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1. INTRODUCTION

This is the second of a series of papers dealing with the asymptotic behavior of certain integrals
occuring in the description of the spectrum of an invariant elliptic operator on a compact Riemann-
ian manifold M carrying the action of a compact, connected Lie group of isometries G [4, 15} [5],
and in the study of its equivariant cohomology via the moment map J : T*M — g*, where T*M
and g denote the cotangent bundle of M and the Lie algebra of G, respectively [8 [ 19, 2]. The
mentioned integrals are essentially of the form

I(p) = / eI ng(n, X)dndX,  p— 0T,
T*Mxg

where a € C°(T*M x g) is an amplitude, dn a density on T*M, and dX, up to a constant factor, the
Lebesgue measure in g. While asymptotics for I(u) have been obtained for free group actions, one
meets with serious difficulties when singular orbits are present. The reason is that, when trying to
examine these integrals via the generalized stationary phase theorem in the case of general effective
actions, the critical set of the phase function J()(X) is no longer a smooth manifold, so that, a
priori, the principle of the stationary phase can not be applied in this case. Nevertheless, in what
follows, we shall show how to circumvent this obstacle by partially resolving the singularities of the
critical set of J(7)(X), and in this way obtain asymptotics for I(u) with remainder estimates in the
case of singular group actions. Similar asymptotics were already obtained in [I6] for orthogonal
actions in Euclidean space, and the present paper globalizes those results, while applications will
be treated in a forthcoming paper.

This research was financed by the grant RA 1370/2-1 of the German Research Foundation (DFG).
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2. COMPACT GROUP ACTIONS AND THE MOMENT MAP

Let M be a closed, connected Riemannian manifold, and G a compact, connected Lie group
with Lie algebra g acting on M by isometries. Consider the cotangent bundle 7 : T*M — M, as
well as the tangent bundle 7 : T(T*M) — T*M, and define on T*M the Liouville form

O(X) =7(X)[m.(X)], X eT(T"M).
We regard T*M as a symplectic manifold with symplectic form
w = do,

and define for every X € g the function
Jx :T*M — R, 5+ 0(X)(n),

where X denotes the fundamental vector field on T M, respectively M, generated by an element
X of g. Note that ©(X)(n) = n(Xx(y)- Indeed, put v(s) = e *X -1, s € (—¢,¢) for some £ > 0,

so that v(0) = n, ¥(0) = X,,. Since 7(e™*X -n) = e~*X . 7(n), one computes

" d d —sX o
T (Xy) = EW 07(3)|s:0 = s e 'W(n)\s:o = Xan)-

Therefore

O(X)(n) = 7(Xy) (me(Xy)) = (X))
as asserted. The function Jx is linear in X, and due to the invariance of the Liouville form

[,XGZdJ)(—i-LXw:O, VX €g,

where Ly denotes the Lie derivative. This means that G acts on T*M in a Hamiltonian way. The
corresponding symplectic moment map is then given by

J:T°M —g*, J(n)(X)=Jx(n).

We are interested in the asymptotic behavior of integrals of the form
1) 1) = [ [evoima xyaxdy, 0,
*M Jg

where a € C°(T*M x g) is an amplitude, dn a density on T*M, and dX, up to a constant factor,
the Lebesgue measure in g, while

P(n, X) = J(n)(X).
We would like to study these integrals by means of the generalized stationary phase theorem, and
for this we have to consider the critical set of the phase function ¢ (n, X). Let {X1,..., X4} be a
basis of g, and write X = > s,X;. Due to the linear dependence of Jx in X,

Os; (0, X) = JIx, (),
and because of the non-degeneracy of w,
Jx+=0 = dix=—130w=0 <<= X=0.
Thus we see that
Crit(y) = {1, X) € T"M x g+ (1, X) = 0} = {(,X) € @ x g: X, =0},
where
Q=J10)
represents the zero level of the moment map. Note that

(2) neQN <= ny€Ann(T,(G-m)) Yme M,
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where Ann (V,,,) C T;: M denotes the annihilator of a vector subspace V,, C T, M. Now, the
major difficulty in applying the generalized stationary phase theorem in our setting stems from
the fact that, due to the singular orbit structure of the underlying group action, the zero level §2
of the moment map, and, consequently, the considered critical set Crit(t)), are in general singular
varieties. In fact, if the G-action on T*M is not free, the considered moment map is no longer
a submersion, so that  and the symplectic quotient /G are no longer smooth. Nevertheless,
it can be shown that these spaces have Whitney stratifications into smooth submanifolds, see
Lerman-Sjamaar [17], and Ortega-Ratiu [14], Theorems 8.3.1 and 8.3.2, which correspond to the
stratifications of T*M, and M by orbit types, see Duistermaat-Kolk [9]. In particular, if (H)
denotes the principal isotropy type of the G-action in M,  has a principal stratum given by

(3) RegQ={neQ:G,~Hr},

where G, denotes the isotropy group of n € T*M. To see this, let n € Q, and m = w(n) be
such that G,, ~ Hp. In view of (@) one computes for g € G,,,, and X = X0 + Xy € T,,M =
T (G -m) ® Ny (G -m)

g- nm(:{) = nm((Lgfl)*,m(%N)) = nm(:{)a

since G, acts trivially on N,,(G - m), see Bredon [3], pages 308 and 181. But G, C G, for
arbitrary 7, so that we conclude

(4) ne Qv Gﬂ'(n) ~ Hp, = Gn = GT((’I])?

and the assertion follows. Note that the stratum Reg(2 is an open and dense subset of €2, and a
smooth submanifold in T* M of codimension equal to the dimension « of a principal G-orbit in M.
Since the Lie algebra of G, is given by g, = {X € g: X,, = 0}, it is clear that the smooth part of
Crit (1) corresponds to

(5) Reg Crit(¢) = {(n,X) € RegQ x g: X € g},

and constitutes a submanifold of codimension 2x. To obtain an asymptotic description of I(u),
we shall partially resolve the singularities of Crit(¢), for which we will need a suitable G-invariant
covering of M. In its construction, we shall follow Kawakubo [I1I], Theorem 4.20. Thus, let
(Hy),...(Hpr) denote the isotropy types of M, and arrange them in such a way that

Hj is conjugate to a subgroup of H; = ¢ <.

Let H C G be a closed subgroup, and M (H) the union of all orbits of type G/H. Then M has a
stratification into orbit types according to

M =M(H))U---UM(Hy).

By the principal orbit theorem, the set M (Hp ) is open and dense in M, while M (H;) is a closed,
G-invariant submanifold. Denote by v; the normal G-vector bundle of M (H;), and by f; : vy — M
a G-invariant tubular neighbourhood of M (H;) in M. Take a G-invariant metric on vq, and put

Diy(r1) ={v e :|v]| <t}, t>0.

We then define the compact, G-invariant submanifold with boundary

My =M — fi(D1j2 (1)),

on which the isotropy type (Hi) no longer occurs, and endow it with a G-invariant Riemannian
metric with product form in a G-invariant collar neighborhood of 9 Ms in M,. Consider now
the union My(Hs) of orbits in My of type G/Hs, a compact G-invariant submanifold of My with
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boundary, and let fs : v — Ms be a G-invariant tubular neighbourhood of My(Hs) in Ms, which
exists due to the particular form of the metric on M. Taking a G-invariant metric on v», we define

M3 = My — f2(51/2 (v2)),

which constitutes a compact G-invariant submanifold with corners and isotropy types (Hs), ... (Hp).
Continuing this way, one finally obtains for M the decomposition

M = f1(D1y2(v1)) U+ U frL(D1/2(vL)),
where we identified fr(D;/2(vz)) with Mz, which leads to the covering

o )

M= fi(Dr () U~ U fo(Dr (), fu(Dir (vi)) =My -

3. THE DESINGULARIZATION PROCESS

Let us now start resolving the singularities of the critical set Crit(¢). For this, we will have
to set up an iterative desingularization process along the strata of the underlying G-action, where
each step in our iteration will consist of a decomposition, a monoidal transformation, and a re-
duction. For simplicity, we shall assume that at each iteration step the set of maximally singular
orbits is connected. Otherwise each of the connected components, which might even have different
dimensions, has to be treated separately.

First decomposition. As in the previous section, let fi : vy — My be an invariant tubular

neighborhood of My (Hy) in
k-1

My =M = | fi(D1j2 (),
i=1
a manifold with corners on which G acts with the isotropy types (Hy), (Hg+1),- .., (Hr), and put

.....

L() = / . / X 1 () (1, X) dX. d,
*Wi Jg

so that I'(p) = Ii(p) + -+ -+ Ir(p). As will be explained in Lemma [B] the critical set of ¢ is clean
on the support of axr, so that we can apply directly the stationary phase theorem to compute the
integral Iy (n). But if k € {1,..., L — 1}, the sets

Q. =0nN T*Wk,
Criti (1) = { (1, X) € % x g+ X, =0}

are no longer smooth manifolds, so that the stationary phase theorem can not a priori be applied
in this situation. Instead, we shall resolve the singularities of Critg(¢), and after this apply
the principle of the stationary phase in a suitable resolution space. For this, introduce for each
x*) € My, (Hy,) the decomposition

and define

9= 00 D gi(k)v
where g, denotes the Lie algebra of the stabilizer G, of 2(*), and gi(k) its orthogonal comple-

ment with respect to the scalar product tr(*AB) in g. Let further Ay (x®),... A u ((®)) be an
orthonormal basis of g, , and By(x™), ..., B, (™) an orthonormal basis of g, . Consider
the isotropy algebra bundle over My (Hy,)

50 Mk(Hk) — Mk(Hk),
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as well as the canonical projection
s Wy — Mk(Hk), m = fk(.%'(k),’v(k)) — x(k), x(k) S Mk(Hk), U(k) S (Vk;)m(k),
where f (2, v®) = (exp,my oy™)(v®), and v is an equivariant diffeomorphism from (vy), )
onto its image, see Bredon [3], pages 306-307. We consider then the induced bundle
mriso My (Hy,) = {(fk(x(k),v(k)),X) eWpxg:Xe gmm} :
and denote by
Hk : Wk Xg— FZiEO Mk(Hk)
the canonical projection which is obtained by considering geodesic normal coordinates around
m}isoMy(Hy), and identifying Wy x g with a neighborhood of the zero section in the normal
bundle N 7} iso My, (Hy). Note that the fiber of the normal bundle to m*iso M (H}) at a point

(fx(z®,v(F)), X) can be identified with 924 - Integrating along the fibers of the normal bundle
to m} iso My (Hy) we therefore obtain for I (u) the expression

In(p) = / / eV haxy @ d(TE W) (n) dA® | dB®) dm
mriso My (Hy) | I (m, BR))x T, Wy,

a /Mk(Hk) /gXTrkl(gg(k))xT*

P v

e Maxy Pr ATy, o W) (1) dA™W dBW do™ | dz ™),

w Wk

where

Y B ( Dy (h)aw) X 80 X G0 > (), A®), BO) i (exp, 0 o®, 4D + B®) = (m, X)
are coordinates on 7}, ' (z(F)) x g, while dm, dz®, dA®)  dB® dv*) and d(T},W})(n) are suitable
measures on Wy, My (Hy), gj(,c), G0, () (51 (V) gz ), and T0s Wy, respectively, such that

dX dn = & d(T* W) () dA®) dB®) qy®) gz (*)

expm(k) v
where @, is a Jacobian.

First monoidal transformation. Let now k € {1,...,L — 1} be fixed. For the further analysis
of the integral Iy (u), we shall sucessively resolve the singularities of Critg(¢)), until we are in

position to apply the principle of the stationary phase in a suitable resolution space. To begin
with, we perform a monoidal transformation

Ck:BZk(Wk ><g) — Wy X g
in W), x g with center Zy, = iso My, (Hy,). For this, let us write A®) (z(®) oF)) =3 agk)Az(-k) (z®)),
B® (z®) g*)) = 52 gF) B (4:(k)) and

RO)

o) = qu(k)vl(k) (Uﬁ(k)) € V(k)( D1 (Vk)zm),
i=1
(k) (,.(k) (k) ¢, (k) : :
where {v;”(z'™),... v, (#'*)} denotes an orthonormal frame in v;. With respect to these
coordinates we have Zj = {a(k) =0, ¢"® = O}, where ¢(*) = (q§k), . ,qiﬁ))), so that

LOR) 4 g (k) _
Bz, (Wi x g) = {(maXa [t]) € Wi x g x R 47~ gy = Q§k)ti, Oégk)tcw)ﬂ = a§k>tc<k>+i} ;
Ck: (m, X, [t]) — (m, X).
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Let us now cover Bz, (W, x g) with the charts {(¢,,Up)}, Uy, = Bz, (Wi x g) N (Wi x g x V),
where V, = {[t] e Rpe -1 ty # O}. We obtain for ¢, in each of the ¢(¥)-charts {Ue}i<pcemw

the expressions
G =Cropp: (a:(k),rk, Qﬁ(k),A(k), B(k)) — (expym Tk Qﬁ(k),TkA(k) + B(k)) = (m, X),

where 7, € (—1,1),

(k)
250 (2, qM) = 18 (0P @) + 3~ ¢ @) [ 1+ 60)2) € 9D (2800,
i#o i

and

QS,j: {UEl/k:’U:ZSiUz’aSQ>07HUH :1}'

Note that for each 1 < p < c(k),

Wi = fu(2SF x (=1,1))
up to a set of measure zero. Now, for given m € M, let Z,, C T, M be a neighborhood of zero
such that exp,, : Z,, — M is a diffeomorphism onto its image. Then

(expm)*,v Ty Ly — Texpvaa VE Ly,

and g - exp,,, v = Lg(exp,, v) = expp_(m)(Lg)sm(v). As a consequence, since B® ¢ g, we
obtain

d - N
B®) p oy 7050 = = XDty (L _p0 ),y (Th 95 0)) 1o = (€XPytt s py 00 (MBW) (7 28H))

dt
= T (€XDy(t) )y e (A(BF) (25H))),

where we denoted by

d
A Gpe) — g[(yk,z(k))a B(k) = E(‘Le*tB(’“) )*,z(k)|t20

the linear representation of g,u) in vy ., and made the canonical identification T, (v ,)) =
Vg g0 for any v € (vg),m. With m(n) = m we therefore obtain for the phase function the
factorization

—_~—

Y, X) = 1(Xn) = n((mA® + BE) o ogm)
= Tk [n(A(k)cxpz(k) Th é"D(’C)) + n((expz(k))*,‘rk eg(k) [)‘(B(k))gf)(k)])} .

Similar considerations hold for ¢y in the a®-charts {U,}, so that we get

(k) 1< p< k) 4-d(k)
Yo (id fiver ® i) = WP = 7 Wk,

(®)jtot and (F)ywk being the total and weak transform of the phase function v, respectivelyl]
Introducing a partition {u,} of unity subordinated to the covering {U,} now yields

k) a®
L(w) =Y °L(w+ > °lk(w),
o=1 o=c(F) +1

IFor an explanation of this notation, see section
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where the integrals @Iy, (p) and @I}, (i) are given by the expressions

/ / (g © ©o) (id piver ® 2Ck) (€™ " axs
My (Hy) |/ (id fiver® eQ)y (axmy, M (z®)x T 6y W)

eXP (k) ¥

o), d(T" Wi)(n) dA® aB®) dv(k))} dz®,

exp_ (k) v(k)
As we shall see in section [§, the weak transform (k)z/;“”“ has no critical points in the a(*)-charts,
which implies that the integrals €I, (u) contribute to I(u) only with higher order terms. In what
follows, we shall therefore restrict ourselves to the situation where ay o (id fiper ® Cx) has compact
support in one of the ¢*)-charts. Thus we can assume Ij, (1) to be given by

i Th (K) Jwk . %
/ [/ et Y (axw o (id fiver ® Ck)) P
Mk(Hk) C;l(gxﬂgl(m(k)))XT* Wi

exXP_ (k) o)
ATy o myso Wi (1) dA®) dBE) di} dz®)

i Tk (k) wk
_ iTk M

e (axk o (id fiver ® 1)) P

/Mk(Hk)x(—l,l) { /7“)((Sk+)z<k) )X g, (k) Xg:'(k) xT*

W,
expz(k) Tkﬂ(k) k

ATy ) 2o W) () dA®) dB® a5 ® | dry, do®,
where we skipped the index g, in particular identifying {; with 2, and took into account that
Gt o x m  (@™) = {a™} x (=1,1) x Y ((S)a0) X 8o X Gpe -
Here do*) is a suitable measure on the set v*)((S;}), ) such that

dX dn = & d(T},, oy et W) (1) dA® aB® a5 ®) dry. dz®),

ex’

Furthermore, a computation shows that
= (k) er(k),l
Oy, = |75 Py, 0 (-

First reduction. Let us now assume that there exists a m € W}, with orbit type G/H;, and let
) € My, (Hy),v™® € (v),00 be such that m = fi,(x(®) v*)). Since we can assume that m lies in
a slice at %) around the G-orbit of z(¥), we have G,, C G, , see Kawakubo [11], pages 184-185,
and Bredon [3], page 86. Hence, H; ~ G,, must be conjugate to a subgroup of Hy ~ G, . Now,
G acts on My, with the isotropy types (Hy), (Hg+1),- .., (Hy). The isotropy types occuring in Wy,
are therefore those for which the corresponding isotropy groups Hy, Hiy1,- .., Hr are conjugate
to a subgroup of Hy, and we shall denote them by

(Hk) = (Hi1)7 (Hiz)v ) (HL)

Now, for every z(¥) € My(H}), (vk),0 is an orthogonal G -space; therefore G, ) acts on
(Sk)p with isotropy types (Hi,),...,(Hr), cp. Donnelly [7], pp. 34. Furthermore, by the
invariant tubular neighborhood theorem, one has the isomorphism

Wi /G = (V)00 /G s

so that G acts on S, = {v € vy : ||v|| = 1} with isotropy types (H;,),...,(Hr) as well. As will
turn out, if G acted on Sy, only with type (Hp), the critical set of (®) )k would be clean in the
sense of Bott, and we could proceed to apply the stationary phase theorem to compute Iy (1). But
in general this will not be the case, and we are forced to continue with the iteration.
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Second decomposition. Let now (*) € My (H}) be fixed. Since y*) : v, — 1y, is an equivariant
diffeomorphism onto its image, v(k)((Sk)zoc)) is a compact G ) -manifold, and we consider the
covering

Y (Sk)py) = Whip U -+ - U Wiy, Wii, = fri, (D1 (vkiy))s - Wiz = Int(v® ((Sk) w0 )1),
where fri, @ Vpi;, — A ((Sk)m(k))zj is an invariant tubular neighborhood of 4 ((S).,cx ))i; (Hy;) in

YE((S)a0)i; = 7P ((Sk)pw)) U fuir (D (i), G 22,
r=2

and fri; (z0), 0()) = (exp_ i) oy(@))(v()), 2() € ”Y(k)((Sk)zm)ij (Hi,), vl € (Vkiy) i )
Vki; — Vgi; being an equivariant diffeomorphism onto its image. Let further {inj} denote a
partition of the unity subordinated to the covering {W;” ; }, and define

-Tk (k) jwk .
Tri; (1) :/ {/ e Y (axk o (id fiver ® Ci))
My (Hp) % (—=1,1) Iy (S (6)) X9, k) XGi(k) xT* Wi

expz(k) Tkﬂ(k)

Xk, @k ATy o Wi () dA® dB®) df)(’f)] dry, dz™®,

€

so that Ir(p) = Ipi, (1) + -+ + Ixp(p). It is important to note that the partition functions xg;
depend smoothly on z*) as a consequence of the tubular neighborhood theorem, by which in
particular y*)(Sy)/G ~ (k)((Sk) #)/Gy, and the smooth dependence in z(*) of the induced
Riemannian metric on ~( ((Sk)w(k)) and the metrics on the normal bundles vy;;. Since G,
acts on Wy, only with type (Hp), the iteration process for I (1) ends here. For the remaining
integrals Iy, (1) with k& < i; < L, let us denote by

i50 Y™ ((Sk)p )iy (Hiy) = 7™ ((Sk) 00 )iy (i)

the isotropy algebra bundle over v ((Sk),m )i, (Hi,), and by i, Wii, — 7% ((Sk) )i, (Hi,)
the canonical projection. For z(%) € v(k)((Sk)zm)ij (H;;), consider the decomposition

9= 9,00 D Gim = (9,6, @ gjij)) D 9y -

Let further A(ij A;(l be an orthonormal frame in gi-(ij), as well as Biij), . ,BSZJ_)) be an
orthonormal frame in 9,6 and v(k”), v(ﬁ”)) an orthonormal frame in (l/]gij)w(ij ). Integrating

along the fibers in a neighborhood of sz iso~( ((S[g)m(k)) (Hi;) C Wi, X gp then yields for
Iii; (1) the expression

Fansicia Lo
» e X

My (Hi)x(=1,1) =Sy (S0 )iy (Hiy) Bt (209))xg )y xat ) x T (i) Wi
! ’ OXP (k) Th OXP_(ij) V7

(axk © (id fiver @ Go))Xki; Prsy (T o e o i (W) () dA®) 44 aBs) dv“ﬂ]dx(ij)} drypdz™®,

where @y, is a Jacobian, and
36D D ()60 X8y X0 3 (0), 40D, BOY) s (exp e o), AG) 1 B — (509, 9
are coordinates on ;- Y(2()) x g 00, while dz(%) | and dA%), dB), dv() are suitable measures

in the spaces v(k)((Sk)zm)ij (Hi;), and gi-(ij), 8,65 51 (Vki; )65 » respectively, such that we have
the equality & dB® do®) = &y, dAW) dB) dulis) dzis).
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Second monoidal transformation. Let us fix an [ such that k¥ < [ < L, and consider in the
q®-chart (—1,1) x y®)(S;") x g a monoidal transformation

et Bz, ((1,1) x /(S x g) — (=1,1) x ¥ (S,1) x

with center

Zu=(-1,1) xiso T (),  Ti=  |J  AP0SDH.0
x(F)e My, (Hy,)
Writing A® (z®), 20, a0) = 3o AP (@®), 0), BO (@0, 20, 50y = 3° 50 B (21), and
<D
v O (2®) g Zq ok (2(8) 0y,

one has Zy; = {a(k) =0, a®) = 0, q 0 = O}, which in particular shows that Zj; is a manifold. If
we now cover Bz, ((—1,1) x v (S;) x g) with the standard charts, we shall see again in section
[ that modulo higher order terms we can assume that ((ax o (id fier ® Ci))Xk1) © Gt has compact
support in one of the ¢(V-charts. Therefore it suffices to examine (j; in one of these charts, in
which it reads

Cut (:C(k),m,:c(l),n,ﬁ(l),A(k),A(”,B(l)) .
— (a:(k),rk,expzu) Tl’[)(l),TlA(k),TlA(l) + B(l)) = (x(k),Tk,f,(k)vA(k)’B(k)),

where
NO)

5O (@® 20 ¢y = +Zq (kl / 1+Z (z 67(1)((3}5)1(”)

i#0 i#o

for some p. Note that Zj; has normal crossings with the exceptional divisor Ej, = ¢, 1(Zk) =
{7 = 0}, and that

Wit =~ fr(Sy; x (—1,1))
up to a set of measure zero, where Sg; denotes the sphere subbundle in vy, and we set S,:rl =

{v €ESp:v=>Y vivgkl), vy > 0}. Consequently, the phase function factorizes according to
P o (id fiper @ (G 0 Cut)) = KDYt = 7 1y - ROk,
which in the given charts reads
Y(n, X) =7k {n(%cxpz(k) T exp_ 1 nq;m)
+77((expm<k>)*,m exp, iy 7o ATAY + BY) exp,a Tlﬁ(l)])}
=TT {n(%expm(k) % exp_a) mam) + ﬁ((expmm)*,m exp, 1y 7D (AAD) exp, ) Tlﬁ(”])

1 ((€XD20 )y ey 7150 [(€XD0) 50 [ABD)5 V] )|

where we took into account that

- d - .
)\(B(l)) eXpm(l) Tlv(l) = E eXp1(l) (Lc*‘B(L) )*,m(k)Tlvl(if):O = (expl(l))*ﬂ'tﬁ(” (A(B(l))TlU(l))
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Since

G ™ x {mi} > mig (29) % g x g700)

= {zW} x {7} x {2V} x (=1,1) x 7 ((S0)a00) X 800 X 830 X 8300,
we obtain for Ij;(u) the expression

cTEeTL (K1), Jwk
e n ¥

/Mk(Hk)x(—l,l) [/7<k>((s,j)m(k))l(Hl) ~/CM1({w(k)}X{Tk}XTrMI(w(l))ng(k)Xg:'(k))XT;(M)Wk
% ((ax o (id fiver ® Ci))Xk1) © Cot Dt d(T oy Wit ) (1) dA® dAD aB® gD dn] dac(l)} dry, dz®

i TkTL (K1) Jwk
e'n v

/Mk(Hk)X(Ll) [ [Y(")((Szr)z(k) )i (Hp)x(=1,1) [/Y”)((SL)Z(Z))XQI(L) XGi(l) ng(k))XT;(M) Wi
% ((ax o (id piver ® Ce))Xk1) © Crt Dt AT oy W) () dA® dAD dBO) df;@] dr d:z:(l)] dry dz®,

where m*) = exp, ) 71, exp,) 7191, and doV is a suitable measure in v ((S};), ) such that we

have the equality
dX dn = B d(TF 40y W) () dA® dAY dBO a5V dry deV dry, da™®

m

~ W) 4 g g _
Furthermore, ®y; = |7;|¢ T4+ =1d; o (.

Second reduction. Now, the group G, acts on v ((Sy),w ) with the isotropy types (H;) =
(Hi,),(Hi,,,),...,(Hr). By the same arguments given in the first reduction, the isotropy types
occuring in Wy; constitute a subset of these types, and we shall denote them by

(Hy) = (H;,,),(Hi,,),...,(HL).

Consequently, G ) acts on Sy with the isotropy types (HZ-TZ)7 ..., (Hg). Again, if G acted on

Sk only with type (Hp), we shall see in the next section that the critical set of () vk would be
clean. However, in general this will not be the case, and we have to continue with the iteration.

N-th decomposition. Once one arrives at a sphere bundle Sgimy,... on which G acts only with
the isotropy type (Hp), the end of the iteration will be reached. More precisely, let N > 3,
(Hi,),...,(Hiy,,) = (Hz) be a branch of the isotropy tree of the G-action on M, and f;,, fi,,
Sivs Sivig, as well as () € M; (H;,), 202) ¢ W(il)((S;)m(in)ﬁ (H;,) be defined as in the first
two iteration steps. Let now N > j > 3, and assume that f;,. ;_,, Si,..4;_,,... have already been
defined. Let y(%=1)((S;,..i,_,) ;1) )i, be the submanifold with corners of (%=1 ((S;, i, _,) ;1))
from which all the isotropy types less than (H;, ) have been removed. Consider the invariant tubular
neighborhood f;, i, = exp oy(ii) - Viy.ij — W(iﬂ'*l)((S’il,,,ij,l)wuj,l))ij of the set of maximal
singular orbits y(ti-1) ((Siy.ij_ ) p5-1))i; (Hi; ), and define S;, _;; as the sphere subbundle in v, ;.
For z(%) € V(ij’l)((S;;,,,ij,l)mﬁjfn)ij (H;,;) we then consider the decomposition

L
9.6 = 8,65 @ gw(ij)7
and set d() = dim g;(i_), elii) = dim 9y(i,)- After N iterations, one arrives at the decomposition
J

1 1 1 1 1
0= 0,60 @006 = (Bu62) @ Gpin)) Dy = = Bplin) I D D Grin)s
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and we denote by {Agij)(x(il), ...,z(1))} a basis of gi(iv), and by {B{"™) (z()_ .. 2(~)} a basis
J
of g,(;)- Let further

alis) e(iN)
Al) — Z Oé,sjj)A,E‘ij)(fL'(il), . ’x(ij)), BnN) — Z ﬁﬁiN)BﬁiN)(x(il)7 o ’x(iN)),
r=1 r=1
and put
c(iN)
G0 (1) glin)y = (im) (vgl...m)(x(ij)) T Z qﬁiN)vﬁil...iN)(z(ij)))/ 1+ Z(qgw))z
r#o r#o
for some p, where {’Ug«il.niN)(:E(il)’ . x(iN))} is an orthonormal frame in (v;,. i ),¢n) . Finally, we

shall use the notations
m(z]lN) = XD, (i) [Tij expm(ij+1)[7—ij+1 expz(ij+2)[' .- [TiN—2 expz(iN,l)[TiNfl €XPyGin) [TZN’D(ZN)]]] s ]]]7
X (5in) — Ti; iy AU 4 Tijer " i AU o AUN-D o AGN) BN

where j = 1,..., N. Consider now for every fixed (v =1) € y(N=2)((S;, i\ ) in_o)in_y (Hiy_,)
the decomposition of the closed G (i, _,)-manifold 7(”\“1)((S’il,,,iNfl)m(iN,l)) given by

AN (Siyina)gin0) = Wiy iy U Wiy in L
Wi i = firoin (D1 (Viy i)y Wiy i _yn = Int (Y ((S5, iny) yn0)L)s

where fi 1 vi 1o — ’y(iNil)((Sil...iN—l)z(iNfl))iN is an invariant tubular neighborhood of the
closed invariant submanifold 'Y(iNfl)((Sil».»iN—l)z(iN—l))iN (Hiy) in FY(iNil)((S’il---iNfl)m(iNfl))iN -
AN D (S5, i 1) Gn1)), and

YN ( Sy iy 1) om0z =YV (Siyin ) pin—0) = firin (D1/2 (Vi ine))-

Let {Xil...izv , Xi1~~~7:N—1L} denote a partition of unity subordinated to the covering by the open sets
{Wi, . ins Wi . in_1L}, and decompose I;, ;. _, (1) accordingly, so that

Iil---iN—l(:u’) = Liy.in (/L) + Iil---iN—lL(:ll’)'

N-th monoidal transformation. In the chart (—1,1)N =1 x yliv-) (gt -
monoidal transformation

<i1...iN : BZilmiN ((_15 1)N71 X FY(lNil)(S—i_

Zl...’L'N71

) x g consider the

N—1 in_ +
) xg) — (=L, DN x (gt Y xg
with center
Ziyin = (1L, )N U xiso I L (Hy),
Fil»»»iN—lqiN = U FY(iNil)((Sil---iNfl)m(iN—l))iN = Fy(iNil)((Sil---iNfl))'
m('LN71)
For an arbitrary element A() € gfj one computes

i d 4 AG5) i1 d Al . .
(AZ]))m(iIMiN) - Ee e .m|(21:0”\7) = %expm(il) [(e A )*,w(il)[Tilm(mmlN)H

= (expm(il) )*,Tilm(i?“iN) [/\(A(Z]))Tll m(i}”iN)]v

t=0
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successively obtaining

(e t4™y

(Aij))mul,.,w) = €XP,(i1) [Til exp,p [ [Ti;_, (e (ij'”iN)] . H

*,x(il)m [t=0

= (XD )y, mtizin0) [Tin (€XPotin) )y s i) [ - - 75,  M(AGD ym G- ],
As a consequence, the phase function factorizes according to
(i) ot — J(nm(ilmiN))(X(il...iN)) oy ey, (i) ok
where 1, ¢, ..iy) € 7 (m1+IN)) and

N

i1..in), Twk (i) Z
(a N)U) = Ny Gir--in) (A(“)m(il«»«izv)> + NG ((expz(il))*,Tilm(i2«»«iN)
Jj=2

[(expw(iw)*77_1,27”(1'3“@]\,) [ .. (esz(ijfl))*’Tijilm(ij“@N) [A(A(ij))m(ijn»iN)] .. H)

+ N Greeind ((expm(il))*)Tilm(ig.,.iN) [(expm(ig))*)Tizm(ig,.,iN) [ ..

(XD 30). 1, o (BT T])

in the given charts. With S;, i, equal to the sphere bundle over vy~ =1((S;, iy ) ix_1 )iy (Hiy ),
one finally obtains for the integral I;,  ;, (1) the expression

Ly in (1)

/Mn(Hn)X(—l»l) {/V“”((Sfl)m(m)iz(Hiz)X(—l»l) - [/Mlx(s;“,m1>w<iN1>>iN<HiN>x<—171>

(6) [/ G Gk
VNS i) o)) X8, G X8y XX 82 XT7 (o Wiy
(T gy Wiy ) (1) AT L dAGN) BN d@“’“} driy dzl™) . } dri, d:zr(m} driy dzt™),
Here
iy iy = [@Xiy © (i fiver @ iy © Giyip ©+++ 0 Giy i )] [Xinia © Cinin © 0 Giying] + + + [Xin iy © Gy
is supposed to have compact support in one of the 8(“~)_charts, and

N

(i)il...iN = H |Tij

j=1

C(ij)+zi:1 d(ir),l(l)il i

where ®;,. ;, is a smooth function which does not depend on the variables 7;;.

N-th reduction. By assumption, G acts on S;, . ;5 only with type (H},), and the iteration process
ends here.

4. PHASE ANALYSIS OF THE WEAK TRANSFORM. THE FIRST FUNDAMENTAL THEOREM

We are now in position to state the first fundamental theorem in the derivation of equivariant
spectral asymptotics. For this end, let us define certain geometric distributions F(%) and F0~)
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on M associated to the iteration of N steps along the branch ((Hj,),...,(Hiy,,) = (Hr)) of the
isotropy tree of the G-action on M by setting

E®) i) = Span{Y, y..ix) : Y € gi‘(il)},

mi1-
Ei) — v o v N YO (ij.-in)
(7) 1N (eXPz@l))*,Tilm“zmw) cee (expw(ljfl))*77—ij71m(1j“‘1N)[ (gm(ij))m ],
) e = (XDt g, iz in0 -+ (XD im0 )y o) [M (800 )T,

where 2 < j < N, the notation being as in the previous section. By construction, for 7;; # 0,
1 < j < N, the G-orbit through m ") is of principal type G/Hy, which amounts to the fact
that G acts on S;, _;, only with the isotropy type (Hp). Let n,, ¢, iy € 7 (m(8)). We then
have the following

Theorem 1. Consider the factorization
J(T]m(ilmiN))(X(ilan)) = (iin) ot — Tiy - Tin (i1-in ) gk, pre
of the phase function i after N iteration steps, where (i in)qwh.pre g gien by
o N
nm(ilwiN) (A(il)m(ilwiN)) + Z nm(ilwiN) ((expm(il))*7Tz'1m(i2‘*‘iN) [(expm(i2))*7Tizm(i3“‘iN) [ o
j=2

m i iN) [/\(A(ij))m(ijmiN)] T H) t MppGir-in) ((expm(il))*,nlm(ﬁwiz\r)

—1

[(expm(ig))*7Ti2m(i3.,.iN) [ .. (expx(iN))*ﬁTiN,D(iN) [)\(B(iN))ﬁ(iN)] .. H),

Let further

(expm(ijfﬂ)*’ﬂj

denote the pullback of (il'“iN)iEw’“’pre along the substitution T = d;,. iy (0) given by the sequence
of monoidal transformations

Oy in Oy oin) 03, (1,00, o, 0iy ) = (ng,...,al{N) »—»ng(agl,l,...,agN) = (Jé’l,...,crz’-gv)
HU;;(Uﬁvaégvla-“vggv): b = (Tila"'vTiN)'

Then the critical set Crit((“'”iN)UN)“’k) of (i1-in)gjwk g gwen by all points
(0-7:17 . e 70—7‘N 5 :E(ll), “ee 7$(1N)7 6(11\7), A(Zl)7 “e 7A(ZN), B(lN)7 nm(lllN))
satisfying the conditions
I)  AW) =0 forall j=1,...,N, and A(B®""))p(i~) = 0;
(IT) 9,610 € Ann(Efﬁi)lmiN)) forallj=1,...,N;
(L) 7y in0 € Ann(FUN) Y,

(1N

Furthermore, Crit( (1-iN)wk) is o C°_submanifold of codimension 2, where r = dim G/H, is
the dimension of a principal orbit.

Proof. To begin with, let o;, ---0;, # 0. In this case, the sequence of monoidal transformations
¢ =Ciy ©Giyiy © -+ 0Ciy..in ©90iy..in constitutes a diffeomorphism, so that

Crit( (il'“iN)d)tOt)gil...UI.N#O ={(oiy,---, crl-N,aj(il), o, al) gl Al 4G B(iN),T]m(il.,.iN))
EétOt, Oiy Oy #O},
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where C** = ((¢ ®1id fiper)~1(Crit(1))) denotes the total transform of the critical set of 1. Now,
(nm(il.,.iN),X(ilmiN)) S Cl"lt(’lb) < Mptii-in) € Q, X(“ZN) =0.

M,,G1-in)
Furthermore, X,, = 0 clearly implies )N(,r(n) = m.(X,) = 0. Since the point m(7-~) lies in a slice

at ("), the condition Xﬁihlzfi{) = 0 means that the vector field X (1-¥) must vanish at (1) as
well. But

gmzLie(Gm):{Xeg:X'm:O},
so that X(1iv) € g ). Next
9.6 C G Gn_n C o COpin
and gi(ijﬂ) C g,G, imply
Xﬁﬁi’)'”’) =Ty - Tin Za£i1>(/1£“>)w(il> = 0.
Thus we conclude o) = 0, which gives X (2-in) ¢ 0,,01.in), and consequently X (iz-in) ¢
g,nia-.in) - Repeating the above argument we actually obtain for o;; # 0

(8) ImGi-in) = B6nN)

since g;in) C @,6n) - Therefore the condition Xﬁihlzfi{) = 0 is equivalent to (I) in the case that

all o;; are different from zero. Now, 1,,¢...ix) € §2 means that

J(’I]m(ilA,AiN))(X) = nm(ilu.iN)(Xm(ilmiN)) =0 VX € g,
which is equivalent to 1, ¢, ..ix) € AnN(T, iy ..ix) (G - mUt-iN))), If oy, #0forall j=1,...,N,
(IT) and (III) imply that

N Gi1-in) ((expm(il))*7Ti1m(i2miN) [ .. (expm(ijfl))*ﬁTiNilm(iN) [)\(Z)m(iN)] .. ]) =0 VZe 9,Gn_1)s

since g (in_1) = G 6n) D gi-(iN). By repeatedly using this argument, we conclude that for o;; # 0
(9) D), D) < 701y € AND(T, y.cin) (G - m iV,
Taking everything together therefore gives
Crit( (ilmiN)wtOt)Uil o #0
(10) ={(0iy, .-+ Tip, ) 2O GON) A - AGN) BON) )
iy - 05y # 0, (I)-(IIT) are fulfilled and BG~)Y =0},

M,,(i1-in)
Here X} denotes the vertical component of a vector field X € T'(T*M) with respect to the decom-

position T,,(T*M) =TV & T", TV being the tangent space to the fiber Ty M at zero, and T" the
tangent space to the zero section M C T*M at . We now assert that

Crit( (il...iN)¢wk) _ Crit( (il"'iN)wtOt)Uil---UiN;ﬁO'

To show this, let us write 1,,6,...h0 = Y pi dg; With respect to some local coordinates qu, ..., ¢n,
and still assume that all o;; are different from zero. Then all 7;; are different from zero, too, and

Op (f1-in)wk — () is equivalent to

Op T, 1y.ine) (X 18Dy = (dgy (X Y dig (X01) )y =0,

m (i1 i) m (i1 i)
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which gives us the condition X (ZL lufl)v) = 0. By (8) we therefore obtain condition I) in the case

that all o;; are different from zero. Let now one of the o;; be equal to zero, so that all 7, are zero.
With the identification Ty (T, M) ~ T,,, M one has

(expm)*10 : TO(TmM) — TinM, (eXpm)*10 ~ ld,
and similarly (exp ;) )«o0 = id for all j =2,..., N, so that

(11) (f1..in 1/}wk sz dlh( L0+ Z)\ A(lg (35) 4 /\(B(uv)) (ZN))

Therefore 0, (irin)ghwk — () is equivalent to

N
A o+ Z)\(A(ij )2() 4 A(BUN))50N) = 0.

j=2
Now, let N,y (G -2(")) be the normal space in T, M to the orbit G- ("), on which G ;) acts,
and define N_;,,) (G q)) - x(5+1)) successively as the normal space to the orbit Gy - 2li+1) in
the G ;) -space N _q;) (Gm(ij,l) ~a:(ii)), where we understand that G, = G. By Bredon [3], page
308, these actions can be assumed to be orthogonal. Set

J
(12) V(““.Zj) = ﬂ Nw(ir) (Gm(iT—l) : ‘r(lT)) = Nm(ij)(G:c(ijfl) : I(Zj))
r=1

Since z(5) € ”y(ij*l)(S;r ) ;o) C V0ii-1) e see that for every j =2,..., N

i1/

(Za(lj ])) (i5) cT G5 (Gw(ij—l) . I('LJ)) C V('L.lwijfl)_

3

In addition, (Agil))m(m € T,y (G -2)), and )\(Z Bl glin) )~(iN) € V0in) 5o that taking
everything together we obtain for arbitrary o;;
Op (et =0 = (D).
In particular, one concludes that (1~ )z/;w’“ must vanish on its critical set. Since
d( (i1...iN)¢tot) _ d(Til . 'TiN) . (i1~~~iN)¢1Uk + 7 ~TiNd((i1"'iN)¢wk)7
one sees that
Crit( (1)) C Cri( (1) tor),
In turn, the vanishing of ¥ on its critical set implies
CI‘lt( (il.“iN)ka)a’il e TN = Crit( (ilmiN)U)tOt)gil 0 70
Therefore, by continuity,
(13) Crit( (il...iN)¢tot)gilmUiN#O C Crit((n...m)djwk)'
In order to see the converse inclusion, let us consider next the a-derivatives. Clearly,

6a(i1) (il"'iN)iﬁwk =0 <= nm(il,“iN)(? (i1 1N)) =0 VY e g

m

(i)

For the remaining derivatives one computes

o (irein), Twk
8a£1j) 1/)

= N lit-in) ((expm(il))*1Tilm(i2miN) [ .. (expm(ijfﬂ)*1Tij71m(ijmiN) [/\(Agfj))m(ijmiz\r)] .. ]),



16 PABLO RAMACHER

from which one deduces that for j =2,..., N
Dy I 20 Y egh,)

M1 -in) ((expm(il))*77_1'17”(1'2“,7;]\,) [ .. (expz(ij,l))*7Tij71m(ijmiN) [)\(Y)m(ijn»iN)] . }) = 0.
In a similar way, it is not difficult to see that

8ﬁ(ij) (il'”iN)UN)wk =0 — VZ €9..6n)

N Gi1-in) ((expw(il))*7Ti1m(i2.,.iN) [ .. (eXpw(iN))*)TiNﬁ(iN) [)\(Z)f;(izv)] .. ]) =0.

by which the necessity of the conditions (I)—(III) is established. In order to see their sufficiency,
let them be fulfilled, and assume again that o;; # 0 for all j = 1,..., N. Then (@) implies that
Nyniriny € ANN(T Gy .iny (G -m 1)) Now, if oy, # 0, G -m(1-1¥) is of principal type G/H],
in M, so that the isotropy group of m (1) must act trivially on N, Gi1in) (G-m(il“'iN)), compare
Bredon [3], page 181. If therefore X = X7 + X denotes an arbitrary element in T, ¢y..ox) M =
T, riny (G-mEO NS N i) (G-mU+8))) and g € G, ,...iy), One computes

9 Mir i) (X) = [(Lg=1) 1,61 i) Ty | (B) = M i1ind (Lg=1) 4 pia i) (X))
= N ti1in) (EN) = N tin.in) (X).
In view of (), and A\(B(~))3(~) = 0 we therefore get the condition BfinN()lvN) = 0. Let us now
assume that one of the o;; equals zero. Then
i € Am(T ) (G, ) - 2l) Vj=1,...,N,
(14) (1), () & { e Anngszi:)((di(ij), WN)))))_ ’
Lemma 1. The orbit of the point 9"~) in the G n) -Space V0iin) s of principal type.

Proof of the lemma. By assumption, for o;; # 0, 1 < j < N, the G-orbit of m(#1-+1¥) is of principal
type G/Hp in M. The theory of compact group actions then implies that this is equivalent to
the fact that m(2-#~) ¢ V(1) is of principal type in the G ;)-space V(1) see Bredon [3], page
181, which in turn is equivalent to the fact that m(s-in) ¢ V(i) ig of principal type in the
G i) -space V(i2) “and so forth. Thus, m(%+¥) ¢ V(--%-1) must be of principal type in the
G ;1) -space V0-ii-1) for all j = 1,... N, and the assertion follows. O

As a consequence of the previous lemma, the stabilizer of #(*~) must act trivially on Ny (Gutiny -
plin )). If therefore X = X1 + X denotes an arbitrary element in

T. (il)M = Tw(il) (G : x(ll)) 3] Na)(il)(G . (E(il))

N
= @Tz“j) (Gm(ijﬂ) : z(ij)) D Tf;(iN) (Gz(iz\ﬂ : f’(iN)) D Nﬁ(iN) (Gm(iz\ﬂ : f’(iN))a
j=1

we obtain with (4]
9 My (X) = [(Lg=1) i) Mo ] (X) = 060 (Lg=1) 4 o6 (X))
=Ny (XN) = g6 (%), 9 € Gyin-

Collecting everything together we have shown for arbitrary o;; that

(15) 0p alin) ....alin) gln) (rivlgwh — 0« (I), (IT), () = BS]’;J\J()IVN) =0.
By (I0) and (@I3]) we therefore conclude

(16) Crit( (il...iN)»(/}tot)mlmgiN 20 = Crit( (il,,,iN)djwk)'
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Thus we have computed the critical set of (1-+i)ywk and it remains to show that it is a C>-
submanifold of codimension 2x. For this end, let us note that if o;; = 0 for some j, then ES&Z) =
T, (G- 2)), and

E(lj) Tm(ij)(Gz(ijil) {E(Z])) C V(il"'ijfl), 2<j5< N,

1) —

while F;m) = Ty (G iy - 9)) € Vi) Therefore E:(]Z) NV@-4) = {0}, so that we

(i) —
obtain the direct sum of vector spaces

EW @B ¢...0EY) o FiY ¢ T,u,M.

1) 1)

On the other hand, note that if o4, - - - 05, # 0 one has

m m (i1 mi1- (i1 iN)

N
T (il,“iN)(G AR )) E(“) i) D @Til e Ty 1E(lj) i) DTy - .TlNF(lN)

for dimensional reasons, so that we obtain the direct sum of geometric distributions Zjvzl El) @
F(n) - Consequently, we arrive at the characterization

Crrit( (1) k)

17 .
( ) = {A(Z]) =0, /\(B(ZN)) ) = =0, NG in) € Ann(@E(l(n N ® F( (%1) uv))}'
j=1
Note that the condition B,(,W()lv = 0 is already implied by the others. Now, dim EU (31 i) =

dim G ;1) - z(4) . Since for 0iy - 0in 7 0 the G-orbit of m(i1-+in) ig of principal type G/Hp, in
M, one computes in this case

k=dim G - miv) — dim T L e (G- m(il...iN))

_ (25) (in)
dlm (11 N 2] @Tll s T 1E J(n i) D 7y "'TiNFm(il.,.iN)]

1mE( )

mi1--

iy T dim FUN)

mi1-inN)”

I
=

i)

But since the dimension of the spaces B 1) and F(lffl) N

i, , we obtain the equality

does not depend on the variables

m(i1-- mi1-iN)

(18) K= Zdlm %) iy Fdim i)

for arbitrary m(-i~) Note that, in contrast, the dimension of T, rin) (G- m(il'“iN)) collapses,
as soon as one of the 7;; becomes zero. Since the annihilator of a subspace of T}, M is itself a linear
subspace of T, M, we arrive at a vector bundle with (n — x)-dimensional fiber that is locally given
by the trivialization

mi1--

N
(%xm),@uN)’Ann(EBEm“)l . @ FOv) w))) — (o7, 20, 50)),

Jj=1
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Consequently, by equation (7)) we see that Crit( (1-i¥)pwF) is equal to the fiber product of the
mentioned vector bundle with the isotropy algebra bundle given by the local trivialization

(Uij ) x(Zj)u ’D(,LN)a g{;(iN)) — (Uij ’ :E(lj)7 ﬁ(ZN))
Lastly, since by equation [8) we have ggiy) = @,,61.....ix) in case that all o;; are different from
zero, we necessarily have dim g;uy) = d — &, which concludes the proof of the theorem. O
5. PHASE ANALYSIS OF THE WEAK TRANSFORM. THE SECOND FUNDAMENTAL THEOREM

In this section, we shall prove the second fundamental theorem in the derivation of equivariant
spectral asymptotics for compact group actions. We begin with the following general observation.
Let M be a n-dimensional Riemannian manifold, and C' the critical set of a function ¢ € C*(M),
which is assumed to be a smooth submanifold in a chart O C M. Let further

O[:(Iay)'_)pa QZ(QD"'aqn)Hmv meov

be two systems of local coordinates on O, such that a(x,y) € C if and only if y = 0. One computes

Dy (o)) =3 2P (51 ¢ (e, y)) 0y, (57 0 a)i(a. ),

i=1 3q1
as well as
(9yk 3yz(¢oa)($ay) Z (’gq ﬁ) (ﬁ_ (xay)) ayk 6%(6—1 Oa)i(fﬂ,y)
=1 o
82
+ ijl 8(;1/}8(5 OZ(ZE, y)) 89’6 (671 0 a)j (ZE, y) ayl (671 o 04)1-(3:, y)
Since

04*7(I7y)(8yk) = Zayk (671 © o‘)j(xvy) 6*,(ﬁ’10a)(m,y)(aq]‘)a

this implies
(19) Dy, Oy, (¥ 0 @) (2,0) = Hess Yo (z,0) (i, (2,0) (T )5 O (2,0) (Ty)),

by definition of the Hessian. Let us now write z = (z/,2”), and consider the restriction of ¢ onto
the C*°-submanifold

My ={meO :m=a(d,2"y)}.
We write o = 15, , and denote the critical set of ¢ by Cr, which contains C'N M. as a subset.
Introducing on M. the local coordinates
o 2 (2" y) = ald, 2", y),
we obtain
Dy, Oy, (Yer 0 ') (2", 0) = Hess Vet |a(a,0) (oszy(m//ﬁo)(ayk), oz;’(znﬁo)(ayl)).

Let us now assume C.» = C'N M., a transversal intersection. Then C, is a submanifold of M.,
and the normal space to C as a submanifold of M., at a point o/ (2", 0) is spanned by the vector
fields o, (.1 )(9y,). Since clearly

6yk 61/1 ("/JC’ © a/)(x//7 0) = ayk ayz W © a) (‘Ta 0)7 T = (C/, :Ell)a

we thus have proven the following
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Lemma 2. Assume that C.o = C N\ M. Then the restriction
HeSS’tb(Oz(Cl,,’E”,O))|NO¢(C,1IHYO)C

of the Hessian of 1 to the normal space Ny (o 5,0)C defines a non-degenerate quadratic form if,
and only if the restriction

Hess ¢ (o' (2", 0)) N (1 ) C
of the Hessian of Y. to the normal space Ny (g 0)Cer defines a non-degenerate quadratic form.
O

Let us now state the second fundamental theorem, the notation being the same as in the previous
sections.

Theorem 2. Let
(il'“iN)’lEtOt =Ti, . Tin (il...iN),Jjwk,pre =7 (U) e Tin (O’) (il...iN),lek
denote the factorization of the phase function after N iteration steps along the isotropy branch
((Hil)_v"'v(HiN+1) = (H)). By construction, for 7;; # 0, 1 < j < N, the G—m_”bz't_ through
mU-in) s of principal type G/Hy,. Then, for each point of the critical manifold Crit( (”“'ZN)z/)“’k),
the restriction of
Hess (il'”iN)iﬁ“Jk

to the normal space to Crit( (il'“iN)d;“’k) at the given point defines a non-degenerate symmetric
bilinear form.

For the proof of Theorem [2] we need the following

Lemma 3. Let (n,X) € Crit(¢), and w(n) € M(HL). Then (n,X) € RegCrit(y). Furthermore,
the restriction of the Hessian of ¢ at the point (n, X) to the normal space N, x)Reg Crit(+) defines
a non-degenerate quadratic form.

Proof. The first assertion is clear from (@) - ([B). To see the second, note that by )

neEQNT M(HL), Xpy =0 = X,=0.

Let now {q1,...,¢,} be local coordinates on M, m = m(q), and write 0, = > pi(dgi)m, X =
> 8:X;, where {X1,..., X4} denotes a basis of g. Then

B0, X) = pildg)m(Xm),
and
(N, X)=0 —= X, =0, Db, X) =0 <= ne.
On T*M(HL) x g we therefore get
Ops¥(n, X)=0 = 0q¢v(n,X)=0.

Let t4(p, s) denote the phase function regarded as a function of the coordinates p, s alone, while
q is regarded as a parameter. Lemma [ then implies that on T*M(Hp) x g the study of the
transversal Hessian of 1 can be reduced to the study of the transversal Hessian of v,. Now, with
respect to the coordinates s, p, the Hessian of 1), is given by

( 0 (dgi)m ((X;)m) )

(dgj)m ((Xi)m) 0 '

A computation then shows that the kernel of the corresponding linear transformation is isomorphic
to Ty s(Crityy) = {(ﬁ, 8): Z[)j(dqj)m(q) € Ann(T),() (G - m(q))), > 5X;, € gm(q)}. The lemma
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now follows with the following general observation. Let B be a symmetric bilinear form on an n-
dimensional K-vector space V, and B = (B;);,; the corresponding Gramsian matrix with respect
to a basis {v1,...,v,} of V such that

B(u,w) = E u;w; Byj, U= E uv;, W= g W;0;.
%,

We denote the linear operator given by B with the same letter, and write
V=kerBaW.

Consider the restriction Bjy xw of B to W x W, and assume that Bjy . w (u,w) = 0 for all u € W,
but w # 0. Since the Euclidean scalar product in V' is non-degenerate, we necessarily must have
Bw = 0, and consequently w € ker BN W = {0}, which is a contradiction. Therefore By «w
defines a non-degenerate symmetric bilinear form. O

Proof of second fundamental theorem. Let us begin by noting that for o;, - - - 0, # 0, the sequence
of monoidal transformations ¢ = (;, © G iy © -+ 0 (iy.in © 0iy..iy constitutes a diffeomorphism, so
that by the previous lemma the restriction of

Hess(“'”iN)dN)tOt (o, 20) 5n) i), 5(iN),p)
to the normal space of
Crit( (ilmiN)wtOt)Un'”ﬂN #0

defines a non-degenerate quadratic form. Next, one computes

62 (i1...iN),JJtot ( ) 82 (1‘1~~~1'N)r¢/;u’lC
Ovk 0 kl_ﬁl(a) e OV 0m k,l

(az(nl(g)mnN(a))) o\
+ adira’is s (11...1N)wwk+R

s

0 0

where R represents a matrix whose entries contain first order derivatives of (i1--i¥)q)wk as factors.
But since

Crit( (ilmiN)wtOt)ail o 0 T Crit((ilmiN)/lek)bil 0 700

we conclude that the transversal Hessian of (i1 i )15“’]“ does not degenerate along the manifold
Crit((il"'iN)z/Jw’“)‘gil...UiN +0- Therefore, it remains to study the transversal Hessian of (i1 0N ) gy
in the case that any of the o;; vanishes. Now, the proof of the first fundamental theorem, in
particular (I3]), showed that

0, i atin) gly IR =0 = 9 i) glin) gliny CHIIPUR =,

O’il ,...O’iN N
If therefore
(i1in) fwk (ij))ﬁ(w)(a(ij)jﬁ(m)jp)

denotes the weak transform of the phase function 1 regarded as a function of the variables
(™). alx) 30N p) alone, while the variables (oy,,..., 04,2z, ..., 20~ 50~8)) are kept
fixed,

Crit(G--v) ook

i, (i) 56N

) = Crit((“"'iN)z/;U’k) N {oij,:b(if),ﬁ(m) = constant}.
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Thus, the critical set of (il"'iN)z/;:k G

;) gax 18 equal to the fiber over (o3, 2() 5N of the vector
bundle

N
((Uiﬂx(ij),f,(z'N)),gWN) x Amn(@EY), ., & Fx). w))) s (o, i), ),
j=1
and in particular a smooth submanifold. Lemma [2] then implies that the study of the transversal

Hessian of (1¥)*¥ can be reduced to the study of the transversal Hessian of (11 ”\’)1/)“’7’“ ) 5

The crucial fact is now contained in the following

Proposition 1. Assume that oy, ---0;y =0. Then
ker Hess (il"'iN)%Z:fik (i) gtin) (0550 , BN, p) ~ T, ..., O,ﬁ“m,p)crit(( ¢ik (€ uN))

for all (0,...,0,80~) p) € Crit( (“'“”\’)ﬁ;"f g ), and arbitrary (), 505

20 56

Proof. With ([[Il) one computes

By, (- )Gk = dg, (AGD ) + S AU 4 A(BU)50N) ),
Jj=2

The second derivatives therefore read

apT 6103 (il ZN)wwk = 07

i m(l )i}("N)

aagil) 6177‘ (i1...iN),¢wk = dqr((Ag“))w(m),

o, i) 5N
9 ;) Op, (“'”ZN)U)"”“ 2 g = dar(A(AL)al)),
0 5in) Op, (“'”N’W’“ L0 g = dar(ABIY)a)),
Next, one has
8(1?]-) (i) gk — szdql A(” ZJ)), ji=2,...,N,

and similar expressions for the o(")-derivatives, so that for oi, -+ 05, = 0 all the second order
derivatives involving o%) must vanish, except the ones that were already computed. Finally, the
computation of the S0~)-derivatives yields

41...1 Twk _
6ﬁ£iN) aﬁgiz\z) (& N)w 203 pGN) T 0.

oiss
Collecting everything we see that for o;, - - - 0, = 0, the Hessian of the function (il"'iN)ﬁ“Jikym(ij)j(iN)

with respect to the coordinates (%), 3(3) p is given on its critical set by the matrix

0 dgr (AS), i) .. dgrN(AP))20)) g, (MBI 5w
dgs((A)) ) 0 . 0 0
dgs(A(AUN)) 20 0 0 0
dgs (A(BI))p(in)) 0 0 0

Let us now compute the kernel of the linear transformation corresponding to this matrix. Cleary,
the vector (p,a(), ... &) 30~n)) lies in the kernel if and only if
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(a) Z (/L« )m(il) + -+ E N(ZN ( lN))x(lN + Eﬁ ”V))\( (on )U(lN) =0;
) X7 (7)) =0 o al YO )€ g, XA, o) = 0,2 < ) < N
(C) Zﬁsd%()\(gz(wv)) lN)) 0.

Let EGi) FO~) and V(1+in) be defined as in (@) and (). Then

Zégij)(/ﬁil))m<i1> +- Za ZN))\ A(’LN) (in) + Zﬂ ZN))\ ZN ) (in) c @E(Z(le) @ Fﬁf\i?’
Jj=1

so that for condition (a) to hold, it is necessary and sufficient that
alti) — 0, 1<j<N, Zﬁ zN))\ zzv) 5n) — 0.

Since gi-(ij) C g,6,-1, condition (b) is equivalent to ) ps(dgs),c) € Ann(E (11)) for al j =
1,...,N. Similarly, condition (c) is equivalent to > ps(dgs),¢ € Ann(F ?AB) On the other
hand, by (),

T(O 777 Oﬂﬁ(iN)yp)Crit((“ lN)wwk ( ) ,U(’LN)) = {(d(il)a e 70~é(iN)7B(iN)7ﬁ) . d(ij) = 07

Zﬁ lN))\ lN) € 56N Zps dQS zG1) € ADD(@E((”) GBF(ZN))}a

j=1

and the proposition follows. O

The previous proposition now implies that for o, --- 0y, =0

HeSS(“ lN)wwk (i5)

oij T N

(0,...,0,5),p) e (1m0

U'L

IV 2007 <w))

(0,...,0,80N) p)
defines a non-degenerate symmetric bilinear form for all points (0,...,0,30) p) lying in the

critical set of (i1-in )z/;;’{k L)) 5in and the second fundamental theorem follows with Lemma

O

We are now in position to give an asymptotic description of the integral I(u). But before, it
might be in place to say a few words about the desingularization process.

6. RESOLUTION OF SINGULARITIES AND THE STATIONARY PHASE THEOREM

Let M be a smooth variety, Oy the structure sheaf of rings of M, and I C Oy an ideal
sheaf. The aim in the theory of resolution of singularities is to construct a birational morphism
7 : M — M such that M is smooth, and the pulled back ideal sheaf 7*I is locally principal.
This is called the principalization of I, and implies resolution of singularities. That is, for every
quasi-projective variety X, there is a smooth variety X, and a birational and projective morphism
7 : X — X. Vice versa, resolution of singularities implies principalization.

Consider next the derivative D(I) of I, which is the sheaf ideal that is generated by all derivatives
of elements of I. Let further Z C M be a smooth subvariety, and 7 : By M — M the corresponding
monoidal transformation with center Z and exceptional divisor F' C Bz M. Assume that (I, m) is
a marked ideal sheaf with m < ordzI. The total transform 7*I vanishes along F' with multiplicity
ordzI, and by removing the ideal sheaf Op,p(—ordzI - F) from 7*I we obtain the birational, or
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weak transform w11 of I. Take local coordinates (x1,...,x,) on M such that Z = (z1 = --- =
x, =0). As a consequence,
Ty Ty—1
Y= —- - Yr—1 = yYr = Try ooy Yn = Tn
Ty Ty

define local coordinates on Bz M, and for (f,m) € (I,m) one has

ng(f(fl, v n)ym) = (U " F(Y1Yrs o Yr1Yr Yrs - -5 Yn)s ).
By computing the first derivatives of 7, 1(f(21,...,7,), m), one then sees that for any composition
IT: M — M of blowing-ups of order greater or equal than m,
IH(D(I,m)) € D(IITH(I,m)),

see Kollar [12], Theorem 71.

Let us now come back to our situation, and consider on T*M x g the ideal I, = () generated
by the phase function ¢ = J(n)(X), together with its vanishing set V;;. The derivative of I is given
by D(I,;) = I¢, where Ic denotes the vanishing ideal of the critical set C = Crit(¢), and by the
implicit function theorem Sing Vyy € ViyNC =C. Let ((H;,),--- ,(Hiy,,) = (Hr)) be an arbitrary
branch of isotropy types, and consider the corresponding sequence of monoidal transformations
(Ciy © Cirig © -+ 0 Ciy.in) @ 1d fiper. Compose it with the sequence of monoidal transformations
0iy..in» and denote the resulting transformation by (. We then have the diagram

CIe) D C(Iy) =TLL7,(0) - CTHIp) 370 (0) -+ Ty (o) (i) ok
T T
Ic D Iy >
According to the previous considerations, we have the inclusion
(o) € D(¢GTH(Iy)).

It is casy to see that ¢;!(I,) is not resolved, so that [N, 7, (o) - ¢S (L) is only a partial
principalization. On the other hand, the first fundamental theorem implies that D(¢;1(Iy)) is a
resolved ideal,

Crit( (il...iN)djtot)gilmUiN#O = Crit( (il...iw)¢wk)

being a smooth manifold. Nevertheless, this again results only in a partial resolution C of C, since
the induced global birational transform C — C is in general not surjective. This is because of the
transformation d;,. ;,, and the fact that the centers of our monoidal transformations were only
chosen in M x g, to keep the phase analysis of the weak transform of ¢ as simple as possible. In
turn, the singularities of C along the fibers of T*M were not completely resolved.

As we shall see in the next section, the principalization of the ideal I

C*(L/l) =Ty - TiNC»:l(LZJ)v
and the fact that the weak transform (11~ )15“’]“ has a clean critical set, are essential for an
application of the stationary phase principle in the context of singular equivariant asymptotics,
which is we why had to consider resolutions of both C and V, in T*M x g. By Hironaka’s theorem on
resolution of singularities, such resolutions always exist, and are equivalent to the principalization
of the corresponding ideals. But in general, they would not be explicit enoughﬁ to allow an

application of the stationary phase theorem. This is the reason why we were forced to construct
an explicit, though partial, resolution ¢ of C and Vi, in T*M x g, using as centers isotropy algebra

2In particular, the so-called numerical data of ¢ are not known a priori, which in our case are given in terms of
the dimensions ¢(%) and d(%).
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bundles over sets of maximal singular orbits. Partial desingularizations of the zero level set 2 of the
moment map and the symplectic quotient /G have been obtained e.g. by Meinrenken-Sjamaar
[13] for compact symplectic manifolds with a Hamiltonian compact Lie group action by performing
blowing-ups along minimal symplectic suborbifolds containing the strata of maximal depth in 2.

7. ASYMPTOTICS FOR THE INTEGRALS I;, ;. (1)

In this section, we will give an asymptotic description of the integrals I, ;, (1) defined in (@).
Since the considered integrals are absolutely convergent integral, we can interchange the order of
integration by Fubini, and write

N

12 (i5) J qtir) _q
Li . in (M) = / JT'L17~~~;T'LN ( H |Tij |c T dTiy ... dTi;,
(=1,1)N Tiy " Ti

in’ i
where we set
JTil,...,TiN (V)
_ /ei(il»*»iN)"ka’PTe/V i, in (I)i1...izv d(T;;(ll 1N) /\dA(zJ dB (in) v (in) /\ dl'(il),

J l
and introduced the new parameter
V= —":,
Til P T’iN
Now, for an arbitrary 0 < e < T to be chosen later we define

N
12 (i5) J 4tir) _q
I () = 7., (7)” |+ dri, ... dri,,
i1..0n (1) ~/((—1,1)\(—a,a))N TigseeTipy T Tin i |sz| Tin Tiy

N
1%
21.--1N (lu’) /(575)N i1 i Til oo TiN |TJ

j=1

(i) J (ir) _
CUH T gy L,

Lemma 4. One has (%) + Zi:l dr) —1> K for arbitrary j =1,...,N.
Proof. We first note that
C(ij) = dim(Vil.“ij)m(ij) > dim Gm(ij) -m(ij+1"'iN) + 1.

Indeed, (vi,. . ) i, is an orthogonal G, -space, so that the dimension of the G ;) -orbit of
mii+1-in) e 4 () ((§F 4i;)zp) can be at most (%) —1. Now, under the assumption oy, - - - 04, # 0
one has

T Gjrin) (G5 'm(ij“"'w)) = Tty (G -mi-in)y

m
l](jll N ® @ Tijgr - "TikflEf:(ci)l»«»iN) D Tijpq - "TiNF(ZN)
_JJ,»Q
where the distributions E() F(~) where defined in (@). On then computes
dim Gw(ij) : m(ij+1"'iN) =dimT 41N (Gw(ij) : m(ij“"'iN))

Z dlmE (11 IN)—|—d1mF((11) i)
_JJ,»l
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which implies

N
i) > 3" dim E®) +dim FOY) 4,

m (i1 in) m1--in)
1=j+1

Here we used the same arguments as in the proof of equation (I8)). On the other hand, one has
d) = dim Eliup = dimp\(gi(m) cal)] = dimp\(gi(m) -] = dim Ef(;]()lm

The assertion now follows with (IJ). O

As a consequence of the lemma, we obtain for I? ; () the estimate

AN

N
G5) 5™ glir) _
Ii...z—N(u)SC/( )NH|TZ-].|“+ET:1 Ydriy ... dmy,
—E&,& j=1

(20) N

I I 2C
= O/ |7'z'j|ndTiN coodry, = 27 Nw+1)
(oo™ j=1 K+ 1

for some C' > 0. Let us now turn to the integral I} ; (u). After performing the change of
variables §;, ., one obtains

Il ) — Ja" o (+> 3 c(%j)-l-Zi:l aGr) 1 d tDéz i d :

b= [ oo (i) o) det Dy iy (o) do
5<\Tij(cr)|<1

where

oo () :/ei“lw‘N“ﬁfk/“ail,,,iN By i ATy gy Wi, ) () [\ AT dBOY) o) N\ ).

J l

Here we denoted by (M) ¢wk the weak transform of the phase function ¢ as a function of
the variables x(ij),ﬁ(iN),a(if),ﬁ(iN),p alone, while the variables ¢ = (0y,,...0;,) are regarded
as parameters. The idea is now to make use of the principle of the stationary phase to give an
asymptotic expansion of Jo, . o, (v).

Theorem 3 (Generalized stationary phase theorem for manifolds). Let M be a n-dimensional
Riemannian manifold, 1 € C*(M) be a real valued phase function, p > 0, and set

I(p) :/ e/ (m) dm,
M
where a(m)dm denotes a compactly supported C*°-density on M. Let
C= {m EM : Y : TynM — Tym)R is zem}

be the critical set of the phase function v, and assume that

(1) C is a smooth submanifold of M of dimension p in a neighborhood of the support of a;
(2) for all m € C, the restriction 1" (m)|n,,c of the Hessian of ¢ at the point m to the normal
space NpyC is a non-degenerate quadratic form.

Then, for all N € N, there exists a constant Cn . > 0 such that

N-1

1) = e/ (2mn) =" 37 19Q; (w5 )| < Cv i vol (suppanC) sup [ Dlal]
7=0 =
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where D' is a differential operator on M of order 1, and 1o is the constant value of v on C.
Furthermore, for each j there exists a constant Cj > 0 such that

Q;(¥;a)| < Cjyvol(suppanC) sup |D'all .
Yy

and, in particular,
a(m)

i) = [ 1 72 0

where oy is the constant value of the signature of ¥"(m)|n,,c for m in C.

Proof. See for instance Hormander, [10], Theorem 7.7.5, together with Combescure-Ralston-Robert
[6], Theorem 3.3, as well as Varadarajan [I8], pp. 199. O

Remark 1. An examination of the proof of the foregoing theorem shows that the constants Cy y
are essentially bounded from above by
-1
(W(m)ww)

Indeed, let a : (z,y) — m € O C M be local normal coordinates such that a(z,y) € C if, and
only if, y = 0. By ([{), the transversal Hessian Hess ¢(m)y,, ¢ is given in these coordinates by the
matrix

sup
meCNsupp a

(9 (o) 0))

where m = a(x,0). If now the transversal Hessian of ¢ is non-degenerate at the point m = «(x, 0),
then y = 0 is a non-degenerate critical point of the function y — (¢ o a)(z,y), and therefore an
isolated critical point by the lemma of Morse. As a consequence,

(21) W < H Oy, Oy, (Y 0 a)(, 0))

for y close to zero. The assertion now follows by applying Hérmander [I0], Theorem 7.7.5, to the
integral

-1

k,l

/ ei(woa)(ryy)/u(a oa)(z,y)dy dx
a=1(0)

in the variable y, and with x as a parameter, since in our situation the constant C occuring in
Hormander [I0], equation (7.7.12), is precisely bounded by (2I)), if we assume as we may that a is
supported near C. A similar observation holds with respect to the constants Cj 4.

We arrive now at the following

Theorem 4. Let 0 = (04,,...,0iy) be a fived set of parameters. Then, for every N € N there
erists a constant Cg LN Juk > 0 such that
N ~
|Jo'7:17...)o'iN( 27T|I/| Z y|-7 (11 lN)w i, ..iN(I)iL..iN)' < CNy(il”'iN)lzlzrﬂk|V|N,

§=0
with estimates for the coefficients Q);, and an explicit expression for Qu. Moreover, the constants
ON)(il_,,iN),L;g,k and the coefficients Q; have uniform bounds in o.

Proof. As a consequence of the fundamental theorems, and Lemma 2 together with the obser-
vations preceding Proposition [l the phase function (*-~ )w},"k has a clean critical set, meaning
that

e the critical set Crit((1~ )1/3},“]“) is a C°°-submanifold of codimension 2k for arbitrary o;



SINGULAR EQUIVARIANT ASYMPTOTICS AND THE MOMENT MAP II

e the transversal Hessian

Hess (1) ok (1) (03 o/(@5), 503) )

AN~
. . i k
‘N(m“i),ﬁ“N),a“i),B“N%p)cm( v )

27

defines a non-degenerate symmetric bilinear form for arbitrary o at every point of the

critical set of (i1-iN)gywk

Thus, the necessary conditions for applying the principle of the stationary phase to the integral

J,

(7'1'1 geee
the existence of the uniform bounds, note that by Remark [Il we have

~ —1
CN)(il,“iN),lZ,;uk < OJ/\-[ sup (HGSS (i1 zzv)d)g’ |NCrit((il“’iN)1ZJ}T“’<))

203 5Gn) o) gUN) p

But since by Lemma [2] the transversal Hessian

i1...1 Twk
Hess (1 in) w0 (1N G
Q/J(T ‘N(m(ij),fz(iN),oc(ij),B(iN),p)Crlt(( 1 N)d)dk)

is given by

k
Hess (1+i8) (i)
w (zri, 205 50N o B(lN) C“t(( LN e k)

we finally obtain the estimate

CN)(il,.,iN),LZ};uk < Cl“ sup

oy x( )‘(11\7)0‘(I ,BUN) p

N —1
(Hess (Zln.lN)wwklNCrit((il.,.iN),lek))

by a constant independent of ¢. Similarly, one can show the existence of bounds of the form
X ~
Qi (PR i iy iy in )| < Ciy s

with constants éj,il...iN independent of o.

Tin (v) are fulfilled, and we obtain the desired asymptotic expansion by Theorem Bl To see

< CN,il...iN

O

Remark 2. Before going on, let us remark that for the computation of the integrals I} , (u)
it is only necessary to have an asymptotic expansion for the integrals Joiyronoiy (v) in the case
that o;, ---0;y # 0, which can also be obtained without the fundamental theorems using only
the factorization of the phase function 1 given by the resolution process, together with Lemma
Bl Nevertheless, the main consequence to be drawn from the fundamental theorems is that the

constants Cg (i1 ) ke and the coefficients @); in Theorem [ have uniform bounds in o.
As a consequence of Theorem [ we obtain for arbitrary N eN
o

|J‘7i11---10’iN (V) - (27T|V|)KQ0((Z-1”J.N) ~wk'a‘il iNq)il N)|

N—
Jdilv'vv»UiN (V 27T|V| Z |V| Q - 'iN)wg}k;ail»»»iN(I)ilmiN)’
=0

<
N—1 N-1
+@al)® S QU IGER ag iy Biy i) < oY+ eafr]t S o)
=1 =1
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with constants ¢; > 0 independent of both ¢ and v. From this we deduce

1L () — @mp)” /

e<|ri; (o)]<1

N
D SN gl g
Qo [T I (@) 300 4212 det D6, s (0)] do
j=1

N

< ey / [T 17, (@) 4= 418 (det Do, i (0)] dor
5<\Tij(a)\<1 j=1

N N ()5~ glin)
ven it | [ 17, (@) = det D6, iy (o) do

=1 5<‘Tij (U)‘<1 Jj=1

N il c(ij)+zj 40 _ N iy Kl N c(ij)+zj atir) 1
< csp max{l,Hs r=1 }+C6ZM max{l,Ha r=1 }
j=1 =1 j=1
‘We now set
1/N

E=p

Taking into account Lemma Ml one infers that the right hand side of the last inequality can be
estimated by

N-1
c5 max {MN, u“*l} +eg ) max {pt Y
=1

so that for sufficiently large N € N we finally obtain an asymptotic expansion for I, ;. (1) by
taking into account (20)), and the fact that

SN A g = O,

N
2 | Qo [[ I,
0< |y, [<pt/N H

j=1

Theorem 5. Let the assumptions of the first fundamental theorem be fulfilled. Then

Liy i (1) = (27) "L, in + O(u™ ),

where the leading coefficient L;, . i\ 1S given by

(22) L. . = Qiy.in iy iy dcrit((il...iw)z/;wk)
11..-UN o (Cineein) Jwky |H (i1.-in) g ywk i iy 1/2’
Crit({"1-2N)qpwk) | eSS( w )NCM‘&((”"‘”V)lllwk)|

where dCrit((il“'iN)z/;“’k) denotes the induced Riemannian measure.

8. STATEMENT OF THE MAIN RESULT

Let us now return to our departing point, that is, the asymptotic behavior of the integral I(u)
introduced in (). For this, we still have to examine the contributions to I(x) coming from integrals



SINGULAR EQUIVARIANT ASYMPTOTICS AND THE MOMENT MAP II 29

of the form

Ly .ie (1) =
/Mil(Hil)X(l,l) [/(”)((SZ)I<Z1>)I'2(HI’2)X(111) [/(w@ (st vio 1), lie_1))ie (Hig)x(=1,1)
JTLTO (i1ig) Jwk -
[/ e = Y e P e
i 1 * )
V(le)((s Lig)alie)) X8, (i) X087, o) X0 i) X T i) Win

AT 1y oy Wi ) () dAG) . dAG) qBle) d@“@)} drig dz®) . } dri, dx@é)} dry, dz,
where ((Hy,), ..., (His)) is an arbitrary isotropy branch, and
Qi ...ie = [ Xy © (id fiper @ Ciy © Ciyiy © 0 Ciy.iio )] Xivin © Girin © 0 Giy.ig] - - - [Xin .o © Gir...io)
is supposed to have compact support in one of the a*®)-charts, and
© (i) 4 §~i glir)
= 5 J r) _
Qi) o = H s X g
j=1

®;, . i being a smooth function which does not depend on the variables 7; - Now, a computation

of the &-derivatives of (11--i©)wk in any of the a("®)-charts shows that (i1--©)¢)®* hag no critical
points there. By the non-stationary phase theorem, see Hérmander [10], Theorem 7.7.1, one then
computes for arbitrary N € N

(S)
ol <en™ [ I,
e<|mi; 1<l 50

where we took € = 4'/©. Choosing N large enough, we conclude that

\Ti, .o ()| = O(u™T1).

As a consequence of this we see that, up to terms of order O(u"*1), I(1) can be written as a sum

ka +IL Z Ikl +ZIkL +IL )

(ij) Jqtir) _1_N e N
c\'i +ZTd r)_1 NdT—i—CgEO(KJrl) SCQID&X{,UJN,,UJKJFI},

k<L k<I<L k<L
=> > Tiyin () + ) > Iy ie (),
N 1< <in<int1=L O 1< <ig<iot1#L
where the first term in the last line is a sum to be taken over all the indices 41,...,in corre-
sponding to all possible isotropy branches of the form (H;, ..., (Hiy), (Hiy,,) = (Hz)) of varying

length N, while the second term is a sum over all indices i1,...,%g corresponding to branches
(Hiys .-, (Hig), (Hig,,) # (Hr)) of arbitrary length ©. The asymptotic behavior of the integrals
I;, . in (1) has been determined in the previous section, and it is not difficult to see that the inte-
grals I;, . ior have analogous asymptotic descriptions. We are now ready to state and prove the
main result of this paper.

Theorem 6. Let M be a connected, closed Riemannian manifold, and G a compact, connected
Lie group G with Lie algebra g acting isometrically and effectively on M. Consider the oscillatory

integral
= / /eiw("’x)/“a(n,X) dXdn,  p>0,

where the phase function

P(n, X) = I(n)(X)
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is given by the moment map J : T*M — g* corresponding to the Hamiltonian action on T*M, and
dn is a density on T*M, while dX is, up to a constant factor, the Lebesque measure on g, and
a € CX(T*M x g). Then I(u) has the asymptotic expansion
I(p) = (2mp)" Lo + O(u"*),  p— 07"
Here k is the dimension of an orbit of principal type in M, and the leading coefficient is given by
a(n, X

(23) Lo= / X
RegC |H655¢(777X)N(,,,X)Regc|

where RegC denotes the regular part of the critical set C = Crit(¢)) of v, and d(RegC) the induced
Riemannian measure. In particular, the integral over RegC ewists.

d(RegC)(n, X),

Remark 3. Note that equation ([23)) in particular means that the obtained asymptotic expansion
for I(u) is independent of the explicit partial resolution we used.

Proof. By the considerations at the beginning of this section, one has
I(p) = (2mp)" Lo + O(u™*Y),  p— 0%,

where Ly is given as a sum of integrals of the form ([22]). It therefore remains to show the equality
3). For this, let us remark that since M is compact, T*M is a paracompact manifold, admitting
a Riemannian metric, so that T*M is a metric space with metric | - |. We introduce now certain
cut-off functions for the singular part Sing Q2 of Q). Let K be a compact subset in T*M, € > 0, and
consider the set

(SingQNK). ={neT*M : |n—n'| <e for some ' € SingQ}.

By using a partition of unity, one can show the existence of a test function u. € C2°((Sing QNK)3e)
satisfying ue = 1 on (Sing QN K)., see Hormander [10], Theorem 1.4.1. We then have the following

Lemma 5. Let a € C°(T*M x g), K be a compact subset in T*M such that supp, a C K, and
ue as above. Then the limit

=20 det ¢ (, X 12
RegC | et ¥ (7% )\N(W,X)Regd

exists and is equal to Ly, where d(RegC) is the induced Riemannian measure on RegC.

Proof. We define

d(Reg C)(n, X)

I(p) = / M / ) [a(1 —u.)](n, X) dX d€ dz.
M Jg

Since (1, X) € Sing C implies ) € Sing {2, a direct application of the generalized stationary phase
theorem for fixed ¢ > 0 gives

(25) |1-(1) — 2mp)" Lo(e)| < Cop™*,
where C; > 0 is a constant depending only on ¢, and

[a(1 — uc)](n, X)
L =
O(E) /chC |det "/Jl/(naX)|N(n,X)chC|1/2

On the other hand, applying our previous considerations to I.(u) instead of I(u), we obtain again
an asymptotic expansion of the form (23] for I.(u), where now the first coefficient is given by
a sum of integrals of the form ([22)) with a replaced by a(l — u.). Since the first term in the
asymptotic expansion (23]) is uniquely determined, the two expressions for Lo(¢) must be identical.
The statement of the lemma now follows by the Lebesgue theorem on bounded convergence. [

d(RegC)(n, X).
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Note that existence of the limit in (24)) has been established by partially resolving the singular-
ities of the critical set C, the corresponding limit being given by Lg. Let now a™ € CX(T*M x
g),RT). Since one can assume that |u.;| < 1, the lemma of Fatou implies that

i [a* (1 — ue)](n, X)
lim d(Reg C) (1. X
/Regc e—0 |det 1/}//(777X)|N(7,,X)Reg6|1/2 ( )( )

is mayorized by the limit (24]), with a replaced by a*. Lemma [B] then implies that
a*(n, X)

/chC |det 1/}//(7% X)\N(T,,X)Regdl/z

Choosing now a* to be equal 1 on a neighborhood of the support of a, and applying the theorem
of Lebesgue on bounded convergence to the limit (24]), we obtain equation (23). O

d(RegC)(n, X) < oo.
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