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ABSTRACT

The classical sampling theorem, attributed to Whittaker, Shannon, Nyquist, and Kotelnikov, states that a
bandlimited function can be recovered from its samples, as long as we use a sufficiently dense sampling grid.
Here, we review the recent development of an operator sampling theory which allows for a “widening” of the
classical sampling theorem. In this realm, bandlimited functions are replaced by “bandlimited operators”, that
is, by pseudodifferential operators which have bandlimited Kohn—Nirenberg symbols.

Similar to the Nyquist sampling density condition, we discuss sufficient and necessary conditions on the
bandlimitation of pseudodifferential operators to ensure that they can be recovered by their action on a single
distribution. In fact, we show that an operator with Kohn—Nirenberg symbol bandlimited to a Jordan domain
of measure less than one can be recovered through its action on a distribution defined on a appropriately chosen
sampling grid. Further, an operator with bandlimitation to a Jordan domain of measure larger than one cannot be
recovered through its action on any tempered distribution whatsoever, pointing towards a fundamental difference
to the classical sampling theorem where a large bandwidth could always be compensated through a sufficiently fine
sampling grid. The dichotomy depending on the size of the bandlimitation is related to Heisenberg’s uncertainty
principle.

Further, we discuss an application of this theory to the channel measurement problem for Multiple-Input
Multiple-Output (MIMO) channels.

Keywords: B andlimited Kohn—Nirenberg symbols, channel measurement, Multiple-Input Multiple-Output

channels, Gabor and time—frequency analysis, operator identification, spreading functions, underspread opera-
tors, matrix identification.

1. INTRODUCTION

To infer reliable information on, or, better, to identify only partially known objects from very limited data is
a key task in the sciences. In communications engineering, for example, two basic theorems addressing this
objective are folklore:

(a) The classical sampling theorem states that a bandlimited function can be recovered from its samples
on a sufficiently dense sampling grid.

(b) Operators representing time—invariant channels as encountered in wired communications can be identi-
fied through a single input/output pair, namely, the channel is completely characterized by the channels
response to Dirac’s delta impulse.

In the 1960s, Thomas Kailath posed the question whether (b) could be extended to slowly time-varying
channels.! He conjectured a sufficient and necessary condition for the measurability of such operators based
on the product of maximum time—spread (corresponding to the longest path the signal travels) and maximum
frequency—spread (Doppler effect caused by the movement of sender, receiver, and reflecting objects): if a priori
knowledge indicates that this product is less than or equal to one, then the operator is identifiable, else, it is
not. Using recent techniques from Gabor analysis, his conjecture was was recently proven? and this and follow
up results lead to the formulation of an operator sampling theory which we shall review in this paper.

In fact, Kailath’s result were extended to cover pseudodifferential operators of any degree and therefore
also to large classes of time-invariant operators and multiplication operators®.” As we shall see below, by
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associating a bandlimited multiplication operator to its bandlimited symbol, our results entail the classical
sampling theorem described in (a). Furthermore, straightforward calculations lead to a reconstruction formula
for bandlimited operators, that is, of their so—called time—varying impulse responses, from the corresponding
channel outputs. This formula reduces to the standard reconstruction formula for bandlimited functions in the
case of multiplication operator symbols.

Kailath’s product condition reflects bandlimitations on the Kohn—Nirenberg symbols of pseudodifferential
operators to a rectangular domain. This result was extended to higher dimensions and, by means of the repre-
sentation theory of the Weyl-Heisenberg group and the metaplectic representation of the symplectic group, to
pseudodifferential operators with symbols bandlimited to a fundamental domain of a symplectic lattice.

In the one—dimensional case, we give a refinement of the product condition of Kailath as it was foreseen by
Bello,* that is, we show that also operators with Kohn-Nirenberg symbol bandlimited to a Jordan domain of
Lebesgue measure less than one and arbitrary geometry can be recovered through its action on a distribution
which is supported on an appropriately chosen sampling grid. As expected, an operator which can only be
assumed to have a Kohn—Nirenberg symbol bandlimited to a Jordan domain of measure larger than one cannot
be recovered by its action on any tempered distribution® (see figure on page ??). The dichotomy depending on
the size of the bandlimitation is related to Heisenberg’s uncertainty principle as described in.2

The paper is organized as follows. In Section 77 we give vocabulary from time—frequency analysis that is at
the core of our sampling theory for operators. Section ...

2. SAMPLING PRINCIPLES

Here, we briefly recall the rudimentary concept of the sampling concepts for functions and operators.

2.1 Sampling of functions

Sampling theory was developed in the 19th and early 20th century to analyze the capacity of bandlimited
telephony channels.® Nyquist and Kiipfmiiller, for instance, realized that the capacity of such wired and therefore
translation invariant channel is proportional to the product of bandwidth and signal duration.” In modern
terminology, a signal with integer bandwidth Q [Hz] has Q degrees of freedom in a time unit [s]. Consequently,
to fully determine a signal f with bandwidth €, knowledge of f(&) for all integers n suffices.

Given a normed space D(R) of real or complex valued on the real line, for example, the space of bandlimited
and square integrable functions, a fundamental task in sampling theory is to find necessary and/or sufficient
conditions on a set {z;};ez C R so that any f € D(R) can be recovered from its values on {z;}, namely, from
the sequence {f(z;)};ez. Furthermore, we generally require that the recovery process is stable with respect to
perturbation of the measurements. That is, for a normed space d(Z) of sequences, we require that there are
positive constants A, B with

Allfllp < [{f(zj)}la < Bl fllp  for all f € D(R). (1)

For brevity, we shall denote double norm inequalities such as given in (1) by the symbol =, that is, (1) will be
simply written as

[fllo = 1[{f(z)}a  forall f & D(R). (2)

If (1) is satisfied, then we call {x;} a set of sampling for D(R).

For background on sampling theory, see the overview articles®” and references therein.



Figure 1. Illustration of the operator identification problem. One seeks a function g in the domain of the operator class
Z which induces a map from Z into the range space which is bounded and bounded below.

2.2 Sampling of operators and operator identification

The goal of operator identification is to select, for given normed linear spaces D(R?) and Y (R?) of functions on
R?, and a normed linear space of bounded linear operators H C £(D(R%), Y (R?)), an element g € D(R?) which
induces a bounded and injective, or better, a map ®, : H — Y (R?), H — Hg which is bounded and bounded
below (see Figure 2.2).

Consequently, we call H identifiable by g € D(R?), if there exist A, B > 0 with
AlH|z < |[Hygly < B|H|z forall HE Z, (3)

that is
IH[lz = [Hgly. (4)

If D(RY) is a space which contains Dirac impulses 6, : f — f(x) for x € R? and if we can choose an identifier
g € D(R?) of the form g = > €0z, T € R? and ¢; € C for j € Z4, then we call {z;} a set of sampling for Z
and g a sampling function for the operator class Z.

2

3. HILBERT SPACE THEORY

For simplicity and illustration, we shall first develop put side to side the sampling theory of square integrable
functions and the corresponding sampling theory of Hilbert—Schmidt operators.

20ne could include a paragraph here describing the fact that in function sampling, the data is discrete, the object
to be identified defined on the continuum, while in operator sampling, the data might well be an object defined on the
continuum, while the operator acts on distributions. As operators can be given by the corresponding matrix (kernel), one
could picture the transition from samples of functions to functions by points going to the line, while the transition from
Hg to H as going from the the line to the plane.



3.1 Preliminaries on square integrable functions

L?(R9) denotes the space of complex valued and Lebesgue measurable functions on Euclidean space R? which
satisfy®

1

11 = ( / f(x)l”dx>2 <.

The space L?*(R?) is a Hilbert space with inner product (f,g) = [ f(z dx.

The Fourier transformation is the unitary operator
F PR — IPRY), e =7,
which is, again, densely defined by

~

fon=[ fl@)e ™ de, ~eR™
R4

For functions in L?(R2?), we shall at times employ the symplectic Fourier transformation F : L*(R??) —
L?(R??) which is, again, densely defined by

Rt = [[ | f@g e ez, et
R2d
3.2 Sampling of square integrable functions on R

We shall start our discussion with the most classical sampling result. It addresses bandlimited and square
integrable functions on the real line. In this realm, the Paley—Wiener space with bandwidth 2 > 0 is given by

PW2(Sp) = {f € L*(R) s supp [ C S = [~ %, 9]} . (5)

THEOREM 3.1. For Q,T > 0 with TQ2 < 1, we have

sm 271'( —nT) 9
=T T =T _— i .
fllz = TILF D}z and - f(w n%f e Ty Jorallf € PW(Sa) (6)
Extracting the key properties of the so-called sinc function sinc(z) = % in (9), we obtain
THEOREM 3.2. For Q,T > 0 with T) < 1, choose s € PW? (5%79) withs =1 on [, 2]3. Then
IH{FOT)} e =< [ flze and  f@) = f(nT)s(x —nT)  for all f € PW2(Sq). (7)
nez

For results on irregular sampling sets see,%® The following, for example, is well known.!?

cardinality of ({z;} N (y + [0,7])) > 1 then {z;} is a set of sampling
J

THEOREM 3.3. If {x;} satisfies liminf inf

r—oo yEcR r Q’
for PW2(Sg).
The results given above have straightforward generalizations to functions defined on higher dimensional
Euclidean space.% ™ For a bandwidth vector Q = (£21,...,8,), we can set

PW2(Sq) = {f € L*RY) : supp [ € [ %, 2] x .. x (%]} (8)

3Note that Q,7 > 0 with TQ < 1 implies 0 < Q < % < % — Omega.



Then

THEOREM 3.4 (THE CLASSICAL SAMPLING THEOREM). The set TVZ X ToZ % ... X TyZ is a set of sampling
for PW2(Q) if and only if TyQx <1 for all k =1,...,d. Moreover, we have

_ Z Z f(Th,.. T, )sin(27rT1(J:1 —ny) ' _ sin(2nTy (g — nq) ©

R S
= ’ m(z1 —ny) (g — ng)

3.3 Preliminaries on Hilbert—Schmidt operators

A Hilbert-Schmidt operator H is a bounded linear operator on L?(R?) which can be represented as an integral
operator

Hf(x)

/KH(x,t)f(t) dt
= //@H(m,x—t)f(x—t)dt (a.e.), (10)

with kernel ky € L?(R?).1%12 The linear space of Hilbert-Schmidt operators HS(L?(R?)) is endowed with the
Hilbert space structure of L?(R?) by setting

(Hy, Ha)us = (K, , KH,) L2+

The Kohn-Nirenberg symbol o of a Hilbert-Schmidt operator H is given by!3 14

ou(z,§) = /KJH(CIT,JJ —y) e WAy (a.e.). (11)

It leads to the operator representation

o~

Hf(x) = / o, ) F(€)e> de. (12)

The Kohn-Nirenberg symbol was originally defined to describe so—called pseudodifferential operators. In fact,
the simple observation that the n-th derivative operator D : f — f(™ can be expressed by

~

DO () = 1 a) = [ ((2mie) i) et de

leads to the representation

/ (Zan (2rie) )f(é)emedé (13)

for the differential operator D : f Zn 0 @n(2) ™ (2). Clearly, (13) is a special case of (12). Note that in
this section, o is a square integrable function while the symbol op(x,&) = SN @y (x)(27i€)" has polynomial
growth in &.

Convolution operators f +— f*h = [ h(y)f(z — y)dy represent time-invariant channels in communications
engineering. In communications, one therefore commonly chooses the so—called time—varying impulse response
hu(x,y) = kg (z,z —y) to represent the general case of time—varying operators H by

Hi(x) = / hat(2, ) f (= — ) dy. (14)



Additionally, in time—frequency analysis and in communications engineering, the spreading function ngy of a
Hilbert—Schmidt operator H, given by

nu(t,v) = /K&H([L',$ — e T dy (a.e.) (15)

is commonly used to represent operators. It leads to a representation of H by means of
Hf(x) = // Ny (t,v) TeM, f (x) de dt dv (16)

where the unitary time and frequency shift operators T; and M, t,v € R, on L?(R) are given by (Tt f) (z) =
f(t—x) and (M, f)(z) = e*™ f(t). Note that (15) together with (11) implies that o = Feng. *

Equation (16) illustrates that support restrictions on ny reflect limitations on the maximal time and frequency
shifts which the input signals undergo: H f is a continuous superposition of time—frequency shifted versions of f
with weighting function ng.

A comparison of (14) to a time-invariant convolution operator together with (15) shows that the condition
nu(t,) C [—5, 2] for all t € R, excludes high frequencies and therefore rapid change of k(z,z —t) as a function of

x. This illuminates the role of support constraints on spreading functions in the analysis of slowly time—varying
communications channels.

In fact, note that if an operator H satisfies suppng (-, v) C [0, a] for all v € @, then kg (x,x — t) vanishes for
x € Rand t ¢ [0,a], and for f with supp f C [0,7] we have supp Hf C [0,T+a]. Similarly, if suppng(t,-) C
[—%, %} for all ¢ € R, then for f with supp f C [—, Q] we have supp H f C [—(Q—i—%), Q—l—g]. Hence, the condition

supp i C Qap = [0,a] x [=5, 5] (17)
for some a, b > 0, reflects a limitation on the maximal time delay a and the maximal frequency spread g produced

by H. An operator which satisfies (17) for a,b > 0 is called underspread if ab < 1 and overspread if ab > 1.

Note that
Imelze = lloullzz = |hullzz = [sullz: = |H|us.

a fact which will be used to obtain norm inequalities of the form (3) for Hilbert—Schmidt operators.

The previous paragraphs emphasize the usefulness of 7y in the time—frequency analysis of operators. Ad-
ditional remarks on the use of Hilbert—Schmidt operators as model of physical time—varying linear systems, as
they appear in radar and in mobile communications can be found in.2

3.4 Sampling of Hilbert—Schmidt operators

The classical sampling theorem assumes a band—limitation on the functions that are considered. The operator
sampling theory discussed here considers in turn operators whose Kohn—Nirenberg symbol is band-limited to
some region in the time—frequency plane, that is, whose spreading function is supported on a region in the (¢, v)
plane. To avoid pathological counterexamples we shall only consider support conditions to so—called Jordan
domains which are described in detail in the appendix and in.*®®

For any Jordan domain S C R?, we refer to
OPW?(S) = {H € HS(L*(R)) : supp Fsou C S}

as operator Paley—Wiener space with bandlimitation to S.

4time and frequency shifts not defined yet

5T would leave it in the appendix as engineers do not know the concept and the appendix might convince them that
this is a technical assumption only. Maybe we should try to formulate this for open sets, but engineers would not know
what that is either.



Note that operators in OPW?(S) with S compact can be extended to act on distribution spaces containing
Dirac’s 6 as well as the so—called Shah distribution 1117 =" d,7, a fact that even though discussed in detail
only in Section ?? will be used already here.

Theorem 3.2 has now the following analogon in the theory of operator sampling.?> %2

THEOREM 3.5. For Q,T,T7' > 0 and 0 < QT" < QT < 1, choose s € PW2(S%7Q) with s =1 on [—%, %] and

r € S with suppr C [—T—i—%,T— T?/] andr =1 on [—%’,%’] Then

|H 1112 < |H|lgs and hy(t,z) =r(t) Z(HJ_A_LT)(t +kT)s(z —kT)  for all H e OPW?([-L,4]x[- T T

kEZ

The result discusses a characterization for rectangular bandlimitations on the Kohn—Nirenberg symbol. as
alluded to by Kailath. Note that in operator sampling, the necessary sampling Frequency is determined by the
width  of the set [, £]x [—%, %} Further, the height of the set is restricted by  as well, hence the area of
the set cannot be compensate by sampling at a higher rate. In fact, not only sampling is impossible if the area

is greater than one, but identification in general is impossible.”"?

THEOREM 3.6. If TQ > 1 then OPW?2([0,T] x [—%£,$]) is not identifiable.

As mentioned in the introduction, Bello though believed that restriction to rectangular domains [— %, %] x[-Z

is not needed and that the same phenomenon is present if we use domains of arbitrary shape.” 34

THEOREM 3.7. For any Jordan domain S C R x HAQ, we have

e Ifvol(S) < 1 then there exists a sampling set for OPW?2(S5).
e Ifvol(S) > 1 then OPW?(S) is not identifiable.

-

-1+ 1+

Figure 2. Spreading support regions of area less than or equal to one which characterize identifiable operator classes.

Theorem 3.5 and Theorem 3.6 generalize to higher dimensions using simple tensor product arguments. More-
over, symplectic geometry can be used to obtain?

THEOREM 3.8. Let A be a symplectic matriz and S = aA[—%, %] + (to,v0) C R?® with a > 0 and (to, vy) € R,
we have

o Ifa < 1, then there exists a sampling set for OPW?(S).
o If a>1 then OPW?2(S) is not identifiable.
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Figure 3. Multiple-Input Multiple-Output (MIMO) channels with N = 3 transmitters, M = 2 receivers

3.5 Multiple—Input Multiple-Output

Multiple transmit and receive antenna methods have been developed to obtain high capacity wireless channels
(see'® ¥ and references within). Methods which achieve high capacities often rely on the precise knowledge of
the channel at the receiver and/or the transmitter (see,'® pp 298).

In such MIMO channel setups, N signals are transmitted by N antennas simultaneously. On the receiver
side, M antennas record channel output signals that represent the superposition of the N input signals, each
individually distorted depending on the path the signal has travelled from its transmitting antenna to the
receiving antenna. Consequently, a linear MIMO channel operator can be modelled by a matrix of N-M SISO
channel operators. It maps a vector of N transmission signals to M channel output signals.

We denote by HS(L?(R))M*N the space of N-input, M-output MIMO channels whose N-M subchannels
are Hilbert-Schmidt operators on L2(R).2° The operator space HS(L?(R))M*¥ is equipped with norm®

M N ) Hy1 - Hin
1 = S5 ol H:(; | )eﬂsmmw

m=1n=1 Hai - Hunw

Hyip - Hin

Further, the spreading function ng = n(H) and the spreading support of H = ( > € HS(L?(R))M*N

. . Hpya o+ Hun
are defined componentwise, that is, we have

n(Hi1) - n(Hin) supp n(H11) -+ supp n(Hin)
n(H)= : : , supp n(H)= :

n(Hunt) - n(HmnN) supp n(Hpr1) -+ supp n(HmnN)
Our identifiability result for MIMO channels considers operator classes of the form
OPW?(S) = {H € HS(L2(R))M*Y : supp n(H) C s}, S C (RxR)M*N,

To avoid pathological counterexamples of our main result Theorem 3.9, we shall only consider Hg where S is
the cartesian products of so called Jordan domains.

61t is easy to see that HS(L*(R))V*N = HS(L?*(R)").



Figure 4. Illustration of thel MIMO channel setup.

Clearly, our restriction to Jordan domains is not relevant to applications such as those in communications
engineering. The following useful characterization of Jordan domains is well known. It is discussed in detail in.'®

THEOREM 3.9. Let S = (Spn) C (Rx@)MXN be the cartesian product of Jordan domains.

1. If Zﬁ;l U(Smn) <1 for allm € {1,..., M}, then OPW?(S) is identifiable.

2. If Z:«LV=1 w(Spmn) > 1 for some m € {1,..., M}, then OPW?(S) is not identifiable.

4. GENERAL OPERATOR PALEY-WIENER SPACES

As noted earlier, the restriction to bandlimited Hilbert—Schmidt operators is too restrictive as it excludes, for
example, the identity operator, convolution operators, and multiplication operators as we shall see below.

Let us first consider the identity operator on L?(R). Formally, we have
fo) = 1 5() = [ Fleyem= ae

and we observe that o74(z, &) = 1. Clearly, 074 ¢ L?(R?) which confirms that the identity operator is not Hilbert—
Schmidt. Similarly, let H be a convolution operator with impulse response h. Then Parseval-Plancherell implies
that

Hi(x) = / Flx — y)h(y) dy = / RO F (&) de.

Clearly oy (z,€) = lAz(ﬁ) is not square integrable as a function on R?. Similarly, the multiplication operator H
given by H f(z) = m(z) f(z) = [ m(x)f(£)e?™® d¢ satisfies o(x, ) = m(x) which does not fit into the framework
of Hilbert—Schmidt operators.

Not only are the symbol classes that are needed to describe convolution and multiplication operators not
square integrable, but they are anisotropic. That is, to recover their symbol requires us once to ignore the x
direction, while at the other time, only the x direction carries the information. To address this phenomenon, we
will resort to mixed norm, and, in fact, to so—called modulation spaces.



4.1 Preliminaries on modulation spaces

For 1 < p < oo, LP(R?%) denotes the Banach space of complex valued and Lebesgue measurable functions
which satisfy ||f|z» = [|f(z)[Pdz < 00.® As is customary, L>(R?) denotes the space of essentially bounded
functions with norm ||f||L~ = esssup|f(z)|. Analogously, a sequence ¢ = {c;}; € Z¢ belongs to IP(Z¢, if
llcllir =3 |ej|P < oo for 1 < p < oo or ||¢||ie = sup |¢;| < 0.

Here and in the following, S(RY) denotes the space of Schwartz functions on R? and S’ (R?) its dual of tempered
distributions. The usefulness of S(R) and its dual S’(R?) of tempered distributions in harmonic analysis stems
in part from the fact that the Fourier transform defines a bijective isomorphisms on S(R?) and on S’(R%)
(equipped with the weak-* topology). Also, S'(R?) contains constant functions, Dirac’s delta § : f — f(0), and
Shah distributions 111, = EnGZ Oan, Where 8, = Tre0, a > 0, which are used below.

Similarly to the Fourier transformation, the time shift operator Ty, t € R, given by Tif(z) = f(z —t)
and the modulation operator M,,, w € R, M, f(z) = €™« f(z) act as unitary operators on L?(R) and bijective
isomorphism on S(R) and S'(R). Note that M, is also called frequency shift operator since ]\m = wa. Further,
we refer to w(\) = w(t,v) = Ty M, for A = (t,v) € RxR as time—frequency shift operator.

The first ingredient in defining modulation spaces are short—time Fourier transformations. The short time
Fourier transform of a tempered distribution f € S'(R?) with respect to the Gaussian pg(z) = e~ 171", 2 € R? is
given by?! R

Vo £ (t,v) = (£, TiMypo),  (t,v) € RIxRY,

where here and in the following the dual pairing (-,-) is considered to be linear in the first component and
antilinear in the second component. Note that in some cases, we shall use different window functions than .
Regardless which nontrivial Schwartz function we choose, the modulation spaces defined below are identical with
equivalent norms.?2

The second ingredient in defining modulation spaces are mixed LP spaces which we shall describe now.

Namely, for a measurable function f on R? and p = (p1,...,p4), 1 < p1,...,pa < 00, we set
1
pa/p1 ps /D2 Pa/pa—1 /Pa
| fllzr = / ((/ f(xl,...,xd)|p1dm1) dm2> coodxgg dzxq ,
R R
with the customary adjustments if some py = co.
21,23

Modulation spaces are defined for p = (p1,...,pq) and ¢ = (q1,-..,94), 1 < pr, qr < 00, by setting
MPI={feSRY: V, feLli}.

Any modulation space M?¢ is a Banach space with norm || f| arr.a = ||V, f|lLra. Note that we do not use the
following convention of writing MP? = MPP if p = g, since this notation somewhat conflicts with PW? which is
defined below and for which PWP C MP-4 for all ¢ > 1. Further, we shall always separate decay condition in the
time variable from decay conditions on the Fourier side by a comma. To illustrate the ordering of the indices in
the modulation spaces MP¢ for d > 1 and p # ¢, we state exemplary that f € M?2345 if and only if

/(/ </(/|Vgaof(t1,tz,1/1,V2)chtl)gcltz)gdyl)idy2 < 0.

Clearly f ® g € MPP2:4192 if and only if f € MP1% and g € MP29, Further, in this case ||f @ g||aprirz.a102 =
[PAIFYERRER ] [FYECRES
Let us also note that M1 is the Feichtinger algebra, often denoted by Sy, and M is its dual S}.

In addition to the modulation spaces given above, we shall consider the weighted modulation spaces

MPI={feSRY: V,fmse LM},



where mg(z, &) = (1 +€2)2 for s € R. Note that the spaces M22 are also known as Bessel potential spaces.

In the following, we shall concentrate on Paley—Wiener modulation spaces, that is, we set for 1 < p < oo
PWsP(Q) = {f e ME=(RY) : supp [ C [[[-%, %] } C MPU(RY) for all ¢ > 1.
Note that for f € PWP(Q2), we have || f| arp.a < || f||aze.r for 1 < p,q < r, and we define || - || pw» = || -, ||azw1.”

4.2 Sampling in Modulation spaces

Possibly include Classical sampling theorem in an LP or MP? format. Not sure.

4.3 Operator Paley—Wiener spaces

To formulate a sampling theory for operators, we first observe a well known correspondence between a large class
of linear operators ... can be written as integral operator with distributional kernel.

THEOREM 4.1. For any bounded and linear operator H : S(RY) — S'(RY) ewists kg inS'(R%?) with (H f, g) =
(k. f@g).

Clearly, Theorem 4.1 shows that a large class of bounded and linear operators can be represented by

In the theory of pseudodifferential operators, one commonly describes operators using their so—called Kohn—
Nirenberg symbol which is given by. In fact, we have

Equation (16) implies that for given functions f, g € L?(R%),

/// 0 (8, V)T My g(a) f () dt dv da
- //"Ht”/f VT, M, g(z) de dt dv

= (Vs f) (18)

(Hg, f)

where V, f(t,v) = (f,T;M,g), t € R¢ and v € R? is the short-time Fourier transform (STFT) of f with respect
to the window function g. It is clear then that the STEFT is a natural tool to study the connection between the
properties of the operator H and its spreading function ng. If ||g|| 2re) = 1 then the STFT is an isometric

isomorphism of L?(R%) onto a closed subspace of Lz(Rdx]ﬁ‘i). In this case the function f can be recovered by

_ //ng(t,u) T, Myg(z) dt dv

whenever the integral makes sense.

e Here we should just state which operator classes act on which modulation spaces. Not much detail, nothing
new .

THEOREM 4.2. Sampling theorem with rectangle but general p, q, weight s.
THEOREM 4.3. OPW®(Q) is identifiable if Sq < 1, not identifiable if Sq > 1

Note that if s < —n, n € N, then the operators corresponding to PW°°(S) include linear differential

operators >, _, ak(x)aa—; with bounded aj and {0} x |J, supp@, C S, and any pseudodifferential operators K
of order m for which ok satisfies supp g C 5.%4

"This should be right.



5. APPENDIX: JORDAN DOMAINS AND JORDAN CONTENT

The stated goal of this paper is to extend the proof of Kailath’s conjecture which is proved for rectangles and
parallelograms in? to “essentially arbitrary” regions. In this section we describe more precisely what is meant
by “essentially arbitrary” from a mathematical point of view. Taking into account the requirements of the proof
of Theorem ?7, we are led naturally to the notion of Jordan content and Jordan domains. The definition we use
for convenience differs from but is equivalent to those found in most textbooks, for example, see.?

DEFINITION 5.1. For K,L € N set R, = [0, &] x [0, %] and

J
U1 = U (RK,L+(%,ijK)) : kj,pj €Z,J €N
j=1

Let M C RxR be bounded and let 1 be the Lebesgue measure on RxR. The inner content of M is defined as

vol = (M) =
sup{p(U) : UCM and Ul 1, for some K,LEN} (19)

and the outer content of M is given by

vol T (M) =
inf{u(U) : UDM and UeUk ;, for some K,LEN}. (20)

Clearly, we have vol =~ (M) < vol ™ (M) and if vol (M) = vol T (M), then we say that M is a Jordan domain
with Jordan content vol (M) = vol = (M) = vol T (M).

In the following proposition we collect some relevant facts on Jordan content (see for example,®).

PROPOSITION 5.2. Let M C RxR.

1. If M is a Jordan domain, then M is Lebesque measurable with p(M) = vol (M).

2. If M is Lebesgue measurable and bounded and its boundary OM is a Lebesgue zero set, that is, u(OM) =0,
then M is a Jordan domain.

3. If M is open, then vol ~ (M) = u(M) and if M is compact, then vol T (M) = pu(M).

4. If P C N is unbounded, then replacing the quantifier “for some L € N” with “for some L € P” in (19) and
in (20) leads to equivalent definitions of inner and outer Jordan content.
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