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ABSTRACT

Classical and recent results on uncertainty principles for functions on finite Abelian groups relate the
cardinality of the support of a function to the cardinality of the support of its Fourier transforms.
We obtain corresponding results relating the support sizes of functions and their short–time Fourier
transforms. We use our findings to construct a class of equal norm tight Gabor frames that are max-
imally robust to erasures. Also, we discuss consequences of our findings to the theory of recovering
and storing signals with sparse time–frequency representations.

1. INTRODUCTION

Uncertainty principles establish restrictions on how well localized the Fourier transform of a well
localized function can be and vice versa [DS89, Grö03, FS97]. In the case of a function defined on
a finite Abelian group, localization is generally expressed through the cardinality of the support of
the function. Due to its relevance for compressed sensing and, in particular, for the recovery of lossy
signals under the assumption of restricted spectral content [CRT06], the uncertainty principle for
functions on finite Abelian groups has recently drawn renewed interest.

In this realm, a classical result on uncertainty states that the product of the number of nonzero
entries in a vector representing a nontrivial function on an Abelian group and the number of nonzero
entries in its Fourier transform is not smaller than the order of the group [DS89, MÖP04]. This
result can be improved for any nontrivial Abelian group [Mes06]. For example, for groups of prime
order, the sum of the number of nonzero entries in a vector and the number of nonzero entries in its
Fourier transform exceeds the order of the group [Tao05].

The objective of this paper is to establish corresponding results for joint time–frequency repre-
sentations, that is, to obtain restrictions on the minimal cardinality of the support of joint time–
frequency representations of functions defined on finite Abelian groups. For example, let us consider
the simplest time–frequency representation of a function, namely the one that is given by the tensor
product of a function and its Fourier transform. In this case, the classical uncertainty principle for
nontrivial functions on finite Abelian groups states that the cardinality of the support of this tensor
is at least the order of the group.

In this paper though our focus lies on time–frequency representations given by short–time Fourier
transforms. It is easy to see that, again, the cardinality of the support of any short–time Fourier
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transform of a nontrivial function defined on a finite Abelian group is bounded below by the order of
the group. As seen below, we can improve this bound by using the subgroup structure of the groups
and/or by allowing only well-chosen window functions. For example, we establish in Theorem 4.4
that for any group of prime order and for almost every window function on the group, the sum
of the cardinality of the support of the analyzed function and the cardinality of the support of its
short–time Fourier transform exceeds the square of the order of the group.

In addition to the above, we give applications of our results to the theory of so-called Gabor
frames and the theory of sparse signal recovery. For instance, the results on the cardinality of the
support of short–time Fourier transforms can be translated into criteria for the recovery of encoded
signals from a channel with erasures.

The paper is organized as follows. In Section 2 we give a brief but self-contained account of the
Fourier transformation and of the short–time Fourier transformation for functions defined on finite
Abelian groups. Section 3 reviews uncertainty principles that relate the cardinality of the support
of functions with the cardinality of the support of their Fourier transforms. In addition, we provide
numerical evidence on the achieved support set pairs for the Fourier transformation on groups of
order less than or equal to 16.

Section 4 is devoted to uncertainty inherent in the short–time Fourier transformation. There,
a discussion of general results is followed by results for functions defined on cyclic groups of prime
order. Results on other finite Abelian groups are given. These are based on the subgroup structure
of the underlying group as were recent improvements to the classical uncertainty result for Fourier
transforms obtained in [Mes06]. We conclude our discussion of the cardinality of the support set
of short–time Fourier transforms with a question on the possible cardinalities of the support of
short–time Fourier transforms with respect to a optimally chosen window functions. Our results are
complemented by numerical experiments.

In Section 5 we give applications of the results of Section 4 to communications engineering. In
Section 5.1 we discuss the identification/measurement problem for time–varying operators/channels.
Also, we consider channel coding for the transmission of information through channels with erasures.
In addition, we show the existence of equal norm tight frames of Gabor type. In Section 5.2 we
briefly discuss connections of our work to the recovery of signals which have a sparse representation
in a given dictionary.

2. BACKGROUND AND NOTATION

For any finite set A we set CA = {f : A −→ C}. For |A| = |B| = n, CA ∼= CB ∼= Cn as vector
spaces, where |A| denotes the cardinality of the set A. For M ∈ Cm×n and A ⊆ {0, 1, . . . , n−1}
and B ⊆ {0, 1, . . . ,m−1}, we let MA,B denote the |B|×|A|–submatrix of M with columns and
rows enumerated from the index sets B and A. For f ∈ CA, we use the now customary notation
‖f‖0 = |supp f | where supp f = {a ∈ A : f(a) 6= 0}. Clearly, ‖ · ‖0 is not a norm.

Throughout this paper, G denotes a finite Abelian group. The dual group of characters Ĝ of G is
the set of homomorphisms ξ ∈ CG which map G into the multiplicative group S1 = {z ∈ C : |z| = 1}
[Ben97, Kat76, Ter99]. The set Ĝ is an Abelian group under pointwise multiplication and, as is

customary, we shall write this commutative group operation additively. Note that G ∼= Ĝ as groups

2



and Pontryagin duality implies that
̂̂
G can be canonically identified withG, a fact which is emphasized

by writing 〈ξ, x〉 for ξ(x).

The Fourier transform Ff = f̂ ∈ C bG of f ∈ CG is given by f̂(ξ) =
∑

x∈G f(x) 〈ξ, x〉, ξ ∈ Ĝ . The

inversion formula for the Fourier transformation is f(x) = 1
|G|
∑

ξ∈ bG f̂(ξ) 〈ξ, x〉, x ∈ G. It implies that

‖f‖2
2 = 1

|G|
∑

ξ∈ bG |f̂(ξ)|2 = 1
|G|‖f̂‖

2
2, where ‖f‖2 := (

∑
x∈G |f(x)|2) 1

2 . Further, this fact together with

‖ξ‖2 = |G| 12 for all ξ ∈ Ĝ implies that the normalized characters |G|− 1
2 ξ, ξ ∈ Ĝ form an orthonormal

basis for CG, and
∑

x〈ξ, x〉 = 0 if ξ 6= 0 and
∑

ξ〈ξ, x〉 = 0 if x 6= 0.

For n ∈ N and ω = e2πi/n, the discrete Fourier matrix WZn of the cyclic group Zn is de-

fined by WZn = (ωrs)n−1
r,s=0. Identifying CZn with Cn, we have f̂ = WZn f . An arbitrary finite

Abelian group G can be represented as a direct product of cyclic groups Zd1×Zd2× . . .×Zdm where

d1, . . . , dm can be chosen to be powers of prime numbers. A character in the dual group Ĝ is
then given by 〈(ξ1, ξ2, . . . , ξm), (x1, x2, . . . , xm)〉 = 〈ξ1, x1〉〈ξ2, x2〉 . . . 〈ξm, xm〉 , where (ξ1, ξ2, . . . , ξm) ∈
Ẑd1×Ẑd2× . . .×Ẑdm

∼= Ĝ. The discrete Fourier matrix WG for G = Zd1×Zd2× . . .×Zdm is the Kro-
necker product of the Fourier matrices for the groups Zd1 ,Zd2 , . . . ,Zdm , that is, WG = Wd1 ⊗Wd2 ⊗
. . .⊗Wdm . For example, we have

WZ4 =

( 1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

)
and WZ2×Z2 =

( 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

)
.

Note that for appropriately chosen bijections S1 : {0, 1, . . . , |G|−1} −→ G and S2 : {0, 1, . . . , |G|−1}
−→ Ĝ we have f̂ ◦ S2 = WG(f ◦ S1) for f ∈ CG.

The translation operator Tx, x ∈ G, is the unitary operator on CG given by Txf(y) = f(y−x),
y ∈ G. Similarly, the modulation operator Mξ, ξ ∈ Ĝ, is the unitary operator defined by Mξf = f ·ξ,
where here and in the following f ·g denotes the pointwise product of f, g ∈ CG. We have M̂ξf = Tξf̂ .

We refer to the unitary operators π(λ) = Mξ ◦ Tx for λ = (x, ξ) ∈ G×Ĝ as time–frequency shift
operators.

The short–time Fourier transformation Vg : CG −→ CG× bG with respect to the window g ∈ CG\{0}
is given by [FK98, FKL07, Grö01, Grö03]

Vgf(x, ξ) = 〈f, π(x, ξ)g〉 =
∑
y∈G

f(y)g(y−x)〈ξ, y〉, f ∈ CG, (x, ξ) ∈ G×Ĝ.

The inversion formula for the short–time Fourier transform is

f(y) = 1
|G| ‖g‖22

∑
(x,ξ)∈G× bG

Vgf(x, ξ) g(y−x)〈ξ, y〉 , y ∈ G, (1)

that is, f can be composed of time–frequency shifted copies of any given g ∈ CG\{0}. Further,
‖Vgf‖2 =

√
|G| ‖f‖2‖g‖2. The so-called Gabor system {π(x, ξ)g}(x,ξ)∈G× bG is clearly not an or-

thonormal basis if |G| > 1 since it consists of |G|2 vectors in a |G| dimensional space.

For g ∈ CG and x ∈ G, we define the |G|×|G|–diagonal matrix

Dx,g =

 g(S1(0) + x) 0
g(S1(1) + x)

. . .
0 g(S1(|G|−1) + x)

 .
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Then, the |G|×|G|2–full Gabor system matrix with respect to g is given by

AG,g = (DS1(0),gWG |DS1(1),gWG | · · · |DS1(|G|−1),gWG)∗, (2)

where M∗ denotes the adjoint of the matrix M . For example, for G = Z4, and g = (1, 2, 3, 4)T ,

AZ4,(1,2,3,4)T :=

( 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 2i −2 −2i 3 3i −3 −3i 4 4i −4 −4i 1 i −1 −i
3 −3 3 −3 4 −4 4 −4 1 −1 1 −1 2 −2 2 −2
4 −4i −4 4i 1 −i −1 i 2 −2i −2 2i 3 −3i −3 3i

)∗

.

Similarly, for the group G = Z2
2 we have

AZ2
2,(1,2,3,4)T :=

( 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 −2 2 −2 1 −1 1 −1 4 −4 4 −4 3 −3 3 −3
3 3 −3 −3 4 4 −4 −4 1 1 −1 −1 2 2 −2 −2
4 −4 −4 4 3 −3 −3 3 2 −2 −2 2 1 −1 −1 1

)∗

. (3)

Using the enumeration S : {0, 1, . . . , |G|2−1} −→ G×Ĝ that is given by the lexicographic order

induced by S1 and S2 described above on G×Ĝ, we have Vgf ◦ S = AG,gf . Therefore, we shall refer
to AG,g as short–time Fourier transform matrix with respect to the window g. Clearly, the rows of
AG,g represent the vectors in the Gabor system {π(λ)g}λ∈G× bG, and formula (1) implies that A∗

G,gAG,g

is a multiple of the identity matrix.

3. UNCERTAINTY PRINCIPLES FOR THE FOURIER TRANSFORM ON FINITE
ABELIAN GROUPS

The following uncertainty theorem for functions defined on finite Abelian groups is the natural
starting point for our discussion [DS89].

Theorem 3.1. Let f ∈ CG\{0}, then ‖f‖0 · ‖f̂‖0 ≥ |G|.
A complementary result characterizes those f for which the bound in Theorem 3.1 is sharp

[DS89, Smi90, MÖP04]. Namely, if k divides |G|, then there exists f ∈ CG with ‖f‖0 = k and

‖f̂‖0 = |G|
k

. Further, if ‖f‖0‖f̂‖0 = |G| and supp f contains the identity element, then supp f is a
subgroup of G. A generalization of Theorem 3.1 to non Abelian groups is given in [Mes92] and those
f achieving the respective lower bounds are described in [Kan07].

Theorem 3.1 implies the weaker inequality ‖f‖0 + ‖f̂‖0 ≥ 2
√
|G| for f ∈ CG \ {0}. If G is a

cyclic group of prime order, then this inequality and also Theorem 3.1 can be improved significantly
[Fre04, Tao05].

Theorem 3.2. Let G = Zp with p prime. Then ‖f‖0 + ‖f̂‖0 ≥ |G|+ 1 holds for all f ∈ CG\{0}.
As illustrated in [Tao05], Theorem 3.2 follows from combining Chebotarev’s theorem on roots of

unity which states that every minor of the Fourier transform matrix WZp , p prime, is nonzero [EI76,
SL96, Tao05, Fre04], with

Proposition 3.3. Let M ∈ Cm×n. Then ‖f‖0 + ‖Mf‖0 ≥ m+1 for all f ∈ Cn if and only if every
minor of M is nonzero. Moreover, if every minor of M ∈ Cm×n is nonzero and k, l are given with
k + l ≥ m+1, then there exists f ∈ Cn with ‖f‖0 = k and ‖Mf‖0 = l.

Proposition 3.3 in turn can be obtained using the following observation that will also be used in
numerical experiments below.
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Lemma 3.4. For M ∈ Cm×n and 1 ≤ k ≤ m, 1 ≤ l ≤ n, there exists f ∈ Cn with ‖f‖0 = k and
‖Mf‖0 = l if and only if there exist sets A ⊆ {0, . . . , n−1} and B ⊆ {0, . . . ,m−1} with |A| = k,
|B| = m− l, and for all a ∈ A and y ∈ Bc, we have

rankMA\{a},B = rankMA,B = rankMA,B∪{y} − 1 < |A| .

We refer for the proofs of Proposition 3.3 and Lemma 3.4 to [KPR07].

Theorem 3.2 improves on Theorem 3.1 but it applies only to cyclic groups of prime order since
any other finite Abelian group G has proper subgroups leading to zero minors in WG [MÖP04]. See

[CR06] for estimates on the probability that for randomly chosen sets T ⊆ G and Ω ⊆ Ĝ with

|T |+ |Ω| ≤ G there exists f ∈ CG with supp f = T and supp f̂ = Ω.

Meshulam improved the bound in the classical uncertainty relation given in Theorem 3.1 for non-
trivial finite Abelian groups of non-prime order [Mes06]. He defined for 0 < k ≤ |G| the function

θ(G, k) = min
{
‖f̂‖0 : f ∈ CG and 0 < ‖f‖0 ≤ k

}
. (4)

Using this notation, Theorem 3.2 implies that θ(Zp, k) = p+ 1− k. The main result in [Mes06] is

Theorem 3.5. For k ≤ |G|, let d1 be the largest divisor of |G| which is less than or equal to k and
let d2 be the smallest divisor of |G| which is larger than or equal to k. Then

θ(G, k) ≥ |G|
d1d2

(d1 + d2 − k). (5)

A streamlined version of the Meshulam’s proof by induction of Theorem 3.5 can be found
in [KPR07] and [LM05] contains a non-inductive proof thereof.

Tao realized that Theorem 3.5 simply states that all possible support pairs (‖f‖0, ‖f̂‖0) lie in
the convex hull of the points (|H|, |G/H|), where H ranges over all subgroups of G [Mes06]. The
results from [MÖP04] mentioned below Theorem 3.1 imply that the vertex points (|H|, |G|/|H|) are

attained, but little more is known about the set {(‖f‖0, ‖f̂‖0), f ∈ CG}.
In the following, we address the question whether for some given Abelian group G and (k, l)

chosen with l ≥ θ(G, k) ≥ |G|
d1d2

(d1 + d2 − k) there exists f ∈ CG with ‖f‖0 = k and ‖f̂‖0 = l. This

question has been considered earlier in [FKLM05] where the set
{
(‖f‖0, ‖f̂‖0), f ∈ G

}
has been

described for G = Z6 and G = Z8.

First, we state an affirmative positive result for cyclic groups. It follows from Example 5.6 in
[Smi90] and the proof of Proposition 4.5 in [Kut03].

Proposition 3.6. Let G = Zn, n ∈ N. If 0 < k, l ≤ |G| satisfy l + k ≥ |G|+ 1, then there exists a

function f ∈ CG with ‖f‖0 = k and ‖f̂‖0 = l.

For product groups G = H1×H2, positive results on possible support pairs (‖f‖0, ‖f̂‖0) can
be obtained on the basis of the support pairs for H1 and H2. These follow from the fact that for

f1⊗f2, f1 ∈ CH1 , f2 ∈ CH2 we have ‖f1⊗f2‖0 = ‖f1‖0 ·‖f2‖0 and ‖f̂1⊗f2‖0 = ‖f̂1⊗f̂2‖0 = ‖f̂1‖0 ·‖f̂2‖0

[Grö06].
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Y−pr Y−nu Y−co ? N−co N−nu N−pr

Figure 1. Color coding used in Figures 2–5 to describe membership to subsets of N2 or N3. Y-pr
indicates a proof is known that the corresponding value is in the set considered. Y-nu implies that
there is numerical evidence that the value is in the set and Y-co indicates that we conjecture that
the value is in the set. N-pr indicates a proof is known that the corresponding value is not in the
set, and N-nu and N-co are defined accordingly. The color adjacent to ? implies that no judgement
is made here.

A negative result for the groups G = Z2p for, p ≥ 5 prime, stating that there exists no f ∈ CZ2p

with ‖f‖0 = 3 and ‖f̂‖0 = p− 1 is included in [KPR07].

The numerical results collected in Figure 2 are based on Lemma 3.4 and they show that the
set of all possible pairs (‖f‖0, ‖f̂‖0) is not easily described in general. The computations needed to
obtain Figure 2 are quite involved. For example, the computations showing that there is no vector
on Z16 with five nonzero entries and whose Fourier transform has nine nonzero entries include the

calculation of the singular values of
(

16
5

)(
16
7

)
= 49969920 five by seven matrices.

4. UNCERTAINTY PRINCIPLES FOR SHORT–TIME FOURIER TRANSFORMS ON
FINITE ABELIAN GROUPS

We now turn to discuss minimum support conditions on time–frequency representations of elements
in CG, in particular, for the short–time Fourier transform Vgf ∈ CG× bG of a function f ∈ CG with
respect to a window g ∈ CG. For background on uncertainty principles in joint time–frequency
representations see [Grö03, HL05]

But first, we consider the simplest joint time–frequency representation of f which is given by
the tensor product f⊗f̂ . Similarly, in electrical engineering the so-called Rihaczek distribution

R : G×Ĝ −→ C given by Rf(x, ω) = f(x)f̂(ω) 〈ω, x〉 is considered. Theorem 3.1 implies that

‖Rf‖0 = ‖f⊗f̂‖0 = ‖f‖0‖f̂‖0 ≥ |G|. Figure 3 lists all possible pairs (‖f‖0, ‖Rf‖0) for f ∈ CZ4 and
f ∈ CZ2

2 .

The following result resembles Theorem 3.1. It is given for functions on the real line as so-called
weak uncertainty principle in [Grö03].

Proposition 4.1. ‖Vgf‖0 ≥ |G| for f, g ∈ CG\{0} with equality for f = g = δ.

Proof. Clearly ‖Vδδ‖0 = |G|. For f, g ∈ CG\{0}, the result follows from

|G| ‖f‖2
2 ‖g‖2

2 = ‖Vgf‖2
2 ≤ ‖Vgf‖0 ‖Vgf‖2

∞ ≤ ‖Vgf‖0 ‖f‖2
2 ‖g‖2

2. �

Next, we derive lower bounds on ‖Vgf‖0 which depend on both, ‖f‖0 and ‖g‖0.

Proposition 4.2. For f, g ∈ CG\{0}, we have for θ defined in (4)

‖Vgf‖0 ≥ max{ θ(G, ‖g‖0) θ(G, ‖f̂‖0) , θ(G, ‖f‖0) θ(G, ‖ĝ‖0) }. (6)
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Figure 2. The set
{
(‖f‖0, ‖f̂‖0), f ∈ CG\{0}

}
for all Abelian groups of order less than or equal to

16 with exception of the groups of prime order Z11 and Z13. The groups (row wise from left to right)
are Z4, Z2

2, Z5, Z6; Z7, Z8, Z2×Z4, Z3
2; Z9, Z2

3, Z10, Z12; Z2×Z6, Z14, Z15, Z16; Z2×Z8, Z2
4, Z2

2×Z4,
Z4

2. The color code used is given in Figure 1, and justified by the results in Section 3.
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Figure 3. For groups G = Z4 and Z2
2 all possible pairs (‖f‖0, ‖Rf‖0) are colored red, those pairs

that are not achieved by some f ∈ CG are colored blue in accordance with the color code given in
Figure 1.

Proof. We shall prove ‖Vgf‖0 ≥ θ(G, ‖f‖0)θ(Ĝ, ‖ĝ‖0). Then (6) follows from ‖Vgf‖0 = ‖Vbgf̂‖0

and θ(G, k) = θ(Ĝ, k) for any k, or, alternatively from ‖Vgf‖0 = ‖Vfg‖0. To see (6), observe first that
the so-called symplectic Fourier transformation Fs = R◦F−1bG ◦FG, that is, the composition of a Fourier

transformation FG on G, an inverse Fourier transformation F−1bG on Ĝ, and the axis transformation

R : F 7→ F ◦
(

0 1
1 0

)
obeys the same uncertainty principle as the Fourier transformation on the

group G×Ĝ. For f, g ∈ CG, we calculate

FsVgf(r, ρ) =
∑
x∈G

∑
ξ∈ bG

Vgf(x, ξ)〈ρ, x〉〈ξ, r〉 =
∑
x∈G

∑
ξ∈ bG
∑
t∈G

f(t)g(t− x) 〈ξ, t〉 〈ρ, x〉〈ξ, r〉

=
∑
x∈G

∑
t∈G

f(t)g(t− x) 〈ρ, x〉
∑
ξ∈ bG

〈ξ, r − t〉 = |G|
∑
x∈G

f(r)g(r − x) 〈ρ, x〉

= |G|〈ρ, r〉f(r)ĝ(ρ)

and note that suppFsVgf = supp f×supp ĝ. A simple tensor argument implies that ‖Vgf‖0 =

‖F−1
s

(
FsVgf

)
‖0 ≥ θ(G, ‖f‖0)θ(Ĝ, ‖ĝ‖0). (See Proposition 3.9 in [KPR07] for details.) �

For f, g ∈ CZp\{0}, p prime, Proposition 4.2 gives the lower bound

‖Vgf‖0 ≥ max{ (p+ 1− ‖g‖0)(p+ 1− ‖f̂‖0) , (p+ 1− ‖f‖0)(p+ 1− ‖ĝ‖0) }

which is improved below.

Proposition 4.3. Let G = Zp, p prime. For f, g ∈ CG\{0},

‖Vgf‖0 ≥
{
|G|(|G|+ 1)− ‖f‖0‖g‖0 if ‖f‖0 + ‖g‖0 > |G|;
|G|(|G|+ 1)− (|G|+ 1− ‖f‖0)(|G|+ 1− ‖g‖0) if ‖f‖0 + ‖g‖0 ≤ |G|.

Proof. Note that for all x ∈ G, Vgf(x, ·) = 〈f, π(x, ·)g〉 represents the Fourier transform of a
vector of the form f · Txḡ, that is,

Vgf(x, ξ) = 〈f, π(x, ξ)g〉 =
∑
y∈G

f(y)g(y − x)〈ξ, x〉 = f̂ · Txḡ(ξ) , x ∈ G, ξ ∈ Ĝ .
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As long as f · Txḡ 6= 0, Theorem 3.2 applies and so ‖f · Txḡ‖0 + ‖f̂ · Txḡ‖0 ≥ |G|+ 1. For K := {x :
f · Txḡ 6= 0} we get

‖Vgf‖0 =
∑
x∈K

‖f̂ · Txḡ‖0 ≥ |K|(|G|+ 1)−
∑
x∈G

‖f · Txḡ‖0 = |K|(|G|+ 1)− ‖f‖0‖g‖0,

where
∑
x∈G

‖f · Txḡ‖0 = ‖f‖0‖g‖0 follows from a simple counting argument.

We shall now estimate |K| using the Cauchy-Davenport inequality, which states that for non-
empty subsetsA andB ofG = Zp, p prime, |A+B| ≥ min(|A|+|B|−1, |G|), whereA+B = {a+b : a ∈
A, b ∈ B} [Kár05]. Now K = {x : f ·Txḡ 6= 0} = {x : {(supp ḡ)+x}∩supp f 6= ∅} = supp f−supp ḡ.
We set A = supp f,B = supp ḡ, and obtain |K| = |supp f − supp ḡ| ≥ min(‖f‖0 + ‖g‖0 − 1, |G|).

If ‖f‖0 + ‖g‖0 ≥ |G| + 1, then |K| = |G| and, hence, ‖Vgf‖0 ≥ |G|(|G| + 1) − ‖f‖0‖g‖0. If
‖f‖0 + ‖g‖0 ≤ |G|, then |K| ≥ ‖f‖0 + ‖g‖0 − 1 and so

‖Vgf‖0 ≥ (‖f‖0 + ‖g‖0 − 1)(|G|+ 1)− ‖f‖0‖g‖0 = |G|(|G|+ 1)− (|G|+ 1− ‖f‖0)(|G|+ 1− ‖g‖0) .

�

To establish support size constraints for short–time Fourier transformations for a given group G
analytically is quite tedious since it requires to check all combinations of ‖f‖0 and ‖g‖0. For the
case G = Z3, however, we have assembled all possible and impossible combinations in Figure 4. A
derivation of the entries can be found in Appendix 6.4 in [KPR07].

In the following, we shall fix the window g and vary only the analyzed function f . First we
provide a short–time Fourier transform version of Theorem 3.2.

Theorem 4.4. Let G = Zp, p prime. For almost every g ∈ CG, we have

‖f‖0 + ‖Vgf‖0 ≥ |G|2 + 1 (7)

for all f ∈ CG \ {0}. Moreover, for 1 ≤ k ≤ |G| and 1 ≤ l ≤ |G|2 with k + l ≥ |G|2 + 1 there exists
f with ‖f‖0 = k and ‖Vgf‖0 = l.

1 2 3 4 5 6 7 8 9

1
2

3

1

2

3

1 2 3 4 5 10 15 20 25

1

5

1

2

3

4

5

‖g‖0

‖f‖0 ‖Vgf‖0 ‖Vgf‖0

Figure 4. The set
{
(‖f‖0, ‖g‖0, ‖Vgf‖0), f, g ∈ CG\{0}

}
for G = Z3,Z5. The color coding is given

in Figure 1 and justified by Proposition 4.3 and Theorem 4.4.

We picture this result for G = Z5 and G = Z7 in Figure 5. Note that Theorem 4.4 follows from
Proposition 3.3 together with Theorem 4 from [LPW05] which we state as
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Theorem 4.5. For almost every g ∈ CZp, p prime, we have that every minor of AZp,g is nonzero.

Outline of a proof of Theorem 4.5. It suffices to show that each square submatrix (AZp,g)A,B has
determinant nonzero for almost every g.

To this end, choose A ⊆ Zp and B ⊆ Zp×Ẑp with |A| = |B| and set PA,B(z) = det(AZp,z)A,B,
z = (z0, z1, . . . , zp−1). To show that PA,B 6= 0, we shall locate a term in the polynomial in standard
form which has a nonzero coefficient. To construct this term, we determine first the maximal possible
exponent of z0 in one of the terms of P that are not trivially zero. Next, we determine the maximal
exponent that z1 can have in a monomial where the maximal exponent of z0 is attained and so on.

Using generalized Vandermonde determinants, it can then be shown that the coefficient of this
“maximal” term within PA,B can be expressed as a product of different minors of the discrete Fourier
matrix WZp . For p prime, all these minors are nonzero, so the polynomial P has a nonzero coefficient
for this “maximal term”, hence is not identically 0, and nonzero almost everywhere. We have
P =

∏
A,B: |B|=|A|

PA,B 6≡ 0, which implies that for g /∈ ZP = {z : P (z) = 0}, every minor of AZp,g is

nonzero. Since P 6≡ 0, ZP has Lebesgue measure 0. �

Clearly, this proof of Theorem 4.5 is also based on Chebotarev’s theorem on roots of unity. Also,
Chebotarev’s theorem on roots of unity and, therefore, Theorem 3.2 can be obtained as a corollary
to Theorem 4.5 as shown in Appendix 6.5 of [KPR07].

It is easy to see that if g ∈ CZp satisfies (7) then ‖g‖0 = ‖ĝ‖0 = p, that is, g(x) 6= 0 for all x ∈ Zp

and ĝ(ξ) 6= 0 for all ξ ∈ Ẑp [LPW05]. In addition, we have

Proposition 4.6. There exists a unimodular g ∈ CZp, p prime, that is, a g with |g(x)| = 1 for all
x ∈ Zp, satisfying the conclusions of Theorem 4.4.

Proof. Theorem 4.5 implies that all minors of AZp,g are nonzero polynomials in the polynomial
ring C[z0, ..., zn−1]. Let P be the product of all these minor polynomials, which, by assumption, is
nonzero. We have to show that P (g) 6= 0 for some g ∈ CZp with |g(x)| = 1 for all x ∈ G.

This follows since the only polynomial P with P (g) = 0 whenever |g(x)| = 1 for all x ∈ G is
trivial, P ≡ 0, which we show below using induction over the number of variables n.

The case n = 1 follows since any nonzero polynomial in one variable has only finitely many zeros;
only P ≡ 0 vanishes for all z ∈ S1 = {z : |z| = 1}. Next, we consider a polynomial P of n variables
which we regard as a polynomial in zn−1 with coefficients in the polynomial ring C[z0, ..., zn−2], that
is,

P (zn−1) = Qm(z0, ..., zn−2)z
m
n−1 +Qm−1(z0, ..., zn−2)z

m−1
n−1 + · · ·+Q0(z0, ..., zn−2)

For any fixed (c0, . . . , cn−2) ∈ (S1)n−1 we have

Qm(c0, ..., cn−2)z
m
n−1 +Qm−1(c0, ..., cn−2)z

m−1
n−1 + · · ·+Q0(c0, ..., cn−2) = 0

for all zn−1 ∈ S1, hence, all its coefficients Qk(c0, ..., cn−2), k = 0, . . . ,m vanish. In other words,
we have that Qk ∈ C[z0, ..., zn−2], k = 0, . . . ,m vanish on (S1)n−1, which, by induction hypothesis,
implies that all Qk ≡ 0 and therefore P ≡ 0. �

Proposition 3.3 and Proposition 4.7 below combine to show that the condition “G = Zp with p
prime” is necessary for the existence of g ∈ CG satisfying (7).
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Proposition 4.7. If |G| is not prime, then AG,g has at least one zero minor for all g ∈ CG.

Proof. Let |G| = k ·m, k,m 6= 1. We consider only G = Zkm, the general case follows since the
Fourier matrix WG for any non-cyclic G is a Kronecker product of Fourier matrices of cyclic groups.

For a primitive |G|-th root of unity ω, we have (ωk)m = ω|G| = 1, so the discrete Fourier matrix
WG has a 1 in its (k,m)-entry. Now the matrix given by the first |G| columns of AG,g results from
WG by multiplying the i-th row by ci. So the minor given by the columns 0 and k and the rows 0

and m of A is det
(

c0 c0
cm cm

)
= 0. Hence AG,g has a zero minor. �

Recall Proposition 4.1, namely, the fact that for any G the estimates |G| ≤ ‖Vgf‖0 ≤ |G|2, g, f ∈
CG are sharp. In other words, for all G and 0 < k ≤ |G| we have

min
g∈CG\{0}

min
{
‖Vgf‖0 : f ∈ CG and 0 < ‖f‖0 ≤ k

}
= |G| ,

and
max

g∈CG\{0}
max

{
‖Vgf‖0 : f ∈ CG and 0 < ‖f‖0 ≤ k

}
= |G|2 .

Certainly, ‖Vgf‖0 = |G| is a rare event. In fact, it is reasonable to assume that ‖Vgf‖0 = |G|2
for almost every pair (f, g). We shall now address the question whether for an appropriately chosen
window g, we can achieve a lower bound ‖Vgf‖0 ≥ l for some |G| < l ≤ |G|2 and all f ∈ CG.

To this end, we define for 1 ≤ k ≤ |G|

φ(G, k) := max
g∈CG\{0}

min
{
‖Vgf‖0 : f ∈ CG and 0 < ‖f‖0 ≤ k

}
. (8)

Using this notation, Theorem 4.4 indicates that φ(Zp, k) = p2 + 1− k for p prime. In fact, we have

Proposition 4.8. For almost every g ∈ CG, min
0<‖f‖0≤k

‖Vgf‖0 = φ(G, k) for all k ≤ |G|.

Proof. In the following, we set QA,B(z) = det(AG,z)
∗
A,B(AG,z)A,B, z = (z0, z1, . . . , z|G|−1), for

A ⊆ G and B ⊆ G×Ĝ. QA,B is a homogeneous polynomial in z0, z1, . . . , z|G|−1 of degree 2|A|. We
use the following result, whose proof can be found in [KPR07];

Lemma 4.9. The vector g ∈ CG satisfies min
0<‖f‖0≤k

‖Vgf‖0 ≥ l if and only if QA,B(g) 6= 0 for all

A ⊆ G with |A| = k and all B ⊆ G×Ĝ with |B| = |G|2 − l + 1.

Lemma 4.9 and min
0<‖f‖0=k

‖Vgk
f‖0 ≥ φ(G, k), k ≤ |G|, for some gk ∈ CG\{0} imply that QA,B 6≡ 0

for all pairsA ⊆ G andB ⊆ G×Ĝ with |B| = |G|2−φ(G, |A|)+1. Hence, Q =
∏

A,B: |B|=φ(G,|A|)+1

QA,B 6≡

0. This implies that Q(g) 6= 0 for almost every g ∈ CG and therefore, for almost every g ∈ CG we
have min

0<‖f‖0≤k
‖Vgf‖0 ≥ φ(G, k) for all k ≤ |G|, from which the desired equality follows. �

To obtain bounds on φ(G, k) for groups of non-prime order, we shall follow the roadmap used
in [Mes06] to show Theorem 3.5. The proof is inductive and the induction step is based on

Proposition 4.10. Let H be a subgroup of the finite Abelian group G. For k ∈ N there exist
s, t ∈ N with st ≤ k such that

φ(G, k) ≥ φ(H, s)φ(G/H, t) (9)
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Proof. In the following, we express the short–time Fourier transformation for functions defined
on G as two consecutive short–time Fourier transformations. We use the following notation: let
H = {xi} = {yi} be a subgroup of G and, abusing notation, let {xj} = {yj} be a set of coset

representatives of the quotient group G/H. We let H⊥ = {ξj ∈ Ĝ : ξj(H) = 1} and {ξi} is a set of

coset representatives of Ĝ/H⊥.

Set
φH(G, k) = max

g1∈CH , g2∈CG/H
min

{
‖Vg1⊗g2f‖0 : f ∈ CG and 0 < ‖f‖0 ≤ k

}
,

where g1⊗g2(xi +xj) = g1(xi)g2(xj +H). Clearly φ(G, k) ≥ φH(G, k), so (9) follows from φH(G, k) ≥
φ(H, s)φ(G/H, t), which we shall show below. First, note that a similar argument as is used in
Proposition 4.8 gives that for almost every pair (g1, g2),

φH(G, k) = min
0<‖f‖0≤k

‖Vg1⊗g2f‖0, 1 ≤ k ≤ |G|.

Therefore, we can pick g1 and g2 so that for all possible k, s, t,

φH(G, k) = min
0<‖f‖0≤k

‖Vg1⊗g2f‖0, φ(H, s) = min
0<‖f1‖0≤s

‖Vg1f1‖0, φ(G/H, t) = min
0<‖f2‖0≤t

‖Vg2f2‖0 . (10)

We fix x = xi + xj and ξ = ξi + ξj, and compute

Vg1⊗g2f(x, ξ) =
∑
yj

∑
yi

f(yi + yj) g1(yi − xi) g2(yj − xj +H) 〈ξi, yi〉H〈ξi, yj〉G〈ξj, yj +H〉G/H

=
∑
yj

g2(yj − xj +H) 〈ξi, yj〉G〈ξj, yj +H〉G/H

∑
yi

f(yi + yj) g1(yi − xi)〈ξi, yi〉H

where we used ξj ∈ H⊥, that is, 〈ξj, yi〉G = 1. For

FH(xi, ξi, yj) := 〈ξi, yj〉G
∑
yi

f(yi + yj) g1(yi − xi) 〈ξi, yi〉H

we have
FH(xi, ξi, yj) = 〈ξi, yj〉GVg1T−yj

f(xi, ξi)

and Vgf(x, ξ) =
(
Vg2FH(xi, ξi, ·)

)
(xj +H, ξj).

We fix now f such that ‖f‖0 ≤ k. Let t = |{yj : supp f ∩ (yj + H) 6= ∅}|. If for some
yj, supp f ∩ (yj +H) = ∅, then FH(· , · , yj) ≡ 0 too. Therefore, ‖FH(xi, ξi, · )‖0 ≤ t and using (10)
we obtain ‖Vg2FH(xi, ξi, · , · )‖0 ≥ φ(G/H, t). Also, by distributing supp f over t cosets of H in G,
there is a coset yj0 +H with |supp f ∩ (yj0 +H)| = s ≤ k/t. Because FH(· , · , yj0) is, up to a nonzero
factor, the partial short–time Fourier transform of T−yj0

f with window g1 on that coset,

‖FH(· , · , yj0)‖0 = ‖Vg1T−yj0
f‖0 ≥ φ(H, s).

We have obtained that the set Λ = {(xi, ξi) ∈ H×Ĥ : FH(xi, ξi, yj0) 6= 0} has at least φ(H, s)
elements so

‖Vgf(xi + xj, ξi + ξj)‖0 =
∑

(xi,ξ′
i)∈H× bH

‖Vgf(xi, ξi, · , ·)‖0 ≥
∑

(xi,ξi)∈Λ

‖Vg2FH(xi, ξi, · , ·)‖0

≥ φ(H, s)φ(G/H, t) .
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This inequality holds for all Vgf with 0 < ‖f‖0 ≤ k and therefore, φH(G, k) ≥ φ(H, s)φ(G/H, t). �

Theorem 4.11. For any finite Abelian group G and k ≤ |G|, let d1 be the largest divisor of |G|
which is less than or equal to k and let d2 be the smallest divisor of |G| which is larger than or equal
to k. Then

φ(G, k) ≥ |G|2

d1d2

(d1 + d2 − k). (11)

Proof. The function v(n, k) = nu(n, k) = n2

d1d2
(d1 + d2 − k), is submultiplicative since u(n, k) =

n
d1d2

(d1 + d2 − k) in [Mes06] is submultiplicative, that is, we have v(a, b)v(c, d) ≥ v(ac, bd). We
proceed by induction on |G| = n. Suppose (11) holds for |G| = 1, . . . , n − 1. If n is prime, then
Proposition 4.4 implies v(n, k) = n(1 + n − k) < n2 − k + 1 = φ(Zp, k) for all k. Else, we choose
a nontrivial divisor d of n, and let H be a subgroup of G of order d. By Proposition 4.10, there
exist s, t with 1 ≤ s ≤ d, 1 ≤ t ≤ min{k

s
, n

d
} such that φ(G, k) ≥ φ(H, s)φ(G/H, t). Therefore,

φ(G, k) ≥ v(d, s)v(n
d
, t) ≥ v(n, st) ≥ v(n, k). �

For the case G = Zpq, we can improve (11) by finding the convex hull of all pairs (|H|, |G/H|)
for all subgroups H of G as in [Mes06].

Proposition 4.12. Let G = Zpq with q < p and p, q prime. Then

φ(G, k) ≥
{
p2(q2 − k + 1) if k < q;
(p2 − k

q
+ 1)(q2 − q + 1) else.

(12)

Proof. Proposition 4.10 implies that there exists s, t such that st ≤ k and φ(G, k) ≥ φ(H, s)φ(G/H, t).
For G = Zpq and |H| = p, we have φ(H, s) = p2 − s + 1 and φ(G/H, t) = q2 − t + 1. As st ≤ k, we
can find t ∈ R such that q ≥ t ≥ t and p ≥ k

t
≥ s. Hence,

φ(G, k) ≥ (p2 − s+ 1)(q2 − t+ 1) ≥ (p2 − k
t
+ 1)(q2 − t+ 1) .

So φ(G, k) must exceed the minimum of M(u) = (p2 − k
u

+ 1)(q2 − u + 1), where u ranges from
k
p

to q since we assume k
u
≤ p and u ≤ q. We have M ′(u) = −(p2 + 1) + k(q2+1)

u2 = 0 if and only if

u = ±
√
k q2+1

p2+1
. As M(u) → −∞ for u→ 0+ and u→∞, the only positive extremum is a maximum

and the minimum is attained at a boundary point. A simple calculation gives that M(q) ≤M
(

k
p

)
.

For k < q, the condition 1 ≤ s, 1 ≤ t, implies that t ranges only from 1 to k. The same arguments
as used above show again that the minimum is attained at a boundary point and that M(1) ≥M(k).
�

At k = q, the two lower bounds in (12) coincide and lead to what a geometric argument shows
to be the optimal value that can be obtained using g = g1⊗g2. So the two straight lines meeting in
(q, p2 − q + 1) define a convex hull similar to that given in Theorem 3.5. However, as expected, the
computational results are far better than those given in (11), since tensor windows cannot be used
to find optimal bounds for φ(G, k). See Table 1 for an illustration of (12) for G = Z6.

For |G| prime, Theorem 4.4 characterizes all pairs (‖f‖0, ‖Vgf‖0), f ∈ CG, which are achieved for
almost every window function g ∈ CG. However, for general Abelian groups, it is quite difficult to
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‖f‖0 1 2 3 4 5 6
Theorem 4.11 36 18 12 10 8 6

Proposition 4.12 36 26 25 23 22 20
Numerical results 36 33 32 32 32 31

Table 1. Lower bounds for ‖Vgf‖0 given by Theorem 4.11, Proposition 4.12, and by numerical
experiments for G = Z6 and randomly chosen g ∈ CZ6 .

establish lower bounds for ‖Vgf‖0. Further, our limited numerical results for cyclic groups indicate a

close correspondence between the achieved pairs (‖f‖0, ‖f̂‖0) and the achieved pairs (‖f‖0, ‖Vgf‖0)
for a given window g. Consequently, we pose

Question 4.13. For every cyclic group G and almost every g ∈ CG, is it true that{
(‖f‖0, ‖Vgf‖0), f ∈ CG\{0}

}
=
{
( ‖f‖0 , ‖f̂‖0+|G|2−|G| ), f ∈ CG\{0}

}
?

The basis for this question is illustrated in Figure 5 by considering the cyclic groups Z4, Z5, Z6,
Z7, and Z8. The statement does not hold for non-cyclic groups, for example, in the diagram for Z2

2

in Figure 5 the existence of 4×4 zero minors in AG,g in (3), that is, the minor given by columns
1,3,13,14, leads to the possible pair (4, 12).

2 4 6 8 10 12 14 16

2

4

2 4 6 8 10 12 14 16

2

4

5 10 15 20 25

5

6 12 18 24 30 36

2
3
4

6

7 14 21 28 35 42 49

7

8 16 24 32 40 48 56 64

2
4
6
8

Figure 5. The set
{
(‖f‖0, ‖Vgf‖0), f ∈ CG\{0}

}
for appropriately chosen g ∈ CG\{0} for G = Z4,

Z2
2, Z5, Z6, Z7 and Z8. The color coding from Figure 1 is applied in accordance with numerical

experiments based on Lemma 3.4.

5. APPLICATIONS

We shall now turn to applications of the results stated in Section 4 to communications engineering
and, in the subsequent section, to the problem of recovering sparse signals from incomplete data.
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5.1. Gabor frames, erasure channels, and the identification of operators

In generic communication systems, information is transmitted in the form of the entries of a vector
f ∈ CG over a channel in such a way that recovery of the information at the receiver is robust
to errors introduced by the channel. Here we will focus on two inherent problems. First, we shall
discuss transmission over a channel with erasure, that is, some of the vector entries may be lost
during transmission. Second, we discuss the so-called identification problem for another class of
operators, namely, of linear time–varying operators which play a central role in wireless and mobile
communications. Clearly, knowledge of the operator at hand would help to counteract disturbances
that were caused during transmission.

But first, we give some preliminaries on frames in finite dimensional vector spaces will be used
in this section. For details on frames and, in particular, Gabor frames we refer to the excellent
expositions [Chr03, Grö01, KC06]. The geometry of finite frames is discussed in [BF03].

Definition 5.1. Let G be a finite Abelian group and let K be a finite or countably infinite index
set. A family of functions {ϕk} ⊂ CG with

A‖f‖2
2 ≤

∑
k

|〈f, ϕk〉|2 ≤ B‖f‖2
2 , f ∈ CG,

for positive A and B is called a frame for CG. A frame is called tight if we can choose A = B. If
we can choose A = B = 1, then the frame is called Parseval tight frame. If ‖ϕk‖ = C > 0 for all k,
then the frame {ϕk} is called equal norm frame and if in addition C = 1, then we have a unit norm
frame.

In the following, we shall refer to a Gabor system which forms a frame as Gabor frame. A direct
consequence of (1) is

Proposition 5.2. For any g ∈ CG\{0}, the Gabor system {π(λ)g}λ∈G× bG is an equal norm tight
Gabor frame for CG with frame bound A = B = |G| ‖g‖2

2.

The usefulness of frames stems largely from the existence of a reconstruction formula resembling
(1).

Proposition 5.3. Let {ϕk} be a frame for CG. Then there exists a so-called dual frame {ϕ̃k}, with

f =
∑

k

〈f, ϕk〉ϕ̃k =
∑

k

〈f, ϕ̃k〉ϕk , f ∈ CG . (13)

Note that Parseval frames are self dual, that is, we can choose ϕ̃k = ϕk for all k.

Now, we are in position to briefly discuss the recovery of information from a vector that suffered
erasures [CK03, PK05, GK01, SH03]. In data transmission, rather then sending the information
given as independent entries of a vector f ∈ CG in raw form, that is, sending vector entries one-by-
one, information is being coded prior to transmission. For example, we can choose a frame {ϕk}k∈K

for CG and send the coefficients 〈f, ϕk〉, k ∈ K. If none of the transmitted coefficients are lost, the
receiver can use a dual frame {ϕ̃k} of {ϕk} and recover f using (13). But even if some coefficients
are lost and only 〈f, ϕk〉 is received for k ∈ K ′ ⊂ K, the information can still be recovered if (and
only if) {ϕk}k∈K′ remains a frame. This necessitates that |K ′| ≥ |G| = dim CG.

Definition 5.4. A frame F = {ϕk}k∈K in CG is maximally robust to erasures if the removal of
any l ≤ |K| − |G| vectors from F leaves a frame.
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Similarly, we give

Definition 5.5. A set of m vectors in CG is in general position, if any collection of at most |G| of
these vectors are linearly independent.

Next, we introduce some vocabulary and notation regarding the previously mentioned operator
identification problem.

Definition 5.6. A linear space of operators H mapping CA to CB is called identifiable with identifier
g ∈ CA if the linear map ϕg : H −→ CB, H 7→ Hg is injective, that is, if Hg 6= 0 for all H ∈ H\{0}.

Time–variant communication channels, for example, multi-path channels in wireless telephony,
are often modeled through a combination of translation operators (time–shift, delay) and modulation
operators (frequency shifts that are caused by the Doppler effect). Therefore, identification of HΛ =

{
∑
λ∈Λ

cλπ(λ), cλ ∈ C} for Λ ⊆ G×Ĝ is quite relevant (see [PRT07] and references therein).

The following theorem is a straightforward generalization to general finite Abelian groups of
Theorem 2 and Theorem 3 for cyclic groups in [LPW05]. The proofs of Theorem 2 and Theorem 3
in [LPW05] carry over to this setting.

Theorem 5.7. For g ∈ CG\{0}, the following are equivalent:

1. Every minor of AG,g of order |G| is nonzero.

2. The vectors from the Gabor system {π(λ)g}λ∈G× bG are in general position.

3. The Gabor system {π(λ)g}λ∈G× bG is an equal norm tight frame which is maximally robust to
erasures.

4. For all f ∈ CG\{0} we have ‖Vgf‖0 ≥ |G|2−|G|+1.

5. For all f ∈ CG, Vgf(λ), and, therefore, f , is completely determined by its values on any set Λ
with |Λ| = |G|.

6. HΛ is identifiable by g if and only if |Λ| ≤ |G|

For |G| prime, Theorem 4.4 ensures the existence of g ∈ CG which satisfies parts 1-6 in Theo-
rem 5.7, and Proposition 4.6 allows us to choose g to be unimodular. A positive answer to Ques-
tion 4.13 would also confirm the existence of g ∈ CZn , n ∈ N, satisfying Theorem 5.7 part 4, and
therefore Theorem 5.7 parts 1-6 for cyclic groups.

Remark 5.8. To our knowledge, the only known equal norm tight frames that are maximally robust
to erasures are so-called harmonic frames (see Conclusions in [CK03]). Harmonic frames for Cn

with m ≥ n elements are obtained by deleting uniformly m − n components of the characters of
Zm [CK03]. Similarly, Theorem 4.5 together with Proposition 4.6 provides us with equal norm tight
frames with p2 elements in Cn for n ≤ p. Namely, we can choose a g ∈ (S1)p and remove p − n
components of the equal norm tight frame {π(λ)g}λ∈G× bG in order to obtain an equal norm tight
frame in Cn which is maximally robust to erasure. Note that this frame is not a Gabor frame proper.
Reducing the number of vectors in the frame to m ≤ p2 vectors leaves an equal norm frame which
is maximally robust to erasure but which might not be tight. This holds for harmonic frames, too.
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With the restriction to frames with p2 elements, p prime, we have shown the existence of Gabor
frames which share the usefulness of harmonic frames when it comes to transmission of information
through erasure channels.

5.2. Signals with sparse representations

In Section 5.1 we discussed the recovery of signals or operators from |G| known complex numbers.
Here, we will use the functions φ and θ which were defined in Section 3 and Section 4 to refine
some of these findings. That is, we show that a function/signal which can be represented as a linear
combination of a small number of pure frequencies or of a small number of time–frequency shifts of a
fixed function g can be recovered from fewer than |G| of its values. Our brief discussion is based on
the most basic ideas and results from the theory of sparse signal recovery [Don06, Rau07, CRT06].

There exist a number of entry points to the theory of sparse signal recovery. Here, we shall consider
dictionaries D = {g0, g1, . . . , gN−1} of N vectors in Cn, or equivalently, in CG. For k ≤ n = |G| we
shall examine the sets

ΣD
k = {f ∈ Cn : f = MD c =

∑
r

crgr, with ‖c‖0 ≤ k} .

The central question is: how many values of f ∈ ΣD
k need to be known (or stored), in order that

c ∈ CN with f =
∑

r crgr and ‖c‖0 ≤ k, and therefore f , is uniquely determined by the known data?

To this end, we set
ψ(D, k) = min

{
‖f‖0 : f ∈ ΣD

k

}
,

and observe the following well known result.

Proposition 5.9. Any f ∈ ΣD
k is fully determined by any choice of n−ψ(D, 2k )+1 values of f .

Note that unlike in Theorem 5.7, we do not assume knowledge of the set supp c for c with
MDc = f , ‖f‖0 in Proposition 5.9 and in the following.

Proof. Assume that for some B ⊂ Cn with |B| = n−ψ(D, 2k )+1, two coefficient vectors c1, c2 ∈
CN exist that satisfy MDc1|B = f |B = MDc2|B and ‖c1‖0, ‖c2‖0 ≤ k. Then ‖c2 − c1‖0 ≤ 2k with
‖MD(c2 − c1)‖0 ≤ n− |B| = n− (n−ψ(D, 2k )+1) = ψ(D, 2k )−1, a contradiction. �

A classical dictionary for CG is DG = {ξ}ξ∈ bG, where G is a finite Abelian group. Then

ψ(DG, k) = min
{
‖f‖0 : f ∈ ΣD

k

}
= min

{
‖f̂‖0 : ‖f‖0 ≤ k

}
= θ(G, k) .

This equality together with Proposition 5.9 demonstrates the relevance of the results cited in Section 3
for the recovery of signals with limited spectral content. For example, Theorem 3.5 shows that for any
finite Abelian group of order 16 we have θ(G, 6) ≥ 3. In fact, our computations that are illustrated

in Figure 2 show that θ(G, 6) = 4 for |G| = 16, and, hence, any f ∈ ΣDG
3 = {f : ‖f̂‖0 ≤ 3} can be

recovered from any choice of |G| − θ(G, 2 · 3) + 1 = 16 − 4 + 1 = 13 values of f . For f ∈ Σ
DZ17
3 on

the other side, Theorem 3.2 implies that f is already fully determined by |Z17| − θ(Z17, 2 · 3) + 1 =
17− (17− 6 + 1) + 1 = 6 of its values.
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The results in Section 4 which involve the function φ are relevant to determine vectors which
have sparse representations in the dictionary DAG,g

which consists of the columns of AG,g. In fact,

we have F ∈ Σ
DAG,g

k if and only if F = Vgf for some f ∈ CG with ‖f‖0 ≤ k and, therefore,

ψ(DAG,g
, k) = min

{
‖Vgf‖0 : ‖f‖0 ≤ k

}
= φ(G, k) .

For |G| prime for example, this leads to the following short–time Fourier transform version of Theorem
1.1 in [CRT06].

Theorem 5.10. Let g ∈ CZp, p prime, satisfy the conclusion of Theorem 4.4. Then any f ∈ CZp

with ‖f‖0 ≤ 1
2
|Λ|, Λ ⊂ Zp×Ẑp is uniquely determined by Λ and Vgf |Λ.

In terms of sparse representations, the Gabor frame dictionary {π(λ)g}λ∈G× bG of time–frequency
shifts of a prototype vector g, that is, the dictionary consisting of the rows of AG,g, appears to be
more interesting. Rudimentary numerical experiments give some indication that for any cyclic group
G, and almost every g ∈ CG, we have for k ≤ |G|

ψ({π(λ)g}λ∈G× bG, k) = θ(G, k).

Note that this does not hold for all Abelian groups of finite order. For example, for any g ∈ CZ2×Z2

we have ψ({π(λ)g}λ∈(Z2×Z2)×(Z2×Z2), 4) = 0 while θ(Z2×Z2, 4) = 1.

For |G| prime, Theorem 4.5 implies that ψ({π(λ)g}λ∈G× bG, k) = p − k + 1 = θ(G, k), and analo-
gously to Theorem 5.10, we obtain

Theorem 5.11. Let g ∈ CZp, p prime, satisfy the conclusion of Theorem 4.4. Then any f ∈ CZp

with f =
∑

λ∈Λ cλπ(λ)g, Λ ⊂ Zp×Ẑp is uniquely determined by B and f |B whenever |B| ≥ 2|Λ|.
Note that similar to before, the recovery of f from 2|Λ| samples of f in Theorem 5.11 does not
require knowledge of Λ.
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