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ABSTRACT

The goal of channel measurement or operator identification is to obtain complete knowledge of a
channel operator by observing the image of a finite number of input signals. We shall show that if
the spreading support of the operator (that is, the support of the symplectic Fourier transform of the
Kohn—Nirenberg symbol of the operator) has area less than one then the operator is identifiable.
If the spreading support is larger than one, then the operator is not identifiable. The shape of
the support region is essentially arbitrary thereby proving a conjecture of Bello. The input signal
considered is a weighted delta train where the weights are the window function of a finite Gabor

system whose elements satisfy a certain robust completeness property.
Keywords: Underspread operators, spreading function, Kohn—Nirenberg symbol, Channel identi-
fication, Gabor analysis

AMS subject: 47G02, 81502 .

1. INTRODUCTION

The measurement of incompletely known linear channel operators based on the observation of a

single input and the corresponding output signal is a traditional goal in communications engineering.

Starting in the late 1950s, Thomas Kailath analyzed the question whether an unknown time—
varying channel operator H with a known restriction on time and frequency spread can be measured
by applying the operator to a single known input signal f, i.e., whether the operator H can be
identified by analyzing the single channel output H f [Kai59, Kai62]. Kailath considered operators
formally given by

/ /UHtVTth()dth z € R,
b
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where T} is a time-shift by t, i.e., T, f(x) = f(x —t), t € R, and M, is the frequency shift or
modulation given by M, f(7) = f(y —v), v € R, ie, M, f(z) = 2™ f(z), where f(v) =
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[ f(x)e ™ dx, v € R = R. The function ny is called spreading function of H, a denotes the

mazimal time—delay and g is the maximal doppler spread of H.

Kailath published his results in the landmark paper Time—Variant Communication Channels,
IEEE Transactions of Information Theory, in 1963 [Kai63]. There, he postulated that members

in a collection of communication channels which are characterized by having common maximum
b
29

(t,v) ¢ R=1[0,a] x [-2,2], would be identifiable by a single input signal if and only if the area of

delay a and common maximum Doppler spread 2, i.e., all H considered do satisfy ng(¢,v) = 0 for
the rectangle R satisfies Sp = ab < 1. To show the necessity of this so—called underspread condition,
Kailath provided ingenious arguments based on the comparison of the degrees of freedom of the
operator, and degrees of freedom of the output signal. To count these degrees of freedom, Kailath

used the theoretical construct of a bandlimited input signal with finite duration.

Being aware of the mathematical shortcomings of his approach, and understanding the contem-
porary and groundbreaking work of Slepian, Landau, and Pollak on “the dimensions of the space
of essentially time- and bandlimited functions” [SP61, LP61, LP62], Kailath conjectured that the
underspread condition ab < 1 is necessary in general: “Recent work by Landau and Shannon has
shown that the concept of approximately 27TW degrees of freedom holds even in such cases. This
leads us to believe that our proof of the necessity of the BL < 1 [a = L,b = B] condition is
not merely a consequence of the special properties of strictly band-limited functions. It would be
valuable to find an alternative method of proof” [Kai62]. Kailath’s assertion has been proven in

general only recently [KP05].

In 1969, Philip Bello published the paper Measurement of Random Time—Variant Linear Chan-
nels, IEEE Transactions of Information Theory, in which he postulates that the rectangular support

condition vol (R) = Sg = ab < 1 is too restrictive [Bel69]. Bello considers operators given by
N = [ e T s ey, o e®
A

where A is an essentially arbitrary bounded region in the time—frequency plane RxR and postulates:
“Unfortunately the criterion Sg < 1 [of Kailath] has been uncritically accepted subsequently as the
channel measurability criterion for random time—varying linear channels, without paying sufficiently
careful attention to the conditions under which it was derived. In this paper we shall show that
the criterion Sk < 1 is not the proper channel measurability criterion, and we shall propose a new
criterion, S4 < 1 [Sa denotes the area of A|, where the parameter S, is called the area spread
factor of the channel.” In other words, Bello claimed that one could replace the rectangle spanned

by maximum delay a and maximum Doppler spread % by any bounded region A of time—frequency
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shifts. The corresponding operator class would be identifiable if the area of the region is smaller
than one and not identifiable if it is larger than one. Clearly, Kailath’s assertions can be seen as a

special case of Bello’s result, namely, when A is a rectangle.

Figure 1. Spreading support regions of area less than or equal to one which characterize identifiable

operator classes.

Similar to Kailath’s approach, Bello discretizes the measurement setup in order to apply dimen-
sion counting arguments. In fact, he assumes that “the input to a channel is confined by a time
gate to the time interval 0 < t < T and the output spectrum is confined by a bandpass filter to
the frequency interval —%W <t < %W.” Hence, Bello measures operators of the form Hyr =
Qw o H o Pp where Ppf(x) = f(x) 1o () is a time-limiting operator, Cjw\f(u) = f(u) 1[_%%] (v)
is a frequency—limiting operator, and the spreading function ng of H is supported on A. The spread-
ing function 7, . of Hy,r is therefore not compactly supported and in particular not restricted to
A. For his class of operators, Bello was able to prove necessity of S, < 1 for identifiability, and to
reduce the sufficiency condition of S4 < 1 to linear algebra, i.e., to the invertibility of a matrix of a
finite number of time and frequency shifts of a prototype vector. Bello gave heuristic arguments for
the existence of a prototype vector which guarantees the invertibility of this matrix. His assertion
has been proven only recently [LPWO05]. It is worth noting that the same prototype vectors play a

crucial role in this paper.

Using an approach similar to Bello’s together with more novel techniques from Gabor analysis
we shall give a complete proof of both of Bello’s assertions. Our approach does not require a time—
gate for the input signal and a frequency—gate for the output signal. In fact, letting vol ~(M) and
vol (M) denote the inner and outer Jordan content of M, respectively, (see (9) and (10)), we prove

the following theorem:

THEOREM 1.1. Hyy is identifiable if volt(M) < 1, and not identifiable if vol ~(M) > 1.



Here, H,; denotes a class of Hilbert—Schmidt operators with the property that their time—
frequency spread is contained in the set M, i.e., those operators H with ny(t,v) =0 for (t,v) ¢ M.

The operator classes discussed in this paper are relevant not only to communications engineering.
In fact, the work of Kailath and Bello was greatly influenced by the work of Green and Price on
radar measurements [Gre68|[Sko80][VT71]. See [KP05] for remarks on radar and other applications.

A comparison of our result to Heisenberg’s uncertainty principle is described in [KP05], in
particular, we would like to point to connections with minimal rectangles in phase space as described
in [FS97].

The mathematical framework used in this paper is described in Section 2. In Section 3, we
shall prove that if the set A satisfies vol "(A) < 1 then the corresponding operator class allows
identification, and in Section 4, we shall prove that if vol ~(A) > 1, then the corresponding operator
class does not allow identification. Note that if vol *(A) = vol “(A) = vol (A) then A is Jordan

measurable and vol (A) = S, equals the Lebesgue measure of A. (see Section 2.6).

2. PRELIMINARIES

In Section 2.1 we shall discuss the principles of channel measurement and operator identification.
We shall describe our choice of domain space X and target space Y in Section 2.2 and the operator
spaces Hjs in Section 2.3. In Section 2.4 and Section 2.5, we shall present techniques from Gabor
analysis that are used in this paper. In Section 2.6 we shall discuss Jordan domains and the
inner and outer Jordan content of sets in euclidean space. These concepts will be used to describe

spreading supports and their sizes.

Throughout this paper we are using the notation of [Gro01] and [KP05].

2.1. Channel measurements

The goal of operator (or channel) identification (or measurement) is to select, for given normed
linear spaces X and Y and a normed linear space of bounded linear operators H C L(X,Y), an
element f € X which induces a bounded and injective, or better, a bounded and stable linear map
O :H — Y, H— Hf (see Figure 2). An operator is stable if it is invertible and the inverse
operator is bounded. Consequently, we call H identifiable by f € X, if there exist A, B > 0 with

AllH|w <[Hflly < B H|lx (1)

for all H € ‘H. Note that the fact that we only consider bounded linear operators H C L(X,Y)
together with || H|zxy) < [[H||» guarantees that for any f € X, ®; is bounded. Hence B in
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Figure 2. Identification of an operator class H by a vector f € X(R).

(1) always exists. Establishing identifiability is therefore equivalent to finding f so that for some
positive A we have A ||H ||y < ||Hf||y for all H € H.

2.2. The Feichtinger Algebra

The identification problem considered in this paper requires the use of tempered distributions such
as Dirac’s delta § : f — f(0) and Shah distributions (also called comb—functions or delta trains)
1, = ZnEZd Oan, wWhere 0,, = T,,,0 and a > 0, as identifiers. Hence, we have to choose a domain
space X (R) which includes some tempered distributions and, therefore, we have to deviate from a
standard L?(R)! setup. 2

Our choice for X (R) is the dual Sj(R) of Feichtinger’s Banach algebra Sy(R) which has been

introduced in [Fei81] and which has developed into a major tool in Gabor analysis.

The Feichtinger algebra So(R?) is defined as follows. Let A(R?) be the space of Fourier transforms

of functions in L' (R%)3, with norm || f]| 4 = || f||z1, I*(Z%) the space of absolutely summable sequences

1L2(R) is the Hilbert space of complex valued, square-integrable functions, i.e., f € L?(R) provided that ||f||3 =

fR |f(2)]? dx < cc.
2A possible choice for X(R) would be the space of all tempered distributions S’(R%), which is the dual of the

Fréchet space of Schwartz functions S(R?) and which is equipped with the weak—* topology. Certainly, we would
rather choose a Banach space as domain X (R), since this would give us the convenience of expressing continuity
(boundedness) and openess (stability) of linear operators by means of norm inequalities.

The results in this paper are consequences of the structure of the identification problem at hand, and not of
topological subtleties. Our choice to work with the Banach spaces Sp(R?) and S}(R9) as opposed to the Fréchet

space of of Schwartz functions S(R?) C Sp(R?) was made for convenience only.
3LY(R) is the Banach space of complex valued, integrable functions, i.e., f € L'(R) provided that || f|; =

fR|f(m)|dx < 00.



[Kat76] and suppose that ¢ € A(R?) has compact support and satsifies Y., ;. T,% = 1. Then
f € So(R?) provided that Y, a || f - Ta||a < co. Moreover, for each such ¢ € A(R?),

s = D I - Tutblla

nezZd

defines an equivalent norm on Sp(R?). Intuitively, f € Sy(R?) if and only if f is locally in A(R?) with
global decay of I'~type. Sp(R?) is therefore the same as the Wiener amalgam space W (A(R9), I*(Z?))
(see e.g., [Gro01]).

An equivalent characterization of Sy(R?) is the following.
So(R%)= {feLz(Rd) s Vo f (tv) = /f(x) e gy (x —t)dw € Ll(Rdx]@d)}

where V,, f is the short time Fourier transform of f with respect to the gaussian window go(z) =

ez ¢ e RY. In fact, 1£1l = Vg f (-, ')HLl(RdXﬂA{d) is an equivalent norm on Sy(R%).

We shall now mention some important properties of So(IR?). First of all, we have the inclusions
S(RY) C Sp(RY) c L*(R?) and S'(RY) D S)H(RY) D L*(RY), where S(R?) denotes the space of
Schwartz functions and S'(R?) its dual, i.e., the space of tempered distributions. The Fourier
transform, and the modulation (M,, v € I@d) and translation (7}, t € R?) operators, are isometric
isomorphisms on Sy(R?) and hence on its dual Sj(R?). Moreover, the Feichtinger algebra Sp(R¢)
can be continuously embedded in any Banach space which has these properties and which contains
at least one, and therefore all, non-trivial Schwartz function [FZ98]. The usefulness of Sp(R?)
stems from the fact that it is in this sense the smallest Banach space allowing for meaningful
time—frequency analysis and as a consequence, this property extends to its correspondingly large
dual Banach space Sj(R?). Finally Sp(R?) is a Banach algebra under convolution and pointwise

multiplication.

The dual space Sj(R?) of the Feichtinger algebra satisfies Sj(RY) = W (A'(R?),[>(Z%))[FG85].
Hence, S)(RY) contains Dirac’s delta § and Shah distributions.

2.3. Hilbert—Schmidt operators with bandlimited symbols

A Hilbert-Schmidt operator H is a bounded linear operator on L?*(R?) which can be represented as

an integral operator

Hf(:c)://iH(x,t)f(t)dt:/HH(x,x—t)f(x—t)dt (a.c.), @)



with kernel ki € L*(R??) [Die70, Gaa73]. The linear space of Hilbert—Schmidt operators HS(L*(R?))
is endowed with the Hilbert space structure of L?*(R??) by setting

<H17 H2>HS = <K/H17 KJH2>L2'

The spreading function ngy of a Hilbert—Schmidt operator H is given by
nu(t,v) = /FJH(SL’,LU —t)e ™ dx  (a.e.) (3)
and leads to a representation of H as an operator valued integral by means of

H = //nH(t, v) TyM, dt dv . (4)

Note that throughout this paper, operator valued integrals are interpreted weakly, i.e., if H(z) is
an operator valued function on R? then the action of [ H(z)dz on f € L*(R), is defined by

2(md
</H(z)dzf, g>L2(Rd) = /(H(z)f, 9)r2raydz  for all g € L7(RY).
The Kohn—Nirenberg symbol oy of a Hilbert-Schmidt operator H is given by

op(x,§&) = /FJH(SL’,I—y) e Ay (a.e.)

[KN65, Fol89]. Note that

lonllee = lnalle = lwmllee = [ H|las.

As previously mentioned, our results require the use of Shah distributions as identifiers (see
Section 2.2). Not all Hilbert-Schmidt operators in £(L?(R?), L*(R%)) can be extended to act on a
space of distributions containing the Shah distribution, hence, we shall narrow the class of operators
considered to those which satisfy a regularity condition on their kernels. Since 111, € Sj(R), it is

natural to choose
H={H € HS(L*(RY)) : ry € So(R*)},

since then H C L(S}(R), So(R)) C L(SH(R), L*(R)) [FZ98].

Identifiability will be shown for operator classes with compactly supported spreading function,

i.e., we consider operator classes of the form

Hy ={H eH: suppny C M}, M CRIxR?



Since oy is the symplectic Fourier transform of ny, i.e.,

og(z,§) = //nH(t, V)e?™ @) dt dy (a.e.),

each Hilbert—Schmidt operator considered here has therefore a bandlimited Kohn-Nirenberg symbol.

Note that Hyy C Hay if M C M’, and that the linear spaces H and Hyy, M C R4xRY, are not

closed as linear subspaces of the space of Hilbert—Schmidt operators.

Equation (4) illustrates that support restrictions on ny reflect limitations on the maximal time
and frequency shifts which the input signals undergo: H f is a continuous superposition of time—

frequency shifted versions of f with weighting function ng.

Further, note that if an operator H satisfies ny(-,v) C [0,a] for all v € R, then ry(z,z — t)
vanishes for x € R and ¢ ¢ [0,a], and for f with supp f C [0,7] we have supp Hf C [0,T+a].
Similarly, if ng(t,-) C [—2,2] for all ¢ € R, then for f with supp f C [—Q, Q] we have suppﬁ? -
[—(Q242),Q+2]. Hence, the condition

supp i € Qup = [0,a]” x [-L, 8¢ (5)

for some a,b > 0, reflects a limitation on the maximal time delay a and the maximal frequency
spread g produced by H. An operator which satisfies (5) for a,b > 0 is called underspread if ab <1

and overspread if ab > 1.

A comparison of (2) to a time-invariant convolution operator K given by K f(z) = [ sk (t)f(z—
t) dt — whose kernel sk is independent of the time variable x — together with (3) shows that the
condition ng(t,) C [—g, g] for all t € R, excludes high frequencies and therefore rapid change of
k(x,z —t) as a function of xz. This further illuminates the role of underspread and overspread

operators in the analysis of slowly time—varying communications channels.

The previous paragraphs emphasize the usefulness of 7y in the time—frequency analysis of op-
erators. Additional remarks on the use of Hilbert—Schmidt operators as model of physical time—
varying linear systems, as they appear in radar and in mobile communications can be found in

[FL96, Yoo02, KP05] .

2.4. Gabor analysis on L?(RY)

One of the fundamental questions in Gabor theory is to show when a function f € L?(R?) can be
stably recovered from its Gabor coefficients {(f, MiwTiag}reze (here a, b > 0 and g € L*(RY) are

fixed) or whether any f can be approximated by finite linear combinations of elements of the Gabor
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system (g, a,b) = {MiT1ag}, 1cz0 [Gabd6, Gro01]. Specifically, we ask whether the system (g, a, )
is a frame for L?(R?), that is, whether there exist A, B > 0 such that

AllfIl72 <D MuwTag)| < B||f|l72 for all f e L*(RY). (6)

If (6) holds then every f € L?(R%) has a stable representation
F=Y) A MwTay) MiwTiag = > > (f; MiwTiay) MisTiag in L*(R?) (7)
kool kool

where v € L*(RY) and (v, a,b) is called a dual frame of (g,a,b). A frame is tight if A = B and is
exact if it ceases to be a frame upon the removal of a single element. A frame which is not exact is

also called overcomplete.

For each Gabor system (g, a,b) define the analysis map C, on L*(R?) by

Cg(f) = {<.fa MkbﬂaQ) }m,nEZd

and the synthesis map D, on lo(Z*®) (the space of finite sequences on Z>?) by

Dy({crit) = Z Crl MipTiag.

kel
Then the following holds.
THEOREM 2.1. If (g,a,b) is a frame for L*(R?) then
(a) Cy: LA(RY) — 12(Z*%) is well-defined, bounded, stable and has closed range.

(b) D,: 1%(Z*') — L*(RY) is bounded and is an isomorphism when restricted to Range(C,).

(¢) The operator Dy o Cy: L*(R?) — L*(R?), called the frame operator is a linear isomorphism
of L*(R?) and v = (D, o C,)~'g satisfies (7).

Some of the fundamental results in Gabor frame theory related to quantity ab and in particular

to the critical value ab = 1. Below the critical value the following holds.

THEOREM 2.2. If (g,a,b) is a frame for L*(R?), then the following are equivalent

(a) ab < 1.

(b) (g,a,b) is overcomplete in L*(R).



(c) C,: LA(RY) — 1%(Z*%) is not surjective.

(d) D,: 1*(Z*%) — L*(RY) is not injective, that is there is a nontrivial sequence {cx;} € I*(Z*?)
such that Z ckiMipTiag = 0.

n,m

For example, we have that for any a, b with ab < 1 (go,a,b) where go : R — Rt x+— e ™ ig

the Gaussian, is a frame [Lyu92, SW92, Sei92].

At the critical value ab = 1, if (g,a,b) is a frame then it must be an exact frame. A Riesz
basis is the image of an orthonormal basis under a linear isomorphism and the class of exact frames
is identical to the class of Riesz bases for L?(R?). A direct characterization of Riesz bases is the
following. A collection {f,} is a Riesz basis for L*(R?) if there exist constants A, B > 0 such that
for all finite sequences (c,),

2 2
Azn:|cn| g‘ 2§anz|cn|. (8)

2
L

> entn

Clearly an orthonormal basis is also a Riesz basis and in fact the Gabor system <a_%1[07a), a, %) is

an orthonormal basis for L?(R?) (here 14(z) denotes the characteristic function of the set A).
In terms of the analysis and synthesis operators, the following holds.
THEOREM 2.3. If (g,a,b) is a frame for L?>(R?) and ab = 1 then the following are equivalent.
(a) ab=1.
(b) (g,a,b) is a Riesz basis for L*(R).
(c) Cy is an isomorphism of L*(R) onto 1*(Z?).

(d) D, is an isomorphism of 1*(Z*) onto L*(R).

Above the critical value, that is, when ab > 1, (g,a,b) is not complete in L?(R?) for any

g € L*(R?). In other words, the analysis map C, is not injective. However, the following holds.

THEOREM 2.4. If (g,1/b,1/a) is a frame for L*(R?), then the following are equivalent.

(a) ab> 1.

(b) (g,a,b) is a Riesz basis for its closed linear span in L*(R).
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(c) The synthesis map D, is is well-defined, bounded, stable and has closed range in L*(R?).

(d) There exist A, B > 0 such that for every finite sequence {cy}yieza € lo(Z*?)
Al{eratle < Z Crt MipTiag

< B|{ck}ie-
k,lczd 2

L
In particular, if go is the Gaussian, then for every a, b with ab > 1 the system (g, a, b) is a Riesz
basis for its closed linear span in L*(R%?).

More details on time—frequency analysis with some relevance to this paper can be found in
[Gro01].
Operator—theoretic applications of Gabor theory as presented in this paper have drawn increasing

interest in applied harmonic analysis, see, for example, [Dau88, HRT97, FK98, K0z98, RT98, Lab01,
FN03, CG03, Hei03, GLMO04].

2.5. Gabor analysis on C*

Discrete Gabor systems on finite dimensional spaces can be defined in a natural way and properties

of such systems will be used in Section 3. Let L € N be fixed and let w = e~2"/L. The translation

operator T is the unitary operator on C* given by Tw = T'(xq, ..., x11) = (¥ 1, To, T1, - .., TL_2),
and the modulation operator M is the unitary operator given by Mx = M(xo,...,r1) =
(WOmg, wlzy, ... ,wr tep ). Given a vector ¢ € CL the full Gabor system with window c is the

collection {M'T* ¢}/ L.

Full Gabor systems as defined above have many nice properties. In particular any such system

is a uniform tight frame for C* with frame bound

L—-1
L) el
n=0

That is, all vectors in the system have the same norm and for any = € C¥,

L-1L-1 L—1
S MR = (Lz 3 |cn|2) .

1=0 k=0 n=0
The class of uniform, tight finite frames is important in communication and coding theory (see e.g.,

[GKKO1, LPW05)).

The property of full Gabor systems of interest in this paper is the following. We say that a
family F of vectors in C with |F| > L has the Haar property (cf. [Che98]) if any subset F' C F
with |F'| = L is linearly independent. The following theorem was recently proved in [LPWO05].
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THEOREM 2.5. If L is prime then there is a dense open set E in C* of full measure (i.e., |C*\ E| =
0) such that for every c € E, the Gabor system {Mlch}f,;:lo has the Haar property.

A restatement of Theorem 2.5 in slightly different language is useful for the calculation in
Section 3 below. The discrete L x L Fourier matriz Wy, is defined by Wy = (wP)): 1 Let

p,q=0"
c=(co, c1, ..., cp_1) € CF be given and for k =0, 1, ..., L — 1, let Dj, be the diagonal matrix
Ck
Ck+1
Dk g - Cr,—1
co
Ck—1
Define the L x L? full Gabor system matriz A by
A:(DQ'WL|D1'WL| |DL_1'WL)E (A0|A1| |AL_1).
In fact,
A = (i),

where the subscript of ¢ is taken modulo L. It is clear that the columns of A are the vectors

{M'T*c} /2. In this notation, Theorem 2.5 can be stated as

PROPOSITION 2.6. If L is prime then there is a dense open set E in C* of full measure such that
for every ¢ € E, every minor of order L of A (that is, the determinant of every L x L submatriz of

A) is nonzero.

2.6. Jordan domains and Jordan content

In [KPO5] it was shown that if M C RxR is a parallelogram, then H,, = {H € H : suppny C M}
is identifiable if and only if the area of M is less than or equal to one. In order to extend this result
to essentially arbitrary regions, we need to establish some technical restrictions on the regions
considered. We choose a definition of Jordan content and Jordan domains which differs from but is

equivalent to those found in most textbooks, e.g., see [Fol99].

DEFINITION 2.7. For K,L € N set Ry 1 = [0, +] x [0, %] and

J
Uk, = {U (RK,L + (%2, nJLK)> : mj,n; €L, J € N} )

J=1

Let M C RxR be bounded and let i be the Lebesgue measure on RxR. The inner content of M
1s defined as

vol “(M) =sup{u(U) : U C M and U € Uk, for some K,L € N} 9)

12



and the outer content of M is given by

vol "(M) = inf{u(U) : U D M and U € Uk, for some K, L € N}. (10)

Clearly, we have vol = (M) < vol*(M) and if vol ~(M) = vol ™ (M), then we say that M is a
Jordan domain with Jordan content vol (M) = vol = (M) = vol 7 (M).

In the following proposition we collect some relevant facts on Jordan content.

PROPOSITION 2.8. Let M C RxR

1. If M is a Jordan domain, then M is Lebesque measurable with (M) = vol (M).

2. If M is Lebesque measurable and bounded and its boundary OM is a Lebesgue zero set, i.e.,

w(OM) =0, then M is a Jordan domain.
3. If M is open, then vol ~ (M) = u(M) and if M is compact, then vol ™ (M) = u(M).

4. If P C N is unbounded, then replacing the quantifier “for some L € N” with “for some L € P”

in (9) and in (10) leads to equivalent definitions of inner and outer Jordan content.

It should be noted that not all Lebesgue measurable sets are Jordan domains. For example
let M be a Cantor set of positive Lebesgue measure in RxR. In this case vol ~ (M) = 0 whereas
vol T (M) = u(M) > 0. Such pathologies lead to cases in which classes of operators whose spreading
functions have arbitrarily large support (in the sense of Lebesgue measure) are still identifiable. For
example, for n € N choose M, to be a Cantor set with u(M,) = n. Since M, is nowhere dense
and all operators in H have continuous spreading symbol, we have H,;, = {0}, which is clearly

identifiable regardless of n. However, such an example is clearly not physically realistic.

3. SUFFICIENCY OF VOL(M) <1 FOR THE IDENTIFIABILITY OF Hy,
In this section, we shall prove the following theorem.
THEOREM 3.1. The class Hyy is identifiable if vol T (M) < 1.

The case that M is a rectangle, i.e., M = [ay, as]x[b1, bs] for some as > a; > 0 and by > by > 0,
has been considered by Kailath [Kai59, Kai62]. If vol*(M) = (az — a1)(bs — b1) < 1, then 111,
identifies Hy; whenever as —a; < a < (by —by) ™!, since H 111, records samples of ry(-,- —t) at least

at the critical sampling rate (by — bl)_l, while a > ay — a; guarantees that no aliasing of samples
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Figure 3. Identification of H,; for M = [%, g] x[0,1] € Uy 5. A. Spreading support set M, vol M =
% < 1. B. Support of kernel kg of H € Hj;. The function kg is bandlimited along the diagonals,
i.e., supp “H('\— t) = suppny(-,t) C [2, %] for all ¢ € [0,1]. Here, fo2(z) = kp(z,z — (1 —0.2)),
x € R. C. Channel output H 111 5 which contains all sampling values of kg needed to reconstruct

kg and therefore H. Sampling values of fyo are singled out.
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takes place. See Figure 3 for details. The situation for M not being contained in a rectangle of

volume at most one is more complicated (see Figure 4).

We divide the proof of Theorem 3.1 into four parts. In Section 3.1 we slightly simplify our
setup. For fixed M, we construct in Section 3.2 a distribution f € S{(R) which will be used for

identification later in the proof. This f induces a linear map
O Hy — Lz(R), H— Hf

whose injectiveness is shown in Section 3.3. In Section 3.4 we shall see that that ®; is indeed

bounded and stable, implying, finally, that H,; is identifiable by f.

3.1. Assume M C [0, 1] x [0, c0)

As the first step in the proof, we assume without loss of generality that if (¢,v) € M then ¢ € [0, 1]
and v > 0. To see why this can be done, suppose that for some a, b > 0, M C [0,a] X [—%, g] and
H € H,,. Define H € H via

ki(z,y) = ary(az, ay) eriabe,

Then it is easy to see that
ﬁf[(t, V) = /Hf[(l’, T — t) 6727”'1/:5 dx
- /CLHH(CLI', a(x _ t)) eﬂiabl‘ 6—27ri1/m dr

v b
= /mH(z,x —at)e a2 g
)

ISEN

N |

= nu(at,

and that if suppny C [0,a] x [—3, 2] then suppnz C [0,1] x [0, ab).

3.2. Construction of the identifier f

The identifying distribution will have the form
f= Xk: kO (11)

for some K € N and some ¢ = (cg, ¢y, ..., cp—1) € CE, where indices of ¢ in the sum are taken
modulo L. The goal is to choose K, L, and ¢ so that the aliasing in Figure 4.C can be controlled in
such a way that kg and therefore H can be recovered from H f. Below we will determine appropriate

parameters K, L, and ¢ needed to define f.

15



utjoo

(S

Figure 4. Identification of H,, for M € U,5 not being a rectangle. A. Spreading support set
M, vol M = 1. B. Support of kernel kg of H € Hj;. The bandlimitation of ky(+,- — t) along the
diagonals depends on ¢. C. The channel output H ), ¢ k is the sum over all functions displayed
here, leading to aliasing of samples in the channel output H ), ¢x6 ks Samples of fyo contributing

to the weighted sum are marked.
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Assume that vol T(M) < 1. With P denoting the set of prime numbers, Proposition 2.8(4) says
that we can choose K, L € N with L prime so that (i) M C [0,1] x [0, K], (i) L > K, and (i)
M C Uy with Uy € UK,L and vol (UM) <1,i.e.,

J-1

Uy = U <RK7L+(%,TLJLK)>, mj,njEZ,JEN,

=0

where Ry = [0,+] x [0, %] and where (m;,n;) # (mj,ny) if j # j'. Note further that 1 >
vol (Upr) = Jvol (Rk) = % implies J < L. Since Hyy D Hay if M D M, the identifiability of H,
implies the identifiability of Hy; D Hyr, and, by adding some additional cells to M if necessary, we

can assume in what follows that J = L.

For any ¢ = (cg, ¢y, ..., cp—1) € CL let A(c) denote the L x KL matrix
A(C) = [A() Al cee AK—I]
where the L x L matrices A, are defined by (2.5) and have the form

Ay = (cprn wqp)ﬁ,;io

—2mi/L

where w = e and where the subscripts on ¢ are taken modulo L. Note that since K < L, the

matrix A is a submatrix of the full Gabor system matrix A. In light of Proposition 2.6 there exists
c € CF so that every L x L submatrix of A is invertible. Since A is a submatrix of A, the same is

true of every L x L submatrix of A.

Choose such a ¢ and define f as in (11).

3.3. Determining H € Hj; from H(f).

The operator H € H,, is completely determined by its kernel kg. Therefore it is sufficient to show

that kg can be recovered from H(f).

For t € [0, +] and 0 < k < K define the function

kit z) = k(1 —t — £+, 2).
By our assumptions on kg, ki (t, -) is bandlimited to [0, K| for each t and k. The Fourier transform
of ki(t,x) in the second variable is

) k
27rw(1—t—?)

¢ nH(l_t_%7V)Enk<t7V)

17



so that ny and subsequently ky is completely determined by (¢, v + ’%) for (t,v) € Rk, 0 <

k< Kand 0<p< L.
With f asin (11),

(Hf)(]?) = <H(‘7;7 )7zck5%<>> = ch IiH(J?, %)

k

As previously mentioned, in this sum and subsequently, all subscripts of ¢ are taken modulo L. For

t €0, %] let z,(t) = (1 —t) + . By our assumptions on ry, (H f)(x,(t)) reduces to a finite sum

and we can write

Sn<t)

(H f)(xn())

Letting n = mL + p with m € Z and 0 < p < L, we write s?,(t) = Syr+p(t). Then

K-1

K-1

Slr)n(t) = Z CmL+p+k Rk (t, m?L + ]%k) = Z Cptk Kk (t) HT]C + mTL) ]

k=0

k=0

For each 0 < p < L form the Fourier series

Gp(t,v)

18
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where we have applied the Poisson Summation Formula on the last line. Assuming that v € [0, £]
and since nx(t, ) is supported in the interval [0, K|, it follows that the above sum over ¢ is finite

and therefore for each 0 < p < L we have

K-

,_.
~

-1

o i (v + 55) 672m<pltk> <V+%>,
k=0 ¢

Il
o

Manipulating this expression, we arrive at the streamlined system

K-

,_.
h
,_.

Cpt 2’”W/L77 (t v+ 4 ) (14)
k=0 gq

Il
o

where G, (t,v) = G,(t,v) e2™P/K and 7, (t,v) = ni(t,v) e 2*/K In other words, we can derive a

system of L equations in K L unknowns for the functions
{m (v +9):0< k<K, 0<qg<L,(tv) €[04 x[0,f]}, (15)

in which the coefficients in the equation do not depend on (t,v). It is clear that the matrix for this

system is A, and that the set of functions in (15) completely determine k.

Finally, note that since M C Uy, and for (t,v) € Rk, we have 7 (t,u + %) = 0 unless
(k,q) = (mj,n;) for some 0 < j < J — 1. Therefore (14) has no more than L nonzero terms in the
double sum on the right hand side, and (14) reduces to a system of L equations in L unknowns.
The matrix for this reduced system is simply a choice of L columns of the matrix A, specifically

the 5% column of this matrix is the nz-h column of the L x L matrix A,,,. Call this matrix A;.
Define the CF—valued functions n(t, v)
and G(t,v) on Ry 1, by
n(t,v) = (nm ( ,

and =
G(t,v) = (ép(t, V)) -

The system (14) can therefore be written
Ayn(tv)=G(tv), (t,v)e RgL. (16)

Since A, is invertible, we can recover m pointwise from G which depends only on the channel

output H f. From n we can recover ng and hence the kernel kg (z,z —t) of H.
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3.4. Boundedness and stability
Here we show that (1) holds.

LEMMA 3.2. With f given in Section 3.2, H € Hys, and i and H as in (16),

@) 1o = | 102 ded
Rk.L
2 2 9
(b) [1HI3, = HKHHLQ(RQ)—// It )12 do dt.
Rk.L
Proof. (a) Using the definition of s, in (12) and the definition of s£, in (13), we have
1 = [ 1O d
= [ imra-opa
- ntl
K
= Z/n |Hf(1—1t)?dt
n YK
1
K
= > [Fisa - ppa
n 0
1
K
= X [F s er a
! 1
K
= 3 [

1L1

S A I EACIRL

pOm

= / Z/ (L v)|? dt dv

= // Z|G (t,v)|* dt dv
RKLp 0

= // Z\G (t,v)|* dtdv
RK.L p—0

= // | H(¢, V)H(%L dt dv.
Rk,L
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(b) Similarly,

/ / |k (2, )| da dy

1 ]
/ / kg (z, 2 —t)]*do dt
0 —00

1 e
// kg (1 —t+ 2, 2)* dedt
0 —00
_ 1 -
K
//|/£H(1—t—|—$,x)|2d:17dt
0 —o00

R
/ / |kx(t, 2)|* do dt
0 —o00

L
K
L

=

o

=
— O

o

=
= o

0

K
/ / |77k(75,u)|2 dv dt
0 0

-1 L K

% [T
/ / Im(t, v+ ¢5)|* dvdt
0 0

B
Il
o

/ () do
K

=

B
Il
o

=

ol
[en]

q=0

=
—_
h
—_

i (t, v + ¢5))? dv dt

Il
o

q

=
~
&~
Ll

T, (8, + 0, 5 o

h
L

= = =
I

In(t, v)llee dvdt

=

™~
<.

i
o

since 1 (t, v + ¢%) = 0 unless (k, q) = (m;, n;).

O

It is now clear that (1) holds by observing that by construction the matrix A,; of (16) is

invertible and independent of (¢,v) € Rg 1. Hence, for (t,v) € R 1, we have

1
AT In(t, v)llee < [HE )2 < [Axl® 0t v)lz:
M
where || - || is the Frobenius norm of a matrix, that is, the operator norm of the matrix considered

as an operator on [*(Z). Integrating this inequality over Ry ; and applying Lemma 3.2 we obtain

which is (1).

1
1ALl

[ 12 < IH (Pl 2@y < [ Anl[1H =
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vﬁbf i ggo@foE
L*(R) :
0 2

Figure 5. Strategy for the proof that H,, is not identifiable if vol ~(M) > 1. We shall show that
for all f € S{(R), the bounded operator C, o ®; o E is not stable. The stability of the synthesis
operator E and the analysis operator Cy, together with the lack of stability of Cy o ® o F, shows
that ®; is not stable.

4. NECESSITY OF VOL(M) <1 FOR THE IDENTIFIABILITY OF Hy,
The goal of this section is to prove the following theorem.
THEOREM 4.1. The class Hy is not identifiable if vol ~ (M) > 1.

Given a bounded and measurable subset M with vol ~(M) > 1 we show that for every f € S{(R),
the operator

(I)f s Hy — LQ(R), H— Hf
is not stable, that is, that inequality (1) fails to hold.

As before, we assume without loss of generality that for some K, L € N, there is a U € Uk f,
such that U € M and vol ~(U) > 1. It will be sufficient to show that Hy is not identifiable since
Hy € Hu

We shall equip lo(Z?), the space of sequences on Z? with only finitely many non-zero terms,
with the />norm and construct a bounded and stable synthesis map D : lo(Z*) — Hy, and a
bounded and stable (g,a’,b')-analysis operator C, : L*(R) — [*(Z?) with the property that the
composition

Cyo®p0D: \(Z*) — 1*(Z*), f € SyR)

is not stable. Since D and C, are stable, we have that all operators ®; : Hy — L*(R), f € S{(R),
are not stable. Hence, there is no f that identifies Hy and identification of H,, is impossible (see

Figure 5).
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We begin with a well known fact concerning the composition of Hilbert—Schmidt operators with

time—frequency shifts.

LEMMA 4.2. Let P € 'H with spreading function np € SO(RXI@) Forp,r e R andw, & € ]@, define
P=M, wlp—w PT.M¢_,, € HS. Then np = 62“”’5M » Tipeynp and PeH.

Proof. Note that for any f, g € Sp(R) and P € 'H we have
r.a) = [l ety sty do
= [ nett) [ 9@ TNEF ) d drv = (e, Vi)

where Vig(t,v) = (9, LM, f), t e R and v € R. The interchange of order of integration is justified
since f,g,n are in the Feichtinger algebra.

Hence, for f,g € So(R) and s,7 € R and w,p € R we have

(MJT,PTLM,f,g) = (PT.M,f,T_M_.g) = (np, Vr,m,fT-sM_.9g),

and
Vi, T-sMowg(t,v) = (T-sM g, T,M,T. M, f) = (9, M,TT, M, T, M, f)
_ - 2miw(s+t) (9, Tayt My, T M, f)
— e 2mi(w(stt)+(wtv)r) (9 TirrvsMyyprof)
= e mwls ) oWV o (t 4 (r - 8), v+ (p 4 w)).
We have

<MwTsPTrMpf7 g) - <77P7 672ﬂiw(s+r)M—(w,r)T—(r+s,p+w)Vfg>

<627riw(s+r)T(r+s’w+p) M(w,r)an Vfg> = <77R7 Vfg>,

where R is given by

_ 2miw(s+r) T

R = € (r+s,w+p)M(w,r)77P = eZWiT(p+w)M

(w,r) T(r+s,w+p) np.

The choice s = p —r and p = ¢ — w concludes the proof. 0

LEMMA 4.3. Fiz A > 1 with 1 < A < ¢ and choose 11,15 € S(R) with values in [0, 1] and

1 fort e [25L, AL L forv e [Bg%, U]
mt) = and  na(v) =
0 fOT’t¢ [O,?] 0 fO’f’l/¢ [07%]
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The operator P € Hg,. , defined by np = n1 @ o has the following properties.

a) The operator family

{MAKk: T%m—%l P T%l M%n—AKk }

k,,m,neZ

is a Riesz basis for its closed linear span in HS(R).

b) The operator P € Hg,. , is a time-frequency localization operator in the following sense: There
exist functions dy,dy : R — RS, which decay rapidly at infinity, i.e., dy,ds = O(z™™) for all n € N,
and which have the property that for all f € Sy(R) we have |Pf(x)| < [|f]ls; di(x), € R and
PFE]< 1 flsy da(€), € €R.

Proof. a) Lemma 4.2 implies that

{M/\Kk T%m_%l P T%z M%anKk}

k,lm,ncZ

is a Riesz basis for its closed linear span in HS(R) if and only if

{M(AK’“%Z) T(%m’%”) nP}k,l,m,neZ
is a Riesz basis for its closed linear span in LQ(RXI@).

We observe that
H Z O'k,l,m,nM()\Kk7)\7Ll) T(%m,%n) 77PH%2(R2)

klm,neZ
= Z | Z Okl m,n M(AKk,%l) T(%m%n) WPH%Q

m,nel klEL

= Z | Z Ok,l,m,n M(/\Kk,%l) npl|7a

mn€eZ k€L

where we have used the translation invariance of the L? norm and the fact that the support of np

is contained in Ry ;. With Ry, = [A=L Ay (A-DE DK

IAK ' 20K 2AL 2AL
S okimn My gex ey mellze = DD okrmn Mg ety Lry ey = 52z [{omtmn iz
mmel  klez mmel  klez

since by definition np is bounded below by 1 R:, and bounded above by the characteristic function

of finitely many translates of Ry ;.
b) See [KP05], Lemma 3.4. O

Lemma 4.4 generalizes the fact that m x n matrices with m < n have a non—trivial kernel and,

therefore, are not stable as operators acting on C". In fact, the bi-infinite matrices M = (my ;)7 jez2
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considered in Lemma 4.4 are not dominated by their diagonals m;; — which would correspond to
square matrices — but by skew diagonals m; »;, with A > 1, i.e., mj ; is small if || A\j’ — j|| is large.
The lemma is proven in [KPO05]. The validity of Lemma 4.4, and therefore of Theorem 4.1 does
not depend on the choice of (reasonable) topologies on domain and range. In fact, a more general

version of Lemma 4.4 can be found in [Pfa05].

LEMMA 4.4. Given M = (mj ;) : 1*(Z*) — [*(Z?*). If there exists a monotonically decreasing
function w : Ry — R with w = O (z727%), § > 0, and constants X\ > 1 and K, > 0 with
imjr | < w(|N" = Flleo) for |Nj" = jlleo > Ko, then M is not stable, that is, for every e > 0 there is
a o € 1*(Z?) with ||o]|2@z2) = 1 such that || Mo ||z@z2) < €.

Now all pieces are in place to prove Theorem 4.1.

Proof of Theorem 4.1. Choose A, 1y, 12, P, di, and dy as in Lemma 4.3.

Define the synthesis operator E : [((Z?) — Hy as follows. For o = {o},} € [*(Z*) write
Okp = Okig4; for L € Z and 0 < 5 < J and define

J-1

E(o) = E E Ok,lJ+j MAKkT%mj—&-%lPT—%l M%nj—xme
kleZ j=0

Since
(Moo T PTyp Mt}
is a Riesz basis for its closed linear span in HS(R), the subset
(M0 Ty o P M i}y
is a Riesz basis for its closed linear span in Hy € HS(R). We conclude that E is bounded and
stable.

To construct a stable (g, d’,b")-analysis operator Cy, we choose as Gabor atom the Gaussian
go: R — R, 2~ e ™ The Gabor system (go,a’,V') = {MioTiygo} is a frame for any o', 6" > 0
with o't/ < 1, and, hence, we conclude that the analysis map given by

Cyo : L*(R) — 1X(Z%), [+ {<f7 MAQKkT%lgo>}kl

is bounded and stable since \2K ’};—5 = X‘% < 1.

For simplicity of notation, set « = K and § = KLJ Fix f € Sj(R) and consider the composition

b(z?) 2 Hy 212 12(2?)

o = Eo — Eof — {(Eof, MyawTrpsrgo)},.

Cgp
—

7l/ :
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Since

J—1

<C’go od;oF {Uk,lJ—l-j})k,’l, = <; Zoo'k,lJ—i-j Mook Trs 515 P Tonors M%_Mk [ MyearThoprgo)
p=

( Miak Tﬂ—&-)\ﬁlj PT s M%_Mk I Myzaw Th2prgo >0k,zJ+j

M 1 KT+ OkJ+j s

J-1
ki =0
J—1
k,l j5=0
we see that he operator Cy, o ® o E is represented — with respect to the canonical basis {0(- —n)},
of [?(Z?) — by the bi-infinite matrix
M = <mk’,l’,k,lj+j> = << Mok Tm] g P T-xsus M%,Mkf, Myzop T2y 90)) :

We shall now use Lemma 4.4 to show that M, and, therefore, Cy, o @y o E is not stable.
Lemma 4.3, part b, together with the rapidly decaying function

will provide us with the necessary bounds on the matrix entries of M. In fact, for k,[,k',I' € Z

and 0 < j < J, we have
[ g 4i] = ’(M,\ak ij g P T M%_Aak I M>\2ak’T)\2ﬂl’go>‘

( Togr+5) (Tﬂ_w- ‘PTfABlJ MQ_A i ‘ ), Tozgrgo)

||fHS’ <T/\5 lJ+g)Tm )\Bjd17 TA?ﬁl/QO)

IN

IN

1£1ls, (Thssids » Theargo)
1£Ilsy (di % go) ABON = (1] + ),

IN

and
My kg5 = ’<T>\akM ™5\l (PT-xps M%_Mkf)/\7 Trearw M_x25190 )

{Than | (P T-xp1s M%_Mkf)A‘ , Th2arr 9o )
< |fllsy (d2* go)(Aa(AK" — k).

IN

where we have used the Parseval-Plancherel identity and the fact that go > 0, go = g¢o, and
go(—x) = go(x). Since dy, do, and gy decay rapidly, so do dy *go and da*go i.e., di*go, do*go = O(z™)
for all n € N. We set

w(x) = ”f“Sé max {c?l * go(ABx), dy * go(=ABx), dy * go(Aax), do * go(—)\ozx)}.
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and obtain [my p k| < w(max{|Ak’ — k|, |\’ = 1|}) with w = O (z™) for n € N. Lemma 4.4
implies that M is not stable, and, by construction, we can conclude that Cy, o ®¢ o E and thus ®;
is not stable. m
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