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Note on B-splines, wavelet scaling functions, and
Gabor frames
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Abstract—Let g be a continuous, compactly supported
function on R such that the integer translates of g consti-
tute a partition of unity. We show that the Gabor system
(g, a, b), with window g and time-shift and frequency-shift
parameters a, b > 0 has no lower frame bound larger than 0
if b = 2, 3, . . . and a > 0. In particular, (g, a, b) is not a Ga-
bor frame if g is a continuous, compactly supported wavelet
scaling function and if b = 2, 3, . . . and a > 0. We exemplify
our result for the case that g = B1, the triangle function
supported by [−1, 1], by showing pictures of the canonical
dual corresponding to (g, a, b) when ab = 1/4 and b crosses
the lines N = 2, 3, . . . .

Keywords—B–splines, Gabor frame, partition of unity,
Ron–Shen condition, wavelet scaling function.

I. Introduction

LET a > 0, b > 0 and g ∈ L2(R). We call the function
system

(

gna,mb

)

n,m∈Z
≡ (g, a, b) (1)

a Gabor frame if there are A > 0, B < ∞ such that for all
f ∈ L2(R)

A‖f‖2 ≤
∑

n,m

∣

∣

〈

f, gna,mb

〉∣

∣

2
≤ B‖f‖2 . (2)

Here gx,y denotes for x, y ∈ R the time-frequency shifted
function

gx,y(t) = e2πiytg(t − x), t ∈ R . (3)

The numbers A and B that appear in (2) are called lower
and upper frame bound respectively. It is well-known that
(g, a, b) can be a Gabor frame only if ab ≤ 1; also, if ab = 1
and (g, a, b) is a Gabor frame, then g cannot be continuous
and compactly supported. We refer for basic information
about (Gabor) frames to [1, Sections 3.4, 3.5, 4.1, 4.2]; a
comprehensive and recent treatment of Gabor systems and
frames can be found in [2, Chapters 5-9, 11-13]. We shall
use here the following criterion, due to Ron and Shen [3], for
being a Gabor frame, see [2, p. 117, Proposition 6.3.4]; for
convenience we restrict ourselves to continuous, compactly
supported windows g. The system (g, a, b) is a Gabor frame
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with frame bounds A > 0, B < ∞ if and only if for all
c ∈ l2(Z) and all t ∈ R

A‖c‖2 ≤
1

b

∞
∑

n=−∞

∣

∣

∣

∞
∑

k=−∞

g(t−na−k/b)ck

∣

∣

∣

2

≤ B‖c‖2 . (4)

For g ∈ L2(R) we denote by Fg the set

Fg =
{

(a, b) | a > 0, b > 0, (g, a, b) is a Gabor frame
}

. (5)

It is often quite hard to determine the set Fg for a given
window g ∈ L2(R). In certain cases, for instance when one
has restrictions on the supporting set of g, the Ron-Shen
criterion can be of great help in telling whether (a, b) be-
longs to Fg. In [4, Section 3] a considerable effort has been
made to determine Fg for the case that g = B0 = χ[0,1);

the result is a complicated subset of
{

(a, b) | a > 0, b >

0, ab ≤ 1
}

where (ir)rationality of ab plays a key role. Fur-
thermore, only in a few cases of well-behaved windows g it
has been shown that Fg =

{

(a, b) | a > 0, b > 0, ab < 1
}

;
among these g are the Gaussians [5, 6], hyperbolic secants
[7] and two sided exponentials [8, Section 5].

In this correspondence we ask the question whether for
certain standard windows g from approximation theory and
wavelet theory the set Fg consists of all (a, b) with a > 0,
b > 0 and ab < 1 as well. Unlike the example g = B0 given
above, the windows of this type are smooth and well de-
caying, which implies that the sets Fg are open sets [9]. We
shall show in Section II that for any continuous, compactly
supported g satisfying the partition-of-unity identity

∞
∑

k=−∞

g(t − k) = 1 , t ∈ R, (6)

no lower frame bound A > 0 for the Gabor system (g, a, b)
exists when a > 0 and b = 2, 3, . . .. Condition (6) can be
shown to hold for large classes of windows, in particular
it is satisfied for some commonly used windows in signal
processing, such as the raised cosine

RC(t) =

{

(1 + cosπt)/2, when |t| ≤ 1,

0, otherwise,
(7)

and the trapezoidal function, for 0 < δ < 1/2 defined as

T(t) =











1, |t| ≤ 1/2 − δ,

(2δ)−1(1/2 + δ − |t|),
∣

∣|t| − 1/2
∣

∣ < δ,

0, otherwise.

(8)
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Further, condition (6) on g is satisfied when g is a com-
pactly supported, continuous scaling function from the the-
ory of wavelets [1, Remark 5 on pp. 144–145 and Note 9 on
p. 165], or when g is a B-spline with knots at the integers
[10]. Hence, in these cases the set Fg consists apparently
of countably many open sets, separated from one another
by the horizontal lines b = N = 2, 3, . . ..

This result came as a big surprise to us, because it is gen-
erally assumed that any “nice” window g and “reasonable”
choice of a, b > 0 yield Gabor frames. Our observation
demonstrates that even for window functions that are per-
fectly natural in approximation theory and wavelet theory,
a and b have to be chosen extremely carefully.

In Section III we consider the linear B-spline or triangle
function g(t) = B1(t) = max(0, 1 − |t|) as an example. We
show pictures of the canonical dual function corresponding
to the Gabor system (g, a, b) with ab = 1/4 and b close to
2 and 3. It is conjectured that Fg consists of all (a, b) with
0 < a < 2, b > 0, ab < 1 and b 6= 2, 3, . . .. The pictures in
Section III support this conjecture.

II. Proof of the main result

We assume that g is continuous and compactly supported
(below we comment on weakening those conditions), and
that g satisfies (6). Also, we let a > 0 and b = 2, 3, . . .. We
shall show that the Gabor system (g, a, b) has no positive
lower frame bound (the Ron-Shen criterion (4) implies that
(g, a, b) has a finite upper frame bound). To that end we
shall display cK ∈ l2(Z), K = 1, 2, . . ., such that for all
t ∈ R

1

‖cK‖2

∞
∑

n=−∞

∣

∣

∣

∞
∑

k=−∞

g(t−na−k/N) cK
k

∣

∣

∣

2

→ 0, K → ∞ .

(9)
Let b = N = 2, 3, . . . and set

ck = e2πikr/N , k ∈ Z, (10)

where r = 1, . . . , N − 1. Then for all t ∈ R, n ∈ Z, we have

∞
∑

k=−∞

g(t − na − k/N) ck

=
N−1
∑

k=0

∞
∑

l=−∞

g
(

t − na − k
N − l

)

e2πir( k

N
+l)

=
N−1
∑

k=0

e2πikr/N = 0 .

(11)

For K = 1, 2, . . . we define the sequence cK ∈ l2(Z) by

cK
k =

{

ck , |k| ≤ K ,

0 , |k| > K ,
k ∈ Z , (12)

and the subsets of indices

Vk =
{

l ∈ Z | g(t − na − k
N − l) 6= 0

}

,

Wk =
{

l ∈ Z | cK
k+lN 6= 0

}

.
(13)

Then the equality
∑

k g(t−na− k
N ) cK

k = 0 holds for all
t ∈ R, n ∈ Z whenever either

Vk ⊂ Wk , k = 0, . . . , N − 1 , (14)

or
Vk ∩ Wk = ∅ , k = 0, . . . , N − 1 . (15)

Conversely, for t ∈ R, n ∈ Z both (14) and (15) fail to be
true if and only if Wk \ Vk 6= ∅, i.e., if there are j1, j2 ∈ Z

such that

g(t− na− j1
N ) 6= 0 6= g(t− na− j2

N ), cK
j1 = 0 6= cK

j2 . (16)

Let |I| be the length of a supporting interval I of g. Then
the number of n ∈ Z such that both (14) and (15) fail to
hold is at most 2(|I|/a + 1) for any t ∈ R . Hence

∞
∑

n=−∞

∣

∣

∣

∞
∑

k=−∞

g(t − na − k/N)cK
k

∣

∣

∣

2

≤ 2(|I|/a + 1)

∞
∑

k=−∞

|g(t − na − k/N)|2

≤ 2(|I|/a + 1)(MN(|I| + 1))2

(17)

where M is an upper bound for |g|. Since (17) is indepen-
dent of K and since ‖cK‖ = (2K + 1)1/2, we obtain (9) for
any t ∈ R .

Remark. The property (11) with ck given in (10) can be
phrased as (Zg)(s, r/N) = 0 for s ∈ R, r = 1, . . . , N − 1.
Here

(Zg)(s, ν) = N−1/2
∞
∑

k=−∞

g
(s − k

N

)

e2πikν , s, ν ∈ R ,

(18)
is a Zak transform of g, see [11, Section 1.5]. Using Gabor
frame operator theory in the Zak transform domain, one
can get the main result under considerably weaker condi-
tions on g than the ones made above.

III. Example

In this section we consider the choice

g(t) = B1(t) = max(0, 1 − |t|) , t ∈ R, (19)

and we display the canonical dual γa,b = S−1
a,b g, see [2, Sec-

tion 7.6] for the role of the canonical dual in Gabor analysis,
for some values of a > 0, b > 0, with ab = 1/4 and b near 2
or 3 (Fig. 1). Here Sa,b is the frame operator correspond-
ing to (g, a, b), which is invertible when (g, a, b) is a frame.
One easily sees from the Ron-Shen criterion in (4) or [2,
Thm. 6.4.1] that (g, a, b) is a frame when a < 2 ≤ 1/b.
For the other cases that are shown in the figure, we have
only numerical evidence that the lower frame bound A for
(g, a, b) is positive. The dual windows were approximated
by considering sampled Gabor systems for l2(Z) and their
dual systems, see [12] for details, with sample rates taken
so high that further increasing them produced no visible
changes in the figure anymore. As we see, the γa,b so ob-
tained turns from a well-behaved function for the values
b = 1.5, 2.5 into a quite irregularly behaved one when b
approaches 2 or 3.
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Fig. 1. The canonical Gabor dual γa,b = S−1

a,b
g of the triangle func-

tion g = B1, see (19), for ab = 1/4, b = 1.5, 1.8, 2.2, 2.5, 2.8, 3.2, 3.5,
3.8.


