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SINGULAR EQUIVARIANT ASYMPTOTICS AND WEYL’S LAW.
ON THE DISTRIBUTION OF EIGENVALUES OF AN
INVARIANT ELLIPTIC OPERATOR

PABLO RAMACHER

ABSTRACT. We study the spectrum of an invariant, elliptic, classical pseudodifferential operator
on a closed G-manifold M, where G is a compact, connected Lie group acting effectively and
isometrically on M. Using resolution of singularities, we determine the asymptotic distribution
of eigenvalues along the isotypic components, and relate it with the reduction of the correspond-
ing Hamiltonian flow, proving that the reduced spectral counting function satisfies Weyl’s law,
together with an estimate for the remainder.
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1. INTRODUCTION

The asymptotic distribution of eigenvalues of an elliptic operator has been object of mathemat-
ical research for a long time. It was first studied by Weyl [42] for certain second order differential
operators in Euclidean space using variational techniques, followed by work of Carleman [IT], Mi-
nakshishundaram and Pleijel [35], Garding [20], and Avacumovi¢ [4]. Later, Hormander [27] and
Duistermaat-Guillemin [16] extended these results to elliptic pseudodifferential operators on com-
pact manifolds within the theory of Fourier integral operators. In this paper, we shall consider
this problem in the case that additional symmetries are present.

Let M be a compact, connected, n-dimensional Riemannian manifold without boundary, dM
its volume density, and

Py: C®(M) — L*(M)
an elliptic, classical pseudodifferential operator of order m on M, regarded as an operator in the
Hilbert space L2(M) of square integrable functions on M with respect to dM, its domain being
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the space C*° (M) of smooth functions on M. Assume that P is positive and symmetric, which
implies that Py has a unique self-adjoint extension P. Due to the compactness of M, the spectrum
of P is discrete. Consider now in addition a compact, connected Lie group G, acting effectively and
isometrically on M, and assume that P commutes with the regular representation of G in L2(M).
In this situation, each eigenspace of P becomes a unitary G-module, and it is a natural question
to ask about the distribution of the spectrum of P along the isotypic components of L2(M) in the

decomposition
2(M) ~ P L(M)(x)
xe@

and the way it is related to the reduction of the corresponding Hamiltonian flow. It is described
by the reduced spectral counting function Ny(A) = dy >, ., mult,(¢), where mult, (¢) denotes the

multiplicity of the unitary irreducible representation m, corresponding to the character x € G in
the eigenspace E; of P belonging to the eigenvalue ¢t. Let T*M be the cotangent bundle of M,
p(z, &) the principal symbol of Py, and S*M = {(z,£) € T*M : p(z,&) = 1}. In his classical paper
[27], Hérmander showed that the spectral counting function N(A) = )", dim E} satisfies Weyl’s
law

vol S*M

(1) N = T

AL oADMY X S oo,

and it has been a long-standing open question whether a similar description for N, () can be
achieved. While in the general case of effective group actions the leading term was obtained via
heat kernel methods by Donnelly [I4] and Briining-Heintze [10], estimates for the remainder are
not accessible via this approach. On the other hand, the derivation of remainder estimates within
the framework of Fourier integral operators meets with serious difficulties when singular orbits are
present, and until recently could only be obtained for finite group actions, or actions with orbits
of the same dimension as in the work of Donnelly [I4], Briining—Heintze [10], Briining [9], Helffer—
Robert [23] 24], Guillemin—Uribe [22], and El-Houakmi-Helffer [I9]. It was only in Ramacher [37]
and Cassanas-Ramacher [12] that first partial results towards more general group actions were
obtained within the setting of approximate spectral projections using resolution of singularities.
The goal of this paper is to generalize this approach, and give an asymptotic description of N, ()
analogous to () for general effective group actions within the theory of Duistermaat, Guillemin,
and Hormander.

In order to explain the difficulties in a more detailed way, denote by Q = (P)Y™ the m-th root
of P given by the spectral theorem, which is a classical pseudodifferential operator of order 1 with
principal symbol ¢(z,&) = p(:v,{“)l/m. If0 < A\ < X < ... are the eigenvalues of P repeated
according to their multiplicity, the eigenvalues of @ are j; = (\;)/™. Let {dEZ} be the spectral
resolution of Q. The starting point of the method of Fourier integral operators is the Fourier
transform of the spectral measure

U(t) = /e’““dEf;? = HQ teR,

which constitutes a one-parameter group of unitary operators in L2(M). Although U(t) itself is
not trace-class, it has a distribution trace given by the tempered distribution

oo

trU(-):S(R)BQH/Ze i o(t) 0(uy) < o0,
j=1

j=1
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which is the Fourier transform of the spectral distribution

o) = 6(u—py).

j=1

An asymptotic description of the spectrum of P is then attained by studying the singularities of
the distribution kernel of U(t) and of tr U(-) for small [t|. To be more precise, let §2; /5 denote the
bundle of half-densities over M, and U/, the operator which assigns to ug € C*(M,Q;/2) the
solution u € C*(R x M,y 5) of the Cauchy problem

(fl 04 +Q1/2)u =0, u(0,2) = uo(x),

where Q1/pu = dM'Y?Q(udM~1/?). Then Uy /o : C®(M, Q) — C®(R x M,y 3) can be
characterized globally as a Fourier integral operator with kernel &/ € I=/*(R x M, M;C") and
canonical relation

C={((t,7), (x,8), () : (x,6),(y,n) € T*M\ O, (t,7) € TR\ 0,
T+ q(x,6) =0, (x,6) = ®'(y,n) },

where ®! is the flow in T*M \ 0 of the Hamiltonian vector field associated to ¢q, and C’ =
{((t,7), (x,€), (y,—n)) : ((t,7), (x,€),(y,n)) € C} [16]. This implies that ¢ is a Fourier integral
operator as well, and the study of its singularity at ¢ = 0 leads to the main result

éez()u Z o(p — 1) (2w)1—nzckﬂn717k, 11— 400,
j=1

for suitable p € S(R), where g(t) = o(—t), with in principle known coefficients ¢j. For y — —oo, the
above expression is rapidly decreasing. From this, () follows using a Tauberian theorem. To obtain
a similar description of Ny()), one needs an asymptotic expansion of the sum 7% m& (p;)0(p —

p17) for suitable o € S(R), where m% (u;) = deultS (p5)/dim Egj, multg(uj) being the multiplicity
of the irreducible representation 7, in the eigenspace Ef?] of @) belonging to the eigenvalue p;. In

this way, we are led to study the singularities of the distribution trace of P, oU(t), where P, denotes
the projector onto the x-isotypic component L?(M)(x). This trace is the Fourier transform of

= mQ(u;) 6 — 1),
=1

and it turns out that, when regarding &, as a distribution density on R of order 1/2, &, =
dym XI'" U, where m : R x G x M — R is the projection (¢,g,z) — ¢, and ' : Rx G x M —
R x M x M the mapping (t,g,x) — (¢,2,gz). Both the pushforward . and the pullback I'™* can
be characterized as Fourier integral operators, but in general, neither their composition 7, ¥ I'*
nor &, have smooth wavefront sets. Indeed, as pointed out in [I4],

WEF(6,) ={(¢,7) : there exist z, 7, g such that (x,n) € Q,
(z, —g"n) = ®'(ga,n), 7+ q(z,—g"n) =0},

where © = J~1(0) denotes the zero level of the canonical symplectic momentum map J : T*M —
g*. If the underlying group action is not free, J is no longer a submersion, so that € is not
a smooth manifold. Therefore 6, fails to be a Fourier integral operator in general, so that, a

priori, it is not clear how to describe its singularities by the method of Duistermaat, Guillemin,
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and Hormander. Ultimately, the difficulties arise from the necessity to understand the asymptotic
behavior of oscillatory integrals of the form

I(n) = / / HEEDa(gr, 7, €, g) dg d(TY)(2,€),  j1— +oo,
*Y JG

via the stationary phase theorem, where (k,Y) are local coordinates on M, d(T*Y)(x,&) is the
canonical volume density on T*Y, and dg the volume density on GG with respect to some left
invariant Riemannian metric on G, while a € C°(Y x T*Y x G) is an amplitude which might also
depend on pu, and ®(z,€,9) = (k(x) — k(gz),&). For this, it would be necessary that the critical
set of the phase function ®(z,&,g)

Crit(®) = {(z,€,9) € (QNTY) x G : g-(,§) = (2,8)}

were a smooth manifold, which, nevertheless, is only true for free group actions. In the case of
general effective actions the stationary phase theorem can therefore not immediately be applied to
the study of integrals of the type I(u), compare [9].

In this paper, we shall show how to overcome this obstacle by partially resolving the singularities
of C = {(2,£,9) € AXG:g-(x,8) = (x,£)}, and applying the stationary phase principle in a
suitable resolution space. This will be achieved by constructing a resolution of the set

N ={(z,9) e M : gz ==z}, M=M x G,

which is equivalent to a monomialization of its ideal sheaf Iy C £, where ¢ denotes the
structure sheaf of M. To be more precise, put X =T*M x G, and let I¢ C Ex be the ideal sheaf
of C. Consider further the local ideal Iy = (®) generated by the phase function ®, together with
its vanishing set V. The derivative of Ig is given by D(Is) = I¢jr+y x @, and Crit(®) C Vg. The
main idea is to construct a resolution of N, yielding a partial resolution Z : X - X of C, and a
partial monomialization of I according to

2(Is) & 3 =[]0} - 27'Us) & 5%, FeX,
J

in such a way that D(Z;1(I3)) is a resolved ideal sheaf. Here Z*(I3) denotes the inverse image
ideal sheaf, Z71(Ip) the weak transform of Ip,while the o; are local coordinate functions, and
l; are natural numbers. As a consequence, the phase function factorizes locally according to

PoZ = Haéj - "% and we show that the weak transforms ®“* have clean critical sets in the
sense of Bott [7]. An asymptotic description of the integrals I(x) can then be obtained by pulling
them back to the resolution space X, and applying the stationary phase theorem to the weak
transforms ®** with the variables o, as parameters. The desingularization of N will rely on the
stratification of M into orbit types, and consist of a series of monoidal transformations over M
where the centers are successively chosen as isotropy bundles over unions of maximally singular
orbits.

The main result of the present paper is formulated in Theorem It states that the reduced
spectral counting function satisfies Weyl’s law

dy|m 01 I
%ml [(QNS*M)/GINT + O\ D/mlog N)A), X — +oo,
provided that n —x > 1, where & is the dimension of a G-orbit of principal type, d, the dimension
of the irreducible representation [7TX‘ g ¢ 1] the multiplicity of the trivial representation in the

Nx()\) =

restriction of m, to a principal isotropy group H, and A a natural number which is bounded by
the number of orbit types of the G-action on M. The paper itself is structured as follows. Section
describes the theory of Duistermaat, Guillemin and Hormander of spectral asymptotics in the
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equivariant setting, and explains how the problem of determining N, () reduces to the study of
integrals of the type I(u) as u — +oo. Section Bl contains some general remarks on compact
group actions and the momentum map, followed by the computation of the critical set of the phase
function ®. Singular asymptotics are discussed in Section d], after a brief account on the stationary
phase principle and resolution of singularities. In Section ], the desingularization process is carried
out, giving way in Sections 6l and [0 to the phase analysis of the weak transforms ®“*. Asymptotics
for integrals of the type I(u) are then obtained in Section B while the proof of the main result is
given in Section

Singular equivariant asymptotics with reminder estimates were previously obtained by Briining-
Heintze [10] and Duistermaat-Kolk-Varadarajan [I8] for the spectrum of a discrete, uniform sub-
group I' of a connected, semisimple Lie group G with maximal compact subgroup K. In the first
case, a reminder estimate for the Gelfand-Gangolli-Wallach formula is given, which describes the
distribution of eigenvalues of the Casimir operator along the isotypic components of L?(I'\ G). For
torsion-free I', this corresponds to the distribution of eigenvalues of the Bochner-Laplace operator
on the spaces L?(I'\ G/ K, EX), where EX denotes the vector bundle on I' \ G/ K induced by an
arbitrary x € K. In the second case, and under the assumption that I has no torsion, asymptotics
for the spectral counting function of the Laplace-Beltrami operator A on L2(I'\G/ K) ~ L2(T'\G)¥
are derived. This amounts to an asymptotic description of N, (A) for A on L2(I" \ G) in case that
x corresponds to the trivial representation, and Theorem generalizes this result to arbitrary
X € K , and subgroups I' with torsion, as well as arbitrary invariant, elliptic, classical pseudodif-
ferential operators. This is explained in Section IOl

Acknowledgments. The author wishes to express his gratitude to Mikhail Shubin for intro-
ducing him to this subject, and to his former collaborator Roch Cassanas. He also would like to
thank Richard Melrose, Werner Miiller and Michele Vergne for valuable conversations. This re-
search was completed while the author was a member of the Mathematical Institute of Gottingen
University, and financed by the grant RA 1370/2-1 of the German Research Foundation (DFG).

2. FOURIER INTEGRAL OPERATORS AND EQUIVARIANT ASYMPTOTICS

Generalities. Let M be a compact, connected, n-dimensional Riemannian manifold, and G a
compact, connected Lie group of dimension d, acting effectively and isometrically on M. Denote
the canonical volume density on M by dM [40], page 112, and choose a left invariant Riemannian
metric on G with volume density dg. Let Py be an elliptic, classical pseudodifferential operator
of order m on M, regarded as an operator in L?(M) with domain C°*°(M), and assume that Py
is positive and symmetric. Then Py has a unique self-adjoint extension P with the m-th Sobolev
space H™ (M) as domain. Moreover, the spectrum of P is discrete. Assume now that P commutes
with the regular representation of G in L?(M) given by

T(9)p(z) = (g 'z), geG.

Then every eigenspace of P becomes a unitary G-module, and it is natural to ask about the
distribution of the spectrum of P along the isotypic components of L2(M), which is described by
the reduced spectral counting function N, (A) introduced in the previous section. We shall study
this problem within the theory of Fourier integral operators developed by Hérmander, Duistermaat
and Guillemin [27, [16], and consider for this the m-th root Q = (P)Y/™ of P given by the spectral
theorem. By Seeley, @ is a classical pseudodifferential operator of order 1 with principal symbol
q(z,€) = p(x,£)Y/™ and domain H'(M). If 0 < A\; < Ay < ... are the eigenvalues of P repeated
according to their multiplicity, the eigenvalues of @ are p; = (\;)}/™. Denote by {dEf} the
spectral resolution of ). The starting point of the method developed by Hormander, and which
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goes back to work of Avacumovi¢ and Lewitan, is the Fourier transform of the spectral measure
Ut) = /e’““dEf;? = Q. t € R,

which constitutes a one-parameter group of unitary operators in L?(M). Now, if {e;} denotes an
orthonormal basis of eigenfunctions in L?(M) of @ corresponding to the eigenvalues {1}, then
oo
(2) Ut)u = Z e (u, ej)L2 €,
j=1

where u € C*(M), and uw € H*(M), s € Z, the sum converging in the C*-, and H?*-topology,
respectively, see [38], page 151. Thus, the distribution kernel of the operator U(t) : C*(M) —
C>(M) C D'(M) can be written as

Ult,z,y) = Ze‘it’”ej(x) ej(y) € D'(M x M).
j=1
Although U (t) itself is not trace-class, it has a distribution trace given by the tempered distribution

trU(-): S(R) 3 p— /Z e i g(t)dt = Z o(p5) < oo.
j=1 j=1
Indeed, for Ny € N, P~ is a classical pseudodifferential operator of order —Ngm. If Ngm > n,
its kernel is continuous, and P~V is Hilbert-Schmidt, so that Z;’;l A;QN" < 00. Moreover, for

0 € S(R) the infinite sum 72 6(u;)e;(x) e;(y) converges in C=(M x M), see [21], page 133.
Because the Fourier transform is an isomorphism in S(R), we conclude that tr U(t) = Zjoil e~ it
is the Fourier transform of the spectral distribution

o(m) =Y 6(n— py),
J=1

proving at the same time that o is tempered. An asymptotic description of the spectrum of
P is then attained by studying the singularities of U(¢,z,y) and trU(-) for small |t|. For this,
Hormander locally approximated the operator U(t) by Fourier integral operators, which solve
the Cauchy problem approximately. More precisely, let U/, be the operator which assigns to
ug € C*(M, €y /2) the solution u € C*(R x M, 5) of the hyperbolic Cauchy problem

(fl Oy —|—Q1/2)u =0, (0, z) = uo(x),

where €/, denotes the bundle of half-densities over M, and Qypu = dMY/2Q(udM~/?). It
can then be shown [16], Theorem 1.1, that U,y : C(M,€Qy/3) — C®(R x M,§/3) can be
characterized globally as a Fourier integral operator with kernel & € I~Y/*(R x M, M,C") and
canonical relation

‘) C ={((t,7), (,), (y.m)) : (,€), (y,m) € T*"M\0,(t,7) € T*R\ 0,

T+q(x,€) =0, (z,8) = 2'(y,n)},

where @t is the flow in T*M \ 0 of the Hamiltonian vector field associated to ¢. This implies that
the Fourier transform Uy 5(t) : C(M, 2y /2) — C>*(M,Q;/3) of the spectral measure of Q5 is a

Fourier integral operator of order 0 defined by the canonical transformation ®!, and that & can be
characterized as a Fourier integral operator too, see [16], pp. 66. Moreover,

sing supp Uy /3 = {(t,z,y) eERx M x M : (z,&) = ®'(y,n) for suitable £ € Ty M \ 0,7 € TJM\O},



SINGULAR EQUIVARIANT ASYMPTOTICS AND WEYL’S LAW 7

and similarly, WF(6) C {(t,7) : 7 < 0 and (x,&) = ®(x, ) for some (z,€)}, so that & is smooth
on the complement of the set of periodic orbits. The study of the singularity of 6 =trU at t =0

then leads to the main result of Hormander
oo

oo

&(éei(')ﬂ) - Z o(p — 1) ~ (2m)t-" chun—l—k, L — +o0,
j=1 k=0

for suitable o € S(R), §(t) = o(—t), and with in principle known coeflicients ¢, while for 4 — —oo

the expression is rapidly decreasing. From this, Weyl’s classical law (J) follows by a Tauberian

theorem.

Let us now come back to our initial question. To obtain a description of N, (A), and to under-
stand the way it is related to the reduction of the corresponding Hamiltonian flow [22], we would like
to find an asymptotic expansion of 777 m% (17)6(p — ;) for suitable ¢ € S(R), where m@(u;) =
deultg(uj)/dim ESJ This amounts to study the singularities of 777, m&(p;) e~ e S'(R).
It corresponds to the distribution trace of P, o U(t), P, being the projector onto the x-isotypic
component L2(M)(x), and is the Fourier transform of

oy (p) = ng(wﬁ(u — j)-

In what follows, denote by 7 : R x G x M — R the projection (¢,g,2) — t,and by I' : Rx G x M —
R x M x M the mapping (¢, g,x) — (t, 2, gx). The global theory of Fourier integral operators [14],
Lemma 7.1, implies that the transposed of the pullback, or pushforward m, : D'(R x G x M) —
D'(R), can be characterized as a Fourier integral operator of class I-"/4~ /4R R x G x M, C)

with canonical relation
C1 = {(t,7);(t,7),(g,0),(2,0)) } .
It amounts to integration over M x G. Similarly, the pullback I'* : C*°(R x M x M) — C=(R x

G x M) constitutes a Fourier integral operator of class I"/*~%4(R x G' x M,R x M x M, Cy) with
canonical relation

Cr = {(tv 7),(9,27&2), (%,&1 + g7&2); (¢, 7), (%, 61), (9x7§2))} )

where the map z : G — M is given by g — gz, and the map g : M — M by =z — gz. A
computation then shows that if we regard &, as a distribution density on R of order 1/2, and =,
and I'* as maps between half densitites,

Ox = Z mg (15) et — dym. XU,
j=1

compare [16], page 66, and [14], Section 7. Now, although 7., X I'*, and U/, are Fourier integral
operators, their composition is not necessarily a Fourier integral operator. Indeed, the composition
of the canonical relations of 7, and I'* reads

C'1 o 02 - {((taT); (tuT)u (xugl)v (g$7§2)) : ‘T*§2 = 07 51 + 9*52 = 0} .

But 2*¢{3 = 0 means that & € AnnT, (G - z). As will be explained in the next section, this is
equivalent to (z,&) € Q = J71(0), where J : T*M — g* is the canonical symplectic momentum
map, and we obtain

Cy10Co0C ={(t,7) : there exist x, 7, g such that (z,n) € Q,
(z, —g"n) = ®*(gz,n), 7T+ q(z,—g"n) = 0}.

The singularities of &, are therefore determined by the restriction of ®* to €. Since for general
effective group actions, the zero level €2 is not smooth, neither Cy o Cy nor C o C3 o C' are smooth
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submanifolds in this case. Consequently, neither m, x I'* nor ¢, are Fourier integral operators in
general. This faces us with serious difficulties when trying to study the singularities of &, within
the theory of Hérmander, Duistermaat, and Guillemin.

A trace formula. In what follows, we would like to understand the main singularity of &, at
t = 0 in greater detail. To this end, we shall first express

Zm 1)ole — 1), o€ S(R),

as the L2-trace of a certain operator. Observe that >y 0(pg)ej(x)ej(y) € C(M x M) is the
Schwartz kernel of the bounded operator

/+Oo oYU (t)dt : L*(M) — LA(M),

— 00

which is defined as a Bochner integral. It is of L2-trace class, since its kernel is square integrable
over M x M. Therefore

+oo +oo
(4) Py o / oYU (t)dt = / o(t) Py o U(t)dt

— 00 — 00

must be of trace class, too, where
Py =dy /G x(9)T(g) dg

denotes the projector onto the isotpyic component L?(M)(x), and d, the dimension of the irre-
ducible representation corresponding to the character x € G. We assert that kernel of the operator
@) is given by 77, 0(u;)Pyej(x)e;(y) € C(M x M). Indeed, by choosing the eigenfunctions
{e;} according to the decomposition of the eigenspaces of @ into isotypic components, we can
assume that Pye; = 0 if e; ¢ L%(M)(x), and Pye; = e; otherwise. By Sobolev’s inequality we
have

ej HL2 ///Lk+n+1

showing that >, 0(u;)Pyej(x)e;(y) converges in C°(M x M), and with (2) one computes

[Pxejllon < llejllon < c €51l rirnts < ¢’ HQkJrnJrl

+oo +oo > )
L o(t)Py o U(t)dtu(x) = L o(t) Z e i (u, ej 2 Pyej(z)dt
Oi_ e —itu, — 2
[ X [ el R @Em ). we i),

j=1
everything being absolutely convergent. As a consequence,
+o00 0
tr/ o(t)Py o U(t)dt = Z o(1)(Pyej,e;)r Z =6y (0),
-0 j=1 =1
and we obtain the following L2-trace formula, which was already derived in [9].

Lemma 1. Let p € S(R). Then

. +w +OO .
(5) 6y (0e’OH) = tr/ o(t)e™ P, 0 e~ "Qdt = trd / / el x(9)T (g) o e "% dg dt.

— 00
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O

Let us now recall that Uy o : C*(M,€y,9) — C(R x M, /) can be characterized globally

as a Fourier integral operator of class I—1/4 (R x M, M,C") with canonical relation given by (3.

This means that for each coordinate patch (x,Y"), and sufficiently small ¢ € (=4, 6), the kernel of
Uy /2(t) can be described locally as an oscillatory integral of the form

0t,3,5) = [ s Gma(e, 3, )y

on any compactum in Y X Y, where z,y € Y = k(YY) C R" and a € Sghg is a classical symbol
with a(0,Z,n) = 1, while (¢, Z,7n) — (g,n) is the defining phase function of C' in the sense that

' = {(t,5¢/8t), (5@51#/3@)7 (31#/577, _77)}7

see [29], page 254. Here we employed the notation dn = (27) ™" dn, dn being Lebesgue measure in
R". Since 7+¢(x,§) =00n C, and (z,0v/0z) = (0v¢/dn,n) for t = 0, we deduce dz ,¥(0,Z,n) =
dzn (Z,m), so that 9 is the solution of the Hamilton-Jacobi problem

0 0
2 (@ 92 =0, w08 m) = (@),

1) being homogeneous of degree 1. To construct an approximation of U(t) : L2(M) — L%(M), let
{(k~,Y5)} be an atlas for M, {f,} a corresponding partion of unity, and

i) = [ g veCET),
the Fourier transform of v. Write (x5')* dM = $3, dj, and denote by U, (t) the operator
[U’Y(t)v] (@) = / eiw’Y(tjm)av (t, 2, m)vBy (n)dn,

a,, and ¢, being as described above, and set U, (t)u = [U,(t)(u o k7] 0 Ky, u € CZ(Y,), so that
we obtain the diagram

(
Consider further test functions f, € C(Y,) satisfying f, = 1 on supp f-, and define

U(t) = ZF’Y Uv(t) F%

where F, F’v denote the multiplication operators corresponding to f, and f,y, respectively. Then
the result of Hormander implies that

(6) R(t) = U(t) — U(t)is an operator with smooth kernel,
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compare [2I], page 134. Next, one computes for u € C*(M)
FyUs () Fyu(z) = f,(2)[0, () (Fyuo k571)] 0 fiy ()

- 12(@) / e s M) (1 e (), m) By (P o 3 V)] ()
/ | (@)t s @mmOmlay (1, (@), ) (Fyw) (e ()8 §)dg d

_ /Y [£,(@) / ne”ﬂ’”(t’“”(”””“”(y”””ay(t,m(:c),n)dnfy(y)]u(y)dM(y),

where the last two expressions are oscillatory integrals with suitable regularizations. With (@) and
the previous lemma we therefore obtain for &X(Qei(')“) the expression

+oo o . 1
)ex(g) £ (g~ a)elttn brala k=l @il (¢, k. (g~ ), m)

-y,
Fy@)d(T*Y)(w, ) dg dt + O(| | =),

where d(T*Y)(z,n) denotes the canonical volume density on T*Y,,, and ¢ € C2°(—4,d). After the
substitution =’ = g~ 'a we get the following

Corollary 1. For o € C°°( 3,0) one has the equality

+6 -
Frlee™) = A Z/ [ T FOROTAE

ay (t, ky (2),0) f (g2) v(gaw)d(T Y,) (2, m) dg dt 4+ O(|u| =),

where J,(g,x) is a Jacobian.
O

The singularity of 6, at t=0. So far we have expressed &, as an oscillatory integral. In order
to study it by means of the stationary phase theorem, let us remark that since 1), is homogeneous
in 7 of degree 1, Taylor expansion for small ¢ gives

Uy (t,2,m) = ¢y(0, 3, ) + t—— % (0,2,m) + O(E*)In = (z,m) — tay(Z,1) + O(t*)Inl,

where we wrote ¢,(Z,n) = q(fql(i), 17). In other words, there exists a smooth function ¢, which
is homogeneous in 7 of degree 1 satisfying

(7) Yy (2, m) = (T, m) — G (¢, E,m),
G (0,2,m) = ¢4(2,m), =20, ¢4(0,2,m) = (Oy 45(Z, 1), 05 4(Z,n)) .
Let us now define e

F(r,&,m) :/ eitTg(t)aW(t,i,n)eio(tz)‘"‘dt.

Clearly, F(r,%,n) is rapidly decaying as a function in 7. More precisely, since a., € Sph o
(8) |F(r,2,n)| < Cn(14+72)7N, VNeN, icY,, neR",

for some constant Cy > 0 which depends only on N. Next note that ¢, (Z,w) > const > 0 for all
Tandw e S ={neR":|n|| =1}. There must therefore exist a constant C' > 0 such that

. 1 .~ "
Clnl > ¢4(%,n) > 5|77| Vi eY,, neR",
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which implies that for fixed p, F(u — ¢(Z, 1), Z,m) is rapidly decaying in . This yields a regular-
ization of the oscillatory integral in the previous corollary, and we obtain

! =DMy (g) fo () F (= qla, 1), riy (2), 1)
>t<Y’Y
fv(gx)Jv(g, 2)d(TY5) () dg + O(|u|~>).
But even more is true. If we replace y by —v, then (u — ¢,(Z,n))* > 2vq,(&,n) > 2v|n|/C. From

@) we therefore infer that 6X(gei(')“) is rapidly decreasing as u — —oo, reflecting the positivity of
the spectrum. Assume now that |1 — ¢ (Z,n/w)| > const > 0. Then

(ge’( )u

1 1

fﬂ_q ‘%7777‘%777 SCN M ~ ~

Fl =0 @m). 20 < Onenr e T G TN = e Gl
1 1

< Cn+m —
N | — gy (2,m)|M

for arbitrary N, M € N. Let therefore 0 < o € C°(1/2,3/2) be such that oo = 1 in a neighborhood
of 1, so that

1—algy(Z,n/p)#0 = |1 —q, (% n/p)| > const > 0.

Substituting 1 = un’, we can rewrite ¢, (0e’)*) as

~ i~ d o K~ (T K T NYPSY
(et = s 2, [, e e g o

a~(t, Ky (z )/m)fw(gw) (g, 7)a (q(w,n))d(T*Yw)(:v,n)dgdt+0(|u|‘°°),

where all integrals are absolutely convergent. Now, since (,(0,Z,w) = ¢,(Z,w), there exists a
constant C' > 0 such that for sufficiently small ¢ € (-4, 9)

1 -
CZC,Y(t,:i:,w)ZE VieY, wekK,
K being a compactum. By introducing the coordinates n = Rw, R > 0, (,(t, £ (z),w) = 1, one

finally arrives at the following

Proposition 1. Let 6 > 0 be sufficiently small, and ¢ € C°(—6,06). Then, as p — 400,

b (0e ) = XZ [ [ | / @ 009 (03 g) £ ()

avu,nv(x),uRw)fw(gx) Iy (gv2 ) Rale ) SLY, o) g R

up to terms of order O(pu=°), where S;Y, = {(z,w) € T*Y, : {,(t, ky(z),w) = 1}. Hered(S;Y,)(x,w)
denotes the quotient of the volume density on T*Y, by Lebesgue measure in R with respect to
¢ (t,@,w). On the other hand, Gy (0e' ") is rapidly decaying as i — —oc.

O

Assume now that p > 1. To study the limit of &, (ge!()*) as u — 400, we shall apply the

stationary phase principle to the Rt-integral first, and then to the integral over G x S;Y,,. For the

later phase analysis, it will be convenient to replace the integration over G' x S;Y,, by an integration
over G x T*Y,,. Let us us therefore note that since a € C*(1/2,3/2),

1/2 < Rg(z,w) <3/2 VrxeY, we (5Y,),.
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For sufficiently small § we can therefore assume that the R- integration is over a compact intervall
in RT. Let now o € CZ(R) be a non-negative function with [o(s)ds = 1, and define A, ,.(s) =
e to((s —r)/e), r € R. Then

Acp — 6y ase — 0
with respect to the weak topology in £'(R). Using this approximation of the é-distribution and
the theorem of Lebesgue on bounded convergence we obtain for &X(gei(')“) the expression

x Z / / inlt— R / / i [ e 00 o3 T ()

Y e—0 R+

(t Ii.y( ) 1sw) fr(gz)J5 (g, )a(q(w, sw))Ac r(s)s™™ 1dsd(S* ) (z,w)dgdR dt

277):1 gLOZ// ipu[t—Ri] / /*YW et lrn @)=k (g2)m) () (@) fy ()
ay (t, by (2), 1) f (92) T3 (9, @) (@, ) De,r (G (E 1y (2), m)A(T™Y5) () dg dR dt,

since [ A.,(s)ds = 1, and all integrals are over compact sets. Let us now apply the stationary
phase theorem to the Rt integral for each fixed . We then arrive at the following

Theorem 1. Let p € C(—46,6), and u > 1. For sufficiently small 6 one has the asymptotic
exrpansion

orled ) BRSO e G ) a1 012

e—0
AEJ(Q(‘T’ 77” d(T” Yw)(% n)dg + O(u"?),
where

O(Nmz):Cu”*2 sup 8Rt/ / e/ (@)= l9m)m o (£)x (g) £+ ()

181<5
ay(t, kiy (@), /“7)][7(955) (9, 2)eq(z,n)) Ac r (G (¢, 5y (), 1) A(T™Y5) (2, ) dyg |
For y — —o0, the expression &X(Qei(')”) s rapidly decaying.

Proof. Since (t, R) = (0,1) is the only critical point of t — R, the assertion follows from the classical
stationary phase theorem [21I], Proposition 2.3. O

We have thus partially unfolded the singularity of 6, at ¢ = 0. Theorem [ shows that its
structure is more involved than in the non-equivariant setting, or in the case of finite group actions,
compare [16], pp. 46, and [9], pp 92. To obtain a complete description, we are therefore left with
the task of examining the asymptotic behavior of integrals of the form

9) I(p) = /*Y/Gei“q)(w’g’g)a(g:v,x,f,g) dgd(T*Y)(x,€), 1 — +00,

via the generalized stationary phase theorem, where (k,Y") are local coordinates on M, and dyg is
the volume density of a left invariant metric on G, while @ € C°(Y x T*Y x G) is an amplitude
which might also depend on pu, and

(10) D(x,€,9) = (k(x) — k(gx),E) .
This will occupy us for the rest of this paper.
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3. COMPACT GROUP ACTIONS AND THE MOMENTUM MAP

Compact group actions. We commence this section by briefly recalling some basic facts about
compact group actions that will be needed later. For a detailed exposition, we refer the reader to
[8]. Let G be a compact Lie group acting locally smoothly on some n-dimensional C*°-manifold
M, and assume that the orbit space M /G is connected. Denote the stabilizer, or isotropy group,
of a point x € M by
Go,={9€G:g -z=uzx}

The orbit of z € M under the action of G will be denoted by G - x or, alternatively, by O,, and is
homeomorphic to G/G,. The equivalence class of an orbit O, under equivariant homeomorphisms
is called its orbit type, and the conjugacy class (G, ) of G, in G its isotropy type. Now, if K; and
K> are closed subgroups of G, a partial ordering of orbit and isotropy types is given by

type (G/K1) < type (G/K3) < (K3) < (K1) < K3 is conjugated to a subgroup of Kj.
One of the main results in the theory of compact group actions is the following

Theorem 2 (Principal orbit theorem). There exists a mazimum orbit type G/H for G on M.
The union M(H) of orbits of type G/H is open and dense, and its image in M/G is connected.

Proof. See [§], Theorem IV.3.1. O

Orbits of type G/H are called of principal type, and the corresponding isotropy groups are
called principal. A principal isotropy group has the property that it is conjugated to a subgroup
of each stabilizer of M. Let K C G be a closed subgroup containing H. An orbit of type G/K is
called singular, if dim K/H > 0, and exceptional, if K/H is finite and non-trivial, in which case
dim G/K = dim G/H, but type (G/K) # type(G/H). The following result says that there is a
stratification of G-spaces into orbit types.

Theorem 3. Let G and M be as above, K a subgroup of G, and denote the set of points on orbits
of type G/K by M(K). Then M (K) is a topological manifold, which is locally closed. Furthermore,
M(K) consists of orbits of type less than or equal to type G/K. The orbit map M(K) - M(K)/G
is a fiber bundle projection with fiber G/K and structure group N(K)/K.

Proof. See [§], Theorem IV.3.3. O

Let now M., denote the union of non-principal orbits of dimension at most 7.

Proposition 2. If k is the dimension of a principal orbit, then dim M /G =n — k, and M, is a
closed set of dimension at most n — Kk + 7 — 1.

Proof. See [8], Theorem IV.3.8. O

Here the dimension of M, is understood in the sense of general dimension theory. In what
follows, we shall write Sing M = M — M (H) = M,. Clearly,
SlngM = MO U (Ml - Mo) @] (M2 — Ml) y---u (MK - M,ifl),

where M; — M;_1 is precisely the union of non-principal orbits of dimension 7, and M_; = (), by
definition. Note that
M; — M;_y = M(H), H! C G, dimG/H] =1,
J

is a disjoint union of topological manifolds of possibly different dimensions. Now, a crucial feature
of smooth compact group actions is the existence of invariant tubular neighborhoods.
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Theorem 4 (Invariant tubular neighborhood theorem). Assume that G acts smoothly on M, and
let A be a closed G-invariant submanifold of M. Then A has an invariant tubular neighborhood,
that is, there exists a smooth G-vector bundle € : E — A on A together with an equivariant
diffeomorphism ¢ : E — M onto an open neighborhood W of A such that the restriction of ¥ to
the the zero section of & is the inclusion of A in M.

Proof. See [§], Theorem VI.2.2. O

Furthermore, by taking a G-invariant metric on M, W can be identified via the exponential
map with a neighborhood of the zero section in the normal bundle v(A) of A. From now on, let M
be a closed, connected Riemannian manifold, and G a connected compact Lie group acting on M
by isometries. Relying on the stratification of M into orbit types, one can construct a G-invariant
covering of M as follows, compare [30], Theorem 4.20. Let (H;),...,(Hy) denote the isotropy
types of M, and arrange them in such a way that

(H;) > (H;) = i<}

By Theorem [B] M has a stratification into orbit types according to M = M(Hy)U---U M (Hp),
and the principal orbit theorem implies that the set M (Hp) is open and dense in M, while M (H;)
is a closed, G-invariant submanifold. Denote by v; the normal G-vector bundle of M (H;), and by
f1: 11 = M a G-invariant tubular neighbourhood of M(H;) in M. Take a G-invariant metric on
vy, and put

D) ={v e :|v]| <t}, t>0.

We then define the compact, G-invariant submanifold with boundary

My =M — f1(51/2 (1)),

on which the isotropy type (Hi) no longer occurs, and endow it with a G-invariant Riemannian
metric with product form in a G-invariant collar neighborhood of 9 Ms in M,. Consider now
the union My (Hs) of orbits in My of type G/Ha, a compact G-invariant submanifold of My with
boundary, and let fo : va — Ms be a G-invariant tubular neighbourhood of My (Hsz) in Ma, which
exists due to the particular form of the metric on M. Taking a G-invariant metric on vs, we define

M3 = M, — f2(lo71/2 (v2)),

which constitutes a compact G-invariant submanifold with corners and isotropy types (Hs), ... (Hp).
Continuing this way, one finally obtains the decomposition

M = fi(Dy2(v1)) U+ U fr(Diy2(ve)),
where we identified f(D;/2(vr)) with My, which leads to the covering

(11) M = fi(D1 () U0 fu(Dr (), fu(Dr (vn)) =M
We introduce now the set
(12) N ={(z,9) e M : gz =z}, M=M x G,

which will play an important role later. If all isotropy groups of the G-action on M have the
same dimension, that is, if there are no singular orbits, N is a smooth manifold. Otherwise, N is
singular, as can be seen from Theoreml Clearly, N' = |J, Iso M (H},), where Iso M (H},) — M (Hy,)
denotes the isotropy bundle on M (Hy), and by Proposition 2] we have

dimIso M (Hy) =dim M (Hi) +dim H, <n—x+7—14+dimG — 7 =dimIso M(Hy) — 1,

where 1 < k < L —1, and 7 = dim G/Hy. The regular part Reg N is given by the union over all
total spaces Iso M (H}) with non-singular isotropy type (Hg), and is in general not dense in N.
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The momentum map. We shall now discuss the canonical symplectic momentum map of a
closed, connected Riemannian manifold M on which a connected, compact Lie group G acts by
isometries, and the way it is related to our problem. Consider the cotangent bundle 7w : T*M — M,
as well as the tangent bundle 7 : T(T*M) — T*M, and define on T*M the Liouville form

O(X) = 7(X)[m.(X)], XeT(T"M).
We regard T*M as a symplectic manifold with symplectic form
w = do,
and define for any element X in the Lie algebra g of G the function
Jx :T*M — R, n— 0(X)(n),
where X denotes the fundamental vector field on 7% M , respectively M, generated by X. Note that

O(X)(n) = n()N(,,(n)). Indeed, put y(s) = e 5% -1, s € (—¢,¢) for some & > 0, so that v(0) = 7,
4(0) = )N(n- Since w(e™*X -n) = e*X . 7(n), one computes

- d d .
X 77(77)\5:0 = XTI'(T])'

7(Xy) = w0 (8)jam0 = e

Therefore

O(X)(n) = 7(Xy) [ (X)) = (X)),
as asserted. The function Jx is linear in X, and due to the invariance of the Liouville form

E)}GZdjx—i-L)}w:O, VX €g,

where £ denotes the Lie derivative. This means that G acts on T*M in a Hamiltonian way. The
corresponding symplectic momentum map is then given by

J:T"M — g*, J(n)(X) = Jx(n).

As explained in the previous section, we are interested in the asymptotic behavior of integrals of
the form (@), and would like to study them by means of the generalized stationary phase theorem,
for which we have to compute the critical set of the phase function ®(x, &, g). Let (k,Y") be local
coordinates on M as in ([@)), and write x(z) = (%1,...,%n), n = . &(dE;)s € T;Y. One computes
then for any X € g

L€ ¢ o = 0 (w0 ¥ 0). €)= 3 EKal@) = 3 &ldm)(K)

=1(Xz) = O(X)(n) = I(n)(X).
Therefore ® represents the global analogue of the momentum map; furthermore, their critical sets
are essentially the same. Indeed, one has

(13) 0z ®(k71(2),6,9) = [1 = T(kogor™)alé = (1-g3) €

so that 9, ®(z, &, g) = 0 amounts precisely to the condition ¢*¢ = . Since 9¢ ®(z, &, g) = 0 if, and
only if gz = x, one obtains

Crit(®) = {(a:,f,g) ETY X G : (Pi) (a9 = O} ={(z,£,9) e QNT*Y)xG: g (x,€) = (x,§)},
where Q = J71(0) is the zero level of the momentum map. Note that

(14) neQNTM <<= neAm(T,(G-z)),

where Ann (V) C T M denotes the annihilator of a vector subspace V,, C T, M. Now, the major
difficulty in applying the generalized stationary phase theorem in our setting stems from the fact
that, due to the orbit structure of the underlying group action, the zero level €2 of the momentum
map, and, consequently, the considered critical set Crit(®), are in general singular varieties. In fact,
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if the G-action on T*M is not free, the considered momentum map is no longer a submersion, so
that  and the symplectic quotient /G are no longer smooth. Nevertheless, it can be shown that
these spaces have Whitney stratifications into smooth submanifolds, see [39], and [36], Theorems
8.3.1 and 8.3.2, which correspond to the stratifications of T*M, and M by orbit types [I7]. In
particular, if (Hy) denotes the principal isotropy type of the G-action in M, © has a principal
stratum given by

(15) RegQ={neQ:G,~Hr},
where G, denotes the isotropy group of n. To see this, let n € QNT; M, and G, ~ Hy. In view
of (Id) one computes for g € Gy, and X = Xp + Xy € T, M =T, (G - x) ® N(G - x)

9-0(X) = n((Lg-1)s2(Xn)) = 0(X),
since G acts trivially on N, (G - z), see [§], pages 308 and 181. But G, C Gy, for arbitrary
n € T*M, so that we conclude
(16) neQNIT,M, G,~H, = G,=0G,.

Since the stratum RegQ is open and dense in Q, equality (IH) follows. Note that Reg 2 is a smooth
submanifold in T*M of codimension equal to the dimension k of a principal G-orbit in M. It is
therefore clear that the smooth part of Crit(®) corresponds to

(17) Reg Crit(®) = {(2,£,9) € (RegQNT*Y) xG: g€ G},

and constitutes a submanifold of codimension 2x.

4. THE GENERALIZED STATIONARY PHASE THEOREM AND RESOLUTION OF SINGULARITIES

The principle of the stationary phase. Since the critical set of the phase function ([IQ) is
not necessarily smooth, the stationary phase method can not immediately be applied to derive
asymptotics for the integral (@). We shall therefore first partially resolve the singularities of
Crit(®), and then apply the stationary phase principle in a suitable resolution space. To explain
our approach, let us begin by recalling

Theorem 5 (Generalized stationary phase theorem for manifolds). Let M be a n-dimensional
Riemannian manifold with volume density dM, » € C°(M) a real valued phase function, and set

(18) () = /M e g (m) dM (m), > 0,

where a(m) € CP(M). Let

C= {m €M : e : TnM — TymyR is zero}
be the critical set of the phase function v, and assume that it is clean in the sense of Bott [7],
meaning that

(I) C is a smooth submanifold of M of dimension p in a neighborhood of the support of a;
(IT) at each point m € C, the Hessian ¢ (m) of ¥ is transversally non-degenerate, i.e. non-
degenerate on T, M /T,,C ~ N,,C, where N,,C denotes the normal space to C at m.

Then, for all N € N, there exists a constant Cy . > 0 such that

N-1

[Z(n) = e 2mu) "3 3~ 1 Q;(03.0)] < vy vl (suppa N €) sup [|Dlal
7=0 =
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where D' is a differential operator on M of order 1, and 1o is the constant value of v on C.
Furthermore, for each j there exists a constant Cj > 0 such that

Q;(1;a)| < Cjyvol(suppanC) sup [D'al| ¢ -
>4

and, in particular,
a(m) -
Qu(wsa) = [ doc(m)e' 37,
¢ |det ¥ (m)|n,,.c|'/?
where doc is the induced volume density on C, and oy the constant value of the signature of the
transversal Hessian ¢"(m)|n,,c on C.

Proof. See for instance [28], Theorem 7.7.5, together with [I3], Theorem 3.3, as well as [41],
Theorem 2.12. 0

Remark 1. An examination of the proof of the foregoing theorem shows that the constants Cp 4
are essentially bounded from above by

(Z/JN(m)\ch) -

sup
meCNsupp a

Indeed, let v : (z,y) = m € O C M be local normal coordinates such that a(z,y) € C if, and only
if, y = 0. The transversal Hessian Hess¢(m)|x,, ¢ is given in these coordinates by the matrix

(0. (w20 @) (a,0)

where m = a(z,0), compare (60). If the transversal Hessian of ¢ is non-degenerate at the point
m = a(z,0), then y = 0 is a non-degenerate critical point of the function y — (¢ o &)(x,y), and
therefore an isolated critical point by the lemma of Morse. As a consequence,

(19) 9,00 S < H(ayk (1 )(@.0))

for y close to zero. The assertion now follows by applying [28], Theorem 7.7.5, to the integral

/ (o) @)1 (q 0 0)(z, y) dy dz
1(0)

k,l

-1

k,l

in the variable y with = as a parameter, since in our situation the constant C' occuring in [28],
equation (7.7.12), is precisely bounded by (3], if we assume as we may that a is supported near
C. A similar observation holds with respect to the constants Cj .

Conditions (I) and (IT) in Theorem Bl are essential. Actually, the existence of singularities might
alter the asymptotics, as can be seen from the following

Example 1. Let M = R2, +(z,y) = (xy)?, and consider the asymptotic behavior of the integral
I(p) = [ [e@v/ia(z,y)dzdy as p — 0F, where a(x,y) € CX(R?) is a compactly supported
amplitude, and dz dy denotes Lebesgue measure in R2. The critical set of ¢ is given by the singular
variety Crit(¢) = {zy = 0}, and a computation shows that
eiﬂ'/4
Z(p) = —=a(0,0)(2rp) " log(u ") + O(u'/?).
V2
In general, one faces serious difficulties in describing the asymptotic behavior of integrals of the
form (I8 if the critical set C is not smooth and in what follows, we shall indicate how to circumvent
this obstacle by using resolution of singularities.
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Resolution of singularities. Let M be a smooth variety over a field of characteristic zero, Oy
the structure sheaf of rings of M, and I C Oy an ideal sheaf. The aim of resolution of singularities
is to construct a birational morphism II : M — M such that M is smooth, and the inverse image
ideal sheaf IT*(I) C Oy, which is the ideal sheaf generated by the pullbacks of local sections of I,
is locally principal. This is called the principalization of I, and implies resolution of singularities.
That is, for every quasi-projective variety X, there is a smooth variety X, and a birational and
projective morphism 7 : X — X. Vice versa, resolution of singularities implies principalization. If
IT*(I) is monomial, that is, if for every & € M there are local coordinates z; and natural numbers
¢; such that

one obtains strong resolution of singularities, which means that, in addition to the properties stated
above, 7 is an isomorphism over the smooth locus of X, and 7~!(Sing X) a divisor with simple
normal crossings. By the work of Hironaka [26], resolutions are known to exist, and we refer the
reader to [31] for a detailed exposition. Let next D(I) be the derivative of I, which is the ideal sheaf
that is generated by all derivatives of elements of I. Let further Z C M be a smooth subvariety, and
w: Bz M — M the corresponding monoidal transformation with center Z and exceptional divisor
F C BzM. Assume that (I,m) is a marked ideal sheaf with m < ordzI. The total transform
7*(I) vanishes along F' with multiplicity ordzI, and by removing the ideal sheaf Op,p(m - F)
from 7*(I) we obtain the birational, or weak transform 7' (I, m) = (O, (s (mF) - 7*(I),m) of

(I,m). Take now local coordinates (z1,...,2,) on M such that Z = (1 = --- =z, =0). Asa
consequence,
Z1 Tr—1
Y= —- - Yr—1 = yYr = Tpy o3 Yn = Tn
Ty Ty

define local coordinates on Bz M, and for (f,m) € (I, m) one puts

ng(f(fl, cyTp), M) = (y;mf(ylyrv Y 1Yrs Yry -+ Yn)s ).

By computing the first derivatives of 7, 1(f(z1,...,7,), m), one then sees that for any composition
IT: M — M of blowing-ups of order greater or equal than m,

(20) I (D(1,m)) € DI, m)),

see [31], Sections 3.5 and 3.7.

Consider now an oscillatory integral of the form (I8, and its asymptotic behavior as p — +0,
in case that the critical set C of the phase function v is not clean. The essential idea behind our
approach to singular asymptotics via resolution of singularities is to obtain a partial monomializa-
tion

(1) - O,y = 21t 2 T (Iy) - O, gy

of the ideal sheaf I, = (1) generated by the phase function 1 via a suitable resolution II : M — M
in such a way that the corresponding weak transforms 1)** = I1;*(¢)) have clean critical sets in the

*

sense of Bott [7]. Here z1, ...,z are local variables near each € M and ¢; are natural numbers.
This enables one to apply the stationary phase theorem in the resolution space M to the weak
transforms 1/3“”“ with the variables z1, ..., z; as parameters. Note that by Hironaka’s theorem, I
can always be monomialized. But in general, this monomialization would not be explicit enough
to allow an application of the stationary phase theorem.

In the situation of the previous sections, consider the set N defined in (I2)). To derive asymp-
totics for the integral (@), we shall construct a strong resolution of A, from which we shall deduce
a partial desingularization Z : X — X = T*M x G of the set

(21) C:{(az,ﬁ,g)eQxG:g-(x,g):(az,g)},
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and a partial monomialization of the local ideal I = (®) generated by the phase function (I0)

2'(Ia) & 5 = [[o) - 2. (0) & 5.
J

where o are local coordinate functions near each T € X, and ! j natural numbers. As a consequence,
the phase function factorizes locally according to ® o Z =[] aéj - ®v* and we show that the weak

transforms ®** have clean critical sets. Asymptotics for the integrals I(u) are then obtained by
pulling them back to the resolution space X, and applying the stationary phase theorem to the
vk with the variables o; as parameters.

A general description of the asymptotic behavior of oscillatory integrals with singular critical sets
was given in [5], and later also in [I5, B2} 2], using Hironaka’s theorem on resolution of singularities.
It implies that integrals of the form (8] always have local expansions of the form

n—1
Z Z Cak (a)ﬂa (log Mfl)ku " +0,
a k=0
where the coefficient « runs through a finite set of arithmetic progressions of rational numbers, and
the ¢k are distributions on M with support in C. The ocurring coefficients o and k are determined
by the so-called numerical data of the resolution, and their computation is in general a difficult
task, unless one constructs an explicit resolution. Resolution of singularities was first employed in
[6) B] to give a new proof of the Hérmander-Lojasiewicz theorem on the division of distributions
and hence to the existence of temperate fundamental solutions for constant coeflficient differential
operators. Since many problems in analysis originate in the singularities of some critical variety,
it seems likely that an application of resolution of singularities may be relevant in further areas of
this field.

Partial desingularizations of the zero level set 2 of the moment map and the symplectic quotient
Q/G have been obtained e.g. in [33] for compact symplectic manifolds with a Hamiltonian compact
Lie group action by performing blowing-ups along minimal symplectic suborbifolds containing the
strata of maximal depth in 2. Recently, resolutions of group actions were also considered in [I] to
study the equivariant cohomology of compact G-manifolds.

5. THE DESINGULARIZATION PROCESS

We shall now proceed to resolve the singularities of (I2). For this, we will have to set up an
iterative desingularization process along the strata of the underlying G-action, where each step in
our iteration will consist of a decomposition, a monoidal transformation, and a reduction. The
centers of the monoidal transformations are successively chosen as isotropy bundles over unions of
maximally singular orbits. For simplicity, we shall assume that at each iteration step the union of
maximally singular orbits is connected. Otherwise each of the connected components, which might
even have different dimensions, has to be treated separately.

First decomposition. Let M be a closed, connected Riemannian manifold, and G a connected
compact Lie group acting on M by isometries. As in the previous section, let (Hi),...,(H) be
the isotropy types of the G-action on M, 1 < k < L — 1, and f; : vy — M} an invariant tubular
neighborhood of My (H}) in

k—1

[e]
My =M — U fi(D1/2 (vi)),

i=1

a manifold with corners on which G acts with the isotropy types (Hy), (Hi+1), .- -, (Hr). Here

fk(p(k),v(k)) = (eXPp<k> O”Y(k))(v(k)), p(k) € Mk(Hk)v v® € (Vk)p(k)a
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is an equivariant diffeomorphism, while
S0 )y = FE@D) gy
T @
where Fy, : My (H;) — R is a smooth, G-invariant, positive function, see [§], pp. 306. Let
Sp = {v € vy : ||v|| = 1} — My (Hy) be the sphere bundle over My (Hy), and put Wy, = fr(D1 (v)),

Wi, =M, so that
M=WyU.---UWp,

see (II). Endow G with the Riemannian structure
d(X,,Y,) = — trad (dLy+ (X,))ad (dLy1(V,)),  X,.Y, € T,G,
where Ly : h — gh, h € G, and introduce for each p*) € My (H}) the decomposition
T.G~g=g,00 ® gy,

where g, =~ TeGpx denotes the Lie algebra of the stabilizer G ) of p®) | and ng(k) its orthogonal

complement with respect to the above Riemannian structure. Note that ThGp(k) ~ dLh(gp(k) ), and
ifAe g;k), d(dLp(X),dLp(A)) = —trad (X)ad (4) = 0 for all X € g,u) . Therefore, the mapping

d
gé(k) 5 A~ dLp(A) = — (h etA) € NhGp(k)

Tt
establishes an isomorphism g;k) ~ NpGyu. In fact, Ad (Gp(k))g;(,c) C g;k), so that G/G,w)

t=0

constitutes a reductive homogeneous space, while the distribution G 3 g — Tg’“”G = dLg(g;-(k))

defines a connection on the principal fiber bundle G — G /G ) for all p € Mj.(Hy). Consider next
the isotropy bundle over My (Hj},)

Iso My (Hy) — My (Hy),
as well as the canonical projection
T Wi — My(Hg), Fe@® 0™y = p® - p®) e My (H), v®) € (1) -
Since g € G is an isometry, the theorem of Whitehead implies
Fe@™,0®0) = g f(p®,0®) = (expypo o) (grp (@) & p™ = gp*) v =g, (),

so that one concludes
L—1

(22) N CIsoWy, U | ] mj Iso My (Hy),
k=1

where Iso Wi — Wy, is the isotropy bundle over W, and
7T;: ISOMk(Hk) = {(fk(p(k),’v(k)), h(k)) € Wk x G h(k) S Gp(k)}

denotes the induced bundle. Consider now an integral I(x) of the form (@)). Introduce a partition
of unity {xx}r=1,...r subordinated to the covering M = Wy U---U Wy, and define

) = [ [ e @algr.z.€.) dg d(TY) 0. 6).

As will be explained in Lemma [ the critical set of the phase function @ is clean on the support of
XLa, so that one can directly apply the stationary phase principle to obtain asymptotics for Iy, ().
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We shall therefore turn to the case when 1 <k < L —1, and Wy NY # (. Let {vgk), .. (fk))} be
an orthonormal frame in vy, (pgk), .. ,pfl )c<k>) be local coordinates on My (H}), and write

()
(23) A () ( ) Ze(k) ~(k )((Vk)p<k>)-

By choosing Y small enough, we can assume that the coordinates in the chart (k, frx(vx) NY) are

given by r(exp,m) Y B (W) = (1, ..., 8,) = (pgk), e ,pflk)c(k),t?(k) 9(5,3)) By the considera-

tions leading to ([22)),

3

Crity,(®) C m*Iso My (Hg) x R,
where
Crity(®) = {(z,&,9) e (QANT* W, NY)) xG:g-(x,€) = (z,8)}.
Let therefore Uy be a tubular neighborhood of 7*Iso My (Hy) in Wy x G, and
Iy, : Uy — 7 Iso My (Hy)

the canonical projection which is obtained by considering geodesic normal coordinates around
75 IsoMy,(Hy) and by identifying Uy, with a neighborhood of the zero section in the normal bundle
N 7} Iso My (Hy). The non-stationary phase theorem [28], Theorem 7.7.1, then yields

(21) R = [ e, @blgr.a, . g) de dg M (@) + OGu),

where b is equal to the amplitude a multiplied by a smooth cut-off-function with compact support
in Uy. Note that the fiber of N m*Iso My (Hy) at a point (f(p*®,v®*)), A(¥)) may be identified
with the fiber of the normal bundle to G, at the point hF). Let now A;(p), ..., Ay (p*))
be an orthonormal basis of gj(k), and Bi(p™),..., B.a (p'®)) an orthonormal basis of 9,00, and
introduce canonical coordinates of the second kind

(@1 Qg B -y Bty ) = @2 @A) (X3 BB )
in a neighborhood of a point g € G, see [25], page 146, which in turn give rise to coordinates
(alv SRR ad(k)) = (fk(p(k)av(k))v eZi o Aip ™) h(k))

in I, ' (fe(p™,v®), h(®). Integrating along the fibers of the normal bundle to 7} IsoM(Hy),
compare [14], page 30, we obtain for I} (i) the expression

In(p) = / / e ®yib Ti d€ dA® | dn®) dy®) gp*)
mf IsoMy (Hy) | I (fr(p®) ,0(0)),R(D)) xR
(25)

1y kb T dE dA® dnF) qu®) | gp*)

o
/Mk(Hk) /71'k1(p(k))><Gp(k) X D.(g ) ) XR"

up to a term of order O(u~°°), where dp®), dv®  dh®) dA®*) are suitable volume densities on the
sets My (Hy), (Vk)pt) > Gy, g;-(k) >~ Ny Gy, Tespectively, and

(26) (P, 08, AW KB s (£ (p® v<k>> A" h®) = (z,9)
are coordinates on Uy such that dgdM(x) = Ji dAk ) dv(®) dp®) | 7, being a Jacobian. Here

D, (g;k)) denotes the interior of a ball of suitable radius ¢ > 0 around the origin in gp(,c).
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First monoidal transformation. We shall now sucessively resolve the singularities of ([I2)). To
begin with, note that ([22) implies

L-1
N=TsoW,U | JNNU,

k=1

and we put N, = IsoWr, N, = N NU,. While Ny, is a smooth submanifold, A}, is in general
singular. In particular, if dim Hy # dim Hp, N} has a singular locus given by Iso My (Hy). We
shall therefore perform for each k € {1,...,L — 1} a monoidal transformation

Ck : sz(Uk) — Uk

with center Zj = Iso My(Hy) C Ni. By piecing these transformations together, we obtain the
monoidal transformation

L—1
¢V Byoy (M) — M, ASES U Zy, (disjoint union,).
k=1

To get a local description, let k be fixed, and write A®) (p() oF)) = Eagk)AEk) (p*) € g;k),
B (pk) k) = Zﬂi(k)Bfk) (pR) € g, With respect to these coordinates and the ones intro-
duced in 23) and (28) we have Zj ~ {T(k) = (0% aF) = 0}, so that
Bz, (U) = { (2,9, [t]) € Uy x RP< 4070 1By g, 1
G : (2,9, [t]) — (2, 9).
If t, # 0,

(fI;,g, [t]) — (p(k)u h(k)u t_la v 7?7 ceey MuT‘ék))
to to
define local coordinates on By, (U). Consequently, setting V, = {[t] e RpeV -1, to # O},

we can cover By, (Uy) with charts {(¢f, OF)}, where Of = Bz, (Ux) N (Ux x V,), such that (j is
realized in each of the §(*)-charts {08 <pcem a8

_ - ¢ -
(27) C]S = Ck © (‘Pg) ! : (p(k)a Tk U(k) ) A(k)u h(k)) '_§ (p(k)u Tkv(k)u TkA(k)u h(k))

= (expp(k) Tkﬁ(k)a eTkA(k) h(k)) = (J;,g),

where 5 (p) 9y € v (M ((SF) ), and S = {v Evpiv= Zsivl(k), sp >0, |lv|| = 1}, while

7 € (=1,1). Note that for each 1 < p < ¢®) we have W}, ~ S;" x (=1,1) up to a set of measure
zero. A similar description of ¢ is given in the a®)-charts. As a consequence, we obtain a partial
monomialization of the inverse image ideal sheaf (¢())*(In)

(") (Iw) “Ela,g, ), B 1y (M) = Tk * (") Iw) “Ela,9,10),B ;) (M)

in a neighborhood of any point (x, g, [t]) € Bz (M). To see this, note that I is generated locally
by the functions &4(x) — Z4(g- x), 1 < ¢ < n. We have g - exp, o Tk = exp,_,m [g. oo (kD ™)],
where g, ) (@®) e ”y(k)((Vk)gZ,(k)), v, being a G-vector bundle. Now, Taylor expansion at 7, = 0
gives for y € Y N fr(vi)

T e AR _ A Y ~
Fo(e™ - y) = q(y) — A (2g) + O(|r AW,
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where 73, € (—1,1), A% EZO)L (g}f(k)), and ¢ > 0 is assumed to be sufficiently small. Furthermore,
g;k) (Zq) = d:iq(gg(,k)). Consequently,

fi(exppm Tkﬁ(k)) — Ii(eTkA(k) hk) . expy, (k) Tkﬁ(k))

(28) i) (- o K .
=7 (A% @), 00 80) = 0 (W), 8@, ) + O(72 AV,

Since similar considerations hold in the «(®)-charts {Og}c(’“)JrngSc(k)er(k)’ the assertion follows.

In the same way, the phase function (I0) factorizes according to
(29) Do (ide @) = PPt = 7 . WGk,

®)Ptot and WGk being the total and weak transform of the phase function @, respectivelyl] In
the 6(%)_charts this explicitly reads

(30)
B(z,€,9) = <,§(6prm 6 ®) — (A BB exp Tk1~)<k)),§>
n—c(®) (%)
=7 | 32 &I AR + D [89 D) = 00 (D), 00 5D)] 6o + OUmAP |
q:l r=1

Since (i is a real analytic, surjective map, we can lift the integral It (u) to the resolution space
By, (Ug), and introducing a partition {u?} of unity subordinated to the covering {O}} yields with

24)) the equality

o) 400
L(p)=> I¢w+ > Ifw
o=1 o=c(F) 1

up to terms of order O(p~>°), where the integrals I}/ (n) and f,g(u) are given by the expressions
/ uf(ide ® C)* (e xibdg dM (z) dE).
sz (Ug)xR™

As we shall see, the weak trar}sforms (M dwk have no critical points in the a(®-charts, which
will imply that the integrals I7(u) contribute to I(p) only with lower order terms. In what
follows, we shall therefore restrict ourselves to the the examination of the integrals I}/ (u). Setting

af = (ugo (p3)™1) - [(bxx) o (id ¢ ® ¢2)] we obtain with (25) and (27)

(k) Gk _

4 _ LT, P o 70
Ik(ﬂ)—/ {/ 5 e'HTr af J;;
My (Hi)x(—=1,1) 'Y(k)((sk)p(k))XGp(k)XDL(Q:(k))XRn

de dA®) ah® a5 ® | dr, dp™),

where di(®) is a suitable volume density on v ((Sy),w ) such that the pulled back density reads
() (dgdM (z)) = J£dA® an® dv™® dr, dp®. Furthermore, by compairing (28) and (1) one
sees that

= (k) 4 q(k) _
jkg — |7'k|c +d ljk o /CIS

1 Note that the weak transform is defined only locally, while the total transform has a global meaning. To keep
the notation as simple as possible, we restrained ourselves from making the chart dependence of 7, and (*)dwk
manifest.
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First reduction. Let k£ be fixed, and assume that there exists a x € Wk with isotropy group
Gz ~ Hj, and let pF) Mk(Hk) vk e (Vk)pe be such that z = fr(™,v™®). Since we can
assume that z lies in a slice at p®) around the G-orbit of p®), we have G, C G, see [30], pp.
184, and [§], page 86. Hence H; must be conjugate to a subgroup of Hj ~ G,w . Now, G acts
on My with the isotropy types (Hg), (Hg41),- .-, (Hr). The isotropy types occuring in Wy are
therefore those for which the corresponding isotropy groups Hy, Hi11, ..., Hr are conjugate to
a subgroup of Hy, and we shall denote them by (Hy) = (Hy,), (Hi,),...,(Hr). By the invariant
tubular neighborhood theorem, one has the isomorphism

Wi /G =~ (vg) piw /Gy

for every p(¥) My, (Hy). Furthermore, (I/k)p(k) is an orthogonal G ,x) -space; therefore G ) acts on
(Sk)pa with isotropy types (Hi,),...,(Hr), cp. [14], pp. 34, and G must act on S, with isotropy
types (Hy,),...,(Hr) as well. If all isotropy groups Hj,, ..., Hy, have the same dimensions, the
singularities of NV}, have been resolved. Indeed, note that ¢, (M%) is contained in the union of the
6*)_charts {O£}1<Q<C(M since, in the notation of (24]), A" k) ¢ G, (o0 w0y C Gy necessarily
implies A®) = 0. Let therefore 1 < p < ¢ and consider the set C,;l(/\/k) N OF, which is given by
all points (z, g, [t]) with coordinates (p( ) 73, 08 AR B(R)) satistying

Ak )
e’k ) e Gexp (k) TRDE) C Gp(k)

If 73, # 0, this implies A®) =0 and (¥ € Gy . Therefore
G M) N 0f = {A® =0, V) € Gy, me # 0} U {7y = 0}

Assume now that all isotropy groups Hy,, ..., Hr have the same dimension. If Hj has the same
dimension, too, N}, is already a manifold. Otherwise, the invariant tubular neighborhood theorem
implies that ¢ '(RegNj) N Of = {A(k) =0, ™ € Gy, i # 0}, where Reg NV}, = Reg V' N U,
denotes the regular part of Aj. The closure of this set is a smooth manifold, and taking the
union over all 1 < ¢ < ¢® yields a smooth manifold N}, C Bz, (Uy,) which intersects ¢; ' (Sing Ny,
normally. After performing an additional monomial transformation with center Ny N¢ & L(Sing My,
we obtain a strong resolution for N. Furthermore, if G acts on Sy, only with isotropy type (Hp), we
shall see in Sections [l and [7 that in each of the #*)-charts the critical sets of the weak transforms
(®)dwk are clean, so that one can apply the stationary phase theorem in order to compute each
of the I?(p). But in general, G will act on Sy with singular orbit types, so that neither N, is
resolved, nor do the weak transforms () wk have clean critical sets, and we are forced to continue
with the iteration.

Second Decomposition. In what follows, let 1 < k < L — 2, and p( ) € My(Hy) be fixed.
Since W(k) : Uy — Vg is an equivariant diffeomorphism onto its image, 7 ((Sk) v)) is a compact
G pm-manifold, and we consider the covering

YE((Sk)pr) = Wi, U=+ U Wir, Wity = frt, (D1 (Uke;))s - Wiz = Int (v ((Sk)po ) 1),
where fr, : v, — ”y(k)((Sk)p<k))l]. is an invariant tubular neighborhood of ”y(k)((Sk)pm)lj (Hi;) in
j—1

Y (S ), =10 (Sk)po) = U fit, (Drjz i), 522,

r=2
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and fklj (p(lj),v(lj)) = (epruj) O”Y(lj))(v(lj)) p(l )€ 7 ((Sk) <k))zj (Hlj), vla) € (szj)puj>, W(Zj) :
Uk, — Vgi; being an equivariant diffeomorphism onto its image given by
l,
_RGY)
T S IR
where Fy, : ((Sk)pm )i, (Hi;) — R is a smooth, G« -invariant, positive function. Let now {x,}
denote a partition of unity subordinated to the covering {sz ; }, which extends to a partition of

unity on ”y(k)(Sk) as a consequence of the invariant tubular neighborhood theorem, by which in
particular v (S;)/G ~ y*) ((Sk),00)/Gpoo for all p*). We then define

7( )( (& ))

(k) &wk
4 — TR (o] o
I, () / [/k o € ay
Mi (Hi) % (=1,1) =y ((S1) () )X Gy (k) X D975y ) XR™

X, TE dE A dvUﬂ dry dp®,

(31)

so that I () = I, (1) + - -+ I} (). Since G acts on Wy, only with type (Hp), the iteration
process for I/, (1) ends here. For the remaining integrals I,flj (p) with k < l; < L and non-zero
integrand, let us denote by
ISO’V ((Sk)p(k)) '(Hlj) - W(k)((sk)p(k))lj (Hlj)
the isotropy bundle over v® ((Sy),m )i, (Hy;), and by mw, @ Wi, — ¥*((Sk)pe )i, (Hi,) the
canonical projection. We then assert that in each *)-chart {O£}1<Q<C(M
Critklj ( (k) (i)wk)

(32) N .

c {(p(k),Tk,v(k),g,h(k),A(k)) (00, h W) exyy Tsoy ™) ((Sk) )y (H,), AW = 0},

where }
Crityy, (M) = {( ®) 1 58 g h0) AR BFuk — o 50 €y, }
Indeed, from (29) it is clear that for 7, # 0 the condition d¢ *)®™“* = 0 is equivalent to

(k) A (k) (. (k)
ek S VAT (p )h(k) c Gexp . 5 C Gp(k),
p

which implies o) = 0, and consequently h(¥) € G;u) . But if (%) = fri; (p), v), where pi) €
YE((Sk) e )1y (Hiy), v 651 (Vkt, )y then ONNE, ;- On the other hand, assume that 7, = 0.
By (B0), the vanishing of the §—der1vat1ves of (* )<I>“Jk is equivalent to
k) [ (k k) [ (k
(A;(g)( ( ))7 A;(g)( fz)coc))) =0, (1—ht ))* w 7% =0,

which again imphes a®) =0, as well as h®) € Gy . But if 5% = Tri; (p) v) as above, we again
conclude A% € G 05, and B2) follows, since

i1, 1507 F ((Sk) yoo )1, (Hiy ) ={(w, 9) € Wiay X Gy 2w = fray (pU7,0),
P! € YN (Sk) )i, (Hiy ), v €D1 (W1, s 9 € G }-

The same reasoning also shows that the weak transforms (¥)®“* can have no critical points in
the a(®-charts {Olg}c<k)+1gggc<k>+d<k) . Let now Uy, denote a tubular neighborhood of the set

Ty, Iso YE ((Sk)pw )i, (Hiy) in Wi, x G, and let bf be equal to the product of the amplitude af

with some smooth cut-off-function with compact support in Uy, that depends smoothly on pk).
The non-stationary phase theorem then implies that, up to terms of lower order, we can replace
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af by b¢ in (@), compare Section @ For given ps) € v®)((Sk),m )i, (Hi,), consider next the
decompos1t1on

9= 0p @Q]jm = (g p(L) @Eﬁuﬂ) @Eﬁm-
Let further h() e Gpuj), and Aglj AS”)) be an orthonormal frame in E!;'(W as well as
B%lj), .. .,B(l({)) be an orthonormal frame in g ;) , and nglj), v(ﬁfl )) an orthonormal frame
in (V)05 Integrating along the fibers in a nelghborhood of mp, Iso y*) ((Sk )0 )1, (Hy,) then
yields for I ,flj( ) the expression

Ilgl-(:“) :/ [/ [/ ) . I
! My (Hi)x (=1,1) =Sy ® ((Sk) () )1 (Hij) w,;mp“j))xcpuj)xDL<g:ﬂj)>XDL<g;m>an

b X, T, € dA® Al dn) av]dp ] dry dp®

(k) Guk

up to lower order terms, where j,fl, is a Jacobian, and
(1) ) AW) 1) )Y oA )y — (5(R) 1,(k)
(p), v1), AW) BEDY s (fr, (P4, 019)), @77 D) = (50 h(R))

are coordinates on Uy, while dp3), dA%), dh() | and dv%) are suitable volume densities in the

7

spaces 'y(k)((Sk)p(k))[ (Hy,), L(l e 20> and 51 (Vhi, )paj), respectively, such that we have the
equality J¢2 dh® do®) =75, dA dh(l ) dvls) dpls)

Second monoidal transformation. Put M) = B, (M), and consider the monoidal trans-
formation

(@ Byo(MWY) — MW, A U Zy (disjoint union),
k<I<L,(H;)<(Hp)
where

Zu~ | (=11 xTsoy ™ ((Sk)pw )i(H),  k<I<L, (H)<(H),
p) e My, (Hy)

are the possible maximal singular loci of (¢(1))~ (./\/ ). To obtain a local description of ¢(?), let us
write AD O 50, a) = Sl A0 (o) p0) € gy, BO G, p0, 50) = 3= 80 B 0 p0) €
gpw), as well as

O
YO ) EN,p0,00) = 3600 (60 o) € 1O (n)y0).
i=1
One has Z; ~ {a(k) =0,a® =0, 00 = O}, which in particular shows that each Z; is a manifold.
If we now cover B (M (1)) with the standard charts, a computation shows that (¢ o¢®)~1(N)
is contained in the (H(k),ﬁ(l))—charts. For our purposes, it will therefore suffice to examine ¢(?) in

each of these charts in which it reads
(33) ]SZU . (p(k),Tk,p(l),Tl,ﬁ(l),A(l),h(l),A(k)) ,<_k‘>l (p(k),Tk,p(l),Tlﬁ(l),nA(l),h(l),nA(k))
= (p(k) y Tk epr(l) Tl’D(l)u eTlA(l) h(l)u TlA(k)) = (p(k) y Tk ’D(k)u h(k) ) A(k))u

where 7, € (—1,1), and
7@ (p(k) , p(l)7 g(l)) (l) ((Skl)p”))
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Here Sy, stands for the the sphere subbundle in vy, and S,jl = {’U ESp:iv=>Y. sivgk”, Vg > O} for

some o. Note that Zx; has normal crossings with the exceptional divisor Ej, = C,;l(Zk) ~ {1, = 0},
and that for each p®) € My (Hy,) we have Wy ~ S} x (=1,1), up to a set of measure zero. Now,
Taylor expansion at 7; = 0 gives
- AD .
TH(k)(expp(z) Tl’l)(l)) T g(k) ((e A¢ h(l))*1p<k> exp, ) Tl’l)(l))
0 - ”AD -
= Tla—Tl {TG(’“) (exppu) Tl’U(l)) — Tpk) (( et A h(l))*)pm expy,m) Tlv(l))}

|Tl:0
+O(I77 AV + O(|72 [0V @) — 00 (1Y), o 81)]])
96" (1,p® 0 . . . _
=7 (W) T(O7dp§l)(Az()l()l))7 - -7dpil&_cu)_l(AS()n)a99(“(”) _ 9§l>((h<l>)*7p<k)v<“),
00 (80) = 05 ((AO), 40 8D) ) + O AL + O (|72 [0 50) = 00 (b ), 005 )] ),

where {pgl)} are local coordinates on v ((Sy) ) )i(Hi),

96k
o OW10)
(a<m,p<l>,o<l>>>“’“p 67

denotes the Jacobian of the coordinate change §() = §() (7, exp,) 7D (v®)), and all vectors are
considered as row vectors, the transposed being a column vector. Since similar considerations hold
in the other charts, we obtain with (28) and (B3] a partial monomialization of (¢ o ¢())*(Ix)
according to

(¢ 0 ¢ (In) - €5y ity = Tem - (V) 0 CONTHIN) - €5 ) oy

in a neighborhood of any point 7 € By (MM). In the same way, the phase function factorizes
locally according to

d o (ldg ® (C}S ° ]Slo')) _ (kl)(i)tot =TT (kl)(i)wk,
which by [B0) and B3] explicitly reads

n—c(k)
O@,&0)=m[n Y. & (AL))
g=1

o)

+ {97@ (expp<z> Tlﬁ(”) -6 ((GTZA(U h), oo expyw Tlﬁ(l))}gnfc(k)+r + O(|TszA(k)|)]
r=1

(p™®, 00 (p™ 1,p0, 0) (k) F(k) W, 70 W) (~(1

00 ((h9). 0 5D), ... ),€) + O(m AP + O(1m AD]) + O(Im [0 (3) = 6D (b D), 00 5D ]

in the (), 0(")-charts. A computation now shows that the weak transforms Y ®“* have no
critical points in the (0%), a())-charts. We shall therefore see in Section [ that modulo lower order
terms I} (p) is given by a sum of integrals of the form

5w = [ [/ |/ —
My, (Hy) % (=1,1) =Sy ((Sk) a0y )i (H) % (=1,1) =y ((Ska) ,0)) X G XDL(E;U))XDL(E;,C)))XR"
QIHTTL ("’)@w’“ai?jk@ld d¢ dA® gA4® gr® df,(l)] dm dp(l)} dry, dp(k)
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for some ¢ > 0, where aj] are compactly supported amplitudes, and dv® is a suitable density on
W(l)((Skl)pm) such that we have the equality

dM (z)dg = J& dA® dAY dn® do dry dp® dr, dp™.

4 gk 4 g _
c\+d +d 1 4 1,00
| T © "Cry -

Furthermore, a computation shows that 72 = |7
Second reduction. Now, the group G, acts on A ((Sk;)p(k))[ with the isotropy types (H;) =
(Hi;),(Hy,,),-.-,(Hg). By the same arguments given in the first reduction, the isotropy types
occuring in Wy constitute a subset of these types, and we shall denote them by

(Hy) = (Hy,,,), (Hi,,, ), (HL).

Consequently, for each p(¥) € M;,(Hy), G acts on Sy with the isotropy types (Hy,,, ), ..., (HL).
If the isotropy groups Hj,, ..., Hy have the same dimensions, we shall see that the singularities
of (C(l))’l(N’) can be locally resolved over Zy;. Moreover, if G, acts on Sy, only with type (Hp),
the ideal Iy can be partially monomialized in such a way that the critical sets of the corresponding
weak transforms are clean. But since this is not the case in general, we have to continue with the

iteration.

N-th decomposition. Denote by A < L the maximal number of elements that a totally ordered
subset of the set of isotropy types can have. Assume that 3 < N < A, and let {(H;,),...,(Hiy)}
be a totally ordered subset of the set of isotropy types such that i1 < --- <iny < L. Let fi,, fi s,
Sivs Sivis, as well as pUt) € My, (H;,), pl) €y “)((SH')]D(H))l2 (Hy,), ... be defined as in the first
two iteration steps, and assume that fi, ;, Sil,,,ij,p(“), ... have already been defined for j < N.
For every fixed p(i~n-1) let ’y(iNfl)((Silmmfl)p(wfl))m be the submanifold with corners of the
closed Gp(iN,N-manifold 7(”\“1)((Sil,,,iNfl)p(iN,l)) from which all orbit types less than G/H;,
have been removed. Consider the invariant tubular neighborhood

Firin = expoy ™ cwyy iy = A D((Siy iy ) in0 in

of the set "Y(iNil)((Sil___iNil)p(iNil))iN (H;y ), and define S;, _;, as the sphere subbundle in v;, _;,
while

S;"l_~~~7:N = {1} S Sil---iN v = Z’Ul ’ UE’IN > O}
for some p;,. Put W“___l-N = fi.in(D1 (Viy.in)), and denote the corresponding integral in the
SO0in

() by I; Q” QIN ' (u). Here we can assume that, modulo terms of lower
“OiN 1 (

decomposition of I N

order, the W, iy ><G (v p-Support ofthe integrand 1nI -
of a tubular nelghborhood of the induced bundle Wll,,,zNISOW(iN’l)((Sil...mfl)p(wfﬂ)m (Hip)s

where 7, iy ¢ Wiy in — 'Y(iNil)((S»L'lvniNil)p(iNil))iN (H;,) denotes the canonical projection.

() is contained in a compactum

For a given point p(~) € y(in-1((SF in_1)ptin—1) )in (Hiy), consider further the decomposition
— L
9,6n-0 = Bp6n) D O,0n>

and set d~) = dim g, elin) = dim Op(iy)- Lhis yields the decomposition

plin)’

(34) 9= gy B Gy = (Bp) B Bpiin) B Bay) =+ = Gpin) B Gpiiny B B Gptiyy-
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Denote by {Ang)(p(il), ..,p))} a basis of g;ﬁm)’ and by {Bﬁm)(p(il), ...,p%)} a basis of
Opliy)- For AlN) g;-(iN) and BU~) ¢ Op(iy) Write further

dinN) eliN)
AlN) — Z Oégjz\r)AgiN)(p(il),,_,,p(izv))7 B(in) Z B(ZN N (11 _,_7]9(1'J\r))7
r=1

and let {v,(«il"'iN)(p(il), . .p(iN))} be an orthonormal frame in (v, iy )yin) -

N-th monoidal transformation. Let the monoidal transformations ¢V, ¢® be defined as in
the first two iteration steps, and assume that the monoidal transformations ¢ () have already been
defined for j < N. Put MY = B, (MU=Y), M = M = M x G, and consider the monoidal
transformation

(35) ¢ By (MM 5 MWNVEU 2N = ) Ziy Ly, (disjoint union),

i1<-<in<L
where the union is over all totally ordered subsets {(H;,),...,(H;y)} of N elements with i1 <
- <1ty < L, and

Z’il»».iN = U (_L 1)N71 X ISOFy(iNil)((Sil---iNfl)p(iN—l))iN (HZN)

are the possible maximal singular loci of ((( o+ -0 ((WN=D)=1(N). Denote by (/" o---o (/1 ¥~

a local realization of the sequence of monoidal transformations () o-- -0 () corresponding to the
totally ordered subset {(Hj,),..., (H;,)} in a set of (1), ... #0~))_charts labeled by the indices
Qiys---,0in- As a consequence, we obtain a partial monomialization of the inverse image ideal

sheaf (¢ o0 ¢M))*(Iy) according to
(C(l) © "'OC(N)) (In) - &s M) = Tig o Tiy (C(l) 0"'°C(N));1(IN) ) 5m,M<N>

in a neighborhood of any point 7 € M®) = B, (MM =1 as well as local factorizations of the
phase function according to

do (ldE ® (CQH . CQn gzz)) — (il...iN)i)tot =Ty Tin (il...iN)i)wk,
where in the relevant (1) ... 60~))-charts
(i) ok :<E : T(dpgil)([ls(li%) ;0 dP(ZZ)(A(éi)) 0,y dpgiN)(AﬁfN)ﬂa cee

0% (80%)) = o) (A0)), oy 8, ), )
+ 37017, AU |) 4 O [063) (305)) — 003 (R)), iy 863,
j=1

the {pgij)} being local coordinates, 5('¥) (p(s) 9lin)y € 4N (S )pin)s hin) ¢ Gin), and

1. AN

= =)  =(i2) .. =01dv-1)
E== = = ,

a(p(“)a Tilvp(lé)a Tigy -~ - ap(ij)a 0(%)))
a(p(zl)v Tiq ap(i2)a Tigy -+ - 7p(ij)a Ti]‘ ap(ij+1)a Q(ij+1))

Z0d5) —

(P, 1,p0) 1, pla) 1, pliat) ).

Here Z(71-%) corresponds to the Jacobian of the coordinate change given by

plis) — glis) (7, eXP (iy41) v(ijJrl)(v(ijJrl)))_
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Modulo lower order terms, I(u) is then given by a sum of integrals of the form

ol (1) =
/Mil

11...1N

36 R

( ) {/ elemTN(zlmzN)q)wk

o o
(ZN)((S” )(iN))XGP(iN)XDL(B:’_(,LN))X"'XDL(Q:(il))XRn

(Hiy)x(~1.1) [/wv«Sinpw>i2<Hi2>x<1,1> - [/V“Nﬂ«smw1>p<iN1>>iN<HiN>x<u)

QLN TR dEdAT) L AT dhN) 45N | dr dpN) | dri, dp) | dri, dp™),

21 -

Here aQZ1 15 N are amplitudes with compact support in a system of ((), ..., #0~))-charts labeled

by the 1ndices Qiyy- -+, 0iy, While

Q'Ll QZN7H|Z
J

0Qiq ---0i . . .
where J; "' Y are functions which do not depend on the variables ;.

cig) J (ir) _ ip-+-0i
J,»Z d 1 70Qiy - Qiy
g

N-th reduction. For each p"¥-1) the isotropy group Gp@N,l) acts on vV -1 ((S,, ___iNfl)p(iN,l) Vin
by the types (H;y),...,(Hr). The types occuring in W;, ;. constitute a subset of these, and

Gp(iN,l) acts on the sphere bundle S;, _;, over the submanifold v~-1((S;, ;v . )p@N,l))iN (H;\) C
Wi, ...in With one type less.

End of iteration. As before, let A < L be the maximal number of elements of a totally ordered
subset of the set of isotropy types. After N = A — 1 steps, the end of the iteration is reached.
In particular, we will have achieved a desingularization of . For this, it is actually sufficient to
consider only monoidal transformations (35) whose centers Z(™) are unions over totally ordered
subsets {(H;,),...,(H;y)} for which the corresponding orbit types G//H;, are singular.

Theorem 6. Consider a compact, connected n-dimensional Riemannian manifold M, together
with a compact, connected Lie groups G acting effectively and isometrically on M, and put

N ={(z,9) e M : gz ==z}.

For every 1 < N < A — 1, let the monoidal transformation (‘N) be defined as in B8), where ZWN)
is a union over totally ordered subsets {(H;,),...,(H;y)} of singular isotropy types of N elements.
Denote the sequence of monoidal transformations ¢V oo ¢A=D by ¢, and put M = MA-1)
Then ¢ : M — M yields a strong resolution of N.

Proof. If all G-orbits on M have the same dimension, A is a manifold, and ¢ : M — M is the
identity. Let us therefore assume that there are singular orbits, and begin by recalling the covering

N=MU---UMN,

where N = IsoWy is a manifold, and the N, = N N Uy are in general singular for k& < L.
Let 1 < N < A —1, and consider a totally ordered subset {(Hj,),...,(H;y)} of isotropy types
such that i1 < --- < iy. In case that (H;;) is exceptional, all types (H;,) with j < j’ are
exceptional, or principal. Indeed, if H;, /Hy, is finite and non-trivial, H;, /Hyp, is also finite. In
particular, if (H;,) is exceptional, A;, is a manifold. In what follows, let us therefore restrict to
the case where {(Hy,),...,(H;y)} is a totally ordered subset of singular isotropy types which is
maximal in the sense that there is no singular isotropy type (H;y,,) with iy < iy41 such that

{(Hi,),....(Hiy,,)} is a totally ordered subset. Let CQ” <0 f” “5”\’ be a local realization
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of the sequence of monoidal transformations ¢ o - o (V) corresponding to the totally ordered
subset {(Hj,),...,(H;y)} in a set of (A1), ... 00~))-charts labeled by the indices g;,,. .., 0iy-

The preimage of A;, under Ciil 0---0 Ci” ”\le is given by all points

(Tiy oo, P plN) 5N AL AN p(in))y

satisfying
(lrin) glin)) g A7,
where for j =1,..., N we set
(37)
pliin) = exp, ;) (73, expp<ij+1)[7'ij+1 exppujﬂ)[. cTins expp<iN71)[TiN71 eXP,in) [TiNﬁ(iN)]]] L

glisin) — enj---nNA“ﬂ enHl---nNAUHl) eTiNflnNA“Nfﬂ eTin AN pin)

Assume now that 7;, - - - 7;,, # 0. Since the point 2(*1#¥) lies in a slice around G-p("*), the condition
gliN) € G, iy, implies that ¢(+i~) must stabilize p(") as well. Frome the inclusions
(38) Gpin) CGin-1 € CGpan
and g;ij_ﬂ) C g,i; one deduces gl2-~) ¢ G, and we obtain

g(il...iN)p(il) — eTirTiy Lol A p(n) — p(n)_
Thus we conclude o) = 0, which implies g(2~) ¢ G,y ...in), and consequently glizin) €
G, Gs...in) - Repeating the above argument we see that

(zliviv) glin)y e N = Al =0, plN) ¢ G
in case that 7, --- 7, # 0. Actually we have shown that if 7;, ---7;, #0
(39) Gotriny = Gitind s
Qiy

since Gin) C G- The preimage of N, under G to-o(

11...1N

iy -0ipy .
SN g therefore given by

N
{7 omin £0, A =0, 1) € Gyony U {m, =0}
j=1

By assumption, Gp@N) acts on (Sy, in )p@N) with orbits of the same dimension, so that
(40) {A(ij) =0, h(iN) S G,D(iN)}

is a smooth submanifold, being equal to the total space of the isotropy bundle given by the local
trivialization
(Tij,p(ij),f)(m), Gatin)) (Ti].,p(ij),f)(iN)).

Now, for 1 < N < A —1, let (™ be defined as in (1), where ZW) is a union over totally ordered
subsets of singular isotropy types of N elements, and put ¢ = (D o- ..o (A=, By construction, ¢
is given locally by sequences of local transformations Cfl “1o...0 i 1 WQN corresponding to maximal,
totally ordered subsets {(H;, ), ..., (H;, )} of singular isotropy types of N < A—1 elements. Taking
the union over all the corresponding sets [{0) yields a smooth submanifold N which has normals
crossings with the exceptional divisor ¢~ (Sing V) € M. Furthermore, ¢ maps the union of the
sets {Til Ty 20, AW =0, AN GWN)} bijectively onto the non-singular part Reg N of
N. However, Reg N is not necessarily dense in V', nor is ¢(N), so that ¢ : N’ — A might not be
a birational map in general. Nevertheless, by sucessively blowing up the intersections of A~ with
¢~ !(Sing NV) one finally obtains a strong resolution of N O
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The resolution of A constructed in Theorem [l was deduced from a monomialization of the ideal
sheaf Iy

CUN) Eqpt =Tin - Tines -G UIN) - Epungy MEM,
where (;1(Iy) is a resolved ideal sheaf. In the following two sections, we shall derive from this a
partial monomialization of the local ideal Iy = (®) such that the corresponding weak transforms

of ® have clean critical sets. This will allow us to derive asymptotics for the integrals If1 . WQN (1)
in Section [§ via the stationary phase theorem.

6. PHASE ANALYSIS OF THE WEAK TRANSFORMS. THE FIRST MAIN THEOREM

We continue with the notation of the previous sections and recall that the sequence of monoidal
transformations ¢ = ¢ o - o (A1 is given locally by sequences of local transformations (fl ‘1o
o g‘fll WQN corresponding to totally ordered subsets {(H;,), ..., (H;, )} of non-principal isotropy
types that are maximal in the sense that, if there is an isotropy type (H;y,,) with iy < iy41 such

that {(H;,),...,(Hiy,,)} is a totally ordered subset, then (H;,,,) = (Hr). Let now x € M be
fixed, and Z, C T, M be a neighborhood of zero such that exp, : Z, — M is a diffeomorphism
onto its image. One has

(expy)sw : ToZy — Toxp, oM, v € Zy,

and under the identification T, M ~ Ty Z, one computes (exp,)«o = id. Furthermore, for g € G
we have g - exp, v = Lg(exp, v) = expy, (;)(Lg)+,(v). Consider next a maximal, totally ordered
subset {(Hy, ), ..., (Hiy)} of isotropy types with iy < --- <iny < L, and denote by

; d
A gpan — al(v;, pen), B®) E(LeftB(il) ), pin) =05

the linear representation of g,u,) in v; ,a1), where plt) € M; (H;,). For an arbitrary element
Al e gﬁj‘_ with 2 < j < N, and z(7-+~) given as in (7)), one computes
T(is d _+A5) i1...0 d _aGig) . .
(A(”))z(ilmim == o tAY ,I|(t11:0uv) == exXpyin) [(e tA )*,p(il)[nlz(wmw)ﬂ o
= (expp(il))*,Tilm(i?“iN) [A(A(ij))Tilx(iz...iN)],

successively obtaining

~r d _ A(z :) . .
(41) (A(lj))w(il,.,iN) = E €XPplin) [Til €XPpliz) [ . . [7’@71 ( e A )*)p(il)z(lj'“lN)] . . ]] t=0

= (expp(il))*)Tilw(iz,.,w) [Til (epr(iz))*)Tizm(i3.,.iN) [.. [Tij71A(A(Zj))x(lj...’LN)] . ]],
where we made the canonical identification T, (v;, 1)) = vy, 60 for any v € (v;),6,). We shall
next define certain geometric distributions E(i) and F(~) on M by setting

gl i) = Span{f’z(il.,.w) 1Y e g;m},

OT

(12) B = (06D s - (X000 0), 1t Mg o)
1) PG )y w2ind - o P, Gij-1) *,n]-,lw“]“'”\’) gpuj) )
Fm(ﬁ)m = (€XPpein) )y, alizin) - - (epr<iN>)*7TiNg<iN>[/\(Epum)ﬁ(m)],

where 2 < j < N. By construction, if 7;, - - - 75, # 0, the G-orbit through z(*-*~) is of principal
type G/Hp,, which amounts to the fact that Gp@N,l) acts on S;, . i, only with isotropy type (Hr),
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where we understand that G i) = G. Furthermore, ([34) and ({I)) imply that

(43) Ty (G- alv)) = B0 W@@m- T, B @, i FE

m(ll iN) -t

The main result of this section is the followmg

Theorem 7 (First Main Theorem). Let {(H,,),...,(H;y)} be a mazimal, totally ordered subset

of non-principal isotropy types, and CQ” -0 fl”uf”\’ a corresponding local realization of the
sequence of monoidal transformations (Y o -0 (W) in a set of (011, ... 00N))-charts labeled by
the indices 0iy, ..., 0in- Consider the corresponding factorization
®o (ldE ® (CQ” . CQ” gix)) _ (il...iN)(i)tot =Ty Tiy (il..,iN)(i)wk,pre
of the phase function ([I0) whereE
(rtnguhre (2. T (dp{"™) (AG))...., 0,dp{™ (A2, 0, ,dpgw)(ﬁ;ﬁﬁv))), -
HgiN)(ﬁ(iN)) _ HgiN)((h(iN)) ol )U(zN > ZO I, A (z]

+O(|7iy [66(50) - o<iN><<h<iN>>*,,<il>v< .

Let further (--iN)®wk denote the pullback of (1) dwk-Pre glong the substitution T = Oiy.in (0)
gien by the sequence of local quadratic tmnsformatwns

5i1---iN:(Uila"'UiN)Hail(lvgizv" UiN):(ng---, zN)’_)O' (;1715-'-7(7;1\7):(Ug/lv'-'ao'gv)
HU;;( ;/17 ;/271%--7 ZV):.'.’_).'.:(Til""7TiN)'

Then the critical set Crit( (“”'“V)fl)“’k) of (- iM)PWE s given by all points
(Giyse vy Oing, P, V) 5ON) 4G AGN) pin) gy
satisfying the conditions
(1) A% =0 forall j=1,...,N, and (hN)), o0~ = 50n),
(II)  7p61.m) € Ann(E(Z] ) forallj=1,... N,

(i1--iN)

(IIT) 7,61 1N>€Ann( (in) )

2(i1iN)

where 1 denotes the 1-form > | & di;. Furthermore, Crit( (i) Quwk) 45 g C°-submanifold of
codimension 2k, where k = dim G/Hy, is the dimension of a principal orbit.

Proof. In what follows, set

(44) ngil'f'giN — (CQ” 0.0 C_Qiy'_inN o (5i1...iN ® ld)) ®id5

11...1N 11 11...1N
so that
do Z.er iy (11...1N)(I)tot = (U) e Tin (U) (11...11\7)(I)uﬂc7

i1..4N

and let oy, - - 05, # 0. In this case, Zfl IZNQN constitutes a diffeomorphism, so that

Crit( 90890, g = (01, -y i pO . plN) G0N AGD AN () gy
(x(il...iN)7é-,g(il...iN)) c C, Oiy - Tiy # 0}7

2Note that (i1--iN) wk.pre wag formerly denoted by (i1-in) pwk
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where we employed the notation of [B7)). Now, by (21,

n
(:L,(iLniN)’é',g(il"'iN)) c C — Nyplin-in) = Zgl (di'i)m(n,.,izv) € Qa
i=1
g (I(ll'”'LN)fnm(il“«iN))'

The reasoning which led to ([BY) in particular implies that condition (I) is equivalent to gliin) ¢
G Gy..ix) In case that all o;, are different from zero. Now, 1,¢,...iy) € {2 means that

Zgi(dii)w(il,“il\;) € Ann(T,¢y...ix) (G - :E(il"'iN))).
But if oy, # 0 for all j =1,..., N, (II) and (III) imply that

Nytinvin) ((expp(il))*,Tilm(i2~~iz\7) [ e (expp(ijfl))*ﬂ'iNilm(iN) P‘(Z)I@N)] e ]) =0 VZe gp(iN—lh

since g, in-1 = Gpin) D g;-(iN). By repeatedly using this argument, we conclude that under the
assumption o;, - - -0, #0
(45) (ID), (I)) <= Ny01.in) € AND(Tyiiy.in) (G - l18))).
Taking everything together therefore gives
. i1...iN) FHlot
Crie( G-I,
(46) = {(Uila sy Ody ap(il)v s 7p(iN)a 6(“\1)7 A(il)a R A(iN)a h(iN)v 5) :

iy - iy # 0, (D)-(ITT) are fulfilled and A -1y ix) = Dy1in)

and we assert that

Cl"lt( (il..,iN)(i)wk) _ CI’lt( (il...iN)i)tot)Uil iy 20
To show this, let us still assume that all o;, are different from zero. Then all 7;; are different from
zero, too, and 9 (1N dWk = () is equivalent to

De B(x(i1n) g glinwindy —

which gives us the condition g(¥1-#N) € G G1...in) - By the reasoning which led to (39]) we therefore
obtain condition (I) in the case that all oy, are different from zero. Let now one of the o;, be equal

to zero. Then all 7;; are zero, too, and ¢ (i) puk — () ig equivalent to

(47) AL (G =0 forall 1 <j<Nandq, (1-h0), o) o) =0,
since the (n x n)-matrix = is invertible, so that the kernel of the corresponing linear transformation
is trivial. Denote by N, ,) (G-p{™)) the normal space in T,y M to the orbit G-pl) | on which G i)
acts, and define Np@jﬂ) (Gp@j) -p(if“)) successively as the normal space to the orbit Gp(ij) -plia+t)
in the Gp(ij)—space Np@j)(Gp(ij,l) -p(ij)), where we understand that G i) = G. Since smooth
actions of compact Lie groups are locally smooth, the aforementioned actions can be assumed to
I(f(liz) € T,an (G -pli)) is tangent to M, (H;,),
and AZ()ZJ)_) €T (G0 -pl%)) is tangent to W(iffl)((S;;”ijil)p@j,l))ij (H;, ), we finally obtain

be orthogonal, see [§], pages 171 and 308. Since A

(48) dg L ipuk = = ()
for arbitrary o;;. In particular, one concludes that (i1-in) wk must vanish on its critical set. Since

d( (i1...iN)(i)tot) — d(Til N -TiN) . (i1...iN)(i)wk + 7 -TiNd ((il...iN)(i)wk),
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one sees that
Crit( -Gk € Crie( (-3 Gtory,
In turn, the vanishing of ® on its critical set implies

(49) Crit( (- WQwk), -, o = Crit( @, .
Therefore, by continuity,
(50) Crit( (i) Ptot), o C Crit(-1¥) vk,

In order to see the converse inclusion we shall henceforth assume that O (i1 in)wk — 0, and
consider next the a-derivatives, where we shall again take o;, ---0;, # 0. Taking into account

(B9) and (@Y)), one sees that
9 ) () k
1 o o 1 - (i -
= 0 ) @) £ gy = N e (AN o (F) = 0.
1

Tiy " Tin Tiy Tij,1 :

By () we therefore obtain for arbitrary o and 1 < j < N

D O =0 = 7€, (dE) 0 € Ann(EY) ).

201 i)
q=1

Consequently,

(51) Do (1 PWR = = (ID).

In a similar way, one sees that

(52) Oy P INGUR — 0 = (III),

by which the necessity of the conditions (I)—(III) is established. In order to see their sufficiency,
let them be fulfilled, and assume again that o;; # 0 for all j = 1,..., N. Then (@3] implies that
Nytirin) € ANN(T, Gy .ing) (G - 201 N))) Now, if 0, -~ 04y # 0, G - 211~ is of principal type
G/Hy in M, so that the isotropy group of x(1-¥) must act trivially on N, ¢, iy (G - 2(iv)),
compare [8], page 181. If therefore X = X7 + Xy denotes an arbitrary element in T ¢,...;,) M =
Ty iy (G- 2 B Ny iy (G- 208))) and g € G i,..iy), ONe computes

g Mylinein) (X) = [(Lg*);m(il4-41'N)"7m(i1~-iN)](%) = 77:¢<i14-4iN>((Lgfl)*,x“l-‘-izv) (Xn))
= Nptirin) (XN) = Nyirin) (X).
With @) we then conclude that h~) - ¢ iy) = 1,61.ix), Since (h(iN))*yp(mf)(iN) = p0n) by
[@8)). Set next
(53) 1 Gdg) — Npuj)(Gp(ij,l) .p(ij))_
We then have the following
Lemma 2. The orbit of the point 7*~) in the G i) -space Vi) s of principal type.

Proof of the lemma. By assumption, for o;; # 0,1 < j < N, the G-orbit of 2118 is of principal
type G/Hp, in M. The theory of compact group actions then implies that this is equivalent to the
fact that x(?2-n) € V(1) is of principal type in the G, -space V(@) see [8], page 181, which in
turn is equivalent to the fact that 2(%~) € V(%) is of principal type in the G ,(i2)-Space Y (i)
and so forth. Thus, z(%-~#~) ¢ YV (1-+4-1) must be of principal type in the Gp(ijfl)—Space V(ia-djo1)
for all 7 =1,... N, and the assertion follows. O
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Let us now assume that one of the o;; vanishes. Then

Nyt € Ann(E<ﬁ;ﬁ) ) Vj=1,...,N,

1)

My € Ann(F (?ﬁ?)

(54) 1), 1) < {

where B¢ )) =T,an (G -p(), and

pli1

(55) %)

plit) —

=T i (G - pW)) c Vi) 2 <j <N,

while F((ff)) >~ T (Gplin) * 0 o)) ¢ V(-in) - Consequently, we obtain the direct sum of vector
spaces
EW 9B .. .0 EW) @ FUY) c T,u, M.
pli1) pli1) pli1) pli1) 1
Now, as a consequence of the previous lemma, the stabilizer of 5(*¥) must act trivially on N SN (Gp(i N
2N, If therefore ¥ = X7 + X denotes an arbitrary element in

N
Ty M ~ @T an (G plii—1) -plia)) ® Tin) (Gplin) - pIn))y ® Ny (Gpin) -0 70Ny

p
j=1

N
@E(Zdl) S F <”Y>) @NWN)(GpuN) -ﬁ(iN))7

B8), B4), and Gy C Gy imply that for g € Giin
g Mo (X) = [(Lg=1) 7 a0 Mpen ](X) = 1y (Lg=1) 4 piin) (X))
= Ny (XN) = Mpan (X).
Collecting everything together we have shown for arbitrary o = (oy,, ..., 04, ) that

(56)  Dg.atn,.atm pew) IO =0 = (D), (1), (1I) = AV ea

MyGiyin)*

By (@8] and (B0) we therefore conclude

(57) Crit( (r-in)Ptot), 5 o = Crit( ) wk),

We have thus computed the critical set of (1-+iN)®¥k and it remains to show that it is a C-
submanifold of codimension 2x. By the previous considerations,
Crit( (-8 pwk)y

(58) .
= {A(lg) =0, B iN) €GNy, Mylrin) € Ann(@E (i1 min) @F(“l) IN))}

Now, since for o, - - - 0, # 0 the G-orbit of z("1:+i~) is of principal type G/Hy, in M, {@3) implies
in this case that

m:dimTz@l“,iN)(G-x(il"'iN)):dim[ (i1) ) EB@T“. Tij EU) N)@Til...TZNF(N) w)}

(i1 1(11 (i1

(i1--iN) pli1-in)”

N
ZdlmE i) —l—dlmF(lN)
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But dim ES(JZBZN) = dim Gp@j,l) - pl3) in particular shows that the dimensions of the spaces
EQ(C?ZN , do not depend on the variables o;;. A similar argument applies to Fiﬁ)N )5 so that we
obtain the equality

N
(59) k=Y dimEY) | +dimFY

j=1

for arbitrary x(t*~). Note that, in contrast, the dimension of T, .iy) (G - 2(7+¥)) collapses,
as soon as one of the 7;, becomes zero. Since the annihilator of a subspace of T, M is a linear
subspace of T M, we arrive at a vector bundle with (n — x)-dimensional fiber that is locally given
by the trivialization

N
(Uijvp(”)uﬁ(lN)aAnn(@Eiz(iz,,.iN) EBF;?Z)HV)>> = (Uijup(zj)aﬁ(“v))'
j=1

Consequently, by (58) and (G8) we see that Crit( 1-¥) k) is equal to the total space of the fiber
product of the mentioned vector bundle with the isotropy bundle given by the local trivialization

(Uz‘j 7p(ij)7 {)(iz\f)7 Gain)) — (Uz‘j ,p(ij)7 {)(izv))_

Lastly, equation (B9) implies dim g;iy) = d — &, which concludes the proof of Theorem [7l O

7. PHASE ANALYSIS OF THE WEAK TRANSFORMS. THE SECOND MAIN THEOREM

In this section, we shall prove that the Hessians of the weak transfoms (%) &k are transver-
sally non-degenerate at each point of their critical sets. We begin with the following general obser-
vation. Let M be a n-dimensional C*°-manifold, and C' the critical set of a function ¢ € C*° (M),
which is assumed to be a smooth submanifold in a chart O C M. Let further

a:(x,y)—m, B:(qr, - qn) — m, m € O,

be two systems of local coordinates on O, such that a(z,y) € C if and only if y = 0. One computes

n 8 o
0y (woa)(ey) = Y AL (5 o a(wy) 0,57 0 k(o)
i=1 *
as well as
n 8 o
O 000 ) = 3 20D 51 e 1) B, 0,57 o)
i=1 t
n 82 o
) s 57 o 0le.9) (37 )y (0.0) 0, (37 )(a9)
Since

j=1
this implies

(60) ayk ayz (Y oa)(z,0) = Hess¢|a(w,0)(0‘*,(w,0) (ayk)’ a*,(w,O)(ayz))v

by definition of the Hessian [34], Section 2. Let us now write z = (a/,2”), and consider the

restriction of ¢ onto the C*-submanifold M. = {m € O : m = (', 2", y)} . We write Yo = Y|,
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and denote the critical set of ¢ by C./, which contains C' N M, as a subset. Introducing on M,
the local coordinates o' : (z”,y) — a(c’, 2", y), we obtain

8% 8741 (1/}61 ] O/)(IN, 0) - HeSS 'l/)c/‘a(m//ﬁ) (a;,(m”,o) (8yk)7 O[;ﬁ(znﬁo) (8741))
Let us now assume C.» = C'N M., a transversal intersection. Then C. is a submanifold of M.,
and the complement of Tp gz 0)Cer in Ty (g 0yMe at a point o/ (2”,0) is spanned by the vector
fields o, (. )(9y,). Since clearly

Dy, Oy, (Yer 0 ') (2",0) = 8y, Oy, (¢ 0 @) (x,0), x=(c,2"),
we thus have proven the following

Lemma 3. Assume that C.r = CNM,r. Then Hess ) is transversally non-degenerate at o', 2" ,0) €
C' if, and only if Hess ¢ is transversally non-degenerate at o/ (x”,0) € C.r. That is, Hess ) defines
a non-degenerate quadratic form on

Ta(c/,m”,O)M/Ta(c/,w”,O)C
if, and only if Hessv defines a non-degenerate quadratic form on
Ta/($//7O)MC//Ta/(:E//,O) CC/ .
O

Let us now state the main result of this section, the notation being the same as in the previous
sections.

Theorem 8 (Second Main Theorem). Let {(H;,),...,(Hiy)} be a mazimal, totally ordered subset
of mon-principal isotropy types of the G-action on M, and ZflIZNQN be defined as in [@l). Consider
the corresponding factorization

Po Zlglzlusz _ (il...iN)(i)tot =7, (0_) L Tin (U) (il...iN)(i)wk
of the phase function [I0). Then, at each point of the critical manifold Crit( (1N dwk)  the
Hessian Hess (11N ®wk s transversally non-degenerate.

For the proof of Theorem [8 we need the following

Lemma 4. Let (x,&,9) € Crit(®), and x € M(HL). Then (z,£,g) € RegCrit(®), and Hess ® is
transversally non-degenerate at (x,€,g).

Proof. The first assertion is clear from () - (7). To see the second, consider the 1-form n =
> ¢&;d¥;, and note that by (8]

N €EQNTY, x e M(HL), g€ Gy, = ¢-Ng =N
Since by ([I3) the condition 9, ®(x, &, g) = 0 is equivalent to g - 7, = 1., and
O ®(z,8,9) =0 <= gr=u, 0y ®(2,6,9) =0 <= 14 €9,
we obtain on T*(Y N M(Hg)) x G the implication
Oe g ®(2,8,9) =0 = 0 ®(x,{,9) =0.

Let ®,(&, g) denote the phase function (I0) regarded as a function of the coordinates £, g alone,
while x is regarded as a parameter. Lemma [3] then implies that on T*(Y N M (HL)) x G the study
of the transversal Hessian of ® can be reduced to the study of the transversal Hessian of ®,. Now,
with respect to the coordinates &, g, the Hessian of ®, is given by

< 0 (d2:)2 (X)) )
(d77):((Xi)z)  (Ox, Ox, P2)(&:9) )
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where {X1,..., X4} denotes a basis of g. A computation then shows that the kernel of the corre-
sponding linear transformation is equal to {(5, 5): Y &i(di), € An(To(G - 1)), 32 55(X;)e = 0} o~
Te¢ ¢(Crit ®4). The lemma now follows by the following general observation. Let B be a symmetric

bilinear form on an n-dimensional K-vector space V, and B = (Bj;;);,; the corresponding Gramsian
matrix with respect to a basis {v1,...,v,} of V such that

B(u,w) = E u;w; Byj, U= E uv;, W= g W;0;.
%,

We denote the linear operator given by B with the same letter, and write
V=kerB@W.

Consider the restriction Bjy xw of B to W x W, and assume that Bjy . w (u,w) = 0 for all u € W,
but w # 0. Since the Euclidean scalar product in V' is non-degenerate, we necessarily must have
Bw = 0, and consequently w € ker BN W = {0}, which is a contradiction. Therefore By «w
defines a non-degenerate symmetric bilinear form. O

Proof of Theorem[8 For oy, ---0;, # 0, the sequence of monoidal transformations Zfl IZNQN de-
fined in (@) is a diffeomorphism, so that by the previous lemma

Hess i -+iv) gtot (Uz‘j 7p(ij)7 @(iN)7 a(ij)7 h(iN)7 £)

is transversally non-degenerate at each point of Crit( (il"'iN)@t"t)Uil woiy #0- Next, one computes

92 (i1...in) ot 92 (ir.in) puwk
- = =71, (0)1y(0)| —————
I 0 . /() v (o) Ik 0 o

(82(7i1(0)~~~TiN(U))) 0
+ 00,0, s (in)puwk 4 R
0 0

where -, stands for any of the coordinates, and R represents a matrix whose entries contain first
order derivatives of (1-iN) Wk ag factors. But since by (@3J)

Cl"lt( (ilmiN)(I)tOt)Uz‘l o #0 = Crit((ilmiN)(I)wk)\a’il 0 A0
we conclude that the transversal Hessian of (i1--in) oWk does not degenerate along the manifold
Crit((il"'iN)@w’“)|gil___giN +0. Therefore, it remains to study the transversal Hessian of (i1--in) pwk
in the case that any of the o;; vanishes, that is, along the exceptional divisor. Now, the proof of

the first main theorem, in particular (&6)), showed that
aﬁ,a(il),.n;a(iz\z),h(iz\z) (ilmiN)(i)Wk =0 - 0 (il'”iN)q)wk =0.

Cig e Tin P 1), pOND) FEN)

If therefore

oij Pl 50N

(a(i]‘), h(iN), 13)

denotes the weak transform of the phase function ® regarded as a function of the variables
(™). aln) pN) €) alone, while the variables (o, ..., 0y, 0", ..., pt") $(N)) are kept
fixed at constant values,

Crit((il'“iN)(i)wk (i) =

TijsP 00N

) = Crit((il“'iN)fi)U’k) N {Uij,p(if),ﬁ(m) = constant}.



40 PABLO RAMACHER

Thus, the critical set of (i1-in) pwk is equal to the fiber over (o, ,p(%), 5~)) of the vector

oij P 50N
bundle

N
((%7p<ij>,5<m>),cﬁ(w) < Am(PEY) o Fiﬁﬁ‘)“im)) s (03, p), 560,
j=1
and in particular a smooth submanifold. Lemma [3] then implies that the study of the transversal

Hessian of (V) d®k can be reduced to the study of the transversal Hessian of (1 "'iN)éZ“k P63 im0
ij ) ’

The crucial fact is now contained in the following
Proposition 3. Assume that o4, --- 05, = 0. Then

ker Hess (11-+N) gwk

o Pl 56N (

0,0, AN, €) = T o iy ) Crit( (“"'iN)‘IN’fTU: 20 566w

for all (0,...,0,R0~) €) € Crit( (il"'iN)i);“k ), and arbitrary pt), 50)

i Pl 5N
Proof. Since oy, ---0;, =0, we have

aguk e = (E T @A), 0,dp(P (AN, 0, dp{Y (AGY)),

oy pli1) pli2) plin)

egiN) (’D(lN)) - egiN) ((h(iN))*,p(il){)(iN))u s )7€>

The only non-vanishing second order derivatives at a critical point (0, ..., 0, Riin) & ) therefore read
aafjﬂ aEr (ilmiN)(i):;U:’p(ij))@(iN) :[E . T(O, ...,0, dpglj)((Agij))p“ﬂ)’ R IR 0”7«’
i1..0N) §wk _|=.T (n) (gl .
0,00 e, N>q>% e _[u (0, 0,08 (BON)Y ). )}

algffN) 3[3§w) (i1..in) Hwk _ <E . T(O, .0, 0§1N)(>\(BT("LN))A(B£’LN)) ,D(iN)), L ),§>,

o U 50N

. . . (iN) pliN) X
where we used canonical coordinates of the first kind on Gp(iN) of the form eXAm™ Bu™" . plin),

Consequently, the Hessian of the function (i1-in)@wk with respect to the coordinates

o Pl 50N

€, al%) BUN) g given on its critical set by the matrix

o (5 o) 5)(F0)

where the (n x d)-matrix £ is defined by

dp™ (AS) i) 0 0 0
0 0 0 0
c— 0 0 dpi™® ((A*) ) .. 0 ,
0 0 0 A0S ((BE™)) in)

and the (d x d)-matrix F by

0 0
7= ( 0 —<5- T(o,...,o,99“(/\(3?”»(35“)W’zv)),...),§> )
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Since = is invertible, the kernel of the linear transformation corresponding to (GIJ) is isomorphic to
the kernel of the linear transformation defined by

(% %)

which we shall now compute. Cleary, the column vector T (€, &), ... alin), 30n)) lies in the
kernel if and only if

() o a8 (AN) o) =0forall 1 <5< N, Y, B (BRY)s0x = 0;
n— c( ) i i
(b) Yr=i " Eedpl™ (T (G- pl)) = 0
<1 ) i) ; .
(ba) o Jl ' 1§n_c<ij,1) , 1dp( )(T i (G 6,1 -p(”))) =0forall2<j<N;
e +r+ P P
PN i ~(i
(C) ZT 1 f c(iN)+Td97(~ ) (Tﬁ(iN)(Gp(iN) - N))) =0.
In this case, the vector T(g’,d(il), ... ,d(iN),B(iN)) lies in the kernel of (@l), where & =c.2°L

Let now E(4) FO~) and V1-+i8) he defined as in @) and (G3), and remember that we have the
isomorphisms (B5). For condition (a) to hold, it is necessary and sufficient that

al =0, 1<j<N, Zﬁ“ﬂ BUM) iny = 0.

On the other hand, condition (b1) means that on T, (G - p (1)) we have

n—c(i1) n—c(i) n
Do Gdpi = 7 (Bt = ddi,
r=1 r=1 i=1
where (Z1,...%,) = (pgil), . ,pfji)c(il) , 991), ... ,9&33)) are the coordinates introduced in Section
Indeed,
degh)(AZ(:(iZ)) = Ap(zl) (9(“ ) = VS = 17 ey c(il)a A(zl) S gpL(n)u

M;, (H;,) being G-invariant. Therefore 37" | € (dZ;),) € Ann(E ((n))) In the same way, condition
(b2) implies that on T ;) (G ;-0 - -plia))

clii—1) _ (i) _q clii—1) _o(85) _q
— E (= ) (i) — E f1r =i dj—1) ) (5)
0= (5 : u)n_c(ljfl)_,_“_ldp ’ (5 — ’ )n_c(lj—l)_;’_r_;’_ldp’r !
r=1 r=1
n—c(i)

_|_
[
™y
(1)

(’L'Ln’ijfl))nic(ij)jLs + (&" =i ..ijfl))nic(ijil)+1d7—ij71

- Z 5x—c(i:‘fl>+sd0gijil)’

r=1
where we put &’ = ¢ -2 . ... Zl1-i-2)  Hereby we expressed the differential forms g
in terms of the differential forms dr;, ., dpgfj ), and d@g”), and took into account that the forms
dr;_, and 0" vanish on T i (G -1 pl)) C (Vir.oiigoa ) i) - Now, if v € (Wiyoi; 1) 6510
and o, (t) = exp, ;1) tv,

d .
= P @)= =0,
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so that the forms dprj ) must vanish on (ul-lml-jfl)p(ij,ﬂ. In case that 3 < j < N, the same

argument shows that the forms dr;,_, also vanish on (Vl-lmi].fl)p@j,l), and proceeding inductively
this way, we see that conditions (b;) and (bz) are equivalent to
n
Z (di) ) € Ann(E((ll))) Y j=1,...,N.
Similarly, one deduces that condition (¢) is equivalent to

Z € (dz:),) € An(F(N)).

On the other hand, by (ES),

To,...0ntm 5)01”‘“((11 W)‘I’% i) ~<1N>) {(d(il)a @) p0N) ey gl =,
N
Zﬂ zN)/\ (ZN ) € g56n) s Zgz d{EZ p(ll) c Ann(@ ((11)) @FZE(”)))}
j=1
and the proposition follows. ([l

The previous proposition now implies that for o;, - - - 0;,, = 0, the Hessian of (1 ZN)fI);“i @) 5

is transversally non-degenerate at each point (0,...,0, h(in) &) of its critical set, and Theorem 3]
follows with Lemma [3] O

8. ASYMPTOTICS FOR THE INTEGRALS I, "'V ()

N

We are now in position to describe the asymptotic behavior of the integrals I, f ” QIN (1) defined
in (B0)) using the stationary phase theorem. Let {(H;,), ..., (H;,)} be a maximal, totally ordered
fl ””fw a corresponding local realization
of the sequence of monoidal transformations ¢ o --- o0 (V) in a set of (A1), ... #(~))-charts
labeled by the indices g;,,...,0iy. Since the considered integrals are absolutely convergent, we

can interchange the order of integration by Fubini, and write

N
i i i i (i) j ir) _
(62) I’Lgll J\fN(/'L):/ ng QN(/'L TZl"'TiN)H|Tij|CJ+Zi:1d( : 1dTiN-..dTi17
(=1L~ j=1
where we set

w= [ 1], -1,
M, (Hiy) ’Y(”)((Sil)p(il)) (Hiy) N -1 ((s

- k
(63) |:/ . . 6“,( CiN) Gwkipre anl Qi jQzl -Qipn
'Y(IN)((Sil“‘iN)p(iN))XGp(iN)XDL(gi(iN))X"'XDL(gi(il))XR"

subset of non-principal isotropy types, and Cf:l 0---0

1 ig i1oin 1) (iN—l))iN(HiN)

112N TN
de dAW) | dAGN) gplin) d{)(iN)} dp(iv) } dp(iz)} dpin).

according to the notation introduced in Theorem [l and introduced the new parameter

V=" Ty Tiy-
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Now, for a sufficiently small € > 0 to be chosen later we define
N
179Qiq---Qi 70iq ---0Qi
Ry N(M):/ Jo N(M.T....T. ) I
e M LN ee) R ]1;[1 ?

N
Qi Qi 70iq ---Qi
I NN('LL):/ Jil.l..iNN(U'Til"'TiN)H|7'ij
(7575)N

j=1

(i) J (ir) _
Y= d 1dTiN dTil,

Lemma 5. One has c(%) + Ei:l dr) — 1 > Kk for arbitrary j = 1,..., N, where k denotes the
dimension of G/Hp,.

Proof. We first note that ¢(%) = dim(v, .4, ) G > dimG )T (tj+1-+i8) 4 1 Indeed, Vi, .4 ) (i) 1
an orthogonal G ;)-space, so that the dimensmn of the Gp@j y-orbit of z(ti+1-in) 7(17)((5: i) ptis ))
can be at most ¢(%) — 1. Now, under the assumption o, - --0;y # 0, (34) and @) imply

Lj41-IN)) A o ) 110N
Tz(ij+1,“iN)(Gp(ij) '33( i+l )) ~T (zl,A,lN)(Gp(zj) . I( 1 ))

xr
_ _ ) (i) ) (in)
= @ Tiy oo Tip_ 1E1<11 i) © Ty - ..7'1NFI(I1 i)
I=j+1

where the distributions E(*), F~) where defined in @2). On then computes

dim G ) cpligtrin Z dim F Z(ﬂ)l i) +d1mF((11) N
l=7+1

which implies

clis) > Z dim E (11 i) —l—dlrnF(?f\i) i T L
l=j+1

But since E(Z(l)1 i =G -pl) for any o, the last inequality holds for arbitrary o, too. On

the other hand, one has
d'%) = dim gj(iﬁ = dim[A(gj@ﬁ) pl)] = dim[/\(g;ij)) gl iN)] = dim E(Zi .-
The assertion now follows with (59). O

As a consequence of the lemma, we obtain for 2I; s 5”\’ (1) the estimate

21911 .91N < C | 43I dlinr) -1 dTiN dTi1
iy
(—ee)V
(64)
2C
<C | dry .. dry, = ———eN (D)
/( oy HlTﬂ Tin Tia /{—|—1€

Q'Ll QzN (

for some C' > 0. Let us now turn to the integral 1I u). After performing the change of

0i -0i
variables &;,. i, one obtains for 'I; """ N (u) the expressmn

/ ngl Qin (u 7—7,1( TlN ) H |T7,] (ij)+zz':1 atir) 1 |det D(Sil...iN (0_)| dO',

s<|nj (o)<l
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where J{1 %N (v) is defined by the right hand side of (&3), with (*-i~)§wkrre being replaced by
(i W)(I)ka, which denotes the weak transform (1) %k a5 a function of the variables p(ti), 5(iv)
ali) ) ¢ alone, while the variables o = (0y,, ... 04, ) are regarded as parameters.

Theorem 9. Let 0 = (0y,,...,0iy) be a fived set of parameters. Then, for every N € N there
exists a constant Cr; (i1in) Guk > 0 such that

N—
Qi Qw _
5™ () = (2rl] Z W IQy (- BWE 4y, iy Tiyin )| < Cog irvinr V™
j=0
with estimates for the coefficients Q);, and an explicit expression for QQu. Moreover, the constants
Cx G1ixm)guwr and the coefficients Q; have uniform bounds in o.

Proof. In what follows, we regard M) as a Riemannian manifold with the product metric induced
by the Riemannian metrics on 7(”’1)((Sil...ijfl)pujfl))ij (Hi;), W(W)((Sil...m)pum)a g;(ijw Gpins

and (—1,1)", and corresponding volume density. Similarly, X carries a Riemannian structure,
being a paracompact manifold. As a consequence of the main theorems, and Lemma [ together
with the observations preceding Proposition [3 the phase function (f1-iv )fi)},”k has a clean critical
set for any value of the parameters o. That is, in the relevant charts we have

e the critical set of (1N @ js a C*°-submanifold of codimension 2k for arbitrary o;
e the Hessian of (1-in )ng is transversally non-degenerate at each point of its critical set.

Thus, the necessary conditions for applying the principle of the stationary phase to the integral
J2 9N (1) are fulfilled, and we obtain the desired asymptotic expansion by Theorem [B Note

21...1N
that the amplitude aj /'~ n-2)

[ the dependence being of the form a. (t, K (x), un), where a, € Sghg is a classical symbol of order

might depend on u, compare the expression for O(u in Theorem

0. But since for large |n| B
| 05 ay (8, 1 (), )| = |l (O @y ) (t, ir (), pm) | < Cl| 1!

this dependence does not interfer with the asymptotics. To see the existence of the uniform bounds,
note that by Remark [Il we have

-1

~ ~ !/ ('Ll’LN) Fwk -

ON)(il,.,iN)q)Zuk <C% v sup H(Hess oY |NCrit((i1~“iN)<I>g”‘))
p(lj))ij(iN))a(l]‘)7h(iN))£

But since by Lemma [3] the transversal Hessian

Hess (11+i8) ok (G i) Pw
o |N Wi ),ﬁ(iN),a(ij),h,(iN),g)Crlt((1 N)(I)(Tk)

is given by S
Hess (11 i7) pwk

. . H i1 ...1 Hwk
‘N(aij,p(lj),5”N),a“i),h(iN),s)Cm((n k)

we finally obtain the estimate

~1
- - / ('Ll’LN) Fwk .
Cxrimgur < Oy sup H (Hess o |Ncrit((i1,“iN)<I>wk)>

< CN,il
Ui, ('L ) ‘('LN) a(1 ) h(zN) ‘E

by a constant independent of ¢. Similarly, one can show the existence of bounds of the form
|Q; ( i ZN)(I)wk @iy iy Piy i) < Oj,il...iN

SHereby we are taking into account that due to the presence of the factor Ac r(Cy(t, ky(2),m)), In| is bounded
away from zero.
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with constants C};, .. s, independent of o. O

Remark 2. Before going on, let us remark that for the computation of the integrals 1151 " WQN (1)
it is only necessary to have an asymptotic expansion for the integrals J;, Q” QIN (v) in the case that
04y -+ 05 7 0, which can also be obtained without the main theorems usmg only the factorization
of the phase function ® given by the resolution process, together with Lemma[l Nevertheless, the
main consequence to be drawn from the main theorems is that the constants C N G1in) uk and

the coefficients @); in Theorem [ have uniform bounds in o.
As a consequence of Theorem [0 we obtain for arbitrary N eN

TN () — @y ) Qo (M IV BER gy iy Piy iy )|

11

N—
< ) — a3 QU sk i @i )|
=0
N-1 3 N-1
+@alo™HE 3 QY 4, iy @iy i) < v TN+ calr T ]
=1 =1

with constants ¢; > 0 independent of both ¢ and v. From this we deduce

N i 5 J i
e o) - ey Qo [T 1y (@) #0412 det D, s (o) do|
<Iri; (o)|<1 1

< CSN’_N/ H |TZJ (ij)+zf;:1 e |det D6i1~~iz\7 (0)| do
e<|mi; (0)|<1 ;2

N-1
+ean Y #’l/ o H 75, (0| 0 AU S mm qet DGy, (0)| do
=1 <|7i; (o <1
~ N (i:) . Gr)
<csp” H(— loge)¥ max{l,ac A o d 7N}

Il
=

j
N— N _ S

+ cg Z pt H(— log €)% max {1, e dw)_ﬁ_l}a
1=1 j=1

where the exponents ¢;, ¢;; can take the values 0 or 1. Having in mind that we are interested in
the case where ;1 — +00, we now set ¢ = p~ /N, Taking into account Lemma [3, one infers that
the right hand side of the last inequality can be estimated by a constant times

p" log )N

so that we finally obtain an asymptotic expansion for I i QlN () by taking into account (G4l), and
the fact that

N ) )
(27//‘)%/ Qo H |73, |C(1j)+21:1 dir) —1-r driy ... dr;, = O(u="71).
<, |<p—1/N !

j=1
Theorem 10. Let the assumptions of the first main theorem be fulfilled. Then
L™ () = @ /p) L3 20+ O(u o ™),

IN
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10y

where the leading coefficient ij...m is given by
Qi ---0i Qi ---0i . i1...1 Twk
(65) [0 Cin :/ a; i sz'lf.ilz N dCrit((1-in) pwk)
t1etN Crit((1--iN) duwk) |det HeSS((il"'iN)(I)wk)NCrit((il...iN)&)wk) |1/2 ’

where dCrit((1-iN)®Wk) denotes the induced Riemannian volume density.

9. STATEMENT OF THE MAIN RESULT

We can now state the main result of this paper. But before, we shall say a few words about the
desingularization process. Consider the resolution of A/ constructed in Theorem[6] and denote the
global morphism induced by the local transformations ({#4) by Z : X = X =T*M x G. Consider
further the local ideal I = (®) generated by the phase function ([IT), together with the ideal sheaf
Ic C Ex of [2I)). The derivative of I is given by D(ls) = I¢jr+y x @, while by the implicit function
theorem Sing Vo C Vg N Crit(®) = Crit(P), where Vg denotes the vanishing set Vg of ®. The
desingularization process carried out in Section [{] yields a partial monomialization of Is according
to the diagram

2 (Ie) &3 D Z(s) Ex=11,07 27 Is) &5 > Il 07 - Grin)guk

x J ]

Z*T TZ*

I D Ip ) d

<
<
*

where & € X. By Theorem[7, D(Z'(Is)) is a resolved ideal sheaf, and Theorem Bl shows that the
weak transforms (i1-¥) &k have clean critical sets. This allowed us to derive asymptotics for the
integrals If:.l.:li;fw (1) in Theorem Nevertheless, it is easy to see that Z71(Ip) is not resolved.
Furthermore, the inclusion (20) implies that Z*(I¢jr-y xg) C€ D(Z;*(I3)). But since we do not
have equality, this results only in a partial resolution C of C. In particular, the induced global
transform Z : C — C is in general not an isomorphism over the smooth locus of C. This is because
of the fact that the centers of our monoidal transformations were only chosen over M x G, to keep
the phase analysis of the weak transform of ® as simple as possible. In turn, the singularities of
C along the fibers of T*M were not completely resolved. Note that in order to obtain a partial
monomialization of Iy, we had to construct a strong resolution of N in M = M x G, and not just
a resolution of the G-action in M. As explained in Section [ such a resolution always exists and
is equivalent to a monomialization of the corresponding ideal sheaf. But in general, it would not
be explicit enough to describe the asymptotic behavior of the integrals I(x) introduced in ([@). In
particular, the so-called numerical data of ¢ are not known a priori, which in our case are given
in terms of the dimensions ¢(%) and d(%). This is the reason why we were forced to construct an
explicit resolution of NV, using as centers isotropy bundles over unions of maximally singular orbits.

Let us now return to our departing point, that is, the asymptotic behavior of the integrals I'(u),
and the proof of Weyl’s law for the reduced spectral counting function N, (A). If G acts on the
chart Y only with principal type G/Hp, we can directly apply the stationary phase theorem to
obtain an expansion for I(u). Let us therefore assume that this is not the case. We still have to
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examine contributions to I(u) coming from integrals of the form

I () =

21

/Mn(Hil)xul) [/v<i1><<si1>p<il>>i2<Hz»2>x<1,1> - [/wfvﬂ«sil“m1>p<iN1)>iN<HiN>x<u)

. G1--iN) wk 05 .91 Qiq ---0i
IUTL... TN 1Qin 10N
€ 1. “711

[/V(”V)((”il-~-iN)p(iN>)><Gp(iN) XSL(Q:(Z'N))X"'XBL(Q:@l))XR"
dgdA™) . dAU) ant) a5 driy, dpt) . dr, dp<i2>} dri, dp'™,

where {(Hj;,),...,(Hiy)} is an arbitrary totally ordered subset of non-principal isotropy types,

S.(g <w>) is the sphere of radius ¢ > 0 in g plin) while ag” ZlfiN is an amplitude which is supposed
to have compact support in a system of (6‘ D 9(”\’ 1), al*¥))-charts labeled by the indices

(Qi17 ceey QiN)a and

911 ‘QIN | (ij)JrZi" d(ir),lj,gil...giN
7’] 1. 4N ?

jfl)” ZNQiN being a smooth function which does not depend on the variables 7;,. Now, a computation

of the &-derivatives of (¥ ®™k in any of the a*¥)-charts shows that (11-¥)®™k has no critical
points there. Consequently, repeating the arguments of the previous section, and making use of
the non-stationary phase theorem, see [28], Theorem 7.7.1, one computes for large N € N that

ol < e | H I,
e<|mi; <1 52
where we took e = =/ . Choosing N large enough, we therefore conclude that
250N )] = Ol
As a consequence of this we see that, up to terms of order O(u=""1), I(i) can be written as a sum

A—1
(66) Iy =Y 3 roew +Z S LI (),

N=1 i;<--<ipn N=1 ij<---<iny_1<L
Qiqseees Qipn Qiq s Qin_1

) (i) _ Vo ke
4+ d 1— Ndr—|—ceN(“+1)<09max{,u N on 1}7

where the first term is a sum over maximal, totally ordered subsets of non-principal isotropy types,
while the second term is a sum over totally ordered subsets of non-principal isotropy types. The

asymptotic behavior of the integrals I Q” QZN () has been determined in the previous section, and

©Qin_1
ZN 1L

using Lemma [ it is not difficult to see that the integrals I
descriptions. This leads us to the following

() have analogous asymptotic

Theorem 11. Let M be a connected, closed Riemannian manifold, and G a compact, connected
Lie group G acting isometrically and effectively on M. Consider the oscillatory integral

(67) I() = / / HEED (g, 7,6, g) dgd(T7Y)(2,6),  j— +oo,
*Y JG

where (k,Y") are local coordinates on M, d(T*Y)(x, &) is the canonical volume density on T*Y , and
dg the volume density on G with respect to some left invariant metric on G, while a € C°(Y x
T*Y x G) is an amplitude, and ®(x,&,g9) = (k(x) — k(g9x),&). Then I(u) has the asymptotic
expansion

I(p) = 27/ Lo+ O(p " "ogw)*™'),  p— 4o
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Here k is the dimension of an orbit of principal type in M, A the mazimal number of elements of
a totally ordered subset of the set of isotropy types, and the leading coefficient is given by

a(gr, z,€,9)
( ) ’ RegC |d€t (I)H(xv§7g)N(z,5,g)Regc|l/2 ( )( )

where RegC denotes the regular part of C = {(2,£,9) € A x G:g-(x,&) = (x,€)}, and d(RegC)
the induced volume density. In particular, the integral over RegC exists.

Remark 3. Since M is compact, T*M is a paracompact manifold, admitting a Riemannian
metric. The restriction of the Riemannian metric on 7*M x G to RegC then induces a volume
density d(RegC) on RegC. Note that equation (68]) in particular means that the obtained asymp-
totic expansion for I'(u) is independent of the explicit partial resolution we used. The amplitude
a(gx,r, &, g) might depend on y as in the expression for O(u™~2) in Theorem [l But as explained
in the proof of Theorem [@ this has no influence on the final asymptotics.

Proof. Assume that G acts on Y with several orbit types. By Theorem [I0] and (G6]) one has
I(p) = 27/w)" Lo+ O(p"(ogw)™~1),  p— 4o,
where L is given as a sum of integrals of the form (G0]), and similar expressions for the leading

terms of the integrals Ifl 1 ®INC1 ), Tt therefore remains to show the equality (68). For this, let

cin—1L
us introduce certain cut-off functions for the singular part Sing Q2 of ). Denote the Riemannian

distance on T*M by | - |, and let K be a compact subset in T*M, ¢ > 0. We then define
(SingQNK).={neT*M : |n—n'| <e for some n’ € SingQNK}.

By using a partition of unity, one can show the existence of a test function u. € C2°((Sing QNK)s.)
satisfying u. = 1 on (Sing QN K)., see [28], Theorem 1.4.1. We then have the following

Lemma 6. Let a € CZ(Y xT*Y x G), K be a compact subset in T*M such that supp(, ¢ya C K,

and u. as above. Then the limit

(69) lim a(gI,I,f,g)(l —us)(x,ﬁ)
=0 RegC |det (b//(I)fvg)\N(I’E’g)RegCP/Q

exists and is equal to Ly.

d(RegC)(x,€, 9)

Proof of Lemmal@l We define

L) = [ [ e Dagr, a6 0)(1 - )@, dgd(TY ) o).

Since (z,&,g) € SingC implies (z,£) € Sing(), a direct application of the generalized stationary
phase theorem for fixed € > 0 gives

(70) [Ie(p) = (27 / )" Lo(e)| < Cep™ 1,
where C; > 0 is a constant depending only on ¢, and

LO(E) :/ a(gaj,x,ﬁ,g)(l—us)(x,f)
RegC |det (I)”('rvgag)|N(z,5,g)RegC|1/2

On the other hand, applying our previous considerations to I.(u) instead of I(u), we obtain again
an asymptotic expansion of the form (70) for I.(u), with =% !(log u)*~! instead of u=%~!, where
now the first coefficient is given by a sum of integrals of the form (G2 with a replaced by a(1 —u.).
Since the first term in the asymptotic expansion (70)) is uniquely determined, the two expressions
for Lo(¢) must be identical. The statement of the lemma now follows by the Lebesgue theorem on
bounded convergence. (I

d(RegC)(z,¢, 9)-
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Remark 4. Note that the existence of the limit in ([@J) has been established by partially resolving
the singularities of the set C, the corresponding limit being given by L.

End of proof of Theorem [l Let now a™ € C(Y x T*Y x G,R™). Since one can assume that
|us| <1, the lemma of Fatou implies that

/ lim a*(gx,x,ﬁ,g)(l—us)(x,ﬁ) d
R

RegC
CgC8—>O |det (I)N('rvgag>|N(z,5,g)RegC|1/2 ( 8 )(I,€7g)

is mayorized by the limit ([63)), with a replaced by a*. Lemma [ then implies that
/ a*(gz,z,&,9)
RegC |det ‘I)”(:E, 3 g)IN(z,g,g)RegC |1/2

Choosing now a* to be equal 1 on a neighborhood of the support of a, and applying the theorem
of Lebesgue on bounded convergence to the limit ([G9), we obtain equation (GS]). O

d(RegC)(z,¢&,g) < oo.

We shall now state the main result of this paper.

Theorem 12. Let M be a compact, connected, n-dimensional Riemannian manifold without bound-
ary, and G a compact, connected Lie group, acting effectively and isometrically on M. Let further

Py: C®(M) — L*(M)
be an invariant, elliptic, classical pseudodifferential operator of order m on M with principal sym-
bol p(x,&), and assume that Py is positive and symmetric. Denote by P its unique self-adjoint
extension, and set

Ny(A) =dy > multy (1),

t<A

where mult, () stands for the multiplicity of the unitary irreducible representation my, corresponding
to the character x € G in the eigenspace E; of P belonging to the eigenvalue t. Let k be the

dimension of a G-orbit of principal type, A the mazimal number of elements of a totally ordered
subset of the set of isotropy types, and assume that n —xk > 1. Then [

dX[WXIH : 1)
(n—k)(2m)n—*"

where d,, 1is the dimension of the irreducible representation m,, [WX‘H : 1] the multiplicity of

n—r—1

vol[(QN S*M)/GINT +O(N" (logN)Y), A — 4o,

NX()‘) =

the trivial representation in the restriction of m, to a principal isotropy group H, and S*M =
{(z,6) € T*M : p(x, &) = 1}, while Q = J~1(0) is the zero level of the momentum map J : T*M —
g* of the underlying Hamiltonian action.

Proof. Let g € C(—6,6) and § > 0 be sufficiently small. Theorems [l and [l together yield
G (0e" ) = dy0(0)L (p1/2m)" "1 + O ("~ (log ) 1),
where

. Uy (2, €, 9)
L = lim / e d(RegC)(x,&, g),
a—)OE RegC |det (I)[;(:n§’g>N(w1§yg)R°gC|l/2 ( ¢ )( f g)

and u~ (2, €, 9) = x(9) fy(x)Ac,1(q(x,€)). In order to compute L, let us note that for any smooth,
compactly supported function a on 2 N T™Y, one has the formula

/ x(g)a(z,§)
RegC |det (I){;(xv ga g)IN(z,g,g)RegCW |1/2

d(Reg 2
d(Reg C)(w,€, 9) = [my y : 1] /R o M (V;?T?(tﬁ
eg z;

n—r-1
4If n — k > 2, the error term is slightly better, namely O(A m  (log )\)Afl).
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where H is a principal isotropy group, compare [12], Lemma 7. As a consequence of this, we obtain
the expression

d(Reg Q)(z, )

L= i Y [ A @B ) TS

e—0
=g 1Y fo@) i [ a9 G(Reg @ 15 M)(0,0)
= Txg - Reg QN S* M r al—r>n &l VOIO(LSUJ) & i
d(RegQ N S*M)(z,w)
=|m 1 / f+(x
| XIH ]; Reg QN S* M +(@) vol Oz w)

= [wle : 1]vol [(Reg QN S* M) /G].

Here we took into account that by Proposition[2] the set {(z,&) € Reg€ : x € Sing M} has measure
zero with respect to the induced volume form on Reg (), compare [12], Lemma 3. Next, let

Cp) =dy > mult(t) = Y m;),  m(w;) = dymult?(u;)/ dim EF
t<p pi<p

denote the equivariant spectral counting function of @ = PY/™. An asymptotic description for
Nf (1) can then be deduced from the one of &, (0e')*) by a classical Tauberian argument [J].
Thus, let p € C(—4,8) be such that 1 = [ 4(s) ds = 2wp(0). Then

—+oo —+o0
N (n) = N (i — s)o(s)ds + / [NV (1) = N (1= s)](s)ds = Hy () + Ry ().
H,(n) = f:rOO: NXQ(S)@(u — s)ds is a C*™-function, and by expressing its derivative by a Stieltjes
integral one obtains

+o0 +oo
= a%@(u—s)zv;;?(s) ds=— [ Shaln - 9NQ(s) ds

dp —oo —o0
+oo > )
:/ ol — s) dNQ ng 13)0(p — /‘J):&x(@ez(')u)u

where we took into account that, since o, € S'(R), N;?(M) is polynomially bounded, and g(s) =
o(—s). Now, in addition, let ¢ be such that ¢ > 0, and g(s) > c¢19 > 0 for |s| < 1. Then, for u € R,

NO(u+1) = N2y < Y m@uy) S—Zm ()01 = ).

[p—p;1<1
From &, (ge*()*) = O(u"~*~1) one then infers that R, (u) = O(u"""1) as 1 < i — +o0. On the
other hand, since &X(éei(')”) is rapidly decaying as p — —o0, integration gives
O(pr=""tlog 1), n—r>2,

H ) dy L
H _ ~ - 1(.)5 d — X 2 n—kK
x(1) /1 UX(Qe )ds +cn n—ﬂ(u/ ™) +{O((10gU)A)7 n—r=1,

as 1 < p — +o0, while R, (1), Hy () — 0 as p — —o0. The proof of the theorem is now complete,
since by the spectral theorem, N, () = N}‘(Q(,\l/m)_ 0
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10. ON THE SPECTRUM OF I'\ G

As an application, we shall consider the spectrum of a discrete, uniform subgroup I' of a con-
nected, semisimple Lie group G with finite center. Thus, let § be a Cartan involution of G, and
g = t @ p the decomposition of the Lie algebra g of GG into the eigenspaces of 6. Let K be the
analytic subgroup corresponding to €, which is a maximal compact subgroup of G. Since I is
a uniform lattice, M = T' \ G is a closed manifold. By definition, 6 is an involutive automor-
phism of g such that the bilinear form (X,Y), = —(X,0Y) is strictly positive definite, where
(X,Y) =tr(ad X oY) denotes the Killing form on g. The form (-, -), defines a left-invariant metric
on GG, and by requiring that the the projection G — M is a Riemannian submersion, we obtain a
Riemannian structure on M. Since Ad (K) commutes with 6, and leaves invariant the Killing form,
K acts on G and on M from the right in an isometric and effective way. Note that the isotropy
group of a point I'g € M is conjugate to the finite group gKg—' NT. Hence, all K-orbits in M
are either principal or exceptional. Since the maximal compact subgroups of G are precisely the
conjugates of K, exceptional K-orbits arise from elements in I" of finite order. If " is torsion-free,
meaning that no non-trivial element v € I' is conjugate in G to an element of K, there are no
exceptional orbits. In this case the action of I' on G/K is free, and I" \ G/K becomes a smooth
manifold of dimension n — d, where n = dim M, and d = dim K. As an immediate consequence of
Theorem [12] we now obtain

Corollary 2. Let Py : C°(I'\G) — L2(I'\G) be a K-invariant, elliptic, classical pseudodifferential
operator of order m on I' \ G, and assume that Py is positive and symmetric. Denote by P its
unique self-adjoint extension, and let Ny (\) be the reduced spectral counting function of P. Then,
for each x € K,

dX[T‘—X|H : 1] n—d n—d—1
————vol (AN S*(T'\ G))/K] X = +O(X = (log\) ! A

= ayan—a (TN G)/KIA = +0( (log )*), = +o0,
where H C K is a principal isotropy group of the K-action on I'\ G, and A is bounded by the
number of I'-conjugacy classes of elements of finite order in I".

NX()‘) =

O
Under the assumption that I' has no torsion, this result was derived previously by Duistermaat—
Kolk—Varadarajan [I8] for the Laplace-Beltrami operator A on L*(I'\ G/ K) ~ L*(T \ G)¥,
i.e. in case that y corresponds to the trivial representation. They proved this by studying the
spectrum on L%(T"\ G/K) of the whole algebra D(G/K) of G-invariant differential operators on
G/K, which is defined as follows. Let G = KAN be an Iwasawa decomposition of G, a the
Lie algebra of A, and W the Weyl group of (g,a). Since D(G/K) is commutative, there is an
orthogonal decomposition of L?(I'\ G/K) into finite dimensional subspaces of smooth simultaneous
eigenfunctions of D(G/K). Now, each homomorphism from D(G/K) to C is precisely of the form
Xu : D(G/K) — C, where p € af/W. The spectrum A(T") of D(G/K) on I'\ G/K is then defined
as the set of all € af/W for which there exists a non-zero ¢ € C>*°(I'\ G/K) with Dy = x,(D)¢
for all D € D(G/K). The main result of [I8] is a description of the asymptotic growth of the
tempered spectrum A(T)iemp = A(I') N ia*, together with an estimate for the complementary
spectrum A(T") \ A(I')temp, using the Selberg trace formula, and the Paley—Wiener theorems of
Gangolli and Harish-Chandra. From this, Weyl’s law for A on L?(I' \ G/K) follows readily, since
the eigenvalue of A corresponding to p € Asemp(I) is essentially given by || u||2.
Let now Py : C°(T'\ G) — L%(T"\ G) satisfy the conditions of Corollary B and in addition
assume that it commutes with the right regular representation R of G on L?(T" \ G). Then each
eigenspace of P becomes a unitary G-module. Since I'\ G is compact, R decomposes into a direct
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sum of irreducible representations of G according to

L3I\ G) ~ @ M Hess
wed
where G denotes the unitary dual of G, and my, the multiplicity of w in R. In the same way, each
eigenspace of P decomposes into a direct sum of irreducible G-representations. Let mult,,(¢) be
the multiplicity of w € G in the eigenspace E; of P belonging to the eigenvalue ¢, and [w)x : X] the
multiplicity of x € K in the K-representation obtained by restricting w to K. Then

mult, (t) = Z mult,, () [wyx : x].
wed
Thus, the study of the reduced spectral counting function N, () amounts to a description of the
asymptotic multiplicities of those irreducible G-representations w € G containing a certain K-type
X € K. As a consequence of Corollary [2] one now deduces

Theorem 13. Let Py : C°(I'\G) — L%(T'\G) be a G-invariant, elliptic, classical pseudodifferential
operator of order m on '\ G, and assume that Py is positive and symmetric. Denote by mult,,(t)

the multiplicity of w € G in the eigenspace E; belonging to the eigenvalue t of the self-adjoint
extension P of Py. Then, for each x € K,

Z mult, () [wx : x] =

<A, wel

Ty g & L n—d
(n [_ dl)l(fgw)lz—dml (NS TN\G) /KA

—d—

FON T (log M)A 1), A= 4oo,

where n = dimT'\ G, d = dim K, and A is bounded by the number of T'-conjugacy classes of
elements of finite order in T.

O
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