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ABSTRACT

Generalized Haar wavelets were introduced in connection with the problem of detecting specific periodic components
in noisy signals.1,2 John Benedetto and I showed that the non–normalized continuous wavelet transform of a periodic
function taken with respect to a generalized Haar wavelet is periodic in time as well as in scale, and that generalized
Haar wavelets are the only bounded functions with this property.

In this paper, I shall discuss generalized Haar wavelets in a discrete setting. I shall present a characterization of all
generalized Haar wavelets which have the property that our discretized version of the continuous wavelet transform is
a topological isomorphism onto its range. This is equivalent to the fact that the set of analysis vectors used constitute
a frame for l2(Z). A similar result is obtained for l2(Zd). Generalized Haar wavelets allow a fast computation of a
discretized version of the continuous wavelet transform of a function, as I shall show.

I shall present examples of generalized Haar wavelets and calculate the corresponding frame bounds and analysis
filter banks.
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1. INTRODUCTION

The wavelet transformation discussed in this paper is a discretization of the continuous wavelet transformation and
is obtained via

W s
ψf [m,n] := m− s

2

∑

k∈Zd

f [k]ψ(
k − n

m
) ≈ m− s

2

∫

Rd

f(t)ψ(
t− n

m
) dt = W s

ψf(m,n),

where the normalization parameter s > 0 is fixed. For (m,n) ∈ Z+ × Z and integer arguments, we define

ψm,n[·] = m− s
2 ψ(

· − n

m
) (1)

and get
W s

ψf [m, n] =
∑

k∈Zd

f [k]ψm,n[k] = 〈f, ψm,n〉l2(Z).

For sake of completeness, let us recall the definition of a frame.

Definition 1.1. A family of functions {ϕi}i∈I in a Hilbert space H is a frame, if there exist A > 0 and B < ∞
such that for all f ∈ H

A ‖f‖2H ≤
∑

i∈I

|〈f, ϕi〉|2 ≤ B ‖f‖2H . (2)

If A is chosen maximal and B is chosen minimal such that (2) holds, A is called the lower and B the upper
framebound.

Clearly, {ϕi}i∈I being a frame is equivalent to the fact that the linear map

L : H −→ l2(I), f 7−→ {〈f, ϕi〉}i∈I
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is norm bounded above and below, and hence is invertible on its range. Each element f ∈ H is therefore fully
represented by the coefficients {〈f, ϕi〉}i∈I and a stable reconstruction of f from these coefficients is possible.

Gerneralized Haar wavelets (of degree 1) are defined to be square integrable functions which are constant on the
intervals [n, n + 1), n ∈ Z. If ψ is a generalized Haar wavelet, we have

ψm,n[·] = m− s
2 ψ(

· − n

m
) = m− s

2 ψ1,0

[⌊ · − n

m

⌋]
,

where bxc denotes the largest integer smaller than x.

In this case, {ψm,n} are integer translates and dilates of the vector ψ = ψ1,0. In this paper, we shall restrict
ourselves to generalized Haar wavelets in the described discrete setting. We shall omit the bar and write ψ = ψ ∈
l2(Z).

In Section 2 we shall classify all generalized Haar wavelets ψ such that {ψm,n} is a frame for H = l2(Z) for a given
normalization parameter s. The main result of Section 2 is generalized to the multi dimensional setting H = l2(Zd)
in Section 3.

The inherent redundancy in discretized versions of the continuous wavelet transformation offers some robustness
to noise, but requires more calculations than needed to calculate a dyadic wavelet transform. In Section 4, we shall
present a fast algorithm which reduces the number of calculations that are needed to compute the wavelet transform
of a signal in l2(Z) significantly, assuming that a generalized Haar wavelet is used.

Generalized Haar wavelets were applied to the periodicity detection problem, since they have the property that
the non–normalized continuous wavelet transform of a periodic function is periodic in time and in scale. This property
is preserved in our discrete setting.

Proposition 1.2. Let ψ be a generalized Haar wavelet of degree 1, and let {f [n]}n∈Z be a T–periodic sequence,
T ∈ Z+, i.e., f [n + T ] = f [n] for all n ∈ Z. Then ms/2W s

ψf [m,n] is T–periodic in n and T–periodic in m.

The proof of this proposition, as well as the proofs of all results stated in this paper, is omitted, but will be
published at a later time.3

2. WAVELET FRAMES FOR l2(Z)

We shall classify all generalized Haar wavelets ψ ∈ l2(Z) such that for a given s ∈ R+ the family {ψm,n}m∈Z+,n∈Z

is a frame for l2(Z).

The Dirichlet functions dm is defined by dm(γ) =
∑m−1

l=0 e−2πilγ . Note that then |dm(γ)|2 =
(

sin(πmγ)
sin(πγ)

)2

. For

any ψ ∈ l2(Z) and s > 0 we define

Ψs : T −→ R+ ∪ {∞}, γ 7−→
∑

m∈Z+

m−s|dm(γ)ψ̂(mγ)|2 a.e.

We obtain the following theorem characterizing ψ ∈ l2(Z) such that {ψm,n}m∈Z+,n∈Z is a frame for l2(Z).

Theorem 2.1. For ψ ∈ l2(Z), the following are equivalent:

i. The family {ψm,n}m∈Z+,n∈Z is a frame for l2(Z).

ii. There exists A > 0 and B < ∞ such that

A ≤ Ψs(γ) ≤ B

for almost all γ ∈ T.

In this case, the lower and upper framebounds are given by A = essinfγ∈TΨs(γ) and B = ‖Ψs‖L∞(T).

This theorem gives us a criterion, to check whether {ψm,n}(m,n)∈Z+×Z is a frame for l2(Z). This criterion is
easily verified if we restrict ourselves to wavelets ψ with compact support, i.e., ψ satisfy the property that ψ[k] = 0
for k 6= 0, 1, . . . , N − 1. This compactness condition is generally satisfied in applications.



Theorem 2.2. Let ψ ∈ l2(Z) satisfy the condition that ψ[k] = 0 for k 6= 0, 1, . . . , N−1. The following are equivalent:

i. The family {ψm,n}m∈Z+,n∈Z is a frame for l2(Z).

ii. The polynomial 1 + z + z2 + . . . + zn does not divide H(z) = ψ [0] + ψ [1] z + ψ [2] z2 + . . . + ψ [N − 1] zN−1 for
all n ≤ N − 1 and either

∑
ψ [k] = 0 and s = 3 or

∑
ψ [k] 6= 0 and s > 3.

Remark 2.3. Our construction can be related to the quasi affine frames.4,5 In their work, Ron and Shen analyzed
the coarse part of a signal with the set of analyzing functions {2−mψ( t−n

2m )}n∈Z,m∈Z+ . The scaling factor 2−m

is necessary, since we are expanding the dyadic wavelet set {2−m
2 ψ( t−2mn

2m )}n∈Z,m∈Z+ . In our approach, we are
expanding the wavelet set further, i.e., we are using s = 3 and {m− 3

2 ψ( t−n
m )}n∈Z,m∈Z+ .

Remark 2.4. We can use Theorem 2.2 to obtain frames for any separable Hilbert space. As example, we shall
construct frames for the Paley–Wiener spaces6,7

PW (Ω) = {f ∈ L2(R) : suppF(f) ⊆ [−Ω, Ω]},

with Ω > 0. Paley–Wiener spaces are closed subspaces of L2(R), and, hence, Hilbert spaces with the inner product
〈·, ·〉L2(R). Without loss of generality, we shall consider only the case Ω = 1

2 .

Defining hk(·) = sin(π(·−k))
π(·−k) ∈ PW ( 1

2 ) we obtain an orthonormal basis {hk}k∈Z of PW ( 1
2 ). Furthermore f(k) =

〈f, hk〉 for f ∈ PW ( 1
2 ) and k ∈ Z, and, hence, {f(k)}k∈Z ∈ l2(Z). The classical sampling theorem implies

f =
∑

k∈Z

f(k)hk.

Let ψ ∈ l2(Z) be chosen such that {ψm,n}m∈Z+,n∈Z is a frame for l2(Z) with frame bounds A and B. Define

ϕm,n =
∑

k∈Z

ψm,n(k)hk

for m ∈ Z+, n ∈ Z. The function ϕm,n ∈ PW (1
2 ) is well-defined, since ψm,n ∈ l2(Z) for all m ∈ Z+, n ∈ Z, and since

{hk}k∈Z is an orthonormal set. For f ∈ PW ( 1
2 ), m ∈ Z+, and n ∈ Z, we compute

〈f, ϕm,n〉L2(R) =
∫

R

f(t)
∑

k∈Z

ψm,n(k)hk(t) dt =
∑

k∈Z

ψm,n(k)
∫

R

f(t)hk(t) dt = 〈f |Z, ψm,n〉l2(Z).

This results in

A ‖f‖2L2(R) = A ‖f |Z‖2l2(Z) ≤
∑

m∈Z+,n∈Z

|〈f |Z, ψm,n〉l2(Z)|2 =
∑

m∈Z+,n∈Z

|〈f, ϕm,n〉L2(R)|2 ≤ B ‖f [·]‖2l2(Z) = B ‖f‖2L2(R)

and, hence, {ϕm,n}m∈Z+,n∈Z is a frame for PW (1
2 ).

We shall conclude this section by discussing three Examples.

Example 2.5. Let ψ be the Haar wavelet, i.e., ψ[m] = 1√
2
(δ0[m] − δ1[m]) for m ∈ Z. For s = 3, ψ fulfills

the hypothesis of Theorem 2.2, and, hence, {ψm,n}m∈Z+,n∈Z is a frame for l2(Z). To obtain the corresponding
framebounds of this frame, we examine the function Ψ3, which is given by

Ψ3(γ) = 2
∑

m∈Z+

m−3 sin4(πmγ)
sin2(πγ)

,

and is shown in Figure 1.C. As lower framebound we obtain

A = lim
γ→0+

Ψ3(γ) =
2
π2

∫ ∞

0

sin4(πx)
x3

dx = 2 ln(2) ≈ 1.386,
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Figure 1. A: The Haar wavelet. B: The Haar wavelet analysis filterbank for m = 1, 2, 3, 4 . C: Ψ3(γ) for the Haar
wavelet ψ.

and as upper framebound we have

B = Ψ3

(
1
2

)
= 2

∑

m∈Z+

m odd

m−3 =
14ζ(3)

8
≈ 2.104.

Example 2.6. We can associate the vector ϕ[m] = δ0[m] to the Haar scaling function. Theorem 2.2 asserts that
{ϕm,n}m∈Z+,n∈Z is a frame for l2(Z) if s > 3. For s = 4, the function

Ψ4(γ) =
∑

m∈Z+

m−4 sin2(πmγ)
sin2(πγ)

is associated with ϕ. This function is shown in Figure 2.C. As framebounds we obtain
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Figure 2. A: The vector associated with the Haar scaling function. B: The Haar scaling function analysis filterbank
for m = 1, 2, 3, 4 . C: Ψ4(γ) for the Haar scaling function ϕ.

B = lim
γ→0+

Ψ4(γ) =
∑

m∈Z+

m−2 =
π2

6
≈ 1.6449 and A = Ψ4

(
1
2

)
=

∑

m∈Z+

m odd

m−4 =
π4

96
= 1.0147.



Example 2.7. Let ψ be the wavelet defined by ψ[m] = 1√
70

(δ0[m]− 4δ1[m] + 6δ2[m]− 4δ3[m] + δ4[m]) for m ∈ Z.
For s = 3, we know that {ψm,n}m∈Z+,n∈Z is a frame for l2(Z). We obtain

Ψ3(γ) =
∑

m∈Z+

m−3 28

70
sin10(πmγ)
sin2(πγ)

,

which is shown in Figure 3.C. As lower framebound we obtain A = 0.9905 and as upper framebound we have
B = 3.8466
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Figure 3. A: The wavelet of Example 2.7 . B: The corresponding analysis filterbank for m = 1, 2, 3, 4 . C: Ψ3(γ)
for the wavelet discussed in Example 2.7.

3. WAVELET FRAMES FOR l2(Zd)

We shall now discuss the Hilbert space of interest is the space of square summable multidimensional discrete signals
H = l2(Zd). Our goal is to characterize vectors ψ ∈ l2(Zd) such that, for some normalization constant s, its translates
and “dilates” form a frame for H = l2(Zd). Alternatively, the frame elements can be seen as sampled versions of a
generalized Haar wavelet ψ ∈ L2(Rd).

For ψ ∈ l2(Zd) we define, for n ∈ Zd, m ∈ Z+,

ψm,n[k] = m− s
2 ψ

[⌊
k1 − n1

m

⌋
, . . . ,

⌊
k1 − nd

m

⌋]
, k ∈ Zd.

For m > 0, we define m-dimensional Dirichlet functions by dm(γ) = dm(γ1) · . . . · dm(γd) and

Ψs(·) =
∞∑

m=1

m−s|dm(·)ψ̂(m ·)|2, for γ ∈ Td. (3)

Theorem 2.1 generalizes to higher dimensions in the following fashion:

Theorem 3.1. For ψ ∈ l2(Zd), the following are equivalent:

i. The family {ψm,n}m∈Z+,n∈Zd is a frame for l2(Zd).

ii. There exists A > 0 and B < ∞ such that

A ≤ Ψs(γ) ≤ B

for almost all γ = (γ1, . . . , γd) ∈ Td.

The framebounds are obtained in exactly the same matter as in Theorem 2.1.



Our next objective is to characterize generalized Haar wavelets satisfying the criterion in Theorem 3.1. The
restriction to generalized Haar wavelets with compact support does not allow a generalization to higher dimensions
of Theorem 2.1. The reason for this is that it is not easy to control the zero set of the trigonometric polynomial
ψ̂ appearing in (3) Hence, we shall not be able to give a full characterization of generalized Haar wavelets with
compact support in Rd such that {ψm,n}m∈Z+,n∈Zd is a frame for l2(Zd). Nevertheless, some necessary conditions
for {ψm,n}m∈Z+,n∈Zd being a frame for l2(Zd) are known.3

I shall now discuss a few generalized Haar wavelets for d = 2, beginning with two which have the property that
{ψm,n}m∈Z+,n∈Zd is not a frame for l2(Zd) for all s > 0.

Example 3.2. Let ψ[1, 0] = 1/
√

2, ψ[0, 1] = −1/
√

2, and ψ[n] = 0 for n 6= [1, 0], [0, 1]. This wavelet is displayed in
Figure 4.A. In this case

√
2ψ̂(γ1, γ2) = e−2πiγ1 − e−2πiγ2 for (γ1, γ2) ∈ R̂2 and therefore ψ̂(γ1, γ1) = 0 for γ1 ∈ R̂.

In particular ψ̂(m
2 , m

2 ) = 0 for all m ∈ Z+ and so Ψs( 1
2 , 1

2 ) = 0 for all s ∈ R+. Hence {ψm,n}m∈Z+,n∈Zd does not
possess a lower framebound. In this case, Ψ5 is shown in Figure 4.B.
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Figure 4. A: The wavelet discussed in Example 3.2. B: Ψ5 of Example 3.2.

Example 3.3. Let ψ[0, 0] = 2/
√

7, ψ[0, 1] = ψ[1, 0] = ψ[0,−1] = ψ[−1, 0] = 1/
√

7 and ψ[n] = 0 for n 6=
[0, 0], [1, 0], [0, 1], [−1, 0], [0,−1]. (See Figure 5.A.) A short calculation shows that

√
7ψ̂(γ1, γ2) = |e−2πiγ1 − (−1)|2 + |e−2πiγ2 − (−1)|2 − 2

for (γ1, γ2) ∈ R̂2. Hence ψ̂( 1
3 , 1

3 ) and ψ̂( 2
3 , 2

3 ) = 0, and therefore Ψs(1
3 , 1

3 ) = 0 for all s ∈ R+. Hence {ψm,n}m∈Z+,n∈Zd

is not a frame for l2(Zd). Ψ6 in this case is pictured in Figure 5.B.
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Figure 5. A: The wavelet discussed in Example 3.3. B: Ψ6 of Example 3.3.



Example 3.4. Let ψ[0, 0] = −3/
√

12, ψ[0, 1] = ψ[1, 0] = ψ[1, 1] = 1/
√

12 and ψ[n] = 0 for n 6= [0, 0], [1, 0], [0, 1], [1, 1].
This wavelet is shown in Figure 6.A. Numerical experiments imply that, for s = 5, {ψm,n}m∈Z+,n∈Zd is a frame for
l2(Zd). As approximate lower framebound we obtain A = 0.32 and as approximate upper framebound, we obtain
B = 1.88. The resulting function Ψ5 is supplied in Figure 6.B.
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Figure 6. A: The wavelet discussed in Example 3.4. B: Ψ5 of Example 3.4.

Example 3.5. Let ψ[0, 0] = −1/5, ψ[1, 0] = −2/5, ψ[0, 1] = 2/5, ψ[1, 1] = 4/5 and ψ[n] = 0 for n 6= [0, 0], [1, 0], [0, 1],
[1, 1]. Figure 7.A shows this wavelet. For s = 6, we obtain as numerical approximation A = 0.04 as lower framebound,
and B = 3.28 as upper framebound. This implies that {ψm,n}m∈Z+,n∈Zd is a frame for l2(Zd). The function Ψ6 is
supplied in Figure 7.B.
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Figure 7. A: The wavelet discussed in Example 3.5. B: Ψ6 of Example 3.5.

4. IMPLEMENTATION

To analyze a signal through a “continuous” wavelet transform is expensive, since it requires the calculation of a
large number of coefficients W s

ψf [m,n]. In general, for a wavelet with support [0, N ], we need mN additions and
mN +1 multiplications to calculate W s

ψf [m,n]. The restriction to generalized Haar wavelets gives rise to a recursive
procedure to obtain these coefficients. This reduces the number of calculations needed significantly. In fact, if ψ is
a generalized Haar wavelet which is supported on [0, N ], to obtain W s

ψf [m,n] from W s
ψf [m, n− 1] or W s

ψf [m− 1, n]

requires only 2N+1 additions and N+1 multiplications or N(N−1)
2 +1 additions and N+3 multiplications respectively,

regardless of how large m and hence the support of ψ[b ·−n
m c] is.



In order to develop the algorithm to compute W s
f [m,n] recursively, we shall write (1) in a more convenient form:

W s
ψf [m,n] = m− s

2

∑

k∈Z

f [k]ψ
[⌊

k − n

m

⌋]

= m− s
2




...
...

...
...

+ f [n] ψ [0] + . . . + f [n + m− 1] ψ [0]
+ f [n + m] ψ [1] + . . . + f [n + 2m− 1] ψ [1]
+ f [n + 2m] ψ [2] + . . . + f [n + 3m− 1] ψ [2]

...
...

...
...




= m− s
2

∑

r∈Z

(
m−1∑

l=0

f [n + mr + l]

)
ψ [r]

At this point, the fact that ψ is a generalized Haar wavelet has reduced the number of necessary operations needed
to calculate W s

ψf [m, n] to mN additions and N + 1 multiplications.

In the remainder of this section, we shall omit the normalization factor m− s
2 . This factor is certainly independent

of wavelet and signal and would be multiplied to Wψf [m,n] in the last step of computing W s
ψf [m,n]. Let us begin

with the trivial case of obtaining Wψf [m,n] from Wψf [m, n− 1]. We have

Wψf [m,n] − Wψf [m,n− 1]

=
∑

r∈Z

(
m−1∑

l=0

f [n + mr + l]−
m−1∑

l=0

f [n− 1 + mr + l]

)
ψ [r]

=
N−1∑
r=0

(f [n + mr + m− 1]− f [n− 1 + mr]) ψ [r] .

To explain how to obtain Wψf [m,n] from Wψf [m− 1, n] for scales m ≥ N is not as easy. Again, many products
appearing in the summation of Wψf [m,n] contributed already to Wψf [m− 1, n]. Sorting this through, we obtain

Wψf [m,n]−Wψf [m− 1, n] = ψ [0]
N−1∑

l=0

f [n−mN + l]

+ (ψ [1]− ψ [0])
N−1∑

l=1

f [n−m(N − 1) + l]

+ . . .

+ (ψ [N − 1]− ψ [N − 2])f [n].
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