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ABSTRACT

We consider signals and operators in finite dimension which have sparse time-frequency represen-
tations. As main result we show that an S-sparse Gabor representation in Cn with respect to a
random unimodular window can be recovered by Basis Pursuit with high probability provided that
S ≤ Cn/ log(n). Our results are applicable to the channel estimation problem in wireless com-
munications and they establish the usefulness of a class of measurement matrices for compressive
sensing.
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1. INTRODUCTION

Efficient algorithms aiming at the recovery of signals and operators from a restricted number of
measurements must be based on some a-priori information about the object under investigation. In
a large body of recent work, the signal or operator at hand is assumed to have a sparse representation
in a given dictionary. A typical example in this realm is the recovery of vectors that are sparse in the
Euclidean basis, that is, of vectors which have a limited number of nonzero components at unknown
locations. Such a vector is to be determined efficiently by a small number of linear measurements
which are given by inner products with appropriately chosen analysis vectors.

The difficulty in this body of work lies in the fact that sparsity conditions as those mentioned
above define nonlinear subspaces of linear signal or operator spaces. To circumvent a combinato-
rial and therefore unfeasible exhaustive search, efficient alternatives such as `1-minimization (Basis
Pursuit) and greedy algorithms such as Matching Pursuits have been proposed in the sparse rep-
resentations and compressed sensing literature, see, for example, [8, 12, 5, 6, 2, 22, 27, 16, 34]. In
compressed sensing one commonly uses linear random measurements for the recovery of a sparse
signal with high probability. So far, mainly random Gaussian, Bernoulli and partial Fourier mea-
surements have been considered successfully [7, 12, 2, 28, 30]. A typical result states that a signal
of length N with at most S non-zero entries can be recovered from n randomly selected samples of
its Fourier transform with high probability provided S ≤ Cn/ log(N) [5, 27].
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In this paper, we consider sparse representations in terms of time–frequency shift dictionaries,
and investigate recovery conditions similar to the ones for Gaussian, Bernoulli and Fourier measure-
ments. Here, Tk denotes the cyclic shift respectively translation operator and M` the modulation
operator respectively frequency shift operator on Cn, defined by

(Tkh)q = hk+q mod n and (M`h)q = e2πi`q/nhq. (1.1)

Then π(λ) = M`Tk, λ = (k, `), is a time-frequency shift and the system {π(λ) : λ ∈ Zn×Zn},
Zn = {0, 1, . . . , n − 1}, of all time-frequency shifts forms a basis of Cn×n [23, 21]. For a non-zero
vector g, the so-called window, the set

{π(λ)g : λ ∈ Zn×Zn} (1.2)

is called a Gabor system [18] and the matrix Ψg ∈ Cn×n2
whose columns are the members π(λ)g,

λ ∈ Zn×Zn of a Gabor system is referred to as Gabor synthesis matrix. The Gabor system given
in (1.2) is a tight frame in Cn whenever g 6= 0 [23, 9].

A vector x is called S-sparse if it has at most S non-zero entries; formally ‖x‖0 := |supp x| =
#{λ : xλ 6= 0} ≤ S.

Our analysis of sparsity in conjunction with time–frequency shift dictionaries addresses the
following, clearly equivalent objectives.

Objective 1. Determine the coefficient sequence of a vector

y =
∑

λ∈Zn×Zn

xλπ(λ)g (1.3)

that is known to have a sparse representation in the Gabor system {π(λ)g : λ ∈ Zn×Zn} with
window g 6= 0. Clearly, the representation (1.3) is redundant; given y the coefficient vector x is not
unique and it is a non-trivial problem of computing efficiently the sparsest representation of y.

If g is well localized in time and frequency, then the sparse coefficient vector x can be seen to
describe the time–frequency content of any signal y = Ψgx [18]. Note that the windows (1.7), (1.8)
considered in this paper are neither well localized in time nor in frequency.

Objective 2. Establish the applicability of Ψg as measurement matrix for compressed sensing,
that is, consider the rows of Ψg as measurement vectors, in the classical strategy of efficiently
determining a signal x which is sparse in the Euclidean basis. In short, the aim is again to recover
x from y = Ψgx whenever ‖x‖0 can be assumed small.

The window vector g used to achieve our main results Theorems 2.1 and 2.3 is chosen at random
(1.8), that is, Ψg ∈ Cn×n2

depends on n independent random variables as compared to n×N
independent random variables in the case of Gaussian or Bernoulli n × N measurement matrices
[7, 2]. Note that our results apply also to n×N measurement matrices, N ≤ n2, that are obtained
by removing n2 −N columns from Ψg.

Further, the structure of Ψg allows for fast Fourier transform based matrix vector multiplication
algorithms [32] (in contrast to unstructured Gaussian or Bernoulli random matrices). This leads to
efficient implementations of `1-minimization methods [4].
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Objective 3. Identify from a single input output pair (g,Γg) the coefficient vector x of an operator

Γ =
∑

λ∈Zn×Zn

xλπ(λ), (1.4)

where Γ is assumed to have a sparse representation in the system of time frequency shift matrices
{π(λ) : λ ∈ Zn×Zn}.

In short, the task at hand is to identify Γ ∈ Cn×n, or equivalently x, from its action y = Γg on
a single vector g. Writing

y = Γg =
∑

λ∈Zn×Zn

xλπ(λ)g

with unknown but sparse x, we observe the equivalence of this objective with Objectives 1 and 2.

This objective falls in the realm of what is known as channel operator estimation / identification
in communications engineering, and, indeed, (1.4) is a common model of wireless channels [3, 17,
10, 25] and sonar [31, 24] where physical considerations often suggest that x is rather sparse. First
results were obtained in [26], on which we will improve here. Further, using multiple input output
pairs for the efficient recovery of channel operators is discussed in [26]. Sparsity constraints in the
dictionary of time–frequency shifts have also been considered for radar applications [20].

In the following, we will phrase our results in terms of Objective 1, namely, we assume that y is
given and has an unknown S-sparse representation (1.3) in a given Gabor system (1.2) with S < n.

A natural strategy to recover the corresponding coefficient vector in this setup consists in seeking
the vector x with minimal support consistent with y; in other words solving the `0-minimization
problem

min
x

‖x‖0 subject to Ψgx = y. (1.5)

Unfortunately, this problem is NP hard in general [11], and hence, is not feasible in practice. In
order to avoid this computational bottleneck, several alternative reconstruction methods have been
suggested as mentioned above. We will concentrate here on Basis Pursuit, which seeks the solution
of the convex problem

min
x

‖x‖1 subject to Ψgx = y, (1.6)

where ‖x‖1 =
∑

λ∈Z2
n
|xλ| is the `1-norm of x. This problem can be solved with efficient convex

optimization techniques [4, 8, 13]. Of course, the hope is that the solution of (1.6) coincides with
the solution of the `0-minimization problem (1.5). It is the goal of this paper to make this rigorous.

So far we did not specify the window g in (1.2). In [26] we proposed to work with the Alltop
window gA [1, 33] with entries

gA
q =

1√
n
e2πiq3/n, q = 0, . . . , n−1, (1.7)

and with the randomly generated window gR with entries

gR
q =

1√
n
εq, q = 0, . . . , n−1, (1.8)
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where the εq are independent and uniformly distributed on the torus {z ∈ C, |z| = 1}; in other
words, gR is a normalized Steinhaus sequence. The Alltop window will only be used for prime
n ≥ 5. Although both windows seem to be a bit unfamiliar in terms of time-frequency analysis due
to their lack of time-frequency concentration (they are actually completely unlocalized in both time
and frequency), they may perfectly be applied to the problem of identifying a sparse operator Γ of
the form (1.4) in Objective 3 [26].

In [26], the following theorem concerning the recovery of sparse time-frequency representations
in terms of gA and gR was shown.

Theorem 1.1.

(a) Let n ≥ 5 be prime and g = gA be the Alltop window defined in (1.7). If S <
√

n+1
2

then Basis
Pursuit given in (1.5) recovers all S-sparse x from y = Ψgx.

(b) Let n be even and choose g = gR to be the random unimodular window in (1.8). Let t > 0
and suppose

S ≤ 1

4

√
n

2 log n+ log 4 + t
+

1

2
. (1.9)

Then with probability at least 1− e−t Basis Pursuit (1.5) recovers all S-sparse x from y = Ψg.

Theorem 1.1 is based on standard recovery results for Basis Pursuit which rely on the coherence
of Ψg [34, 14]. The coherence for g = gA was given in [33], and the one for g = gR was estimated in
[26], see (4.5). Although Theorem 1.1 shows that recovery guarantees can be given, the conditions
on the maximal sparsity S are quite restrictive; S has to be as small as of the order of

√
n or even√

n/ log(n).

Passing from a worst case analysis to an average case analysis in the sense that the support set
of x and the signs of its non-zero coefficients are chosen at random, it is possible to apply recent
results of Tropp [36] to show that recovery can be ensured with high probability provided

S ≤ C
n

log(n)u
(1.10)

for some constant c where u = 1 in the case of gA and u = 2 in the case of gR. For a precise
formulation of these results, see Theorem 2.5 in [26].

In this paper we will work with the randomly generated window gR and gradually improve
conditions (1.9) and (1.10) to S ≤ Cn/ log(n), while removing the randomness assumption on the
coefficients x. It seems rather difficult to perform a similar task for the deterministic Alltop window
gA.

The paper is organized as follows. In Section 2 we state our two main results on recovery of
sparse time-frequency representations, namely Theorems 2.1 and 2.3. Section 3 will deal with the
estimation of the smallest and largest singular value of a submatrix of Ψg for g = gR, which plays a
central role in the proofs of Theorems 2.1 and 2.3. In Section 4 we prove Theorem 2.1 on recovery
of sparse coefficients x with random phases; while Section 5 contains the proof of Theorem 2.3 on
the recovery of deterministic sparse coefficients x.
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Throughout the paper ‖·‖p denotes the usual `p-norm on sequences, while ‖·‖p→q is the operator
norm from `p to `q, and, for brevity ‖ · ‖ = ‖ · ‖2→2. The Frobenius norm of a matrix A is defined as

‖A‖F =
√

Tr(A∗A), where Tr is the trace. Furthermore, P
(
E
)

denotes the probability of an event
E and E means expectation.

2. STATEMENT OF RESULTS

Our results are concerned with the recovery by Basis Pursuit (1.6) of sparse time-frequency rep-
resentations (1.3) with the randomly generated window g = gR given in (1.8). We present a first
result for deterministic support sets, that is, for every possible support set, but random phases of
the coefficient vector x; and a second result, Theorem 2.3, for deterministic x.

Theorem 2.1. Let n be even, and let Λ ⊂ Zn × Zn be of cardinality |Λ| = S. Let x with
supp (x) = Λ be such that on Λ the random phases (sgn(xλ))λ∈Λ are independent and uniformly
distributed on the torus {z ∈ C, |z| = 1}. Let σ > 8. Choose the window g = gR as in (1.8), that is,
with random entries independently and uniformly distributed on the torus {z ∈ C, |z| = 1}. Then
with probability at most

2(n2 − S) exp

(
− n

8σS log n

)
+ CS exp

(
− n

16eS

)
+ 4n−(σ/4−2)

Basis Pursuit (1.6) fails to recovers x from y = Ψgx. Here, the constant C ≈ 1.075.

Remark 2.2. Note that the probability estimate above becomes effective once

n & max{16eS log(CS), 64S log(n) log(2n2)},

or even simpler, if S ≤ C0
n

log2(n)
for appropriately chosen C0.

The restriction to n even was made for the sake of simple exposition; a similar result holds also
for n odd (compare also to Theorem 5.1 in [26]).

Recovery is also possible for deterministic sparse coefficients. The corresponding proof is more
involved, however.

Theorem 2.3. Assume x is an arbitrary S-sparse coefficient vector. Choose the random unimodu-
lar Gabor window g = gR defined in (1.8), that is, with random entries independently and uniformly
distributed on the torus {z ∈ C, |z| = 1}. Assume that

S ≤ C
n

log(n/ε)
(2.1)

for some constant C (see Remark 2.4). Then with probability at least 1 − ε Basis Pursuit (1.6)
recovers x from y = Ψx = Ψgx.

Remark 2.4. From the proof of Theorem 2.3 one can deduce information about the constant in
(2.1). Indeed recovery is ensured provided

n ≥ max{C1S log(n2/ε), C2S(log(S4/ε) + C3)}
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with C1 = 273.5, C2 = 64.1 and C3 = 8.35. Hence, the constant of Theorem 2.1 is better than those
in Theorem 2.3, but this improvement comes at the cost of a worse exponent at the logarithm and
of assuming random phases sgn(xλ).

Numerical experiments illustrating our recovery results were already given in [26]; clearly, they
can only indicate the average case behaviour rather than the worst case behaviour covered in
Theorem 2.3. These experiments suggest that most S-sparse signals can be recovered provided
S ≤ n

2 log(n)
. So Theorem 2.3 seems to indicate the right asymptotic order n/ log(n), but the

constants are likely not optimal.

We note once more that both theorems can be interpreted as compressed sensing type results
on recovery of S-sparse vectors in Cn2

from n measurements with Ψg ∈ Cn×n2
playing the role of

the (random) measurement matrix as described in Objective 2. Also, both results can be applied to
identify matrices which have a sparse representation in the basis of time–frequency shift matrices
as described in Objective 3.

Furthermore, Theorems 2.1 and 2.3 hold literally (including their proofs) when we pass from Zn

to time-frequency analysis on an arbitrary finite Abelian group; in particular, on multi-dimensional
versions Zd

n with d ≥ 1 where n would be replaced by nd in all of the statements.

3. WELL CONDITIONED SUBMATRICES OF GABOR SYNTHESIS MATRICES

It is crucial for sparse recovery that small column submatrices of measurement or synthesis matrices
such as Ψg are well-conditioned. Before proceeding to the proofs of our main Theorems 2.1 and 2.3
we will deal with such an analysis in this section.

Throughout the rest of the paper we let Ψ = Ψg ∈ Cn×n2
with g = gR being the randomly

generated unimodular window described in (1.8). For Λ ⊆ Zn×Zn and A ∈ Cn×n2
we denote by AΛ

the matrix consisting only of those columns indexed by λ ∈ Λ.

Theorem 3.1. Let ε, δ ∈ (0, 1) and |Λ| = S. Suppose that

S ≤ δ2n

4e(log(S/ε) + c)
(3.1)

with c = log(e2/(4(e−1))) ≈ 0.0724. Then ‖IΛ−Ψ∗
ΛΨΛ‖ ≤ δ with probability at least 1− ε; in other

words the minimal and maximal eigenvalues of Ψ∗
ΛΨΛ satisfy 1 − δ ≤ λmin ≤ λmax ≤ 1 + δ with

probability at least 1− ε.

Remark 3.2. Assuming equality in condition (3.1) and solving for ε we deduce

P
(
‖IΛ −Ψ∗

ΛΨΛ‖ > δ) ≤ e2

4(e−1)
S exp

(
− δ2n

4eS

)
= CS exp

(
− δ2n

4eS

)
(3.2)

with C ≈ 1.075.

In the following we will develop the proof of Theorem 3.1.
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3.1. Expectation of a Frobenius norms

We set H = Ψ∗
ΛΨΛ − IΛ. An important step towards Theorem 3.1 is to estimate the expectation of

the Frobenius norm of powers of H. Indeed having accomplished this task one may use Markov’s
inequality, the fact that the Frobenius norm majorizes the operator norm, and the fact that H is
self-adjoint to obtain

P
(
‖IΛ −Ψ∗

ΛΨΛ‖ > δ
)

= P
(
‖H‖ > δ

)
= P

(
‖H‖2m > δ2m

)
≤ δ−2mE[‖H‖2m]

= δ−2mE[‖Hm‖2] ≤ δ−2mE[‖Hm‖2
F ] = δ−2mE[TrH2m]. (3.3)

We will use the following concept to estimate E[Tr(H2m)].

Definition 3.3. The associated Stirling number of the first kind, denoted by d2(m, s), is the
number of permutations of m elements which involve exactly s disjoint cycles and where each cycle
has at least 2 elements.

The associated Stirling numbers satisfy the following recursion [29, p. 75]

d2(m+1, s) = m[d2(m, s) + d2(m−1, s−1)], 1 ≤ s ≤ m/2 , (3.4)

with boundary conditions

d2(0, 0) = 1, d2(m, 0) = 0, d2(m, s) = 0, m ≥ 1, s > m/2. (3.5)

Equipped with this tool, the desired expectation of the Frobenius norm in (3.3) can be estimated
as follows.

Lemma 3.4. If S = |Λ| and m even then

E[TrHm] ≤ S

(
S

n

)m m/2∑
s=1

d2(m, s)
(n
S

)s

. (3.6)

Proof. Note that for λj ∈ Λ, we have

Hλ1,λ2 =

{
〈π(λ1)g, π(λ2)g〉, if λ1 6= λ2,
0, if λ1 = λ2,

H2
λ1,λ3

=
∑
λ2

Hλ1,λ2Hλ2,λ3 =
∑

λ2 6=λ1,λ3

〈π(λ1)g, π(λ2)g〉 〈π(λ2)g, π(λ3)g〉 ,

H3
λ1,λ4

=
∑
λ3

H2
λ1,λ3

Hλ3,λ4 =
∑

λ3 6=λ4

∑
λ2 6=λ1,λ3

〈π(λ1)g, π(λ2)g〉 〈π(λ2)g, π(λ3)g〉 〈π(λ3)g, π(λ4)g〉 ,

and, in general,

Hm
λ1,λm+1

=
∑

λ2 6=λ1,λ3

∑
λ3 6=λ4

· · ·
∑

λm 6=λm+1

〈π(λ1)g, π(λ2)g〉 〈π(λ2)g, π(λ3)g〉 · · · 〈π(λm)g, π(λm+1)g〉 .
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Consequently,

TrHm =
∑
λ1

∑
λ2 6=λ1,λ3

∑
λ3 6=λ4

· · ·
∑

λm 6=λ1

〈π(λ1)g, π(λ2)g〉 〈π(λ2)g, π(λ3)g〉 · · · 〈π(λm)g, π(λ1)g〉

=
∑

λ1,...,λm∈Λ
λ1 6=λ2 6=λ3 6=···6=λm 6=λ1

〈π(λ1)g, π(λ2)g〉 〈π(λ2)g, π(λ3)g〉 · · · 〈π(λm)g, π(λ1)g〉 .

Linearity of E implies that E[TrHm] =
∑

λ1 6=λ2 6=λ3 6=···6=λm 6=λ1
Eλ1,...,λm where

Eλ1,...,λm = E [〈π(λ1)g, π(λ2)g〉 〈π(λ2)g, π(λ3)g〉 · · · 〈π(λm)g, π(λ1)g〉] . (3.7)

We denote λα = (kα, `α) with kα, `α ∈ Zn, α = 1, . . . , n. Applying once more linearity of E to the
inner products in (3.7) we obtain

Eλ1,...,λm =∑
j1

∑
j2

. . .
∑
jm

e2πij1(`1−`2)/ne2πij2(`2−`3)/n . . . e2πijm(`m−`1)/n

·E
[
g(j1−k1)g(j1−k2) g(j2−k2)g(j2−k3) . . . g(jm−1−km−1)g(jm−1−km) g(jm−km)g(jm−k1)

]
.(3.8)

Here and throughout the remainder of the paper, addition and subtraction of indices j1 − k1 etc. is
understood modulo n.

The independence of the g(j) implies that the summands in (3.8) factor into a product of

expectations over powers of g(j)’s, namely, into factors of the form E
[
g(j)ujg(j)vj

]
, uj, vj ∈ N. As

E[g(j)] = 0 and, by unimodularity of
√
n g, E[g(j)g(j)] = 1

n
, we have E

[
g(j)ujg(j)vj

]
= 0 if uj 6= vj

and E
[
g(j)ujg(j)uj

]
= n−uj for j = 1, . . . , n. We conclude that a summand appearing in (3.8)

equals 0 unless uj = vj for all j = 1, . . . , n. In other words, we have to consider only those cases
where indices jα − kα and jα′ − kα′+1 in (3.8) coincide for some α, α′ ∈ {1, . . . ,m}.

Combining (3.7) and (3.8) we obtain

E[TrHm] =
∑

λ1,...,λm∈Λ
λ1 6=λ2 6=λ3 6=···6=λm 6=λ1

n∑
j1,j2,...,jm=1

n∏
α=1

e2πijα(`α−`α+1)/n · E

[
n∏

α=1

g(jα−kα)g(jα−kα+1)

]
. (3.9)

So it remains to estimate how many of the |Λ|(|Λ|−1)m−1(|Λ|−2)·nm possible combinations of indices
λ1, . . . , λm, j1, . . . , jm contribute to (3.9) while taking into consideration that the exponential factors
in (3.9) may lead to cancelations of nonzero summands as well.

For the sake of simple illustration we start with an example. For given λ1, . . . , λm there could
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exist m-tuples (j1, . . . , jm) with

j1−k1 = j2−k3 (3.10)

j2−k2 = j1−k2 (3.11)

j3−k3 = j4−k5 (3.12)

j4−k4 = j5−k6 (3.13)
...

jm−1−km−1 = jm−k1 (3.14)

jm−km = j3−k4 . (3.15)

This scenario yields

g(j1−k1)g(j2−k3) =
1

n
, g(j2−k2)g(j1−k2) =

1

n
, . . . , g(jm−km)g(j3−k4) =

1

n

and

E
[
g(j1−k1)g(j1−k2) g(j2−k2)g(j2−k3) . . . g(jm−1−km−1)g(jm−1−km) g(jm−km)g(jm−k1)

]
= n−m. (3.16)

Adding equations (3.10) and (3.11) above shows that this case, denoted in short by

1 → 2 → 1, 3 → 4 → 5 → . . .→ m−1 → m→ 3, (3.17)

is only possible if k1 = k3. Further, if this was the case, then we observe that there exists for
each j1 = 1, . . . , n and j3 = 1, . . . , n exactly one choice of (m−2)-tuple (j2, j4, j5, . . . , jm) satisfying
equations (3.10)—(3.15), thereby implying that (3.16) holds. But even these n2 nonzero summands
might cancel due to the phase factors present in (3.8), respectively (3.9). In fact, assuming that
k1 = k3 holds and that the (m−2)-tuple (j2, j4, j5, . . . , jm) is chosen to satisfy (3.10)–(3.15), then
(3.8) becomes

Eλ1,...,λm = n−m
∑
j1

∑
j3

e2πij1(`1−`2)/ne2πi(j1−k1+k3)(`2−`3)/n

· e2πij3(`3−`4)/ne2πi(j3−k3+k5)(`4−`5)/n · · · e2πi(j3−k4+km)(`m−`1)/n

= cλ1,...,λmn
−m
(∑

j1

e2πij1(`1−`2+`2−`3)/n
)(∑

j3

e2πij3(`3−`4+`4−`5+···+`m−`1)/n
)

= cλ1,...,λmn
−m
(∑

j1

e2πij1(`1−`3)/n
)(∑

j3

e2πij3(`3−`1)/n
)
,

where |cλ1,...,λm| = 1. Recalling that
∑n

j=1 e
2πij`/n = 0 whenever ` 6= 0, we see that the contributions

in (3.16) cancel out unless `1 = `3. In short, Eλ1,...,λm only contributes if `1 = `3 in addition to
k1 = k3. We conclude that |Eλ1,...,λm| = n−mn2 if λ1 = λ3 and Eλ1,...,λm = 0 otherwise.

We will now generalize the consideration of the above example in order to derive the general
estimate (3.6).
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Step 1. Fix λ1, . . . , λm. For Eλ1,...,λm in (3.8) to be nonzero, we must have that

E
[
g(j1−k1)g(j1−k2) g(j2−k2)g(j2−k3) . . . g(jm−km)g(jm−k1)

]
6= 0 (3.18)

for some j1, . . . , jm. We observed earlier, that this is only possible if each g(j) in (3.18) can be
paired with some g(j), so that E[g(j)g(j)] = E[|g(j)|2] = 1

n
becomes effective. For this to be the

case, the indices 1, . . . ,m must decompose into s cycles

α11 → α12 → . . .→ α1r1 → α11, . . . , αs1 → αs2 → . . .→ αsrs → αs1, (3.19)

r1 + r2 + . . .+ rs = m, where, similarly to (3.10)–(3.15),

jαq1−kαq1 = jαq2−kαq2+1

jαq2−kαq2 = jαq3−kαq3+1... (3.20)
jαq(rq−1)

−kαq(rq−1)
= jαqrq

−kαqrq +1

jαqrq
−kαqrq

= jαq1−kαq1+1

holds for q = 1, . . . , s. Further, (3.20) implies that whenever the s equations

kαq1 + kαq2 + . . .+ kαq(rq−1)
+ kαqrq

= kαq2+1 + kαq3+1 + . . .+ kαqrq +1 + kαq1+1, (3.21)

q = 1, . . . , s, are satisfied, then any s-tuple (j11, j21, . . . , js1) ∈ Zs
n defines a nonzero value for

E
[
g(j1−k1)g(j1−k2) g(j2−k2)g(j2−k3) . . . g(jm−km)g(jm−k1)

]
6= 0. (3.22)

Still, as we saw earlier, the contributions of summands of the form (3.22) may cancel each other
due to the phase factors in (3.7). In fact, for jαqp , q = 1, . . . , s and p = 1, . . . , rq satisfying (3.20),
we have

Eλ1,...,λm =
n∑

j1,...,jm=1

E

[
m∏

α=1

e2πijα`αe−2πijα`α+1g(jα−kα) g(jα−kα+1)

]

=
n∑

j11,j21,...,js1=1

n−m

s∏
q=1

rq∏
p=1

e2πi
(

jαqp`αqp−jαqp`αqp+1

)

=
n∑

j11,j21,...,js1=1

n−m

s∏
q=1

rq∏
p=1

e2πijαqp

(
`αqp−`αqp+1

)

=
n∑

j11,j21,...,js1=1

n−m

s∏
q=1

rq∏
p=1

e2πi
(

jαq1+k̃αqp

)(
`αqp−`αqp+1

)
= n−me2πi

∑s
q=1

∑rq
p=1 k̃αqp

(
`αqp−`αqp+1

) n∑
j11,j21,...,js1=1

s∏
q=1

e2πijαq1

(∑rq
p=1 `αqp−`αqp+1

)

= n−mcλ1,...,λm

(
n∑

j11=1

e2πijα11

(∑r1
p=1 `α1p−`α1p+1

))
. . .

(
n∑

js1=1

e2πijαs1

(∑r1
p=1 `αsp−`αsp+1

))
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with |cλ1,...,λm| = 1 and k̃αq1 = 0, k̃αq2 = kαq2−kαq1 , k̃αq3 = kαq3 +kαq2−kαq1 , etc. Hence, Eλ1,...,λm = 0
if not simultaneously, we have

`αq1 + `αq2 + . . .+ `αq(r1−1)
+ `αqr1

= `αq2+1 + `αq3+1 + . . .+ `αqrq +1 + `αq1+1

for q = 1, . . . , s in which case Eλ1,...,λm = cλ1,...,λmn
s−m. Consequently |Eλ1,...,λm| = ns−m whenever

λ1, . . . , λm satisfies the s linear equations

λαq1 + λαq2 + . . .+ λαq(rq−1) + λαqrq
= λαq2+1 + λαq3+1 + . . .+ λαqrq +1 + λαq1+1, (3.23)

q = 1, . . . , s. We conclude that of the |Λ|(|Λ|−1)m−1(|Λ|−2) · nm summands in (3.9), only those
need to be considered that correspond to a partition of the indices 1, . . . ,m of the j’s into cyclic
permutations and where the λ1, . . . , λm satisfy a corresponding system (3.23) of equations. This
observation will be used to estimate E[TrHm] in the following step.

Step 2. We observe in addition to the above, that Eλ1,...,λm with λi = (ki, `i) contributes only if
k1 6= k2, k2 6= k3, . . ., km 6= k1. Indeed, ki = ki+1 = k implies `i 6= `i+1 by λi 6= λi+1. But since g
and hence Tkg is unimodular by assumption, the set {M`Tkg, ` = 0, . . . , n− 1} forms an orthogonal
system, and we have 〈M`i

Tkg,M`i+1
Tkg〉 = 0, implying that Eλ1,...,λm = 0. The condition ki 6= ki+1

in turn implies that each cycle in (3.19) has at least two elements, as otherwise, (3.20) would lead
to a contradiction.

Now for each permutation with s cycles described by (3.19) we give an upper bound on the
number of index tuples (λ1, . . . , λm) satisfying the s equations (3.23). To this end, we shall show
that any s− 1 equations of the s equations (3.23) are linearly independent.

First, note that each λj appears on exactly one left hand side and on one right hand side of
the equations (3.23). Hence, a linear combination of these equations leading to the trivial equation
0 = 0 can be achieved involving only 0’s and 1’s as coefficients, that is, by simply adding up some of
the equations in (3.23). But the fact that the right hand side of an equation consists exactly of the
successor variables of the left hand side implies that a vanishing sum of equations in (3.23) must
contain all variables on both sides. As all equations are non-trivial, this is achieved if and only if
the sum is taken over all equations. Hence, the s equations (3.23) are linearly dependent, while any
s− 1 equations are not. We conclude that the system (3.23) describes an m− (s− 1)-dimensional
subspace whose its intersection with Λm has at most |Λ|m−(s−1) elements.

By definition of the associated Stirling numbers of the first kind there are d2(m, s) permutations
with s disjoint cycles of minimum length 2 of the index set {1, . . . ,m}. Each of these permutations
represent ns tuples (j1, . . . , jm) and, at most |Λ|m−(s−1) tuples (λ1, . . . , λm) ∈ Λm satisfing (3.23).
Each of these tuples of indices gives a contribution to (3.9) of absolute value at most n−m. Finally,
this yields

E[TrHm] ≤
m/2∑
s=1

d2(m, s) |Λ|m−(s−1) ns−m

= |Λ|
(
|Λ|
n

)m m/2∑
s=1

d2(m, s)

(
n

|Λ|

)s

and the proof of Lemma 3.4 is complete. �
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3.2. Proof of Theorem 3.1

Given specific parameters n and S = |Λ| one may already obtain good estimates for the probability
that ‖IΛ − Ψ∗

ΛΨΛ‖ ≤ δ by numerically minimizing the right hand side of (3.6) over m ∈ N and
using (3.3). Theorem 3.1 is proven by pursuing a similar strategy combined with an estimate of the
numbers d2(m, s), compare also to [19].

We first claim that the associated Stirling numbers of the first kind satisfy the estimate

d2(m+ 1, s) ≤ (2m)m−s. (3.24)

Indeed, (3.24) is true for m ≥ 1 and s = 0 or s > m/2 since then d2(m, s) = 0 by (3.5). It is also
true for d2(2, 1) = 1. Now let m ≥ 2 and suppose the claim is true for all d2(m

′, s) with m′ ≤ m
and s ≥ 0. Then

d2(m+ 1, s) = m(d2(m, s) + d2(m− 1, s−1)) ≤ m((2(m− 1))m−1−s + (2(m− 2))m−2−(s−1))

≤ 2m(2m)m−1−s = (2m)m−s.

Now let

G2m(z) := z−2m

m∑
s=1

d2(2m, s)z
s. (3.25)

By Lemma 3.4, E[‖Hm‖2] ≤ E[TrH2m] ≤ SG2m(n/S). Using the estimate (3.24) we obtain

G2m(z) ≤ z−2m

m∑
s=1

(2(2m− 1))2m−1−szs ≤
(

4m

z

)2m

(4m)−1

m∑
s=1

(z/4m)s

=

(
4m

z

)2m

(4m)−1 (z/4m)m+1 − (z/4m)

z/4m− 1

= (4m)−1

(
4m

z

)m
1− (4m/z)m

1− (4m/z)
. (3.26)

Now choose m = mz ∈ N such that 4mz/z ≤ α < 1, for instance

mz :=
⌊αz

4

⌋
. (3.27)

Then

G2mz(z) ≤ (4mz)
−1 α

mz

1− α
≤ αmz

4(1− α)
. (3.28)

We want to achieve P
(
‖H‖ > δ

)
≤ ε, which by (3.3) will be satisfied provided

δ−2mzS
αmz

4(1− α)
≤ ε

for z = n/S. Assuming α < δ2 the latter inequality is equivalent to

mz log(δ2/α) ≥ log

(
S

4ε(1− α)

)
.

12



Plugging in z = n/S and mz given by (3.27) we obtain⌊αn
4S

⌋
log
(
δ2/α

)
≥ log

(
S

4ε(1− α)

)
.

Finally, choose α = δ2/e. Then the above inequality reduces to⌊
δ2n

4eS

⌋
≥ log

(
S

4ε(1− δ2/e)

)
.

A straightforward calculation shows that the above equation is satisfied whenever

n ≥ 4e

δ2
S log

(
e

4(1− δ2/e)

S

ε

)
.

Finally, the above inequality is implied by the assumption of Theorem 3.1.

Remark 3.5. Starting from the first inequality in (3.28) and proceeding analogously as in the
previous proof one may deduce the slightly better but more complicated condition

n ≥ 4e

δ2
S

(
log

(
S2

δ2n− 4eS
ε−1

)
+ log

(
e3

e− 1

))
.

ensuring ‖IΛ −Ψ∗
ΛΨΛ‖ ≤ δ with probability at least 1− ε.

4. RECOVERY OF RANDOM SIGNALS

Theorem 2.1 addresses the recovery of signals whose sparse coefficients in a Gabor expansion are
chosen with random phases. Its proof is based on a recovery result due to Tropp [35] and Fuchs
[15] which is given in our framework as Lemma 4.1 below.

Let ψλ = π(λ)g be the column of Ψ indexed by λ. By RΛx we denote the restriction of a vector
x to the index set Λ. Furthermore, sgn(x) is the sign of a vector, that is, sgn(x)k = xk/|xk| for the
non-zero entries of x and sgn(x)k = 0 else.

Lemma 4.1. Suppose that y = Ψx for some x with supp x = Λ. If

|〈Ψ†
Λψρ, RΛsgn(x)〉| < 1 for all ρ /∈ Λ , (4.1)

then x is the unique solution of the Basis Pursuit problem (1.6). Here Ψ†
Λ denotes the Moore-Penrose

pseudo-inverse of ΨΛ.

4.1. Proof of Theorem 2.1

We will use Lemma 4.1 in combination with Theorem 3.1 and an estimation of the coherence of
Ψ given in [26] to prove Theorem 2.1 concerning recovery by Basis Pursuit of sparse signals with
random phases.

We aim at using the following Bernstein type inequality for a sequence of independent random
variables εk having uniform distribution on the torus [36, Proposition 16],

P
(
|
∑

j

εjaj| ≥ u‖a‖2

)
≤ e−κu2

1− κ
(4.2)
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for any κ ∈ (0, 1). By our assumption on the random phases ελ = sgn(xλ), the scalar product on the
left hand side of (4.1) is precisely of the above form with a = Ψ†

Λψρ. The 2-norm of this particular
a can be estimated by

‖Ψ†
Λψρ‖2 = ‖(Ψ∗

ΛΨΛ)−1Ψ∗
Λψρ‖2 ≤ ‖(Ψ∗

ΛΨΛ)−1‖‖Ψ∗
Λψρ‖2.

Now suppose that ‖I−Ψ∗
ΛΨΛ‖ ≤ δ. The probability that this is the case is estimated by Theorem 3.1.

Then ‖(Ψ∗
ΛΨΛ)−1‖ ≤ 1

1−δ
. Furthermore, observe that

‖Ψ∗
Λψλ‖2 =

(∑
λ∈Λ

|〈ψλ, ψρ〉|2
)1/2

≤
√
Sµ,

where µ = maxλ′ 6=λ |〈ψλ′ , ψλ〉| denotes the coherence of Ψ. Combining the above estimates yields

‖Ψ†
Λψρ‖2 ≤

1

1− δ

√
Sµ. (4.3)

Now, the probability that recovery fails can be estimated by

P
(
|〈Ψ†

Λψρ, RΛsgn(x)〉| ≥ 1 for some ρ /∈ Λ
)

≤ P
(
|〈Ψ†

Λψρ, RΛsgn(x)〉| ≥ 1 for some ρ /∈ Λ
∣∣ µ ≤ α√

n
& ‖H‖ ≤ δ

)
+ P

(
µ >

α√
n

)
+ P

(
‖H‖ > δ

)
≤
∑
ρ/∈Λ

P
(
|〈Ψ†

Λψρ, RΛsgn(x)〉| ≥ 1
∣∣ µ ≤ α√

n
& ‖H‖ ≤ δ

)
+ P

(
µ >

α√
n

)
+ P

(
‖H‖ > δ

)
.

Equation (4.3) implies that for u = (1−δ)
√

n

α
√

S
we have u‖Ψ†

Λψρ‖2 ≤ 1, so (4.2) gives

P
(
|〈Ψ†

Λψρ, RΛsgn(x)〉| ≥ 1
∣∣ µ ≤ α√

n
& ‖H‖ ≤ δ

)
≤ (1− κ)−1 exp

(
−κ(1− δ)2

α2

n

S

)
. (4.4)

In [26, Theorem 5.1] it was proven that

P
(
µ >

α√
n

)
≤ 2(1− κ′)−1n(n− 1) exp(−κ′α2/2) (4.5)

for any κ′ ∈ (0, 1). Combining inequalities (4.4), (4.5) and (3.2), we obtain the following bound on
the probability that recovery fails

(n2 − S)(1− κ)−1 exp

(
−κ(1− δ)2

α2

n

S

)
+ 2(1− κ′)−1n(n− 1) exp(−κ′α2/2) + CS exp

(
− δ2n

4eS

)
.
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Choosing α =
√

log(nσ) with σ > 8, κ = κ′ = 1/2 and δ = 1/2 the above expression equals

2(n2 − S) exp

(
− 1

8σ

n

S log(n)

)
+ 4n(n− 1)n−σ/4 + CS exp

(
− 1

16e

n

S

)
≤ 2(n2 − S) exp

(
− n

8σS log(n)

)
+ 4n−(σ/4−2) + CS exp

(
− n

16eS

)
.

This completes the proof.

5. RECOVERY OF DETERMINISTIC SIGNALS

In this section we prove Theorem 2.3. As an auxiliary tool we first provide a general recovery
lemma.

5.1. A general recovery lemma

The following lemma holds for any (random) matrix Ψ. It is inspired by the analysis performed in
[5] and [27].

Let Λ be a subset of the column index set of Ψ, and Λc its complement. Let EΛ = R∗
Λ be the

adjoint of the restriction operator RΛ; clearly, EΛ extends a vector outside Λ by 0. Further, we
define

H = Ψ∗
ΛΨΛ − IΛ and K = Ψ∗ΨΛ − EΛ.

Observe that H = RΛK. With this notation we have

Lemma 5.1. Let x be supported on Λ with |Λ| = S. Let β > 0, κ > 0, m ∈ N and Lt ∈ N, t =
1, . . . ,m, be parameters such that

a :=
m∑

t=1

βm/Lt < 1 and
κ

1− κ
≤ 1− a

1 + a
S−3/2. (5.1)

Then with probability at most

κ−2E
[
‖Hm‖2

F

]
+ β−2m

∑
ρ∈Λc

m∑
t=1

E
[
|((KRΛ)tsgn(x))ρ|2Lt

]
(5.2)

Basis Pursuit fails to recover x from Ψx.

Proof. We reassemble the arguments from [27, 5] for the reader’s convenience.

First, we address the recovery condition (4.1). Let Λ be the support of x. Define

P := Ψ∗ΨΛ(Ψ∗
ΛΨΛ)−1RΛsgn(x).

Note that condition (4.1) in Lemma 4.1 is equivalent to

‖RΛcP‖∞ < 1.
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The vector P can also be written as

P = (EΛ +K) (IΛ +H)−1RΛsgn(x),

and, since RΛcEΛ = 0 we have

RΛcP = RΛcK(IΛ +H)−1RΛsgn(x).

Let us look closer at the term (IΛ +H)−1. By the Neumann series we can write (IΛ − (−H)m)−1 =
IΛ + Am with

Am :=
∞∑

r=1

(−H)rm. (5.3)

Using the algebraic identity (1−M)−1 = (1−Mm)−1(1 +M + · · ·+Mm−1) we obtain

(IΛ +H)−1 = (IΛ + Am)
m−1∑
t=0

(−H)t.

Thus, on the complement of Λ, we may write

RΛcP = K(IΛ + Am)

(
m−1∑
t=0

(−H)t

)
RΛsgn(x)

= P (1) + P (2),

where
P (1) := −Qm sgn(x) and P (2) := KAmRΛ(I +Qm−1) sgn(x),

with

Qm := −
m−1∑
t=0

K(−RΛK)tRΛ =
m∑

t=1

(−KRΛ)t.

With this at hand, we can now proceed to estimate P
(
supρ∈Λc |Pρ| ≥ 1

)
. To this end let a, b > 0

be numbers satisfying a+ b = 1. Then

P
(

sup
ρ∈Λc

|Pρ| ≥ 1
)
≤ P

(
{sup

ρ∈Λc

|P (1)
ρ | ≥ a} ∪ {sup

ρ∈Λc

|P (2)
ρ | ≥ b}

)
. (5.4)

Clearly,

P
(
|P (1)

ρ | ≥ a
)
≤ P

(
m∑

t=1

|((KRΛ)tsgn(x))ρ| ≥ a

)
=: P

(
Ωρ

)
, ρ ∈ Λc. (5.5)

For P (2) we obtain

sup
ρ∈Λc

|P (2)
ρ | ≤ ‖P (2)‖∞ ≤ ‖KAm‖∞→∞(1 + ‖RΛQm−1sgn(x)‖∞). (5.6)
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In order to analyze the term ‖RΛQm−1sgn(x)‖∞ we observe that similarly as in (5.5)

P
(
|(Qm−1sgn(x))ρ| ≥ a

)
≤ P

(
m∑

t=1

|(KRΛ)tsgn(x))ρ| ≥ a

)
= P

(
Ωρ

)
, ρ ∈ Λc.

Let us now focus on the operator norm appearing in (5.6). It holds ‖A‖∞→∞ = supj

∑
` |Aj`|.

Clearly,
‖KAm‖∞→∞ ≤ ‖K‖∞→∞‖Am‖∞→∞. (5.7)

Moreover,
‖K‖∞→∞ ≤ |Λ| = S (5.8)

as K has S columns and each entry is bounded by 1 in absolute value.

Let us analyze Am using the Frobenius norm. Assume for the moment that

‖Hm‖F ≤ κ < 1. (5.9)

Then it follows directly from the definition (5.3) of Am that

‖Am‖F =

∥∥∥∥∥
∞∑

r=1

(−H)rm

∥∥∥∥∥
F

≤
∞∑

r=1

‖Hm‖r
F ≤

∞∑
r=1

κr =
κ

1− κ
.

Moreover, since Am has |Λ| = S columns it follows from the Cauchy-Schwarz inequality that

‖Am‖2
∞→∞ ≤ sup

λ∈Λ
|Λ|
∑
λ′

|(Am)λ,λ′|2 ≤ S‖Am‖2
F . (5.10)

So assuming (5.9) and ‖Qm−1sgn(x)‖∞ < a, we can combine (5.7), (5.8) and (5.10) to obtain

sup
ρ∈Λc

|P (2)
ρ | ≤ (1 + a)S3/2 κ

1− κ
.

By assumption of the lemma

κ

1− κ
≤ 1− a

1 + a
S−3/2 =

b

1 + a
S−3/2, (5.11)

and supρ∈Λc |P (2)
ρ | ≤ b under condition (5.9) as desired. Also it follows from (5.1) that κ < 1 as

S ≥ 1 without loss of generality (if Λ = ∅ then x = 0 and `1-minimization will clearly recover x.)

Using the union bound we obtain from (5.4)

P
(

sup
ρ∈Λc

|Pρ| ≥ 1
)

≤ P

(⋃
ρ∈Λc

{|P (1)
ρ | ≥ a} ∪ {‖Qm−1sgn(x)‖∞ ≥ a} ∪ {‖Hm‖F ≥ κ}

)

≤ P

(⋃
ρ∈Λc

Ωρ ∪ {‖Hm‖F ≥ κ}

)
≤
∑
ρ∈Λc

P
(
Ωρ

)
+ P

(
‖Hm‖F ≥ κ

)
. (5.12)
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Markov’s inequality now gives

P
(
‖Hm‖F ≥ κ

)
= P

(
‖Hm‖2

F ≥ κ2
)
≤ κ−2E[‖Hm‖2

F ]. (5.13)

It remains to investigate P (Ωρ). To this end let βt, t = 1, . . . ,m, be positive numbers satisfying

m∑
t=1

βt = a

and let Lt ∈ N, t = 1, . . . ,m. For ρ ∈ Λc, we have

P
(
Ωρ

)
= P

(
m∑

t=1

|((KRΛ)tsgn(x))ρ| ≥ a

)
≤

m∑
t=1

P
(
|((KRΛ)tsgn(x))ρ| ≥ βt

)
=

m∑
t=1

P
(
|((KRΛ)tsgn(x))ρ|2Lt ≥ β2Lt

t

)
≤

m∑
t=1

E
[
|((KRΛ)tsgn(x))ρ|2Lt

]
β−2Lt

t , (5.14)

where Markov’s inequality was used to obtain the last inequality. Let us choose βt = βm/Lt , that
is, β−2Lt

t = β−2m. This yields

P
(
Ωρ

)
≤ β−2m

m∑
t=1

E
[
|((KRΛ)tsgn(x))ρ|2Lt

]
(5.15)

and the condition a =
∑m

t=1 βt reads

a =
m∑

t=1

βm/Lt < 1.

This is precisely the first condition in (5.1). Assembling (5.12), (5.13) and (5.15) completes the
proof. �

5.2. Estimate of an auxiliary expected value

Lemma 5.1 suggests the investigation of the expected values appearing in (5.2). As the ex-
pectation E [‖Hm‖2

F ] was already estimated in Lemma 3.4, we focus here on terms of the form
E
[
|((KRΛ)tsgn(x))ρ|2Lt

]
.

Lemma 5.2. Let Λ ⊂ Zn × Zn with |Λ| = S. Then for ρ /∈ Λ,

E
[
|((KRΛ)tsgn(x))ρ|2L

]
≤
(
S

n

)2tL tL∑
s=1

d2(2tL, s)
(n
S

)s

.

Proof. Note that (KRΛ)t = K(RΛK)t−1RΛ = KH t−1RΛ. Denote σ = RΛsgn(x). Then for
ρ /∈ Λ we have

((KRΛ)t)σ)ρ =
∑

λ1 6=λ2 6=λ3... 6=λt∈Λ

〈π(ρ)g, π(λ1)g〉 〈π(λ1)g, π(λ2)g〉 · · · 〈π(λt−1)g, π(λt)g〉σ(λt) .
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Furthermore, setting λ2u−1
0 := λ2u

t := ρ /∈ Λ, u = 1, . . . , L, for notational brevity, we can write

|((KRΛ)tσ)ρ|2L =
∑

λ1
1,...,λ1

t∈Λ

λ2
0,...,λ2

t−1∈Λ

...
λ2L
0 ,...,λ2L

2t−1∈Λ
λu

r−1 6=λu
r

L∏
u=1

σ(λ2u−1
t )σ(λ2u

0 )
t∏

r=1

〈π(λ2u−1
r−1 )g, π(λ2u−1

r )g〉〈π(λ2u
r−1)g, π(λ2u

r )g〉.

Using linearity of expectation we obtain

E|((KRΛ)tσ)ρ|2L =
∑

λ1
1,...,λ1

t∈Λ

...
λ2L
0 ,...,λ2L

t−1∈Λ
λu

r−1 6=λu
r

Sλ1
1,...,λ2L

t
Fλ1

1,...,λ2L
t

(5.16)

where Sλ1
1,...,λ2L

t
does not depend on g,

∣∣∣Sλ1
1,...,λ2L

t

∣∣∣ = 1 and

Fλ1
1,...,λ2L

t
= E

[
L∏

u=1

t∏
r=1

〈π(λ2u−1
r−1 )g, π(λ2u−1

r )g〉〈π(λ2u
r−1)g, π(λ2u

r )g〉

]
.

Let us write λu
r = (ku

r , `
u
r ). If ku

r−1 = ku
r for r ∈ {1, . . . , t}, u ∈ {1, . . . , 2L} then necessarily `ur−1 6= `ur

due to the condition λu
r−1 6= λu

r on the index set of the sum. Observe that this holds as well
for r = 1 and r = t since λ2u−1

0 = λ2u
t = ρ /∈ Λ. Due to the unimodularity of g we have then

〈π(λu
r−1)g, π(λu

r )g〉 = 0 and the corresponding Fλ1
1,...,λ2L

t
does not contribute to the sum. Hence, in

the following we may assume as in Section 3 that ku
r−1 6= ku

r .

As in (3.9) we may write

Fλ1
1...λ2L

t
=

n∑
j1
1 ,...,j2L

1 =1

j1
2 ,...,j2L

2 =1

...
j1
t ,...,j2L

t =1

T`0;`11,...,`2L
r

(j1
1 , . . . , j

2L
t )Jk0;k1

1 ,...,k2L
r

(j1
1 , . . . , j

2L
t ) (5.17)

with

T`0;`11,...,`2L
r

(j1
1 , . . . , j

2L
t ) =

2L∏
u=1

t∏
r=1

e2πiju
r (`u

r−1−`u
r ) (5.18)

and

Jk0;k1
1 ,...,k2L

r
(j1

1 , . . . , j
2L
t ) = E

[
2L∏

u=1

t∏
r=1

g(ju
r − ku

r−1)g(j
u
r − ku

r )

]
.

As discussed in Section 3, the independence of the g(j) implies that the expectation above factorizes
into a product of expectations. However, we have to be careful again since some of the indices
ju
r −ku

r−1 and ju′

r′ −ku′

r′ might equal the same number j. In this case one of the factors in the product
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equals E[|g(j)|2] = 1/n (or a higher power if more than two indices are equal). As in the proof of
Lemma 3.4 we have to count such cases. Again, they necessitate that j1

1 , . . . , j
2L
t must decompose

into s sets
{jα11 , jα12 , . . . , jα1r1

}, {jα21 , jα22 , . . . , jα2r2
}, . . . , {jαs1 , jαs2 , . . . , jαsrs

},

with r1 + r2 + . . .+ rs = 2tL, and for each q = 1, . . . , s we have

jαq1 − kαq1−1 = jαq2 − kαq2 ,

jαq2 − kαq2−1 = jαq3 − kαq3 ,

...

jαqrq
− kαqrq−1 = jαq1 − kαq1 . (5.19)

Here, it is understood that kα−1 = ku
r−1 if α = (r, u). As done earlier in Lemma 3.4 we represent

such a case by the s cycles

α11 → α12 → . . .→ α1r1 → α11, . . . , αs1 → αs2 → . . .→ αsrs → αs1.

Now if
rq∑

p=1

kαqp−1 =

rq∑
p=1

kαqp (5.20)

for all q = 1, . . . , s then any vector of indices (jα11 , . . . , jαs1) ∈ {1, . . . , n}s gives

Jk0;k1
1 ,...,k2L

t
(j1

1 , . . . , j
2L
t ) = n−s

by setting the other indices ju
r according to (5.19). Plugging this into (5.17) and (5.18) we realize

that these contributions are canceled out unless

rq∑
p=1

`αqp−1 =

rq∑
p=1

`αqp . (5.21)

So we obtain ns non-zero contributions of absolute value n−2tL to Fλ1
1,...,λ2L

t−1
if and only if

rq∑
p=1

λαqp−1 =

rq∑
p=1

λαqp for all q = 1, . . . , s.

Arguing similarly as in the proof of Lemma 3.4 we conclude that these s equations are linearly
independent. However note that in contrast to the situation there we now have λ2u−1

0 = λ2u
t = ρ /∈ Λ.

With similar arguments as in the end of the proof of Lemma 3.4 we finally obtain

E|((KRΛ)tσ)ρ|2L ≤
(
|Λ|
n

)2tL tL∑
s=1

d2(2tL, s)

(
n

|Λ|

)
.

�
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5.3. Proof of Theorem 2.3

Applying Lemma 5.1, using the estimates of Lemmas 3.4 and 5.2, the definition of the function G2m

in (3.25) and |Λc| ≤ n2, we conclude that the probability of recovery failure is upper bounded by

κ−2E
[
‖Hm‖2

F

]
+ β−2m

∑
ρ∈Λc

m∑
t=1

E
[
|((KRΛ)tsgn(x))ρ|2Lt

]
≤ κ−2SG2m(n/S) + n2β−2m

m∑
t=1

G2tLt(n/S) (5.22)

provided that the conditions given in (5.1) hold.

For specific S, n one may already use this estimate to compute an explicit probability bound by
numerically minimizing over m and the remaining parameters. Following the analysis in [27] we
provide an estimate, which is easier to interpret.

We choose Lt as m/t rounded to the nearest integer. It is then straightforward to deduce that

tLt ∈ {d2m/3e , d2m/3e+1, . . . , b4m/3c}, t ∈ {1, . . . ,m}.

Let z = n/S. Using (3.28) we obtain

m∑
t=1

G2tLt(z) ≤ m max
m′∈{d2m/3e,...,b4m/3c}

G2m′(z) ≤ m max
m′∈{d2m/3e,...,b4m/3c}

αm′

4(1− α)
≤ m

α2m/3

4(1− α)

for any α < 1 with 4m′/z ≤ α for all m′ ∈ {d2m/3e , . . . , b4m/3c}, which is the case for

m = mz =

⌊
3αz

16

⌋
. (5.23)

This yields

n2β−2m

m∑
t=1

G2tLt(z) ≤ n2mz
(β−3α)2mz/3

4(1− α)
. (5.24)

Now choose
α := β3e−3/2. (5.25)

Then the right hand side of (5.24) becomes n2mz
e−mz

4(1−α)
which is less than or equal to ε/2 if and

only if

mz − log

(
mz

2(1− α)

)
≥ log(n2/ε).

A numerical test shows that β = 0.47 is a valid choice and the corresponding a =
∑m

t=1 β
m/Lt

will always be less than 0.957. Assume for the moment that mz ≥ M ∈ N, M ≥ 6. Since
t 7→ t−1 log( t

2(1−α)
) is monotonically decreasing for t ≥ 6 and α as in (5.25), β = 0.47, we obtain

mz − log

(
mz

2(1− α)

)
= mz

(
1−m−1

z log

(
mz

2(1− α)

))
≥ mz

(
1− log(M(1− α)−1/2)

M

)
.

21



The elementary inequality byc ≥ M
M+1

y for y ≥M yields

mz =

⌊
3αz

16

⌋
≥ 3αzM

16(M + 1)
=

3M

16(M + 1)
β3e−3/2z.

Altogether, the left hand side of (5.24) is less than ε/2 provided

n

S
= z ≥ Q(β,M)−1 log(n2/ε) (5.26)

and mz ≥M , where

Q(β,M) :=
3M

16(M + 1)
β3e−3/2

(
1− log(M(1− β3e−3/2)−1/2)

M

)
.

Taking M = 20 yields
C1 := Q(0.47, 20)−1 ≈ 273.5.

Without loss of generality we may assume S ≥ 1 (otherwise x = 0 and there is nothing to prove).
Then (5.26) requires at least n/ log(n2) ≥ C1S ≥ C1, and a numerical test reveals that necessarily
n ≥ 10000. The minimal choice z = C1 log(100002) yields then mz = b3αC1 log(100002)/16c =
21 ≥ 20 = M , that is, our initial assumption mz ≥M is satisfied if

n ≥ C1S log(n2/ε) (5.27)

and, hence, this ensures n2β−2m
∑m

t=1G2tLt(n/S) ≤ ε/2 as well.

Now consider the other term Sκ−2G2m(n/S) in the probability bound (5.22). We choose κ such
that there is equality in the second inequality of (5.1), that is,

κ =
(1− a)/(1 + a)S−3/2

1 + (1− a)/(1 + a)S−3/2
≥ 1− a

2(1 + a)
S−3/2.

Together with (3.28) and the choice (5.23) (with z = n/S) we obtain

Sκ−2G2mz(z) ≤
(

2(1 + a)

(1− a)

)2

S4 αmz

4(1− α)
.

Requiring that the latter expression is less than ε/2 is equivalent to

log(α−1)mz ≥ log(S4/ε) + log

(
2

(1 + a)2

(1− a)2(1− α)

)
.

As above assume for the moment that mz ≥M . Plugging in α from above yields

mz ≥ M

M + 1

3αz

16
=

3M

16(M + 1)
β3e−3/2z.

It follows that Sκ−2G2mz(z) ≤ ε/2 if

z ≥ 16(M + 1)β−3e3/2

3M log(β−3e3/2)

(
log(S4/ε) + log

(
2
(1 + a)2

(1− a)2
(1− β3e−3/2)−1

))
.
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As already remarked the choice β = 0.47 results in a ≤ 0.957. Choosing M = 21 (mz ≥ 21 will be
ensured by (5.27) anyway as shown above) gives

z ≥ C2(log(S4/ε) + C3) (5.28)

with C2 ≈ 64.1 and C3 ≈ 8.35.

Since S ≤ n2, combining (5.27) and (5.28) finally shows the existence of a constant C such that

n ≥ CS log(n/ε)

ensures recovery with probability at least 1− ε. This proves Theorem 2.3.
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