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INTEGRAL OPERATORS ON THE OSHIMA COMPACTIFICATION OF A
RIEMANNIAN SYMMETRIC SPACE OF NON-COMPACT TYPE.
MICROLOCAL ANALYSIS AND KERNEL ASYMPTOTICS

APRAMEYAN PARTHASARATHY AND PABLO RAMACHER

ABSTRACT. Let X ~ G/K be a Riemannian symmetric space of non-compact type, X its Oshima
compactification, and (, C(?E)) the regular representation of G on X. We study integral operators
on X of the form 7w (f), where f is a rapidly falling function on G, and characterize them within
the framework of pseudodifferential operators, describing the singular nature of their kernels.
In particular, we consider the holomorphic semigroup generated by a strongly elliptic operator
associated to the representation 7, as well as its resolvent, and describe the asymptotic behavior
of the corresponding semigroup and resolvent kernels.
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1. INTRODUCTION

Let X be a Riemannian symmetric space of non-compact type. Then X is isomorphic to G/ K,
where G is a connected real semisimple Lie group, and K a maximal compact subgroup. Consider
further the Oshima compactification [§] X of X, a simply connected closed real-analytic manifold
on which G acts analytically. The orbital decomposition of X is of normal crossing type, and the
open orbits are isomorphic to G/K, the number of them being equal to 2!, where | denotes the
rank of G/K. In this paper, we shall study the invariant integral operators

1) w(f) = /G F(9)(g)de(g).

where 7 is the regular representation of G on the Banach space C(?NQ) of continuous functions on
X, f a smooth, rapidly decreasing function on G, and dg a Haar measure on G. These operators
play an important role in representation theory, and our interest will be directed towards the
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elucidation of their microlocal structure within the theory of pseudodifferential operators. Since
the underlying group action on X is not transitive, the operators 7(f) are not smooth, and the
orbit structure of X is reflected in the singular behavior of their Schwartz kernels. As it turns
out, the operators in question can be characterized as pseudodifferential operators belonging to a
particular class which was first introduced in [7] in connection with boundary problems. In fact,
if XA denotes a component in X isomorphic to G/ K, we prove that the restrictions
m()g 02 (Xa) — C(Xa)

of the operators 7(f) to the manifold with corners Xa are totally characteristic pseudodifferential
operators of class L, °°. A similar description of invariant integral operators on prehomogeneous
vector spaces was obtained by the second author in [9]. We then consider the holomorphic semi-
group generated by a strongly elliptic operator 2 associated to the regular representation (7, C(X))
of G, as well as its resolvent. Since both the holomorphic semigroup and the resolvent can be char-
acterized as operators of the form (), they can be studied with the previous methods, and relying
on the theory of elliptic operators on Lie groups [I0] we obtain a description of the asymptotic
behavior of the semigroup and resolvent kernels on XA ~ X at infinity. In the particular case of
the Laplace-Beltrami operator on X, these questions have been intensively studied before. While
for the classical heat kernel on X precise upper and lower bounds were previously obtained in [1]
using spherical analysis, a detailed description of the analytic properties of the resolvent of the
Laplace-Beltrami operator on X was given in [5], [6].

The paper is organized as follows. In Section[Z2lwe briefly recall those parts of the structure theory
of real semisimple Lie groups that are relevant to our purposes. We then describe the G-action on
the homogeneous spaces G/Pg(K), where Pg(K) is a closed subgroup of G associated naturally to
a subset © of the set of simple roots, and the corresponding fundamental vector fields. This leads
to the definition of the Oshima compactification X of the symmetric space X ~ G/K, together
with a description of the orbital decomposition of X. Since this decomposition is of normal crossing
type, it is well-suited for our analytic purposes. A thorough and unified description of the various
compactifications of a symmetric space is given in [2]. Section Bl contains a summary with some of
the basic facts in the theory pseudodifferential operators needed in the sequel. In particular, the
class of totally characteristic pseudodifferential operators on a manifold with corners is introduced.
Section M is the central part of this paper. By analyzing the orbit structure of the G-action on X, we
are able to elucidate the microlocal structure of the convolution operators 7(f), and characterize

them as totally characteristic pseudodifferential operators on the manifold with corners Xa. This
leads to a description of the asymptotic behavior of their Schwartz kernels on XA ~ X at infinity.
In Section 5 we consider the holomorphic semigroup S, generated by the closure Q of a strongly
elliptic differential operator €2 associated to the representation 7. Since S; = w(K,), where K, (g)
is a smooth and rapidly decreasing function on G, we can apply our previous results to describe
the Schwartz kernel of S;. The Schwartz kernel of the resolvent (A1l 4+ Q)~%, where a > 0, and
Re A is sufficiently large, can be treated similarly, but is more subtle due to the singularity of the
corresponding group kernel R, »(g) at the identity.
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2. THE OSHIMA COMPACTIFICATION OF A RIEMANNIAN SYMMETRIC SPACE

Let G be a connected real semisimple Lie group with finite centre and Lie algebra g, and denote
by (X,Y) = tr (ad X o adY) the Cartan-Killing form on g. Let 6 be the Cartan involution of g,
and

g=top
the Cartan decomposition of g into the eigenspaces of 6, corresponding to the eigenvalues +1
and —1 , respectively, and put (X,Y)p := —(X,0Y). Note that the Cartan decomposition is

orthogonal with respect to (,)s. Consider further a maximal Abelian subspace a of p. Then ad (a)
is a commuting family of self-adjoint operators on g. Indeed, for X,Y, Z € g one computes

<adX(Z)7Y>9 = _<[X7 Z]a9Y> = _<Za [HY, X]> = _<Z79[K 9X]> = <Z7 [Ya 0X]>9
— (7, —[0X,Y])e = (7, —ad 06X (Y))s.

Therefore —ad X is the adjoint of ad X with respect to (,)s. So, if we take X € p, the -1
eigenspace of 0, ad X is self-adjoint with respect to (,)p. The dimension [ of a is called the
real rank of G and the rank of the symmetric space G/K. Next, one defines for each a € a*,
the dual of a, the simultaneous eigenspaces g* = {X € g : [H,X]| = a(H)X for all H € a} of
ad (a). A functional 0 # a € a* is called a (restricted) root of (g,a) if g* # {0}, and setting
Y={aca*:a#0,g*# {0}}, we obtain the decomposition

g=mdad @ g%,
acd

where m is the centralizer of a in . Note that this decomposition is orthogonal with respect to
(-,-)o. With respect to an ordering of a*, let ¥+ = {a € ¥ : a > 0} denote the set of positive
roots, and A = {ay,..., o} the set of simple roots. Let o = %Ea€g+a, and put m(a) = dim g*
which is, in general, greater than 1. Define n* = @ .+ g% n~ =60(n"), and write K, A, N* and
N~ for the analytic subgroups of G corresponding to £, a, n™, and n™, respectively. The Twasawa
decomposition of G is then given by

G = KAN*.
Next, let M = {k € K : Ad(k)H = H for all H € a} be the centralizer of a in K and M* =
{k € K : Ad(k)a C a} the normalizer of a in K. The quotient W = M*/M is the Weyl group
corresponding to (g, a), and acts on a as a group of linear transformations via the adjoint action.
Alternatively, W can be characterized as follows. For each o; € A, define a reflection in a* with
respect to the Cartan-Killing form (-, -) by

We, - A= A — 2O[Z'<)\, Oéi>/<01i, O[Z'>,

where (A, ) = (Hx, H,). Here H) is the unique element in a corresponding to a given A € a*, and
determined by the non-degeneracy of the Cartan-Killing form. One can then identify the Weyl
group W with the group generated by the reflections {w,, : @; € A}. For a subset © of A, let now
We denote the subgroup of W generated by reflections corresponding to elements in ©, and define

Po= |J PmuP,
weWe

where m,, denotes a representative of w in M*, and P = M AN is a minimal parabolic subgroup.
It is then a classical result in the theory of parabolic subgroups [12] that, as © ranges over the
subsets of A, one obtains all the parabolic subgroups of G containing P. In particular, if © = (),
Po = P. Let us now introduce for © C A the subalgebras

ao ={H €a:a(H)=0 for all « € 6}, a(©@)={H €a:(H,X)g=0forall X cag}.
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Note that, when restricted to the +1 or the —1 eigenspace of 8, the orthogonal complement of a
subspace with respect to (-, -) is the same as its orthogonal complement with respect to (-, -)g. We
further define

nd= > g% ng =0(nd),
aes+\(0)+
e)= Y o, v (6) = 6(n*(©).
a€e(O)t
me =m+n"(0) +n(0) +a(O), me(K) = me N4,

where (©)7 = %t n > a,co Ra;, and denote by Ae, A(©), NZ,N*(©), Mo, and Mg (K)o the
corresponding connected analytic subgroups of G, obtaining the decompositions A = Ag A(©) and
N* = NZN(O)*, the second being a semi-direct product. Let next Mg = MMe 9, Mo(K) =
MMg(K)p. One has the Twasawa decompositions

Mo = Mo (K)A(G)N*(©),
and the Langlands decompositions
Py = MoAoNg = Mo(K)AN™.

In particular, PA = MaA = G, since ma = m @ a ® P, 5, 6%, and aA,nz are trivial. One then
defines

Po(K) = Mo(K)AoNg .

Ps(K) is a closed subgroup, and G is a union of the open and dense submanifold N~ A(0)Pg (K) =
Ng Peo, and submanifolds of lower dimension, see [§], Lemma 1. For A = {a1,...,q;}, let next
{Hx,...,H;} be the basis of a, dual to A, i.e. a;(H;) = d;;. Fix a basis {X;:1 <i<m(\)} of
g* for each A € ©F. Clearly,

[H,—0X) ;] =—0[0H, X ;] = —\NH)(—0X»,), H € a,

so that setting X_,; = —0(X, ;) one obtains a basis {X_»;: 1 < i < m(N\)} of g~ Cn. One
now has the following lemma due to Oshima.

Lemma 1. Fiz an element g € G, and identify N~ x A(O) with an open dense submanifold of
the homogeneous space G/ Pe(K) by the map (n,a) — gnaPe(K). ForY € g, let Y ps (k) be the
fundamental vector field corresponding to the action of the one-parameter group exp(sY),s € R,
on G/Po(K). Then, at any point p = (n,a) € N~ x A(©), we have

m(\) m(X)
NMe/po))p = Y. D cnilgm)(Xai)p+ D Y enilgin)e 280 (X_ ),
Aext i=1 AE(O)F i=1

+ > ailg,n)(H)y

a, €O
with the identification T,N~ @ To(A(O)) ~ T,(N™ x A(O)) ~ Tynaps(x)G/Po(K). The coeffi-
cient functions cy i(g,n),c—x:i(g,n),ci(g,n) are real-analytic, and are determined by the equation

m(X) l

(2)  Ad'(gn)Y = Z Z (exilg,n)Xni +conilg,n)X_x:) + Z ¢i(g,n)H; mod m.
rext =1 i=1
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Proof. Due to its importance, and for the convenience of the reader, we shall give a detailed proof
of the lemma, following the original proof given in [8], Lemma 3. Let s € R, and assume that |s]|
is small. According to the direct sum decomposition g = n~ @ a®n* @ m one has for an arbitrary
Yeg

(3) (gn)~exp(sY)gn = exp Ny (s) exp A1 (s) exp N; (s) exp M (s),

where N; (s) € n=, Ai(s) € a, N (s) € nT, and M;(s) € m. The action of exp(sY) on the
homogeneous space G/Pg(K) is therefore given by

exp(sY)gnaPe(K) = gnexp Ny (s)exp A;(s) exp Ny
= gnexp Ny (s)exp A1 (s)exp N;

—~

s)exp Mi(s)aPe(K)
s)aexp M (s)Po(K)
= gnexp Ny (s) exp A1(s) exp N; (s)aPg(K),

since M is the centralizer of A in K, and exp M1(s) € MMeg (K)o C Po(K). The Lie algebra of
Po(K) is mg(K) @ ae ®nd, which we shall henceforth denote by pe(K). Using the decomposition
g=n" ®a(0) dpe(K) we see that

(4) a~texp Nit (s)a = exp Ny (s) exp As(s) exp Pa(s),
where Ny (s) € n™, As(s) € a(0), and Pa(s) € pe(K). From this we obtain that
gnexp Ny (s) exp A1 (s) exp Nt (s)aPe (K)
= gn (exp Ny (s) exp A1 (s)aexp Ny (s)) exp Az(s) exp P2(s)Po(K)
=gn (exp Ny (s)exp Ai1(s)aexp Ny (s)a_l) aexp Az (s)Po(K).

~—_ T T

Noting that [a,n~] C n~ one deduces the equality exp N; (s) exp A;(s)aexp Ny (s)a texp Ai1(s)™! =
exp N5 (s) € N~ and consequently

(5) exp Ny (s) exp Ay (s)aexp Ny (s)a™' = exp N; (s) exp A;(s),
which in turn yields
gnexp Ny (s)exp Ai(s) exp Ni (s)aPe(K) = gnexp Ny (s) exp A;(s)aexp Az(s)Po(K)
= gnexp Ny (s)aexp(A;(s) + Az(s))Po(K).
The action of g on G/Pg(K) can therefore be characterized as
(6) exp(sY)gnaPe(K) = gnexp N5 (s)aexp(Ai(s) + Az2(s))Po(K).

Set dN; (s)/ds|s—0 = N;, dN; (s)/ds|s=0 = N, dA;(s)/ds|s—0 = A;, and dP»(s)/ds|s—0 = P,
where i = 1,2, or 3. By differentiating equations [@B)-() at s = 0 one computes

(7) Ad"Hgn)Y = N; + A1+ N7 mod m,
(8) Ad " (a)N{" = Ny + Ay + P,
(9) N; +Ad(a)N; = Ny .

In what follows, we express Nli € n* in terms of the basis of n*, and A; in terms of the one of a,
as
m()
Z Z cxi(9, ) Xt i,
eyt =1
l
Al = Zci(g,n)Hi = Z ci(g,n)H; modae.

=1 a; €O

Nit
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For a fixed X ; one has [H, X ;] = M H)X, for all H € a. Setting H = —loga, a € A, we get
ad (—loga)Xx; = —A(loga)X,,;. By exponentiating we obtain ead(*loga)XAﬁi = e*)‘(loga)XM,
which together with the relation ¢2d(~1°8¢) = Ad (exp(—loga)) yields

Ad " Ha)Xy; = e Mo x, .
Analogously, one has [H, X_» ;]| = 0[0H, — X ;] = —A\(H)X_, for all H € a, so that
(10) Ad Ya)X_y,; = B X 4
We therefore arrive at

Ad_l(a)XM _ e—A(loga) (X)\,i _ X_)\J.) + e—k(loga)X_)\)i
_ ef)\(loga) (X)\,i _ X—A,i) + 672)\(loga)Adfl(a)X_)\)i'

NOW7 since G(X)\yi — X,)\yi) = Q(X)\yi) — Q(X,)\’i) = —X,)\ﬁi — (—X)\ﬁi) = X)\yi — X,)\ﬁi, we
see that X, — X_,,; € £ Consequently, if X is in (@)Jr, one deduces that X, — X_,,; €

(m+nt(O)+n"(0)+a(®) Nt = me(K). On the other hand, if X is in X+ — (@)1, then
Ad ~Ha)Xy,; = e 2989 X, ; belongs to ng. Collecting everything we obtain

m(\)
Ad N a)N = > > exilg,n)Ad (@) Xas
rext =1
m(X) m(\)
= > D anilgnAd N @Xai+ Y D enilgn)Ad @) Xas
Ae(@)t i=1 Aes+—(@)t i=1
m(A)
— Z e, z ) (672)\(10ga)Ad71(a)X,)\71‘ + eiA(lOga)(X)\yi _ Xf)\,i))
AG(O)* =1
+ Y Z exi(g,n)e MBIX
Aexnt—(@)F i=1
m(X)
= Z Z exilg,n)e” B DAG L a) Xy ;
>\E(®>+ =1
m(X) m(X)
+ Z Z Cai g n A(loga)(X)\ﬁi —X—A,i)‘F Z Z Cri g, loga)X
c(@)t i=1 rest+—(@)t i=1

Comparing this with the expression (§]) we had obtained earlier for Ad _1(a)N1Jr , we obtain that
(11) Az =0,
and Ny = > o)+ ZZ 1 ) ex i(gy,n)e Mo A =1 ()X 5 ;, since g = EP a®n~, and pe(K)N
a(©) ={0}. Therefore
Ny =Ny +Ad(a)Ny

m(A)
i(g,m) X _xi+ Z ZCMQ, QA(loga)Xfx,m

+'Ll

A1 + A2 = Z cz(g,n)Hl mod aoe.
a; €O

.Mg

Il
-

(12) Z

(2
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As N~ x A(©) can be identified with an open dense submanifold of the homogeneous space
G/ Po(K), we have the isomorphisms Tgpqpe (x)G/Po(K) ~ T,(N~ x A(©)) ~ T, N~ @ T.(A(O)),
where p = (n,a) € N~ x A(O). Therefore, by equation (6) and the expressions for N5~ and A;+A,,
we finally deduce that the fundamental vector field Y|q,py (k) at a point p corresponding to the
action of exp(sY) on G/Pg(K) is given by

m(X) m(X)
(Yia/po(x))p Z Z c-xi(g, ) (X-xi)p Z Z exi(g,n)e 18X 40),
Aext i=1 Ae(O)+ i=1
+ Z ci(g,n)(H
a; €0
where Y € g, and the coefficients are given by (2)). O

Let us next state the following

Lemma 2. LetY € n~ @a be given by Y =3 5y E 1 )e i X2 1—|—Z i, and introduce

the notation t* = tl(Hl) -t AUHL) Then, via the identification of N~ x RY, wzth N~A by (n,t) —
n-exp(— Zé‘:l Hjlogt;), the left invariant vector field on the Lie group N~ A corresponding to'Y

is expressed as
m(\)
D D) M
Aext =1

and can analytically be extended to a vector field on N~ x Rl.

Proof. The lemma is stated in Oshima, [§], Lemma 8, but for greater clarity, we include a proof of
it here. Let X_, ; be a fixed basis element of n~. The corresponding left-invariant vector field on
the Lie group N~ A at the point na is given by

d d } d . g
Ef(”a exp(sX_xi))js=0 = Ef(”(anP(SX—A,z‘)a Na)|s=o = Ef(”e Ad(@)X s a)|s=0;

where f is a smooth function on N~ A. Regarded as a left invariant vector field on N~ x Rﬂr, it is
therefore given by

X yin-xr, = Ad(@) Xy = e Mosa) X\ =15,

compare (I0). Similarly, for a basis element H; of a the corresponding left invariant vector field
on N~ A reads
1

d d
gf(”@ eXP(SHi))|s:0 = Ef(” exp(— ; logt;H;) eXP(SHi))|s:0

l
d d s
= Ef(n exp(— Z logt;H; + 8H1)> o = d_sf(n exp(— Z logt; H; — log(t;e )HZ)) o0’
Jj=1 JFi
and with the identification N~“A ~ N~ x Rﬂr we obtain

-~ 9]
Hyn-sri, = _tia_tl-'

As there are no negative powers of ¢, ifN*XRi can be extended analytically to N~ x R!, and the
lemma follows. (|
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Similarly, by the identification G/K ~ N~ x A ~ N~ X Rﬂr via the mappings (n,t) — n -
exp(— Zé:l H;logt;)-a+— gnaK one sees that the action on G/K of the fundamental vector field
corresponding to exp(sY) , Y € g, is given by

m(X) l
0
(13) Yin- xRy = Z Z exi(gsm t2/\+0 xilg:m ))Xfx\,i—zcz‘(ga”)tigv
Aent i=1 i=1 v

where the coefficients are given by ([2)). Again, the vector field (I3]) can be extended analytically
to N~ x R, but in contrast to the left invariant vector field Yy - g, Yy- g does not necessarily
vanish if £ = ...¢; = 0. We come now to the description of the Oshima compactification of the
Riemannian symmetric space G/K. For this, let X be the product manifold G x N~ x R!. Take
= (g,n,t) € X, whereg € G,n € N7, t = (t1,...,t;) € R, and define an action of G on X by
g - (g,n,t):=(g'g,n,t), ¢ € G. For s € R, let
[ s/lsl, s#0,
sgns‘{ 0, s=0,
and put sgni = (sgnty,...,sgnt;) € {—1,0,1}). We then define the subsets ©; = {a; € A :
t; # 0}. Similarly, let a(2) = exp(—>_,, . Hilog|ti]) € A(©;). On X, define now an equivalence
relation by setting
A A — (o g a)sgnfc:sgn,%’,
&= (g,nt)~1" = (g ,n't") <= { b)gna(ﬁ:)P@i(K):g’n’a(:i:’)P@i,(K).
Note that the condition sgn# = sgni’ implies that Z,%’ determine the same subset ©; of A,
and consequently the same group Pg, (K), as well as the same homogeneous space G/Pg, (K), so

that condition b) makes sense. It says that gna(), g'n’a(2’) are in the same Pg, (K) orbit on G,
corresponding to the right action by Pe, (K) on G. We now define

X:=X/~,
endowing it with the quotient topology, and denote by 7 : X — X the canonical projection. The

action of G on X is compatible with the equivalence relation ~, yielding a G-action ¢’ - w(g,m,t) =
7w(g'g,n,t) on X. For each g € G, one can show that the maps

(14) 0o NT xR = Uy : (n,t) = 7w(g,n,t), Uy =n({g} x N~ xR,
are bijections. One has then the following

Theorem 1. (1 ) X is a szmply connected, compact, real-analytic manifold without boundary.
(2) X = UweWUm = qugU For g € G, Ug is an open submanifold ofX topologized
in such a way that the coordinate map 4 defined above is a real-analytic diffeomorphism.
Furthermore, X\ﬁg is the union of a finite number of submanifolds ofX whose codimensions
in X are not lower than 2.
(3) The action of G on X is real-analytic. For a point & € X, the G-orbit of 7 (&) is isomorphic
to the homogeneous space G/Pe,(K), and for &,3' € X the G-orbits of m(2) and (&'

coincide if and only if sgn& = sgni’. Hence the orbital decomposition of X with respect to
the action of G is of the form

(15) X ~ |_| 2#9(G/Po(K)) (disjoint union),
©CcA

where #0 is the number of elements of © and 2% (G/Po(K)) is the disjoint union of 2#©
copies of G/Po(K).
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Proof. See Oshima, [8], Theorem 5. O

Next, for # = (g,n,t) define the set By = {(t|...t}) € R : sgnt; = sgnt}, 1 < i < [}. By
analytic continuation, one can restrict the vector field (I3) to N~ x B;, and with the identifications
G/Po,(K)~ N~ x A(©3) ~ N~ X B; via the maps

gnaPe, « (n,a) — (n,sgntre” 1989 son e loae)),

one actually sees that this restriction coincides with the vector field in Lemmal[ll The action of the
fundamental vector field on X corresponding to exp sY,Y € g, is therefore given by the extension
of ([3) to N~ x R!. Note that for a simply connected nilpotent Lie group N with Lie algebra n,
the exponential exp : n — N is a diffeomorphism. So, in our setting, we can identify N~ with
RF. Thus, for every point in §~§, there exists a local coordinate system (nq,...,ng,t1,...,%) in a
neighbourhood of that point such that two points (n1,...,nk, t1,...,%) and (nf,...,n},t,...,t)
belong to the same G-orbit if, and only if, sgnt; = sgn t;, for j = 1,...,l. This means that the
orbital decomposition of X is of normal crossing type. In what follows, we shall identify the open
G-orbit m({& = (e,n,t) € X : sgnz = (1,...,1)}) with the Riemannian symmetric space G/K,
and the orbit m({# € X : sgni = (0,...,0)} of lowest dimension with its Martin boundary G/P.

3. REVIEW OF PSEUDODIFFERENTIAL OPERATORS

Generalities. This section is devoted to an exposition of some basic facts about pseudodiffer-
ential operators needed to formulate our main results in the sequel. For a detailed introduction
to the field, the reader is referred to [3] and [II]. Consider first an open set U in R™, and let
T1,...,2, be the standard coordinates. For any real number I, we denote by S'(U x R") the class
of all functions a(z,£) € C*°(U x R™) such that, for any multi-indices «, 3, and any compact set
K C U, there exist constants C, g,k for which

(16) (08 0% a)(2,€)] < Capxc ()71, zek, ceRm

where (¢) stands for (1 + |£[2)'/2, and || = o + --- + a,,. We further put S™°(U x R") =
Nicr S!(U x R™). Note that, in general, the constants Cy, g i also depend on a(x,€). For any such
a(x, &) one then defines the continuous linear operator

A CX(U) — C2(U)

by the formula
(17) Aua) = [ = afe.g)ae)de,

where 4 denotes the Fourier transform of u, and d¢ = (27) " d¢. 0 An operator A of this form
is called a pseudodifferential operator of order I, and we denote the class of all such operators for
which a(z,£) € S{({U x R") by LY(U). The set L=>°(U) = (), L'(U) consists of all operators
with smooth kernel. They are called smooth operators. By inserting in ({7 the definition of @, we
obtain for Au the expression

(18) Aufz) = / / =D €0z, Eyuly) dy e,

Here and in what follows we use the convention that, if not specified otherwise, integration is to be performed
over Euclidean space.
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which has a suitable regularization as an oscillatory integral. The Schwartz kernel of A is a
distribution K4 € D'(U x U) which is given the oscillatory integral

(19) Ka(z,y) = / @0 Ea (., €) d.

It is a smooth function off the diagonal in U x U. Consider next a n-dimensional paracompact C>
manifold X, and let {(k,,U7)} be an atlas for X. Then a linear operator

(20) A CR(X) — CF(X)

is called a pseudodifferential operator on X of order [ if for each chart diffeomorphism &, : U’ —

U" = ky(U7), the operator ATu = [A 5, (uo k)] o k7 given by the diagram

T
~ A gy ~
Ce(UY) —— C=(U)

c
K K
¥ v

C(UT) —2 o=(U)
is a pseudodifferential operator on U” of order [, and its kernel K 4 is smooth off the diagonal. In
this case we write A € L!(X). Note that, since the U" are not necessarily connected, we can choose
them in such a way that X x X is covered by the open sets U™ x U". Therefore the condition
that K 4 is smooth off the diagonal can be dropped. Now, in general, if X and Y are two smooth
manifolds, and
A CX(X) — C*(Y) Cc D(Y)

is a continuous linear operator, where D’(Y) = (C(Y,Q2))" and ©Q = |A"(Y)| is the density bundle
on Y, its Schwartz kernel is given by the distribution section K4 € D'(Y x X,1 K Qx), where
DY x X, 1X0Qx) = (CE(Y x X, (1 X OQx)* ® Qyxx))’. Observe that C(Y,Qy) ® C*(X) ~
C™®(Y x X, (1 X Qx)* ® Qyxx). In case that X =Y and A € LY(X), A is given locally by the
operators A7, which can be written in the form

Aule) = [ [ @00 @ uty) duds

where u € C®(U7), x € U7, and a”(x,£) € S{({U?,R™). The kernel of A is then determined by
the kernels K4+ € D'(U" x U7). For | < —dimX, they are continuous, and given by absolutely
convergent integrals. In this case, their restrictions to the respective diagonals in U”Y x U7 define
continuous functions

K (m) = Kao (ko (m), iy (m),  m e,

which, for m € U N U™, satisfy the relations k72(m) = |det (Foyy © K3,1)] © Ky (M)k™ (m), and
therefore define a density &k € C(X,) on Ax x X ~ X. If X is compact, this density can be
integrated, yielding the trace of the operator A,

(21) trA—/Xk—Z/m(oz,yonvl)(:c)KAv(:zr,a:)d:r,

where {a,} denotes a partition of unity subordinated to the atlas {(x-, U")}, and da is Lebesgue
measure in R”™.

Totally characteristic pseudodifferential operators. We introduce now a special class of
pseudodifferential operators associated in a natural way to a C*° manifold X with boundary 0 X.
Our main reference will be [7] in this case. Let C*>°(X) be the space of functions on X which are
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C* up to the boundary, and C*°(X) the subspace of functions vanishing to all orders on d X. The
standard spaces of distributions over X are
D/(X) = (CSO (X7 Q))Iv D(X)/ = (CSO (X7 Q))Iv

the first being the space of extendible distributions, whereas the second is the space of distributions
supported by X. Consider now the translated partial Fourier transform of a symbol a(z,§) €
SHR™ x R™),

Ma(z,¢;t) = / 0% a(, &1, dér,
where we wrote £ = (£,&'). Ma(z,£';t) is C™ away from t = 1, and one says that a(z,€) is

lacunary if it satisfies the condition
(22) Ma(z,&'5t) =0 for ¢ < 0.

The subspace of lacunary symbols will be denoted by S! (R™ x R"). Let Z = R+ x R"! be the
standard manifold with boundary with the natural coordinates z = (1, 2’). In order to define on Z
operators of the form (8], where now a(x, &) = a(z1,x’,11£1,&’) is a more general amplitude and
a(z, &) is lacunary, one rewrites the formal adjoint of A by making a singular coordinate change.
Thus, for u € C°(Z), one considers

A*u(y) = / / WG (e, Eulz) dade.

By putting A = x1&1, s = x1/y1, this can be rewritten as

_ . _ AN = dS

uly) = (2w e ayl,’,, u(yis,x —ax .

(23)  A*u(y) = (2) "//// sy =) NG (s, 2/, X, € Julyn s, 2 )dA—da’ d€
S

According to [7], Propositions 3.6 and 3.9, for every a € S;,°°(Z x R™), the successive integrals in
[23) converge absolutely and uniformly, thus defining a continuous bilinear form

S (Z xR") x CZ(Z) — C™(2),
which extends to a separately continuous form

R(ZxR™) x CX(Z) — C(2).
If a € S5°(Z x R™) and a(z,§) = a(z1,2’, 2161, &), one then defines the operator
(24) A:E"(2) —D(2),
written formally as (I8]), as the adjoint of A*. In this way, the oscillatory integral (8] is identified
with a separately continuous bilinear mapping
2(Z xR") x E'(Z) — D'(Z).

The space LL(Z) of totally characteristic pseudodifferential operators on Z of order | consists of
those continuous linear maps (24) such that for any u,v € C*(Z), vAu is of the form ([I8) with
a(z,€) = a(z1,2',21&,€') and a(z,€) € SI,(Z x R™). Similarly, a continuous linear map (20) on
a smooth manifold X with boundary d X is said to be an element of the space L{(X) of totally
characteristic pseudodifferential operators on X of order 1, if for a given atlas (K-, [7") the operators
Ay = [A‘ﬁw (uo k)] or ! are elements of LL(Z), where the U are coordinate patches isomorphic

¥
to subsets in Z.

In an analogous way, it is possible to introduce the concept of a totally characteristic pseudo-
differential operator on a manifold with corners. As the standard manifold with corners, consider

R™* =0, 00)% x R"7*, 0<k<n,
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with coordinates x = (z1, ..., 7k, 2'). A totally characteristic pseudodifferential operator on R™F of
order [ is locally given by an oscillatory integral (I8)) with a(x,§) = a(x, z1&1, ..., vk, &), where
now a(x, &) is a symbol of order [ that satisfies the lacunary condition for each of the coordinates
Ti,...,Tk, 1.€.

/ei(l—t)ﬁja](x7§) d¢; =0 fort<O0and 1< j<k.

In this case we write a(x, &) € S, (R™*xR™). A continuous linear map (20) on a smooth manifold X
with corners is then said to be an element of the space Lé (X) of totally characteristic pseudodiffer-

ential operators on X of orderl, if for a given atlas (K-, U7) the operators A¥u = [A‘ﬁw (uokiy)Jor

are totally characteristic pseudodifferential operator on R™* of order I, where the U" are coor-
dinate patches isomorphic to subsets in R™*. For an extensive treatment, we refer the reader to

4.

4. INVARIANT INTEGRAL OPERATORS

Let X be the Oshima compactification of a Riemannian symmetric space X ~ G/K of non-
compact type. As was already explained, G acts analytically on X, and the orbital decomposition is
of normal crossing type. Consider the Banach space C(X) of continuous, complex valued functions

on FNS, equipped with the supremum norm, and let (TF,C(X)) be the corresponding continuous
regular representation of G given by

m(9)p(3) = plg~" - 7), e CX).

The representation of the universal enveloping algebra il of the complexification g¢ of g on the
space of differentiable vectors C(?NQ)OO will be denoted by dr. We will also consider the regular
representation of G on C°°(§N§) which, equipped with the topology of uniform convergence on
compact subsets, becomes a Fréchet space. This representation will be denoted by 7 as well. Let
(L, C>*(G)) be the left regular representation of G. With respect to the left-invariant metric on G
given by (,)g, we define d(g, h) as the distance between two points g, h € G, and set |g| = d(g, €),
where e is the identity element of G. A function f on G is at most of exponential growth, if there
exists a & > 0 such that |f(g)| < Ce®l9! for some constant C' > 0. As before, denote a Haar measure
on G by dg. Consider next the space S(G) of rapidly decreasing functions on G introduced in [9].

Definition 1. The space of rapidly decreasing functions on G, denoted by S(G), is given by all
functions f € C®(G) satisfying the following conditions:

i) For every k > 0, and X € i, there exists a constant C such that
[dL(X) f(g)] < Cem"19);
it) for every k>0, and X € U, one has dL(X)f € L*(G, e"9ldg).
For later purposes, let us recall the following integration formulas.

Proposition 1. Let fi € S(G), and assume that fo € C°(G), together with all its derivatives,
18 at most of exponential growth. Let X1,..., X4 be a basis of g, and for X7 = X?ll ...X?: write
X7 = XZT .. X', where vy is an arbitrary multi-index. Then

/ F1(9)AL(XT) fa(g)de(g) = (~1) / AL(X7) f1(9) f2(9)dc(9).
G G

Proof. See [9], Proposition 1. O



INTEGRAL OPERATORS ON OSHIMA COMPACTIFICATIONS OF RIEMANNIAN SYMMETRIC SPACES 13

Next, we associate to every f € S(G) and ¢ € C(X) the element Jo F@)m(g)pdalg) € C(X). It
is defined as a Bochner integral, and the continuous linear operator on C(X) obtained this way is
denoted by (). Its restriction to C*°(X) induces a continuous linear operator

7(f) : C°(X) — C®(X) c D'(X),

with Schwartz kernel given by the distribution section Kr € D’(X X 3~§, 1 X Qg). The properties of
the Schwartz kernel Ky will depend on the analytic properties of f, as well as the orbit structure
of the underlying G-action, and our main effort will be directed towards the elucidation of the
structure of KCy. For this, let us consider the orbital decomposition (IH) of §~§, and remark that the
restriction of 7(f)p to any of the connected components isomorphic to G/Pg(K) depends only on
the restriction of ¢ € C(X) to that component, so that we obtain the continuous linear operators

T(f)z, 1 C(Xe) — C*(Xeo),

where Xe denotes a component in X isomorphic to G/Pg(K). Let us now assume that © = A, so
that Po(K) = K. Since G acts transitively on X one deduces that )z, € L=°(Xa), c.p. [,
Section 4. The main goal of this section is to prove that the restrictions of the operators 7(f) to
the manifolds with corners FNSA are totally characteristic pseudodifferential operators of class L, >°.

Let {(ﬁmw,gp;f )} be the finite atlas on the Oshima compactification X defined ear-
“ ) wew

lier. For each # € X, let W3 be an open neighborhood of Z contained in some U,,, such that

{h €G:hW;C ﬁmw} acts transitively on the G-orbits of Wi, c.p. [9], Section 6. We obtain a

finite atlas {(Ww ot 3 )} of X satisfying the following properties:
v vel

i) For each ﬁ//,y, there exist open sets V, C Vvl C @, stable under inverse, that act transitively
on the G-orbits of W’ﬁ
ii) For all v € I one has le W, C Un,,, for some m,,, € M.

To simplify notation, we shall write ¢, instead of ¢, . Consider now the localization of the

operators m(f) with respect to the finite atlas {(Ww cp;l)} given by
vyel

Aju=[r(f) (o Now,,  we CRW,), Wy = o) (W),
see Section Bl Writing pg = ¢ 0o g™' o, and = = (n,t) € W, we obtain
AJu(z) = /G F(g)7(g) (10 97 1) (s ())dg = /G £(9)(wo ¢8)(@)dg.

Since we can restrict the domain of integration to V,,, the latter integral can be rewritten as

AJu(z) = /G e (9) () (u 0 9)(2)dg,

where ¢, is a smooth bounded function on G with support in V,Yl such that ¢, =1 on V,. Define
next

(25) fﬁ(xvg) = / e“ﬂi(w)'fcv(g)f(g)dg’ a}*(m,f) = e_imffv(xvg)'
G

Differentiating under the integral we see that fv(x,f),a}(x,f) € C®°(W, x R¥1). Let us next
state the following
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Lemma 3. For any T = ¢(n,t) € W’y and g € Vvl we have the power series erpansion

(26) tlg-8)= S &g @@),  j=1....L
a,B
B;#0
where the coefficients ciﬁ(g) depend real-analytically on g, and o, 8 are multi-indices.

Proof. By Theorem[] a G-orbit in X is locally determined by the signature of any of its elements.
In particular, for 2 € W, g € Vvl we have sgnt;(g- %) = sgnt;(Z) for all j = 1,...,l. Hence,

tj(g-%) = 0if and only if ¢;(Z) = 0. Now, due to the analyticity of the coordinates (¢, W,,), there
is a power series expansion

ti(g-2) =D c yon @)t (3), TeW,, gV,
b

for every j = 1,...,l, which can be rewritten as

(27) tilg-2) =Y slan* @ @) + D o, s(g)n* (@)’ ().
a, a,B
B;#0 B;=0

Suppose t;(z) = 0. Then the first summand of the last equation must vanish, as in each term of
the summation a non-zero power of t;(&) occurs. Also, t;(g-Z) = 0. Therefore ([27)) implies that
the second summand must vanish, too. But the latter is independent of ¢;. So we conclude

> chplgn® (@)t (@) =0

5150
for all x € ﬁ//.y, g€ V,Yl, and the assertion follows. (|
From Lemma [3] we deduce that
(28) ti(g ) =tY(@)x;(9.%), TEW,, geV],

where x;(g, Z) is a function that is real-analytic in g and in Z, and g; is the lowest power of ¢; that
occurs in the expansion (26]), so that

(29) Xi(9,3) #£0  VieW,, geVh
Indeed, x;(g, %) can only vanish if ¢;(Z) = 0. But if this were the case, ¢; would not be the lowest
power, and we obtain (28). Furthermore, since t;(g - &) = t;(Z) for g = e, one has ¢1 = --- = .

Thus, for = ¢, (z) € va x = (n,t), g € V., we have
<ng(x) = (nl (g ! j)v s 7nk(g ! j)7t1(j)X1 (gvj)v s 7tl(j)X1 (ga i))

Note that similar formulas hold for Z € ﬁmw and g sufficiently close to the identity. The following
lemma describes the G-action on X as far as the ¢-coordinates are concerned.

Lemma 4. Let X_); and H; the basis elements for n~ and a introduced in Section[d, w € W,
and & € Uy,,,. Then, for small s € R,

(1, 3) = e

where the c;j(my,) represent the matriz coefficients of the adjoint representation of M* on a, and
VH; = Zé‘:l ¢ij(my)H;. Furthermore, when & = w(e,n,t),

—1
w

are giwen by Ad (m

X, (e X g =1.
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Proof. Let Y € g. As we saw in the proof of Lemma [ the action of the one-parameter group
exp(sY’) on the homogeneous space G/ Pg(K) is given by equation (@), where N5 (s) € n, A1 (s) €
a,A2(s) € a(©). Denote the derivatives of N5 (s), A1(s), and Aa(s) at s = 0 by N5, A;, and
A, respectively. The analyticity of the G-action implies that N5 (s), A1(s), A2(s) are real-analytic
functions in s. Furthermore, from (@) it is clear that N5 (0) = 0, A1(0) + A2(0) = 0, so that for
small s we have

1d

Al(s) +A2(S) = (Al +A2)S+ §d_522(A1(S) +A2(8))|S:0 82 + ...
1 d?

- 2
Ed_$2N3 (S)lSZQS + ...

Next, fix m,, € M* and let ® = A. The action of the one-parameter group corresponding to H;
at & = w(my,n,t) € Uy, NXa is given by

N3 (s)=Ng s+

exp(sH;)mynaK = my, (my" exp(sH;)my) naK = my, exp(sAd (my")H;)naK.
As my, lies in M*, exp(sAd (mg,')H;) lies in A. Since A normalizes N~, we conclude that
exp(sAd (my')H;)nexp(—sAd (my')H;) belongs to N~. Writing
n~'exp(sAd (my')H;)nexp(—sAd (my")H;) = exp N3 (s)
we get
exp(sH;)mynaK = mynexp Ny (s)aexp(sAd (m;l)Hi)K.
In the notation of () we therefore obtain A (s)+A4z(s) = sAd (my')H;, and by writing Ad (m')H; =
22:1 ¢ij(my)H; we arrive at

!
aexp(Ai(s) + Az(s)) = exp (Z(CU (Maw)s — logtj)Hj>.

j=1
In terms of the coordinates this shows that ¢;(exp(sH;) - &) = t;(Z)e~%i(mw)s for 7 € Up,, NXa,
and by analyticity we obtain that x, ( esHi 7) = ecii(mw)s for arbitrary & € Un,,- On the other
hand, let Y = X_»;, and & = @c(n,t) € U. N Xa. Then the action corresponding to X_»; at T is
given by

exp(sX_xi)naK = nexp Ny (s)aK,

where we wrote exp N5 (s) = sAd (n™!)exp X_,;. In terms of the coordinates this implies that
tj(exp(sX_x;) - &) = t;(Z) showing that y,(e*X-*i, &) =1 for & € U. N Xa, and, by analyticity,
for general z € U,, finishing the proof of the lemma. (|

Let now z = (n,t) € W,, and define the matrix

t1 0
(30) T, = g ,

so that for = ¢, (z) € va geVy),

(17€ ®T;1)(%’g($)) = (xl(g : j)v s 717@(9 : j)le(gvi')v i '7Xl(g7i.))7

and set
1/,2 (9) = e 1®T, ) (9 ()€

)
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where &€ = (£1,..., &) € RFFL Also, introduce the auxiliary symbol

(31) af(x,€) = aj(z, (L @ T, )E) = el DS [yl (g)e,(g)f(g)dy.
G

Clearly, a(z,&) € C®(W, x R*+!). Our next goal is to show that at(z,€) is a lacunary symbol.
To do so, we shall need the following

Proposition 2. Let (L,C*>(Q)) be the left reqular representation of G. Let X_y ;, H; be the basis
elements of n~ and a introduced in Section[d, and (W5, @) an arbitrary chart. With x = (n,t) €
W,, & =@y (x) e W,, g€V} one has

dL(X—,\,l)U)g,m(g)

(32) : =i (9)T(z, 9)§,
dL(H)¥{ ,(9)
with
- dL(X_x,i)n;z(9) ‘ dL(X_».:)x;(9,%)
@ Teo-(1 )= ‘
dL(H;)n;z(9) dL(H;)x;(g,T)

belonging to GL(I + k,R), where nj z(g) = n;(g - ).

Proof. Fix a chart (W, ¢,), and let z, Z, g be as above. For X € g, one computes that

ds

I+k

+ > &GAL(X)x; (9, )|,

j=k+1

k
d . —1y e X g ) .
ALY (g) = LeieaT e 0w upgz(g){zgidL(X)ni@(g)
=1

showing the first equality. To see the invertibility of the matrix I'(z, g), note that for small s
Xi(e™% 9,7) = x;(9, D)x; (e ¥ g - 2).
Lemma [ then yields

~ d i e N
AL(H)x3(9, %) = x3(0, ) g5 (%) = x50, Beis(ms,).

This means that I'y is the product of the matrix (cij (mww)) Y with the diagonal matrix whose

'L7

j-th diagonal entry is x;(g, ). Since (cij(muw,)), .

%]

relative to the basis {Hx,..., H;} of a, it is invertible. On the other hand, x;(g, &) is non-zero for
all j € {1,...,1} and arbitrary g and Z. Therefore I'4, being the product of two invertible matrices,
is invertible. Next, let us show that the matrix I'; is non-singular. Its (ij)" entry reads

AL(X -3 i)n52(9) = =nga(e X2 - g)oc = (=X, i2)aa(ny):
For © C A, ¢ € R}, we define the k-dimensional submanifolds
Lo(q) = {Z = py(n,q) € Wy 1 g; #£0 & o € O},
and consider the decomposition Tg.ﬁz@ :NTQ.UZE(_)(q)@ Ny.:L6(q) of Tg.ﬁz@ into the tangent and

is just the matrix representation of Ad (m,!)

normal space to £¢(q) at the point g-% € Xg. Since Xg is a G-orbit, the group G acts transitively
on it. Now, as g varies over G in Lemmal/[Il one deduces that N~ x A(O) acts locally transitively on
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Xo. In addition, by the definition of £o(g), Ng.5Le(q) is spanned by the vector fields {—ti% tasco-
Consequently, Ty.;£6(¢) must be equal to the span of the vector fields {X_ )\,i|§~§}’ which means
that N~ acts locally transitively on £g(q) for arbitrary ©. Since the latter is parametrized by the
coordinates (nq,...,ny), one concludes that the matrix ((X_/\7i‘§g)g.j(nj))ij has full rank. Thus,
I'; is non-singular. On the other hand, if & = 7(e, n,t) € U, Lemma @ implies

dL(Xxi)x;(9, %) = x;(9; i)d% (Xj(e‘SX”’iag : 56)) oo =0

showing that I'e is identically zero, while I'y is a non-singular diagonal matrix in this case. Geomet-
rically, this amounts to the fact that the fundamental vector field corresponding to H; is transversal
to the hypersurface deﬁned by t; = g € R\ {0}, while the vector fields corresponding to the Lie al-
gebra elements X_, ;, H;, i # j, are tangentlal We therefore conclude that I'(z, g) is non—smgular

if # € U,. But since the different copies XO( i OfG/Po , (K) =N~ XBny CN~ xR ~ U,

in X are isomorphic to each other, the same must hold if Z lies in one of the remaining charts ﬁmwv ,
and the assertion of the lemma follows.
O

We can now state the main result of this paper. In what follows, {( s ) tyer will always
denote the atlas of X constructed above.
Theorem 2. Let X be the Oshima compactification of a Riemannian symmetric space X ~ G/K

of non-compact type, and f € S(G) a rapidly decaying function on G. Let further {(W,Y, 0y )} ,
yeE

be the atlas 0f§~§ construced above. Then the operators w(f) are locally of the form
(34) Au(z) = / ) (z, )U(E)dE,  ue CF(W,),

where a}(x, &) = d;{(:v, &1y oy Ehy Tt 1&kt 1y - - Ekp1Thtl), and d;{(:v, &) €S, (W, x Rg‘”) is given
by . In particular, the kernel of the operator A7 is determined by its restrictions to W* x WX,

f v v
where W = {z = (n,t) € W, : t1---t; # 0}, and given by the oscillatory integral

(35) Koy ) = [ 0 <a} ).

As a consequence, we obtain the following
Corollary 1. Let XA be an open G-orbit in X isomorphic to G/K. Then the continuous linear
operators
n(f) - O (Xa) — C(Xa),
are totally characteristic pseudodifferential operators of class Ly °° on the manifolds with corners
Xa.
O

Proof of Theorem[d Our considerations will essentially follow the proof of Theorem 4 in [9]. Let
I'(x, g) be the matrix defined in ([B3]), and consider its extension as an endomorphism in (Cl[R’g‘H]

to the symmetric algebra S((Cl[RkH]) (C[Rk“] Since for x € W, g € V], T'(z, g) is invertible,
its extension to SV ((Cl[Rk“]) is also an automorphism for any N € N. Regarding the polynomi-
als £1,...,&k4+1 as a basis in Cl[R§+l], let us denote the image of the basis vector ¢; under the
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endomorphism I'(z, g) by I'{;, so that by (32)
I = —iy? ¢ (9)dL(X-x ;)¢ .(9), 1<j<k,
Ug = =il (9)dL(H;)¥¢ ,(9),  k+1<j<k+l

Every polynomial {;, ® --- ® &y =&, ---&jx can then be written as a linear combination

(36) = ZAg(va)Ffﬁl : "Ffﬁ‘a‘,

where the Ag(:t, g) are real-analytic functions on W, x Vvl. We need now the following

Lemma 5. For arbitrary indices B1,. .., By, one has
'Yl (9T, -+ Tp, = dL(Xﬁl e X ¥ L (9)

LYY e ML (X X L0

s=1 aq,...,as

(37)

where the coefficients dgllg[ (x,9) € C (WnY X supp cy) are at most of exponential growth in g,
and independent of &.

Proof. The lemma is proved by induction. For r = 1 one has it/ (9)T¢, = dL(X,)i . (9),
where 1 < p < d. Differentiating the latter equation with respect to X;, and writing I'¢, =

Ef:i Tps(x, g) &, we obtain with (B3] the equality

k+l1

~98 (90T = dL(X; X0, (9) = D (dL(X;)Dps)(, )N} (&, 9)AL(X, )0, (9).

s,r=1

Hence, the assertion of the lemma, is correct for » = 1,2. Now, assume that it holds for r < N.
Setting r = N in equation ([B7), and differentiating with respect to X,,, yields for the left hand side

N (9T s, - Tépy
k+1

+iM07,(9) (Y (LX) Ts,0) (@, )M (2, 9)TE )T, -+ Ty +

$,q=1

By assumption, we can apply 1) to the products ', I'¢s, - -T'éa,,... of at most N factors.
Since the functions n; ,,(g) and x;(g,m), and consequently the coeflicients of I'(x, g), are at most
of exponential growth in g, the assertion of the lemma follows. O

End of proof of Theorem[2 Let us next show that a(x,§) € ST (W, x R’g“). As already noted,
aj(z, &) € Co(W, x Rg”). While differentiation with respect to £ does not alter the growth
properties of &'fy(az, £), differentiation with respect to x yields additional powers in . Now, as an
immediate consequence of equations (B8] and (37), one computes for arbitrary N € N

(38) Ul (91 +€%) Z > b (@, 9)dL(X )7, (9),

r=0 |a|=r

where the coefficients b (z,g) € C>(W, x V') are at most of exponential growth in g. Now,
(0¢ P a;)(x,€) is a finite sum of terms of the form

566_““""“’1""’1)'5/Gf(g)dw(w,g)wgym(g)cw(g)dga
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the functions dss(z, g) € C>(W, x V.!) being at most of exponential growth in g. Making use of
equation (B8], and integrating according to Proposition[Il we finally obtain for arbitrary «, 8 the
estimate

1
a afb ~
[(0¢ 0, ap)(x,8)| < mca,ﬂ,;c z €K,

where K denotes an arbitrary compact set in W,, and N € N. This proves that d}(x,{) €

ST(W, x R’g‘”). Since equation ([B4)) is an immediate consequence of Fourier inversion formula,
it remains to show that a}(z,&) satisfies the lacunary condition [22)) for each of the coordinates

t;. Now, it is clear that a’} € Sfoo(W;‘ X R’g”), since G acts transitively on each Xa. As a
consequence, the Schwartz kernel of the restriction of the operator A} : C°(W,) — C>(W,) to
W is given by the absolutely convergent integral

/ "G (2, €)dE € CF (W x W),

Next, let us write Wy, = Ugca WY, where WS = {z = (n,t) : t; #0 < o; € ©}. Since on W
the function Aju depends only on the restriction of u € C°(W,) to W, one deduces that
(39) supp K47 C U WO x WO,

©CcA

Therefore, each of the integrals
/ei%—w)ﬁf@}(z, (1, @ Tp)E)dej,  j=k+1,...,k+1,

which are smooth functions on W3 x W7, must vanish if z; and y; do not have the same sign.
With the substitution r; = y;/x; — 1, {;z; = £ one finally arrives at the conditions

/e*ihéjd}(%g) d&; =0 forr; < -1, 2 € W;

But since d;{ is rapidly decreasing in &, the Lebesgue bounded convergence theorem implies that
these conditions must also hold for € W,. Thus, the lacunarity of the symbol d;{ follows. The
fact that the kernel K A7 must be determined by its restriction to W5 x W7, and hence by the

oscillatory integral (3H), is now a consequence of [7], Lemma 4.1, completing the proof of Theorem
O

As a consequence of Theorem [2] we can locally write the kernel of 7(f) in the form

KA»} (;[;7y) = /el(z’y)ga;(év,f)d‘f — /ei(zfy)-(1k®T; )Ed}(fli,g)ldet (1k ® T;l)/(§)|d§

1 < Yk+1
= 714}(,%,,@1 —yl,...,l——Jr,...)7
|17k+1 : "$k+l| Trk41

(40)
Tht1 - Tyt 7 0,

where A}(:v, y) denotes the inverse Fourier transform of d} (z,8),

(41) A}(m,y) = /eiy'gd}(x@) dg.

Since for © € W7 the amplitude d}(:v,{) is rapidly falling in &, it follows that fl] (z,y) € S(RY),
the Fourier transform being an isomorphism on the Schwartz space. Therefore K A7 (z,y) is rapidly
decreasing as |z;| — 0 if z; # y; and £k +1 < j < k 4 [. Furthermore, by the lacunarity of ZL},
KA} (x,y) is also rapidly decaying as |y;| = 0if z; #y; and k+1<j <k +1.
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5. HOLOMORPHIC SEMIGROUP AND RESOLVENT KERNELS

In this section, we shall study the holomorphic semigroup generated by a strongly elliptic op-
erator {2 associated to the regular representation (, C(X)) of G, as well as its resolvent. Both the
holomorphic semigroup and the resolvent can be characterized as convolution operators of the type
considered before, so that we can study them by the methods developed in the previous section. In
particular, this will allow us to obtain a description of the asymptotic behavior of the semigroup
and resolvent kernels on XA ~ X at infinity.

Let us begin by recalling some basic facts about elliptic operators and parabolic evolution
equations on Lie groups, our main reference being [10]. Let G be a Lie group, and 7 a continuous
representation of G on a Banach space B. Let further Xi,..., Xy be a basis of the Lie algebra
Lie(G) of G, and

Q=" cadr(X)
lal<q
a strongly elliptic differential operator of order q associated with 7, meaning that for all £ € R¢
one has the inequality Re (—1)%/2 Z\alzq ca® > k|€]? for some k > 0. By the general theory of
strongly continuous semigroups, its closure generates a strongly continuous holomorphic semigroup
of bounded operators given by

1 —
S, =— [ ML +Q) ),
27 r
where I' is a appropriate path in C coming from infinity and going to infinity such that A ¢ o(Q) for
A €T'. Here |arg 7| < a for an appropriate a € (0, 7/2], and the integral converges uniformly with
respect to the operator norm. Furthermore, the subgroup .S; can be characterized by a convolution

semigroup of complex measures i, on G according to

S, - /g m(g)dpi- (g),

7 being measurable with respect to the measures p,. The measures p, are absolutely continuous
with respect to Haar measure dg on G, and denoting by K,(g) € L'(G,dg) the corresponding
Radon-Nikodym derivative, one has

S, = n(K,) = /g K-(9)7(9)dg ).

The function K, (g) € L'(G,dg) is analytic in 7 and g, and universal for all Banach representations.
It satisfies the parabolic differential equation

0K )+ Y cadL(X®)K,(g) =0,  lm K.(g) = b(g),

oT T—0

lal<q

where (L,C(G)) denotes the left regular representation of G. As a consequence, K, must be
supported on the identity component Gy of G. It is called the Langlands kernel of the holomorphic
semigroup S, and satisfies the following L'- and L>°-bounds.

Theorem 3. For each xk > 0, there exist constants a,b,c > 0, and w > 0 such that

42) [ L0 K)o g (g) < al*lealt i1+ 7P,
Go

forallT >0, =0,1,2,... and multi-indices . Furthermore,

(43) |dL(X*) 0° K. (g)| < abl®lcP|al! B(1 4 7B~ al+d+tD)/a)ewr o =rlgl
for all g € Gy, where d = dim Gy, and q denotes the order of 1.
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A detailed exposition of these facts can be found in [I0], pages 30, 152, 166, and 167. Let

now G = G, and (7, B) be the regular representation of G on C'(X). Theorem Bl implies that the
Langlands kernel K, belongs to the space S(G) of rapidly falling functions on G. As a consequence
of the previous considerations we obtain

Theorem 4. Let Q2 be a strongly elliptic differential operator of order q associated with the reg-
ular representation (7,C(X)), and S; = w(K,) the holomorphic semigroup of bounded operators
generated by Q. Then the operators S, are locally of the form ([B4) with f being replaced by K.,
and totally characteristic pseudodifferential operators of class L, ™ on the manifolds with corners

Xa. Furthermore, on W, x W, the kernel of S- is given by

. 1
S3w) = Koy (o) = [ €00y (2. €)de =

A (o, (L@ T, Yz —y)),
T o Ak (e (e O T — )

where Tgy1 -+ Ty # 0, and A'}(T (z,y) was defined in {A0). In particular, SY(z,y) is rapidly
falling at infinity as |z;| — 0, or |y;| — 0, as long as x; # y;, where k+1 < j < k+1. In addition,

(147~ UHRD/a) 0 <7 <1,

wT
coe’", 1<,

(44) A, (@,y)] < {

uniformly on compact subsets of W., x W, for some constants c; > 0.

Proof. The first assertions are immediate consequences of Theorem 2] and its corollary. In order
to prove ([@4), note that for large N € N one computes with (3II), (38), and (@Il

ol [ i @ole= [ /wm 9)ex (9) K- (9)dc )|
:/Rk+l(1+|€| N’/ e (g Z 3 N (2, 9)dL(X)W], (9)dc (g ’d{

r=0 |a|=r

If we now apply Proposition [} and take into account the estimate ([@2]) we obtain
Al < [a+1et)™] [ 020 > S ALK (. g)es ()|
r=0 |a|=r

c(l+772N9, 0<r <1,
coe®T, 1<,

<

for certain constants ¢; > 0. Expressing §k+l+1¢§m( ) on {€eR":|§] <|¢|for all i} as left
derivatives of ¢} (g) according to (36) and (BT), and estimating the maximum norm on R™ by the
usual norm, a similar argument shows that the last estimate is also valid for N = (k+1+1)/2,
compare ([B0). The proof is now complete. O

Let us now turn to the resolvent of the closure of the strongly elliptic operator Q. By ([2) one
has the bound ||S;|| < ce“” for some constants ¢ > 1,w > 0. For A € C with ReX > w, the
resolvent of Q can then be expressed by means of the Laplace transform according to

A +Q) = I‘(l)_l/ e S, dr,
0

where I' is the I'-function. More generally, one can consider for arbitrary o > 0 the integral
transforms

AL +Q)“=T(a)"" / e AMreTlS dr.
0
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As it turns out, the functions
Ro(@)=T(@) ! [ 1o 1K, () dr
0

are in L'(G, e*191dg), where xk > 0 is such that ||7(g)| < ce®l9! for some ¢ > 1. This implies that
the resolvent of {2 can be expressed as the convolution operator

AL+ T0)° = m(Ras) = /G Ra(9)7(9) de(g).

The resolvent kernels R, » decrease exponentially as |g| — oo, but they are singular at the identity
if d > qa. More precisely, one has the following

Theorem 5. There exist constants b,c, \g > 0, and aq,x > 0, such that

o 2 |g|~(@H 01 =a0) o= (BB NV I=)lgl g5 ga,

[dL(X®)Rar(9)] < { aa(1+ |log|g|)e=C®ReN =0lgl 4 = gq,
gy~ (BN 1=c)lg], d < qa

for each A € C with Re A > A¢.

A proof of these estimates is given in [10], pages 238 and 245. Our next aim is to understand
the microlocal structure of the operators 7m(R,,») on the Oshima compactification X of X ~ G/ K.

Consider again the atlas {(ﬁ//,y, . 1)} of X introduced in Section [, and the local operators
yel

(45) A’IY% u = [W(R%)\MWW (uo 90;1)] O Py,

o,

where u € CZ(W,,) and W, = ¢ 1(ﬁ//,y). By the Fourier inversion formula, A’JY?,QA is given by the
absolutely convergent integral

(46) A, o) = [ e, (@ Oned
where
o (8:6) = [ O (g R0l o)
a0 = [ AT ()R r(5)dclo)
are smooth functions on W, x R¥! since R, € LY(G, e"191dg), the notation being the same

as in Section @ Moreover, in view of the L'-bound [@2), the functions e=*"7%"1a}) (z,£) and

e*)"'ro"la}yﬂ (z,€) are integrable in 7 over (0,00), and by Fubini we obtain the equalities
a']%ayx(ac,ﬁ) = I‘(a)_l/o e_’\TTO‘_la}Y(T (x, £)dr,
a}%ayx(:z:,g) = F(a)71/0 ef)‘TTa‘flfL}Y(T (x,&)dr.

In what follows, we shall describe the microlocal structure of the resolvent (A1 + Q)™ on §~§, and
in particular, its kernel.
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Proposition 3. Let Q be the largest integer such that Q < qa. Then EL’]Y%Q’A(I,g) € SfaQ(WW X

R, That is, for any compactum K C W, and arbitrary multi-indices (3, there exist constants
Ck.,3,e > 0 such that

(47) (95 07 af, )@, &) < Crp(1+ [ TID2 2 ek, ¢ e RFHY,
and Cﬁga . satisfies the lacunary condition 22) for each of the coordinates x;, k+1<j <k-+1.

Proof. For a fixed a chart chart (Ww ) of X we write z = (n,t) € Wy, T = ¢, (z) € WnY as usual.
As a consequence of Proposition 2] and Lemma [Bl one computes with (38]) for arbitrary N € N

07, (@, €) = /G NOOT D@ =01, @ T (8 () — 2)]* ¢4 (9) Raur (9)dc (9)

2N
= (1 ey VeSS0 S [ 4 LX) o)
r=01|§|=r
(i1 ® T, ) (94 (2) — 2)]*" ¢ (9)Rar(9)da (9)-
Now, n.(g - Z) = n.(Z) and x,(g,%) — 1 as g — e, so that due to the analyticity of the G-action
on X one deduces
(48) 1k @ T, 1) (94 (2) — )| = |(na(9) = na,-., xa(97) = 1,...)| = Cklgl,  z €K
Indeed, let
(Ch . Cd) s e XittCaXa — g

be canonical coordinates of the first type near the identity e € G. We then have the power
expansions

(49) Xe(9,3) = 1= D" ch gm0, np(g- @) —ne(@) =Y dp 5 nt7C7
a,By B,y
where the constant term vanishes, that is, ¢j, 5, di, 5, =0 if |v| = 0. Hence,

In,(g- %) = ()], xr(9,%) = 1| < C1[¢] < Calgl,

compare [10], pages 12-13, and we obtain [@8). With Theorem [5 we therefore have the pointwise
estimates

[(1r @ T ) (92 (2) — )7 dL(XY ) Raa(9)] < Cik,anlg|~ (@19 1ma0 18D e (RN =c) o]

for some constant Cic o,» > 0 uniformly on K x V,Yl. Now, let 2Q be the largest even number strictly
smaller than ga. Applying the same reasoning as in the proof of Proposition [I one obtains for

N=Q+|8|

2Q+2|8|
~ —-Q— 7 . x)—x)l-
(037 ap, )@ &) = (1 + )7 37 ST (-1 /G BT @) -0l
r=0 ‘5‘:7‘

ALXY) P2 @, g)[i(1 @ Ty ) (2 (@) — 2)]PP ¢y (9) Ran(9)] der(9),

since all the occuring combinations [(1x @ T, ') (¢4 (x) — 2)]? dL(X% )Ra.A(g) on the right hand
side are such that ga + |8'| —|d’| > 0, implying that the corresponding integrals over G converge.
Equality then follows by the left-invariance of dg(g), and Lebesgue’s Theorem on Dominated
Convergence. To show the estimate ([@7) in general for ¢ = 0, let # € K, and ¢ € R¥*! be such
that || > 1, and [{|max = max{|&]|: 1 <r <k+1} = |¢;|. Using (B6) and (B7) we can express
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5;2“’8 ‘1/’&1(9) as left derivatives of ¢/ (g), and repeating the previous argument we obtain the
estimate '
Q+18] _
Ok, @Ol =16 S 3 [ Begdioeel, o)
(50) r=0 |§|=r G

~ 1 1
[i(1r ® T, ) (93 (@) = 2))°¢, (9) Ran(9)dc(9)] < s crarar < O framman

where the coefficients b}(z, g) are at most of exponential growth in g. But since &}ayk(x,ﬁ) €
C>(W,, x RF) we obtain ([@T) for € = 0. Let us now turn to the z-derivatives. We have to
show that the powers in £ that arise when differentiating (8? &’éa,k)(x, &) with respect to x can be
compensated by an argument similar to the previous considerations. Now, [@3) clearly implies

9 (xr(g,2) = 1) =O(lgl), 05 (nr(g- ) — ne(F)) = O(|g)).
Thus, each time we differentiate the exponential e!l(1x®T: (@@ -2)€ with respect to z, the re-
sult is of order O(|¢||g|). Therefore, expressing the ocurring powers 55/77[1211(9) as left deriva-
tives of ¢g,m(9)a we can repeat the preceding argument to absorb the powers in &, and (@) fol-
lows. Note next that the previous argument also implies ay,  (z,§) € STQ(Wr x R’g“), where
W3 = {z=(n,t) € W,y :t1---t; # 0}, the G-action being transitive on each Xa. The Schwartz
kernel K 4o of the restriction of the operator [{@H]) to W7 is therefore given by the oscillatory
Yo, A

integral

/ei(m—y)f%w(%@dg €D (W2 x WE),

which is C* off the diagonal. As in (BJ) we have supp K47 C Ugca WO x W9, so that each
a
of the integrals

/ei(mjiyj)gj&’ly%a,x(‘rv (lk ® Tm)g) dgjv ] =k+ 1’ Tt k+ l’
must vanish if z; and y; do not have the same sign. Hence,
/e_irjgj&’}%a,x(‘rvg) dgj =0 for rp<-lLze W;

Since d']%ayx (z,€) € ST(W, xR?“), these integrals are absolutely convergent for r; # 0. Lebesgue’s
Theorem on Bounded Convergence theorem then implies that these conditions must also hold for
x € W,. The proof of the proposition is now complete. O

Remark 1. One would actually expect that ap  (z,€) € S, ™ (W, x RE*1)| being the local symbol
of the resolvent (A1 + Q)~“. Nevertheless, the general estimates of Theorem [ for the resolvent
kernels R, which correctly reflect the singular behavior at the identity, are not sufficient to show
this, and more information about them is required. Indeed, dL(X?)R, » € Li(G,dg(g)) only
holds if 0 < gar — |-

We are now able to describe the microlocal structure of the resolvent (A1 + Q)~.

Theorem 6. Let () be a strongly elliptic differential operator of order q associated with the represen-
tation (r,C(X)) of G. Letw > 0 be given by Theorem[3, and X € C be such that Re A > w. Let fur-
ther a > 0, and denote by Q the largest integer such that Q < qa. Then (A\14+Q)~% = m(R,.) is lo-
cally of the form (@G), where ap  (x,§) = ap | (z,(1x®T3)E), andap | (x,§) € S0 (W, x RF+1),
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In particular, (AL + Q)™ is a totally characteristic pseudodifferential operators of class L;Q on

the manifolds with corners FNQA. Furthermore, its kernel is locally given by the oscillatory integral

. 1 . _
R, \(x,y) = / ey, (2, 6)dE = / LTy (w,E)de,
) a, A |xk+1"'$k+l| a, A
where Tpq1 - Thpr # 0, zy € Wy, R\ (z,y) is smooth off the diagonal, and rapidly falling at
infinity as |z;] — 0, or ly;| = 0, as long as x; # y;, where k+1<j <k+1.

Proof. The assertions of the theorem are direct consequences of our previous considerations, except
for the behavior of R, ,(z,y) at infinity. Let k + 1 < j <k + 1. While the behavior as |y;| — 0 is
a direct consequence of the lacunarity of cﬁ%aﬁ, the behavior as |z;| — 0 is a direct consequence of
the fact that, as oscillatory integrals,

/ei(m_y)fa’ly%a,x(xv §)d¢ = /ei(m—y)f(agl Tt 8§k+l)Na’}y%a,>\ (,€)de,

where © # y, and N is arbitrarily large. O

1
|z =y

Remark 2. The singular behavior of R, (g) at the identity corresponds to the fact that, as a
pseudodifferential operator of class Lb_Q7 (A149Q)~“ has a kernel which is singular at the diagonal.

To conclude, let us say some words about the classical heat kernel on a Riemannian symmetric
space of non-compact type. Consider thus the regular representation (o, C(X)) of the solvable Lie
group S = AN~ ~ X ~ G/K on the Oshima compactification X of X, and associate to every
f € 8(5) the corresponding convolution operator

/ F(9)(9) ds(9).
S

Its restriction to COO(X) induces again a continuous linear operator
o(f): C®(X) — C*(X) C D'(X),
and an examination of the arguments in Section ] shows that an analogous analysis applies to the

operators o(f). In particular, Theorem [2] holds for them, too. Let g be the half sum of all positiv
roots, and

C=>"H;=> 7} - [X;0(X;) +0(X;)X;] = > H —20+2) X} mod i(g)t
J j J j

be the Casimir operator in £i(g), where {H;}, {Z,}, and {X,} are orthonormal basis of a, m, and
n~, respectively, and put C' =3~ HJ2 —20+2 ZXJQ Though —dm(C’) is not a strongly elliptic
operator in the sense defined above, = —do(C”) certainly is. Consequently, if K/ (g) € S(S)
denotes the corresponding Langlands kernel, Theorems [4] and [@ yield descriptions of the Schwartz
kernels of o(K’) and (A1 4 €)= on X. On the other hand, denote by A the Laplace-Beltrami
operator on X. Then

Ap(gK) =p(g:C) =p(g: C"),  ¢e€C¥(X),
and the associated heat kernel h,(g) on X coincides with the heat kernel on S associated to C’. But
the latter is essentially given by the Langlands kernel K/ (g), being the solution of the parabolic
equation

6K;— N 1! : /
—(9) —dL(C)K7(9) =0, lim K(g) = 6(g)
on S. In this particular case, optimal upper and lower bounds for h, and the Bessel-Green-
Riesz kernels were given in [1] using spherical analysis under certain restrictions coming from the
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lack of control in the Trombi-Varadarajan expansion for spherical functions along the walls. Our
asymptotics for the kernels of o(K”) and (A1 + Q)~® on Xa ~ X are free of restrictions, and

in
res

[1]

(2

concordance with those of [I], though, of course, less explicit. A detailed description of the
olvent of A on X was given in [5], [6].
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