ϕj}Nj=1 ⊂ CM is a frame in CM .
Clearly, x can only be reconstructed up to a global phase.

Indeed, for every ω ∈ C with |ω| = 1, the signals x and
ωx produce the same set of intensity measurements.

Not every frame provides an injective measurement
procedure. Even in the case when Φ is known to give
injective measurements, the problem of reconstructing x
from {bj}Nj=1 is NP-hard in general [12].

A number of polynomial-time numerical algorithms that
work for very specific choices of Φ are proposed in the
literature. But for many of these algorithms there are no
recovery and stability guarantees proven, the measurements
|〈x, ϕ〉|, ϕ ∈ Φ, cannot be physically implemented in prac-
tice, or the number of measurements needed is unreason-
ably large. Until recently, efficient algorithms with O(M2)
measurements were known only, see for example [3]. The
situation changed significantly when Candès, Strohmer and

Voroninski proposed PhaseLift which uses semidefinite
programming to stably reconstruct a signal x from N =
O(M) measurements of the form {|〈x, ϕj〉|2}Nj=1, where
all ϕj are independent Gaussian random vectors [6].

In our work, we consider the case when the frame Φ is
a Gabor frame, that is, a time-frequency structured frame.
The main motivation for this is that in this case, the frame
coefficients are of the form of masked Fourier coefficients,
where the masks are shifts of the possibly randomly
chosen Gabor window. This makes the measurements im-
plementable in many diffraction imaging problems.

Our paper is organised as follows. In Section II we
describe the general idea of the polarization method [1],
[4]. We also discuss some relevant properties of expander
graphs. In Section III we describe time-frequency struc-
tured measurements, our algorithm, and discuss stability
issues.

II. PHASE RETRIEVAL WITH POLARIZATION

First, we are going to describe the so-called polarization
approach, proposed by Alexeev, Bandeira, Fickus and
Mixon [1], [4]. The main difference between PhaseLift and
polarization is that polarization uses structured measure-
ment vectors. If a phase retrieval application allows one
to design measurement vectors with the required structure,
then the phase can be recovered rather quickly. A num-
ber of numerical simulations which compare polarization
to PhaseLift show that polarization is much faster (i.e.,
seconds versus hours), but PhaseLift offers more stable
estimates of the signal. Stability of the polarization method
still remains to be established.

Suppose we take phaseless measurements of x ∈ CM
with a frame ΦV = {ϕi}i∈V ⊂ CM , where V is a
finite set. Having |〈x, ϕi〉| for every i ∈ V , it suffices to
determine the relative phase between pairs of frame coef-
ficients. Indeed, if we choose a nonzero frame coefficient
|〈x, ϕi〉| and assume that ci = 〈x, ϕi〉 = |〈x, ϕi〉|, then any
〈x, ϕj〉 6= 0 has a well-defined relative phase

ωij =

(
〈x, ϕi〉
|〈x, ϕi〉|

)−1 〈x, ϕj〉
|〈x, ϕj〉|

=
〈x, ϕi〉〈x, ϕj〉
|〈x, ϕi〉||〈x, ϕj〉|

,

and we can set
cj = ωij |〈x, ϕj〉|.978-1-4673-7353-1/15/$31.00 c©2015 IEEE



In the case when 〈x, ϕj〉 = 0, we set cj = 0, ωij = 1.
The original signal x can then be identified up to a global
phase by using a dual frame {ϕ̃j}j∈V of a frame {ϕj}j∈V .
Indeed, we have:∑

j∈V
cjϕ̃j =

( 〈x,ϕi〉
|〈x,ϕi〉|

)−1
x.

To obtain the relative phase between frame coefficients, the
following polarization identity is useful:

Lemma II.1. [1] For any i, j ∈ V , if 〈x, ϕi〉 6= 0 and
〈x, ϕj〉 6= 0, the following holds:

ωij =
1

3|〈x, ϕi〉||〈x, ϕj〉|

2∑
k=0

ωk
∣∣〈x, ϕi + ωkϕj〉

∣∣2.
Let us introduce the graph G = (V,E) with a small edge

set E representing relative phases to be chosen later. If we
obtain phaseless measurements with respect to ΦV ∪ ΦE ,
where ΦE = {ϕi + ωkϕj}k∈{0,1,2}, (i,j)∈E , then we can
use Lemma II.1 to determine ωij in case 〈x, ϕi〉 6= 0 and
〈x, ϕj〉 6= 0. If for some j ∈ V , 〈x, φj〉 = 0 then relative
phases involving j are not defined. Thus, phase information
cannot be propagated through this vertex and this has the
effect of removing the vertex from the graph.

Else, we can propagate phases from one vertex to
another (see Figure 1). Indeed, if we know ci 6= 0, for
some i ∈ V , then for any j, such that (i, j) ∈ E and
|〈x, φj〉| 6= 0, we have cj = ωij

ci
|ci| |〈x, φj〉|, and we can

repeat this step iteratively. Hence, to reconstruct x up to a
global phase, it is sufficient that after removing all “zero”
vertices the graph G has a connected component whose
vertex set corresponds to a subframe of Φ.

i

ci

k

ck = ωjk
cj
|cj | |〈x, φk〉|

j

cj = ωij
ci
|ci| |〈x, φj〉|

ωjk
ωij

Fig. 1: The phase propagation process.
The algorithm proposed in [1] hinges on the following:
(i) We require ΦV to be full spark (see [2]), that is, ΦV has
the property that every subcollection of M frame elements
spans CM . There are two reasons to use full spark frames.
First, this implies that any x 6= 0 is orthogonal to at most
M−1 vectors from ΦV and thus at most M−1 vertices will
be deleted from the graph G. Secondly, any subcollection
of M vectors from ΦV form a frame in CM and thus x
can be reconstructed from any M frame coefficients.
(ii) If Φ is full spark, It is sufficient that G is a graph with
the following connectivity property: deleting any M − 1
vertices results in a connected component of size at least
M . To this end, we are going to use a well-studied family
of sparse graphs known as expander graphs.

Let G be a d-regular graph with adjacency matrix A =
A(G). Being real and symmetric, A(G) has n real eigen-
values. Let us denote them by d = λ1 ≥ λ2 ≥ · · · ≥ λn,
and let λ = max(|λ2|, |λn|). The value spg(G) = d−λ

d is
known as the spectral gap of G. As the following lemma
shows, a big spg(G) ensures good connectivity properties
of graph G [1], [7]:

Lemma II.2. Let G be a d-regular graph with |V | = n.
For all ε ≤ spg(G)

6 , removing any εn vertices from
G results in a connected component of size at least(

1− 2ε
spg(G)

)
n.

III. POLARIZATION FOR TIME-FREQUENCY
STRUCTURED MEASUREMENTS

Let us first define the following two unitary operators on
CM (for more information see [11]):
The time shift operator Tk : CM → CM , k ∈ ZM is
given by

Tkx = Tk{x(0), x(1), . . . , x(M−1)} = {x(m−k)}m∈ZM
,

and the frequency shift operator M` : CM → CM satisfies

M`x = {e2πi`m/Mx(m)}m∈ZM
.

We also define time-frequency shift operators as composi-
tion π(k, `) = M`Tk, for k, ` ∈ ZM .

Definition III.1. For a window ζ ∈ CM \ {0} and Λ ⊆
ZM × ZM , the set of vectors

(ζ,Λ) = {π(k, `)ζ}(k,`)∈Λ

is called Gabor system. A Gabor system which is a frame
is referred to as Gabor frame.

The following result was shown for M prime in [8] and
for M composite in [9]:

Theorem III.2. Let M be a positive integer and let Λ be
a subgroup of ZM × ZM with |Λ| ≥M . Then, for almost
all ζ ∈ SM−1 ⊂ CM , (ζ,Λ) is a full spark frame.

A. Algorithm

Let x ∈ CM be the signal that is to be reconstructed.
Consider a subgroup Λ = F × ZM ⊂ ZM × ZM ,
such that |F | = K is fixed (that is, we consider all
frequency shifts and only a constant number of time
shifts). We assume that measurements are of the form
{|〈x, φ〉|, φ ∈ ΦV }, where ΦV = (ζ,Λ) is a Gabor
frame and ζ = {e2πiym}m∈ZM

, where ym ∈ [0, 1)
are independent uniformly distributed random variables.
Theorem III.2 implies that with probability 1 the frame
ΦV = {π(λ)ζ}λ∈Λ is full spark, and thus for any vector
x ∈ CM , the number of zero measurements among
{|〈x, π(λ)g〉|}λ∈Λ is at most M − 1.



For each λ ∈ Λ, λ = (k, `), ` ∈ ZM , k ∈ F we have:

|〈x, π(λ)ζ〉| =
∣∣F (x� Tk ζ̄) (`)

∣∣ . (1)

Here, � denotes a componentwise product. As equation
(1) shows, our measurements have the form of magnitudes
of masked Fourier transform coefficients with the set of
masks being {Tk ζ̄}k∈F .
Using Lemma II.1, we get that for any λ1, λ2 ∈ V ,
provided |〈x, π(λ1)ζ〉| 6= 0 and |〈x, π(λ2)ζ〉| 6= 0, ωλ1λ2

equals

1
3|〈x,π(λ1)ζ〉||〈x,π(λ2)ζ〉|

∑2
k=0 ω

k|〈x, π(λ1)ζ + ωkπ(λ2)ζ〉|2. (2)

Thus to find x up to a global phase, we require addi-
tional measurements of the form |〈x, π(λ1)ζ+ωtπ(λ2)ζ〉|,
t ∈ {0, 1, 2}. We have

π(λ1)ζ+ωtπ(λ2)ζ = π(k1, `1)ζ + ωtπ(k2, `2)ζ

= p(`2−`1)k1k2(t)� π(λ1)ζ

where the vector pck1k2(t) ∈ CM is defined by

pck1k2(t)(m) =
(

1 + e2πi( cm
M +(ym−k2

−ym−k1
)+ t

3 )
)

for every m ∈ ZM and with parameters c1 ∈ ZM , k1, k2 ∈
F and t ∈ {0, 1, 2}. Therefore, for reconstruction, for
each fixed parameter triple (c, k1, k2), we need additional
measurements of the form

{|〈x, pck1k2(t)� π(k1, `)ζ〉|}`∈ZM , t∈{0,1,2} ={∣∣F (x� p̄ck1k2(t)� Tk1 ζ̄
)

(`)
∣∣}
`∈ZM , t∈{0,1,2} ,

(3)

that is, the required additional measurements also have
the form of masked Fourier transform coefficients that are
obtainable in many diffraction imaging applications.
Let us construct the graph G = (V,E) in the following
way. Let us first pick a set C ⊂ ZM , such that 0 /∈ C
and C = −C. Then choose V = Λ = F × ZM and
E = {(λ1, λ2) ∈ V × V , such that λ1 = (k1, `1) and
λ2 = (k2, `2) satisfy (`2 − `1) ∈ C}. As follows from
formula (3), for each element c ∈ C we need 3|F |2M
additional measurements that correspond to the edges of
the graph G of the form

{|〈x, pck1k2(t)� π(k1, `)ζ〉|}`∈ZM , k1,k2∈F, t∈{0,1,2} .

Since 0 /∈ C, the graph G constructed above has no loops,
and since C = −C, it is not directed. Also, each vertex
λ = (k, `) of G is adjacent to any vertex λ′ = (k′, `+ c),
where c ∈ C and k′ ∈ F . Thus each vertex in G has
degree |F ||C| and G is regular. We have the following
result estimating the spectral gap of G. Its proof is similar
to the one of an analogous result from [4] and is therefore
omitted.

Fig. 2: An example of the graph G with M = 6, F = {0, 3}
and C = {2, 3, 4}.

Lemma III.3. Pick b > 36 and suppose the entries of
the characteristic vector 1B of a set B are independent,
identically distributed Bernoulli random variables with
mean b logM

M . Take C = B∪ (−B)\{0} and construct the
graph G as above. Then with overwhelming probability

spg(G) ≥ 1− 6√
b
.

Note that if the sets B and C are constructed as in Lemma
III.3, then, with high probability, |C| = O(logM). The
following result then follows from Lemmas III.3 and II.2.

Theorem III.4. Let frames ΦV and ΦE be constructed as
above, where |F | = 12 and b = 144. Then every signal
x ∈ CM can be reconstructed form M + 3|F |2M |C| =
O(M logM) phaseless measurements with respect to the
frame ΦV ∪ ΦE using the algorithm described above.

B. Numerical results in the noisy case

In many applications, measurements are corrupted by
noise, that is, they are of the form

{|F(x� Tk ζ̄)(`) + εk,l|}(k,l)∈Λ∪
{|F(x� Tk ζ̄ � p̄c,k1,k2)(`1) + εk1,`1,k2,c|}k1,k2∈F,`1∈ZM

,

where εk,`, εk1,`1,k2,c ∼ N (0, σ) are independent identi-
cally distributed Gaussian variables with variance σ. For
simplicity let us assume that εk1,`1,k2,c = ε̄k2,`1+c,k1,−c
(see also [1]).
We start our reconstruction procedure by deleting “zero”
vertices, as these cannot be used for phase propagation.
Formula (2) shows that the relative phase is very sensitive
to perturbations when either |〈x, π(λ1)ζ〉| or |〈x, π(λ2)ζ〉|
is small. As such, vertices with small corresponding ver-
tex measurements provide unreliable information, conse-
quently they should be deleted as well. To do so, we are
going to use the following algorithm.



ALGORITHM 1 (DELETING ”SMALL” VERTICES):
1) Input: graph G = (V,E) with weighted vertices

V , parameter α.
2) For i = 0 to (1− α)|V |
3) Find λ ∈ V with the smallest value of
|〈x, π(λ)ζ〉|.

4) Delete the vertex λ from G; end for
5) Output: Graph G with large smallest vertex

weight.

After applying Algorithm 1, the graph G will have slightly
fewer vertices, but the remaining edges will provide more
reliable information on relative phases. Note that during
the phase propagation procedure, noise is propagated with
phase, and thus can accumulate and grow while passing
from one vertex to another. To overcome this problem, we
would like to use the information coming from different
edges to a vertex to reduce the noise. To be able to
perform noise reduction, we need to ensure that the graph
G has a strongly connected component, that is, a connected
component with big spectral gap, of size at least M . To
this end, we modify G using a standard spectral clustering
algorithm [10], [1]:

ALGORITHM 2 (SPECTRAL CLUSTERING):
1) Input: Graph G = (V,E), parameter µ.
2) While spg(G) < µ and |V | > M + 1
3) Set D = diag(d1, . . . , dn), where di is the

degree of the ith vertex.
4) Set A to be adjacency matrix of G.
5) Compute the Laplacian L = I−D−1/2AD−1/2.
6) Compute u, the eigenvector corresponding to the

second smallest eigenvalue λ2 of L.
7) For i = 1 to |V |
8) Let Si be a set of vertices corresponding to i

smallest entries of D−1/2u.
9) Set hi =

|E(Si,S
C
i )|

min{
∑

v∈Si
deg v,

∑
v∈SC

i
deg v} ; end for

10) Set S = Si, s.t. hi is minimal.
11) Set G = G \ S; end while
12) Output: Graph G with at least M vertices and

big enough spectral gap.

By applying Algorithms 1 and 2, we obtain reliable relative
phase data on a well-connected graph. Now, we seek an
efficient method to reconstruct (up to a global constant)
the phases of the vertex frame coefficients using measured
relative phase data. For this purpose we use an algorithm
known as angular synchronisation [13], [1]. The idea
behind this algorithm is the following. Let A be a weighted
adjacency matrix of our graph G, that is, A is given by

A(λi, λj) =

{
〈x,π(λi)ζ〉〈x,π(λj)ζ〉+εij
|〈x,π(λi)ζ〉〈x,π(λj)ζ〉+εij |

, if (λi, λj) ∈ E,
0 , if (λi, λj) /∈ E;

Let ωλi
= 〈x,π(λi)ζ〉
|〈x,π(λi)ζ〉| , then A(λi, λj) can be considered

as an approximation of the relative phase ω−1
λi
ωλj

. The
idea is to find a vector ω = {ωλ}λ∈Λ that approximates
the phases of vertex measurements as the minimizer of the
following error quantity:∑

{λi,λj}∈E

|ωλj
−A(λi, λj)ωλi

|2 = ω∗(D − Ā)ω,

where D is a diagonal matrix of vertex degrees and
Ā is a componentwise conjugate of A. One can show
that ω is the minimizer if D1/2ω = u, where u is
an eigenvector corresponding to the smallest eigenvalue
of L1 = I − D−1/2AD−1/2 [1], [5]. The procedure,
summarized in Algorithm 3, provides a stable estimate
of vertex phases provided the spectral gap of a graph is
sufficiently big.

ALGORITHM 3 (ANGULAR SYNCHRONIZATION):
1) Input: G = (V,E) graph with weighted edges.
2) Set A← weighted adjacency matrix.
3) Set D = diag(d1, . . . , dn), where di is the

degree of the ith vertex.
4) Compute L1 = I −D−1/2AD−1/2.
5) Compute u← the eigenvector corresponding to

the smallest eigenvalue α1 of L1.
6) Output the vector of phases of u.

Let us now summarize the above discussion in the follow-
ing modification of the reconstruction algorithm:

ALGORITHM 4 (RECONSTRUCTION ALGORITHM):
1) Construct graph G = (Λ, E), where

E = {(k1, `1), (k2, `2)), s.t. `2 − `1 ∈ C}.
2) Assign to each λ ∈ V weight |〈x, π(λ)ζ〉|.
3) Assign to each edge (λ1, λ2) ∈ E weight ωλ1λ2 .
4) Run Algorithm 1 with parameter α.
5) Run Spectral Clustering with parameter µ.
6) Run Angular Synchronization 7→ {uλ}λ∈Λ.
7) Set cλ = uλ|〈x, π(λ)ζ〉|, λ ∈ Λ.
8) Reconstruct x from {cλ}λ∈Λ.

The numerical results (see Figures 3, 4, 5, 6) indicate
that the signal x̂ reconstructed using Algorithm 4 from
measurements with the noise vector ε satisfies:

||x− x̂|| ≤ C̃||ε||,

where C̃ is a constant which might depend on spg(G)



Fig. 3: Dependence of the error ||x− x̂|| on the dimension M
(noise variance σ = 10−3).

Fig. 4: Dependence of the error to noise ratio ||x−x̂||||ε|| on the
dimension M (noise variance σ = 10−3).
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