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INTEGRAL OPERATORS ON THE OSHIMA COMPACTIFICATION OF A

RIEMANNIAN SYMMETRIC SPACE OF NON-COMPACT TYPE.

MICROLOCAL ANALYSIS AND KERNEL ASYMPTOTICS

APRAMEYAN PARTHASARATHY AND PABLO RAMACHER

Abstract. Let X ≃ G/K be a Riemannian symmetric space of non-compact type, X̃ its Oshima

compactification, and (π,C(X̃)) the regular representation of G on X̃. We study integral operators

on X̃ of the form π(f), where f is a rapidly falling function on G, and characterize them within
the framework of pseudodifferential operators, describing the singular nature of their kernels.
In particular, we consider the holomorphic semigroup generated by a strongly elliptic operator
associated to the representation π, as well as its resolvent, and describe the asymptotic behavior
of the corresponding semigroup and resolvent kernels.
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1. Introduction

Let X be a Riemannian symmetric space of non-compact type. Then X is isomorphic to G/K,
where G is a connected real semisimple Lie group, and K a maximal compact subgroup. Consider

further the Oshima compactification [8] X̃ of X, a simply connected closed real-analytic manifold

on which G acts analytically. The orbital decomposition of X̃ is of normal crossing type, and the
open orbits are isomorphic to G/K, the number of them being equal to 2l, where l denotes the
rank of G/K. In this paper, we shall study the invariant integral operators

(1) π(f) =

∫

G

f(g)π(g)dG(g),

where π is the regular representation of G on the Banach space C(X̃) of continuous functions on

X̃, f a smooth, rapidly decreasing function on G, and dG a Haar measure on G. These operators
play an important role in representation theory, and our interest will be directed towards the
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elucidation of their microlocal structure within the theory of pseudodifferential operators. Since

the underlying group action on X̃ is not transitive, the operators π(f) are not smooth, and the

orbit structure of X̃ is reflected in the singular behavior of their Schwartz kernels. As it turns
out, the operators in question can be characterized as pseudodifferential operators belonging to a
particular class which was first introduced in [7] in connection with boundary problems. In fact,

if X̃∆ denotes a component in X̃ isomorphic to G/K, we prove that the restrictions

π(f)
|X̃∆

: C∞
c (X̃∆) −→ C∞(X̃∆)

of the operators π(f) to the manifold with corners X̃∆ are totally characteristic pseudodifferential
operators of class L−∞

b . A similar description of invariant integral operators on prehomogeneous
vector spaces was obtained by the second author in [9]. We then consider the holomorphic semi-

group generated by a strongly elliptic operator Ω associated to the regular representation (π,C(X̃))
of G, as well as its resolvent. Since both the holomorphic semigroup and the resolvent can be char-
acterized as operators of the form (1), they can be studied with the previous methods, and relying
on the theory of elliptic operators on Lie groups [10] we obtain a description of the asymptotic

behavior of the semigroup and resolvent kernels on X̃∆ ≃ X at infinity. In the particular case of
the Laplace-Beltrami operator on X, these questions have been intensively studied before. While
for the classical heat kernel on X precise upper and lower bounds were previously obtained in [1]
using spherical analysis, a detailed description of the analytic properties of the resolvent of the
Laplace-Beltrami operator on X was given in [5], [6].

The paper is organized as follows. In Section 2 we briefly recall those parts of the structure theory
of real semisimple Lie groups that are relevant to our purposes. We then describe the G-action on
the homogeneous spaces G/PΘ(K), where PΘ(K) is a closed subgroup of G associated naturally to
a subset Θ of the set of simple roots, and the corresponding fundamental vector fields. This leads

to the definition of the Oshima compactification X̃ of the symmetric space X ≃ G/K, together

with a description of the orbital decomposition of X̃. Since this decomposition is of normal crossing
type, it is well-suited for our analytic purposes. A thorough and unified description of the various
compactifications of a symmetric space is given in [2]. Section 3 contains a summary with some of
the basic facts in the theory pseudodifferential operators needed in the sequel. In particular, the
class of totally characteristic pseudodifferential operators on a manifold with corners is introduced.

Section 4 is the central part of this paper. By analyzing the orbit structure of the G-action on X̃, we
are able to elucidate the microlocal structure of the convolution operators π(f), and characterize

them as totally characteristic pseudodifferential operators on the manifold with corners X̃∆. This

leads to a description of the asymptotic behavior of their Schwartz kernels on X̃∆ ≃ X at infinity.
In Section 5, we consider the holomorphic semigroup Sτ generated by the closure Ω of a strongly
elliptic differential operator Ω associated to the representation π. Since Sτ = π(Kτ ), where Kτ (g)
is a smooth and rapidly decreasing function on G, we can apply our previous results to describe
the Schwartz kernel of Sτ . The Schwartz kernel of the resolvent (λ1 + Ω)−α, where α > 0, and
Reλ is sufficiently large, can be treated similarly, but is more subtle due to the singularity of the
corresponding group kernel Rα,λ(g) at the identity.
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2. The Oshima compactification of a Riemannian symmetric space

Let G be a connected real semisimple Lie group with finite centre and Lie algebra g, and denote
by 〈X,Y 〉 = tr (adX ◦ adY ) the Cartan-Killing form on g. Let θ be the Cartan involution of g,
and

g = k⊕ p

the Cartan decomposition of g into the eigenspaces of θ, corresponding to the eigenvalues +1
and −1 , respectively, and put 〈X,Y 〉θ := −〈X, θY 〉. Note that the Cartan decomposition is
orthogonal with respect to 〈, 〉θ. Consider further a maximal Abelian subspace a of p. Then ad (a)
is a commuting family of self-adjoint operators on g. Indeed, for X,Y, Z ∈ g one computes

〈adX(Z), Y 〉θ = −〈[X,Z], θY 〉 = −〈Z, [θY,X ]〉 = −〈Z, θ[Y, θX ]〉 = 〈Z, [Y, θX ]〉θ

= 〈Z,−[θX, Y ]〉θ = 〈Z,−ad θX(Y )〉θ.

Therefore −ad θX is the adjoint of adX with respect to 〈, 〉θ. So, if we take X ∈ p, the -1
eigenspace of θ, adX is self-adjoint with respect to 〈, 〉θ. The dimension l of a is called the
real rank of G and the rank of the symmetric space G/K. Next, one defines for each α ∈ a∗,
the dual of a, the simultaneous eigenspaces gα = {X ∈ g : [H,X ] = α(H)X for all H ∈ a} of
ad (a). A functional 0 6= α ∈ a∗ is called a (restricted) root of (g, a) if gα 6= {0}, and setting
Σ = {α ∈ a∗ : α 6= 0, gα 6= {0}}, we obtain the decomposition

g = m⊕ a⊕
⊕

α∈Σ

gα,

where m is the centralizer of a in k. Note that this decomposition is orthogonal with respect to
〈·, ·〉θ . With respect to an ordering of a∗, let Σ+ = {α ∈ Σ : α > 0} denote the set of positive
roots, and ∆ = {α1, . . . , αl} the set of simple roots. Let ̺ = 1

2Σα∈Σ+α, and put m(α) = dim gα

which is, in general, greater than 1. Define n+ =
⊕

α∈Σ+ gα, n− = θ(n+), and write K,A,N+ and
N− for the analytic subgroups of G corresponding to k, a, n+, and n−, respectively. The Iwasawa
decomposition of G is then given by

G = KAN±.

Next, let M = {k ∈ K : Ad (k)H = H for all H ∈ a} be the centralizer of a in K and M∗ =
{k ∈ K : Ad (k)a ⊂ a} the normalizer of a in K. The quotient W = M∗/M is the Weyl group
corresponding to (g, a), and acts on a as a group of linear transformations via the adjoint action.
Alternatively, W can be characterized as follows. For each αi ∈ ∆, define a reflection in a∗ with
respect to the Cartan-Killing form 〈·, ·〉 by

wαi : λ 7→ λ− 2αi〈λ, αi〉/〈αi, αi〉,

where 〈λ, α〉 = 〈Hλ, Hα〉. Here Hλ is the unique element in a corresponding to a given λ ∈ a∗, and
determined by the non-degeneracy of the Cartan-Killing form. One can then identify the Weyl
group W with the group generated by the reflections {wαi : αi ∈ ∆}. For a subset Θ of ∆, let now
WΘ denote the subgroup of W generated by reflections corresponding to elements in Θ, and define

PΘ =
⋃

w∈WΘ

PmwP,

where mw denotes a representative of w in M∗, and P =MAN+ is a minimal parabolic subgroup.
It is then a classical result in the theory of parabolic subgroups [12] that, as Θ ranges over the
subsets of ∆, one obtains all the parabolic subgroups of G containing P . In particular, if Θ = ∅,
PΘ = P . Let us now introduce for Θ ⊂ ∆ the subalgebras

aΘ = {H ∈ a : α(H) = 0 for all α ∈ Θ}, a(Θ) = {H ∈ a : 〈H,X〉θ = 0 for all X ∈ aΘ}.
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Note that, when restricted to the +1 or the −1 eigenspace of θ, the orthogonal complement of a
subspace with respect to 〈·, ·〉 is the same as its orthogonal complement with respect to 〈·, ·〉θ. We
further define

n+Θ =
∑

α∈Σ+\〈Θ〉+

gα, n−Θ = θ(n+Θ),

n+(Θ) =
∑

α∈〈Θ〉+

gα, n−(Θ) = θ(n+(Θ)),

mΘ = m+ n+(Θ) + n−(Θ) + a(Θ), mΘ(K) = mΘ ∩ k,

where 〈Θ〉+ = Σ+ ∩
∑

αi∈ΘRαi, and denote by AΘ, A(Θ), N±
Θ , N

±(Θ),MΘ,0, and MΘ(K)0 the

corresponding connected analytic subgroups of G, obtaining the decompositions A = AΘA(Θ) and
N± = N±

ΘN(Θ)±, the second being a semi-direct product. Let next MΘ = MMΘ,0, MΘ(K) =
MMΘ(K)0. One has the Iwasawa decompositions

MΘ =MΘ(K)A(Θ)N±(Θ),

and the Langlands decompositions

PΘ =MΘAΘN
+
Θ =MΘ(K)AN+.

In particular, P∆ = M∆ = G, since m∆ = m ⊕ a ⊕
⊕

α∈Σ gα, and a∆, n
+
∆ are trivial. One then

defines

PΘ(K) =MΘ(K)AΘN
+
Θ .

PΘ(K) is a closed subgroup, and G is a union of the open and dense submanifoldN−A(Θ)PΘ(K) =
N−

ΘPΘ, and submanifolds of lower dimension, see [8], Lemma 1. For ∆ = {α1, . . . , αl}, let next
{H1, . . . , Hl} be the basis of a, dual to ∆, i.e. αi(Hj) = δij . Fix a basis {Xλ,i : 1 ≤ i ≤ m(λ)} of
gλ for each λ ∈ Σ+. Clearly,

[H,−θXλ,i] = −θ[θH,Xλ,i] = −λ(H)(−θXλ,i), H ∈ a,

so that setting X−λ,i = −θ(Xλ,i) one obtains a basis {X−λ,i : 1 ≤ i ≤ m(λ)} of g−λ ⊂ n−. One
now has the following lemma due to Oshima.

Lemma 1. Fix an element g ∈ G, and identify N− × A(Θ) with an open dense submanifold of
the homogeneous space G/PΘ(K) by the map (n, a) 7→ gnaPΘ(K). For Y ∈ g, let Y|G/PΘ(K) be the
fundamental vector field corresponding to the action of the one-parameter group exp(sY ), s ∈ R,
on G/PΘ(K). Then, at any point p = (n, a) ∈ N− ×A(Θ), we have

(Y|G/PΘ(K))p =
∑

λ∈Σ+

m(λ)∑

i=1

c−λ,i(g, n)(X−λ,i)p +
∑

λ∈〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)e
−2λ(log a)(X−λ,i)p

+
∑

αi∈Θ

ci(g, n)(Hi)p

with the identification TnN
−
⊕
Ta(A(Θ)) ≃ Tp(N

− × A(Θ)) ≃ TgnaPΘ(K)G/PΘ(K). The coeffi-
cient functions cλ,i(g, n), c−λ,i(g, n), ci(g, n) are real-analytic, and are determined by the equation

(2) Ad−1(gn)Y =
∑

λ∈Σ+

m(λ)∑

i=1

(cλ,i(g, n)Xλ,i + c−λ,i(g, n)X−λ,i) +

l∑

i=1

ci(g, n)Hi mod m.
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Proof. Due to its importance, and for the convenience of the reader, we shall give a detailed proof
of the lemma, following the original proof given in [8], Lemma 3. Let s ∈ R, and assume that |s|
is small. According to the direct sum decomposition g = n−⊕ a⊕ n+⊕m one has for an arbitrary
Y ∈ g

(3) (gn)−1 exp(sY )gn = expN−
1 (s) expA1(s) expN

+
1 (s) expM1(s),

where N−
1 (s) ∈ n−, A1(s) ∈ a, N+

1 (s) ∈ n+, and M1(s) ∈ m. The action of exp(sY ) on the
homogeneous space G/PΘ(K) is therefore given by

exp(sY )gnaPΘ(K) = gn expN−
1 (s) expA1(s) expN

+
1 (s) expM1(s)aPΘ(K)

= gn expN−
1 (s) expA1(s) expN

+
1 (s)a expM1(s)PΘ(K)

= gn expN−
1 (s) expA1(s) expN

+
1 (s)aPΘ(K),

since M is the centralizer of A in K, and expM1(s) ∈ MMΘ(K)0 ⊂ PΘ(K). The Lie algebra of
PΘ(K) is mΘ(K)⊕ aΘ⊕n+Θ, which we shall henceforth denote by pΘ(K). Using the decomposition
g = n− ⊕ a(Θ)⊕ pΘ(K) we see that

(4) a−1 expN+
1 (s)a = expN−

2 (s) expA2(s) expP2(s),

where N−
2 (s) ∈ n−, A2(s) ∈ a(Θ), and P2(s) ∈ pΘ(K). From this we obtain that

gn expN−
1 (s) expA1(s) expN

+
1 (s)aPΘ(K)

= gn
(
expN−

1 (s) expA1(s)a expN
−
2 (s)

)
expA2(s) expP2(s)PΘ(K)

= gn
(
expN−

1 (s) expA1(s)a expN
−
2 (s)a−1

)
a expA2(s)PΘ(K).

Noting that [a, n−] ⊂ n− one deduces the equality expN−
1 (s) expA1(s)a expN

−
2 (s)a−1 expA1(s)

−1 =
expN−

3 (s) ∈ N−, and consequently

(5) expN−
1 (s) expA1(s)a expN

−
2 (s)a−1 = expN−

3 (s) expA1(s),

which in turn yields

gn expN−
1 (s) expA1(s) expN

+
1 (s)aPΘ(K) = gn expN−

3 (s) expA1(s)a expA2(s)PΘ(K)

= gn expN−
3 (s)a exp(A1(s) +A2(s))PΘ(K).

The action of g on G/PΘ(K) can therefore be characterized as

(6) exp(sY )gnaPΘ(K) = gn expN−
3 (s)a exp(A1(s) +A2(s))PΘ(K).

Set dN−
i (s)/ds|s=0 = N−

i , dN+
1 (s)/ds|s=0 = N+

1 , dAi(s)/ds|s=0 = Ai, and dP2(s)/ds|s=0 = P2,
where i = 1, 2, or 3. By differentiating equations (3)-(5) at s = 0 one computes

Ad−1(gn)Y = N−
1 + A1 +N+

1 mod m,(7)

Ad−1(a)N+
1 = N−

2 + A2 + P2,(8)

N−
1 +Ad (a)N−

2 = N−
3 .(9)

In what follows, we express N±
1 ∈ n± in terms of the basis of n±, and A1 in terms of the one of a,

as

N±
1 =

∑

λ∈Σ+

m(λ)∑

i=1

c±λ,i(g, n)X±λ,i,

A1 =

l∑

i=1

ci(g, n)Hi =
∑

αi∈Θ

ci(g, n)Hi mod aΘ.
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For a fixed Xλ,i one has [H,Xλ,i] = λ(H)Xλ,i for all H ∈ a. Setting H = − log a, a ∈ A, we get

ad (− log a)Xλ,i = −λ(log a)Xλ,i. By exponentiating we obtain ead (− log a)Xλ,i = e−λ(log a)Xλ,i,

which together with the relation ead (− log a) = Ad (exp(− log a)) yields

Ad−1(a)Xλ,i = e−λ(log a)Xλ,i.

Analogously, one has [H,X−λ,i] = θ[θH,−Xλ,i] = −λ(H)X−λ,i for all H ∈ a, so that

(10) Ad−1(a)X−λ,i = eλ(log a)X−λ,i.

We therefore arrive at

Ad−1(a)Xλ,i = e−λ(log a)(Xλ,i −X−λ,i) + e−λ(log a)X−λ,i

= e−λ(log a)(Xλ,i −X−λ,i) + e−2λ(log a)Ad−1(a)X−λ,i.

Now, since θ(Xλ,i − X−λ,i) = θ(Xλ,i) − θ(X−λ,i) = −X−λ,i − (−Xλ,i) = Xλ,i − X−λ,i, we

see that Xλ,i − X−λ,i ∈ k. Consequently, if λ is in 〈Θ〉+, one deduces that Xλ,i − X−λ,i ∈

(m+ n+(Θ) + n−(Θ) + a(Θ)) ∩ k = mΘ(K). On the other hand, if λ is in Σ+ − 〈Θ〉+, then
Ad−1(a)Xλ,i = e−λ(log a)Xλ,i belongs to n+Θ. Collecting everything we obtain

Ad−1(a)N+
1 =

∑

λ∈Σ+

m(λ)∑

i=1

cλ,i(g, n)Ad
−1(a)Xλ,i

=
∑

λ∈〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)Ad
−1(a)Xλ,i +

∑

λ∈Σ+−〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)Ad
−1(a)Xλ,i

=
∑

λ∈〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)
(
e−2λ(log a)Ad−1(a)X−λ,i + e−λ(log a)(Xλ,i −X−λ,i)

)

+
∑

λ∈Σ+−〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)e
−λ(log a)Xλ,i

=
∑

λ∈〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)e
−2λ(log a)Ad−1(a)X−λ,i

+
∑

λ∈〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)e
−λ(log a)(Xλ,i −X−λ,i) +

∑

λ∈Σ+−〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)e
−λ(log a)Xλ,i.

Comparing this with the expression (8) we had obtained earlier for Ad−1(a)N+
1 , we obtain that

(11) A2 = 0,

and N−
2 =

∑
λ∈〈Θ〉+

∑m(λ)
i=1 cλ,i(g, n)e

−2λ(log a)Ad−1(a)X−λ,i, since g = k ⊕ a ⊕ n−, and pΘ(K) ∩

a(Θ) = {0}. Therefore

N−
3 = N−

1 +Ad (a)N−
2

=
∑

λ∈Σ+

m(λ)∑

i=1

c−λ,i(g, n)X−λ,i +
∑

λ∈〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)e
−2λ(log a)X−λ,i,

A1 +A2 =
∑

αi∈Θ

ci(g, n)Hi mod aΘ.

(12)
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As N− × A(Θ) can be identified with an open dense submanifold of the homogeneous space
G/PΘ(K), we have the isomorphisms TgnaPΘ(K)G/PΘ(K) ≃ Tp(N−×A(Θ)) ≃ TnN−

⊕
Ta(A(Θ)),

where p = (n, a) ∈ N−×A(Θ). Therefore, by equation (6) and the expressions for N−
3 and A1+A2,

we finally deduce that the fundamental vector field Y|G/PΘ(K) at a point p corresponding to the
action of exp(sY ) on G/PΘ(K) is given by

(Y|G/PΘ(K))p =
∑

λ∈Σ+

m(λ)∑

i=1

c−λ,i(g, n)(X−λ,i)p +
∑

λ∈〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)e
−2λ log a(X−λ,i)p

+
∑

αi∈Θ

ci(g, n)(Hi)p,

where Y ∈ g, and the coefficients are given by (2). �

Let us next state the following

Lemma 2. Let Y ∈ n−⊕a be given by Y =
∑

λ∈Σ+

∑m(λ)
i=1 c−λ,iX−λ,i+

∑l
j=1 cjHj, and introduce

the notation tλ = t
λ(H1)
1 · · · t

λ(Hl)
l . Then, via the identification of N− × R

l
+ with N−A by (n, t) 7→

n · exp(−
∑l

j=1Hj log tj), the left invariant vector field on the Lie group N−A corresponding to Y
is expressed as

Ỹ|N−×Rl
+
=

∑

λ∈Σ+

m(λ)∑

i=1

c−λ,it
λX−λ,i −

l∑

j=1

cjtj
∂

∂tj
,

and can analytically be extended to a vector field on N− × Rl.

Proof. The lemma is stated in Oshima, [8], Lemma 8, but for greater clarity, we include a proof of
it here. Let X−λ,i be a fixed basis element of n−. The corresponding left-invariant vector field on
the Lie group N−A at the point na is given by

d

ds
f(na exp(sX−λ,i))|s=0 =

d

ds
f(n(a exp(sX−λ,i)a

−1)a)|s=0 =
d

ds
f(n esAd(a)X−λ,i a)|s=0,

where f is a smooth function on N−A. Regarded as a left invariant vector field on N−×Rl
+, it is

therefore given by

X̃−λ,i|N−×Rl
+
= Ad (a)X−λ,i = e−λ(log a)X−λ,i = tλX−λ,i,

compare (10). Similarly, for a basis element Hi of a the corresponding left invariant vector field
on N−A reads

d

ds
f(na exp(sHi))|s=0 =

d

ds
f(n exp(−

l∑

j=1

log tjHj) exp(sHi))|s=0

=
d

ds
f
(
n exp(−

l∑

j=1

log tjHj + sHi)
)
|s=0

=
d

ds
f
(
n exp(−

∑

j 6=i

log tjHj − log(tie
−s)Hi)

)
|s=0

,

and with the identification N−A ≃ N− × Rl
+ we obtain

H̃i|N−×Rl
+
= −ti

∂

∂ti
.

As there are no negative powers of t, ỸN−×Rl
+
can be extended analytically to N− × Rl, and the

lemma follows. �
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Similarly, by the identification G/K ≃ N− × A ≃ N− × Rl
+ via the mappings (n, t) 7→ n ·

exp(−
∑l

i=1Hi log ti) · a 7→ gnaK one sees that the action on G/K of the fundamental vector field
corresponding to exp(sY ) , Y ∈ g, is given by

(13) Y|N−×Rl
+
=

∑

λ∈Σ+

m(λ)∑

i=1

(cλ,i(g, n)t
2λ + c−λ,i(g, n))X−λ,i −

l∑

i=1

ci(g, n)ti
∂

∂ti
,

where the coefficients are given by (2). Again, the vector field (13) can be extended analytically

to N− ×Rl, but in contrast to the left invariant vector field ỸN−×Rl , YN−×Rl does not necessarily
vanish if t1 = . . . tl = 0. We come now to the description of the Oshima compactification of the

Riemannian symmetric space G/K. For this, let X̂ be the product manifold G ×N− × Rl. Take

x̂ = (g, n, t) ∈ X̂, where g ∈ G, n ∈ N−, t = (t1, . . . , tl) ∈ Rl, and define an action of G on X̂ by
g′ · (g, n, t) := (g′g, n, t), g′ ∈ G. For s ∈ R, let

sgn s =

{
s/|s|, s 6= 0,
0, s = 0,

and put sgn x̂ = (sgn t1, . . . , sgn tl) ∈ {−1, 0, 1}l. We then define the subsets Θx̂ = {αi ∈ ∆ :

ti 6= 0}. Similarly, let a(x̂) = exp(−
∑

ti 6=0Hi log |ti|) ∈ A(Θx̂). On X̂, define now an equivalence
relation by setting

x̂ = (g, n, t) ∼ x̂′ = (g′, n,′ t′) ⇐⇒

{
a) sgn x̂ = sgn x̂′,
b) g n a(x̂)PΘx̂

(K) = g′ n′ a(x̂′)PΘx̂′ (K).

Note that the condition sgn x̂ = sgn x̂′ implies that x̂, x̂′ determine the same subset Θx̂ of ∆,
and consequently the same group PΘx̂

(K), as well as the same homogeneous space G/PΘx̂
(K), so

that condition b) makes sense. It says that gna(x̂), g′n′a(x̂′) are in the same PΘx̂
(K) orbit on G,

corresponding to the right action by PΘx̂
(K) on G. We now define

X̃ := X̂/ ∼,

endowing it with the quotient topology, and denote by π : X̂ → X̃ the canonical projection. The

action of G on X̂ is compatible with the equivalence relation ∼, yielding a G-action g′ ·π(g, n, t) :=

π(g′g, n, t) on X̃. For each g ∈ G, one can show that the maps

(14) ϕg : N− × R
l → Ũg : (n, t) 7→ π(g, n, t), Ũg = π({g} ×N− × R

l),

are bijections. One has then the following

Theorem 1. (1) X̃ is a simply connected, compact, real-analytic manifold without boundary.

(2) X̃ = ∪w∈W Ũmw = ∪g∈GŨg. For g ∈ G, Ũg is an open submanifold of X̃ topologized
in such a way that the coordinate map ϕg defined above is a real-analytic diffeomorphism.

Furthermore, X̃\Ũg is the union of a finite number of submanifolds of X̃ whose codimensions

in X̃ are not lower than 2.
(3) The action of G on X̃ is real-analytic. For a point x̂ ∈ X̂, the G-orbit of π(x̂) is isomorphic

to the homogeneous space G/PΘx̂
(K), and for x̂, x̂′ ∈ X̂ the G-orbits of π(x̂) and π(x̂′)

coincide if and only if sgn x̂ = sgn x̂′. Hence the orbital decomposition of X̃ with respect to
the action of G is of the form

(15) X̃ ≃
⊔

Θ⊂∆

2#Θ(G/PΘ(K)) (disjoint union),

where #Θ is the number of elements of Θ and 2#Θ(G/PΘ(K)) is the disjoint union of 2#Θ

copies of G/PΘ(K).
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Proof. See Oshima, [8], Theorem 5. �

Next, for x̂ = (g, n, t) define the set Bx̂ = {(t′1 . . . t
′
l) ∈ Rl : sgn ti = sgn t′i, 1 ≤ i ≤ l}. By

analytic continuation, one can restrict the vector field (13) to N−×Bx̂, and with the identifications
G/PΘx̂

(K) ≃ N− ×A(Θx̂) ≃ N− ×Bx̂ via the maps

gnaPΘx̂
← (n, a) 7→ (n, sgn t1e

−α1(log a), . . . , sgn tle
−αl(log a)),

one actually sees that this restriction coincides with the vector field in Lemma 1. The action of the

fundamental vector field on X̃ corresponding to exp sY , Y ∈ g, is therefore given by the extension
of (13) to N− × Rl. Note that for a simply connected nilpotent Lie group N with Lie algebra n,
the exponential exp : n → N is a diffeomorphism. So, in our setting, we can identify N− with

Rk. Thus, for every point in X̃, there exists a local coordinate system (n1, . . . , nk, t1, . . . , tl) in a
neighbourhood of that point such that two points (n1, . . . , nk, t1, . . . , tl) and (n′

1, . . . , n
′
k, t

′
1, . . . , t

′
l)

belong to the same G-orbit if, and only if, sgn tj = sgn t′j , for j = 1, . . . , l. This means that the

orbital decomposition of X̃ is of normal crossing type. In what follows, we shall identify the open

G-orbit π({x̂ = (e, n, t) ∈ X̂ : sgn x̂ = (1, . . . , 1)}) with the Riemannian symmetric space G/K,

and the orbit π({x̂ ∈ X̂ : sgn x̂ = (0, . . . , 0)} of lowest dimension with its Martin boundary G/P .

3. Review of pseudodifferential operators

Generalities. This section is devoted to an exposition of some basic facts about pseudodiffer-
ential operators needed to formulate our main results in the sequel. For a detailed introduction
to the field, the reader is referred to [3] and [11]. Consider first an open set U in Rn, and let
x1, . . . , xn be the standard coordinates. For any real number l, we denote by Sl(U ×Rn) the class
of all functions a(x, ξ) ∈ C∞(U × R

n) such that, for any multi-indices α, β, and any compact set
K ⊂ U , there exist constants Cα,β,K for which

(16) |(∂αξ ∂
β
x a)(x, ξ)| ≤ Cα,β,K 〈ξ〉

l−|α|
, x ∈ K, ξ ∈ R

n,

where 〈ξ〉 stands for (1 + |ξ|2)1/2, and |α| = α1 + · · · + αn. We further put S−∞(U × Rn) =⋂
l∈R

Sl(U ×Rn). Note that, in general, the constants Cα,β,K also depend on a(x, ξ). For any such
a(x, ξ) one then defines the continuous linear operator

A : C∞
c (U) −→ C∞(U)

by the formula

(17) Au(x) =

∫
eix·ξa(x, ξ)û(ξ)d̄ξ,

where û denotes the Fourier transform of u, and d̄ξ = (2π)−n dξ. 1 An operator A of this form
is called a pseudodifferential operator of order l, and we denote the class of all such operators for
which a(x, ξ) ∈ Sl(U × Rn) by Ll(U). The set L−∞(U) =

⋂
l∈R

Ll(U) consists of all operators
with smooth kernel. They are called smooth operators. By inserting in (17) the definition of û, we
obtain for Au the expression

(18) Au(x) =

∫ ∫
ei(x−y)·ξa(x, ξ)u(y) dy d̄ξ,

1Here and in what follows we use the convention that, if not specified otherwise, integration is to be performed
over Euclidean space.
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which has a suitable regularization as an oscillatory integral. The Schwartz kernel of A is a
distribution KA ∈ D′(U × U) which is given the oscillatory integral

(19) KA(x, y) =

∫
ei(x−y)·ξa(x, ξ) d̄ξ.

It is a smooth function off the diagonal in U ×U . Consider next a n-dimensional paracompact C∞

manifold X, and let {(κγ , Ũγ)} be an atlas for X. Then a linear operator

(20) A : C∞
c (X) −→ C∞(X)

is called a pseudodifferential operator on X of order l if for each chart diffeomorphism κγ : Ũγ →

Uγ = κγ(Ũ
γ), the operator Aγu = [A|Ũγ (u ◦ κγ)] ◦ κ−1

γ given by the diagram

C∞
c (Ũγ)

A|Ũγ

−−−−→ C∞(Ũγ)

κ∗
γ

x
xκ∗

γ

C∞
c (Uγ)

Aγ

−−−−→ C∞(Uγ)

is a pseudodifferential operator on Uγ of order l, and its kernel KA is smooth off the diagonal. In

this case we write A ∈ Ll(X). Note that, since the Ũγ are not necessarily connected, we can choose

them in such a way that X × X is covered by the open sets Ũγ × Ũγ . Therefore the condition
that KA is smooth off the diagonal can be dropped. Now, in general, if X and Y are two smooth
manifolds, and

A : C∞
c (X) −→ C∞(Y) ⊂ D′(Y)

is a continuous linear operator, where D′(Y) = (C∞
c (Y,Ω))′ and Ω = |Λn(Y)| is the density bundle

on Y, its Schwartz kernel is given by the distribution section KA ∈ D′(Y ×X,1 ⊠ ΩX), where
D′(Y ×X, 1 ⊠ ΩX) = (C∞

c (Y ×X, (1⊠ ΩX)∗ ⊗ ΩY×X))′. Observe that C∞
c (Y,ΩY)⊗ C∞(X) ≃

C∞(Y ×X, (1 ⊠ ΩX)∗ ⊗ ΩY×X). In case that X = Y and A ∈ Ll(X), A is given locally by the
operators Aγ , which can be written in the form

Aγu(x) =

∫ ∫
ei(x−y)·ξaγ(x, ξ)u(y) dyd̄ξ,

where u ∈ C∞
c (Uγ), x ∈ Uγ , and aγ(x, ξ) ∈ Sl(Uγ ,Rn). The kernel of A is then determined by

the kernels KAγ ∈ D′(Uγ × Uγ). For l < − dimX, they are continuous, and given by absolutely
convergent integrals. In this case, their restrictions to the respective diagonals in Uγ × Uγ define
continuous functions

kγ(m) = KAγ (κγ(m), κγ(m)), m ∈ Ũγ ,

which, for m ∈ Ũγ1 ∩ Ũγ2 , satisfy the relations kγ2(m) = |det (κγ1 ◦ κ
−1
γ2

)′| ◦ κγ2(m)kγ1(m), and
therefore define a density k ∈ C(X,Ω) on ∆X × X ≃ X. If X is compact, this density can be
integrated, yielding the trace of the operator A,

(21) trA =

∫

X

k =
∑

γ

∫

Uγ

(αγ ◦ κ
−1
γ )(x)KAγ (x, x) dx,

where {αγ} denotes a partition of unity subordinated to the atlas {(κγ , Ũγ)}, and dx is Lebesgue
measure in Rn.

Totally characteristic pseudodifferential operators. We introduce now a special class of
pseudodifferential operators associated in a natural way to a C∞ manifold X with boundary ∂X.
Our main reference will be [7] in this case. Let C∞(X) be the space of functions on X which are
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C∞ up to the boundary, and Ċ∞(X) the subspace of functions vanishing to all orders on ∂X. The
standard spaces of distributions over X are

D′(X) = (Ċ∞
c (X,Ω))′, Ḋ(X)′ = (C∞

c (X,Ω))′,

the first being the space of extendible distributions, whereas the second is the space of distributions
supported by X. Consider now the translated partial Fourier transform of a symbol a(x, ξ) ∈
Sl(Rn × Rn),

Ma(x, ξ′; t) =

∫
ei(1−t)ξ1a(x, ξ1, ξ

′)dξ1,

where we wrote ξ = (ξ1, ξ
′). Ma(x, ξ′; t) is C∞ away from t = 1, and one says that a(x, ξ) is

lacunary if it satisfies the condition

(22) Ma(x, ξ′; t) = 0 for t < 0.

The subspace of lacunary symbols will be denoted by Slla(R
n × Rn). Let Z = R+ × Rn−1 be the

standard manifold with boundary with the natural coordinates x = (x1, x
′). In order to define on Z

operators of the form (18), where now a(x, ξ) = ã(x1, x
′, x1ξ1, ξ

′) is a more general amplitude and
ã(x, ξ) is lacunary, one rewrites the formal adjoint of A by making a singular coordinate change.
Thus, for u ∈ C∞

c (Z), one considers

A∗u(y) =

∫ ∫
ei(y−x)·ξa(x, ξ)u(x) dxd̄ξ.

By putting λ = x1ξ1, s = x1/y1, this can be rewritten as

(23) A∗u(y) = (2π)−n

∫ ∫ ∫ ∫
ei(1/s−1,y′−x′)·(λ,ξ′)ã(y1s, x

′, λ, ξ′)u(y1s, x
′)dλ

ds

s
dx′dξ′.

According to [7], Propositions 3.6 and 3.9, for every ã ∈ S−∞
la (Z × Rn), the successive integrals in

(23) converge absolutely and uniformly, thus defining a continuous bilinear form

S−∞
la (Z × R

n)× C∞
c (Z) −→ C∞(Z),

which extends to a separately continuous form

S∞la (Z × R
n)× C∞

c (Z) −→ C∞(Z).

If ã ∈ S∞la (Z × Rn) and a(x, ξ) = ã(x1, x
′, x1ξ1, ξ

′), one then defines the operator

(24) A : Ė ′(Z) −→ Ḋ′(Z),

written formally as (18), as the adjoint of A∗. In this way, the oscillatory integral (18) is identified
with a separately continuous bilinear mapping

S∞la (Z × R
n)× Ė ′(Z) −→ Ḋ′(Z).

The space Ll
b(Z) of totally characteristic pseudodifferential operators on Z of order l consists of

those continuous linear maps (24) such that for any u, v ∈ C∞
c (Z), vAu is of the form (18) with

a(x, ξ) = ã(x1, x
′, x1ξ1, ξ

′) and ã(x, ξ) ∈ Slla(Z × Rn). Similarly, a continuous linear map (20) on
a smooth manifold X with boundary ∂X is said to be an element of the space Ll

b(X) of totally

characteristic pseudodifferential operators on X of order l, if for a given atlas (κγ , Ũ
γ) the operators

Aγu = [A|Ũγ (u ◦κγ)]◦κ−1
γ are elements of Ll

b(Z), where the Ũ
γ are coordinate patches isomorphic

to subsets in Z.
In an analogous way, it is possible to introduce the concept of a totally characteristic pseudo-

differential operator on a manifold with corners. As the standard manifold with corners, consider

R
n,k = [0,∞)k × R

n−k, 0 ≤ k ≤ n,
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with coordinates x = (x1, . . . , xk, x
′). A totally characteristic pseudodifferential operator on Rn,k of

order l is locally given by an oscillatory integral (18) with a(x, ξ) = ã(x, x1ξ1, . . . , xkξk, ξ
′), where

now ã(x, ξ) is a symbol of order l that satisfies the lacunary condition for each of the coordinates
x1, . . . , xk, i.e. ∫

ei(1−t)ξja(x, ξ) dξj = 0 for t < 0 and 1 ≤ j ≤ k.

In this case we write ã(x, ξ) ∈ Slla(R
n,k×Rn). A continuous linear map (20) on a smooth manifoldX

with corners is then said to be an element of the space Ll
b(X) of totally characteristic pseudodiffer-

ential operators on X of order l, if for a given atlas (κγ , Ũ
γ) the operatorsAγu = [A|Ũγ (u◦κγ)]◦κ−1

γ

are totally characteristic pseudodifferential operator on Rn,k of order l, where the Ũγ are coor-
dinate patches isomorphic to subsets in Rn,k. For an extensive treatment, we refer the reader to
[4].

4. Invariant integral operators

Let X̃ be the Oshima compactification of a Riemannian symmetric space X ≃ G/K of non-

compact type. As was already explained, G acts analytically on X̃, and the orbital decomposition is

of normal crossing type. Consider the Banach space C(X̃) of continuous, complex valued functions

on X̃, equipped with the supremum norm, and let (π,C(X̃)) be the corresponding continuous
regular representation of G given by

π(g)ϕ(x̃) = ϕ(g−1 · x̃), ϕ ∈ C(X̃).

The representation of the universal enveloping algebra U of the complexification gC of g on the

space of differentiable vectors C(X̃)∞ will be denoted by dπ. We will also consider the regular

representation of G on C∞(X̃) which, equipped with the topology of uniform convergence on
compact subsets, becomes a Fréchet space. This representation will be denoted by π as well. Let
(L,C∞(G)) be the left regular representation of G. With respect to the left-invariant metric on G
given by 〈, 〉θ, we define d(g, h) as the distance between two points g, h ∈ G, and set |g| = d(g, e),
where e is the identity element of G. A function f on G is at most of exponential growth, if there
exists a κ > 0 such that |f(g)| ≤ Ceκ|g| for some constant C > 0. As before, denote a Haar measure
on G by dG. Consider next the space S(G) of rapidly decreasing functions on G introduced in [9].

Definition 1. The space of rapidly decreasing functions on G, denoted by S(G), is given by all
functions f ∈ C∞(G) satisfying the following conditions:

i) For every κ ≥ 0, and X ∈ U, there exists a constant C such that

|dL(X)f(g)| ≤ Ce−κ|g|;

ii) for every κ ≥ 0, and X ∈ U, one has dL(X)f ∈ L1(G, eκ|g|dG).

For later purposes, let us recall the following integration formulas.

Proposition 1. Let f1 ∈ S(G), and assume that f2 ∈ C∞(G), together with all its derivatives,
is at most of exponential growth. Let X1, . . . , Xd be a basis of g, and for Xγ = Xγ1

i1
. . . Xγr

ir
write

X γ̃ = Xγr

ir
. . .Xγ1

i1
, where γ is an arbitrary multi-index. Then

∫

G

f1(g)dL(X
γ)f2(g)dG(g) = (−1)|γ|

∫

G

dL(X γ̃)f1(g)f2(g)dG(g).

Proof. See [9], Proposition 1. �
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Next, we associate to every f ∈ S(G) and ϕ ∈ C(X̃) the element
∫
G
f(g)π(g)ϕdG(g) ∈ C(X̃). It

is defined as a Bochner integral, and the continuous linear operator on C(X̃) obtained this way is

denoted by (1). Its restriction to C∞(X̃) induces a continuous linear operator

π(f) : C∞(X̃) −→ C∞(X̃) ⊂ D′(X̃),

with Schwartz kernel given by the distribution section Kf ∈ D
′(X̃× X̃,1⊠Ω

X̃
). The properties of

the Schwartz kernel Kf will depend on the analytic properties of f , as well as the orbit structure
of the underlying G-action, and our main effort will be directed towards the elucidation of the

structure of Kf . For this, let us consider the orbital decomposition (15) of X̃, and remark that the
restriction of π(f)ϕ to any of the connected components isomorphic to G/PΘ(K) depends only on

the restriction of ϕ ∈ C(X̃) to that component, so that we obtain the continuous linear operators

π(f)|X̃Θ
: C∞

c (X̃Θ) −→ C∞(X̃Θ),

where X̃Θ denotes a component in X̃ isomorphic to G/PΘ(K). Let us now assume that Θ = ∆, so

that PΘ(K) = K. Since G acts transitively on X̃∆ one deduces that π(f)|X̃∆
∈ L−∞(X̃∆), c.p. [9],

Section 4. The main goal of this section is to prove that the restrictions of the operators π(f) to

the manifolds with corners X̃∆ are totally characteristic pseudodifferential operators of class L−∞
b .

Let
{
(Ũmw , ϕ

−1
mw

)
}
w∈W

be the finite atlas on the Oshima compactification X̃ defined ear-

lier. For each x̃ ∈ X̃, let W̃x̃ be an open neighborhood of x̃ contained in some Ũmw such that{
h ∈ G : hW̃x̃ ⊂ Ũmw

}
acts transitively on the G-orbits of W̃x̃, c.p. [9], Section 6. We obtain a

finite atlas
{
(W̃γ , ϕ

−1
mwγ

)
}
γ∈I

of X̃ satisfying the following properties:

i) For each W̃γ , there exist open sets Vγ ⊂ V 1
γ ⊂ G, stable under inverse, that act transitively

on the G-orbits of W̃γ ;

ii) For all γ ∈ I one has V 1
γ · W̃γ ⊂ Ũmwγ

for some mwγ ∈M
∗.

To simplify notation, we shall write ϕγ instead of ϕmwγ
. Consider now the localization of the

operators π(f) with respect to the finite atlas
{
(W̃γ , ϕ

−1
γ )

}
γ∈I

given by

Aγ
fu = [π(f)

|W̃γ
(u ◦ ϕ−1

γ )] ◦ ϕγ , u ∈ C∞
c (Wγ), Wγ = ϕ−1

γ (W̃γ),

see Section 3. Writing ϕg
γ = ϕ−1

γ ◦ g
−1 ◦ ϕγ and x = (n, t) ∈ Wγ we obtain

Aγ
fu(x) =

∫

G

f(g)π(g)(u ◦ ϕ−1
γ )(ϕγ(x))dg =

∫

G

f(g)(u ◦ ϕg
γ)(x)dg.

Since we can restrict the domain of integration to Vγ , the latter integral can be rewritten as

Aγ
fu(x) =

∫

G

cγ(g)f(g)(u ◦ ϕ
g
γ)(x)dg,

where cγ is a smooth bounded function on G with support in V 1
γ such that cγ ≡ 1 on Vγ . Define

next

(25) f̂γ(x, ξ) =

∫

G

eiϕ
g
γ(x)·ξcγ(g)f(g)dg, aγf (x, ξ) = e−ix·ξf̂γ(x, ξ).

Differentiating under the integral we see that f̂γ(x, ξ), a
γ
f (x, ξ) ∈ C∞(Wγ × Rk+l). Let us next

state the following
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Lemma 3. For any x̃ = ϕγ(n, t) ∈ W̃γ and g ∈ V 1
γ we have the power series expansion

(26) tj(g · x̃) =
∑

α,β
βj 6=0

cjα,β(g)n
α(x̃)tβ(x̃), j = 1, . . . , l,

where the coefficients cjα,β(g) depend real-analytically on g, and α, β are multi-indices.

Proof. By Theorem 1, a G-orbit in X̃ is locally determined by the signature of any of its elements.

In particular, for x̃ ∈ W̃γ , g ∈ V 1
γ we have sgn tj(g · x̃) = sgn tj(x̃) for all j = 1, . . . , l. Hence,

tj(g · x̃) = 0 if and only if tj(x̃) = 0. Now, due to the analyticity of the coordinates (ϕγ , W̃γ), there
is a power series expansion

tj(g · x̃) =
∑

α,β

cjα,β(g)n
α(x̃)tβ(x̃), x̃ ∈ W̃γ , g ∈ V

1
γ ,

for every j = 1, . . . , l, which can be rewritten as

(27) tj(g · x̃) =
∑

α,β
βj 6=0

cjα,β(g)n
α(x̃)tβ(x̃) +

∑

α,β
βj=0

cjα,β(g)n
α(x̃)tβ(x̃).

Suppose tj(x̃) = 0. Then the first summand of the last equation must vanish, as in each term of
the summation a non-zero power of tj(x̃) occurs. Also, tj(g · x̃) = 0. Therefore (27) implies that
the second summand must vanish, too. But the latter is independent of tj . So we conclude

∑

α,β
βj=0

cjα,β(g)n
α(x̃)tβ(x̃) ≡ 0

for all x̃ ∈ W̃γ , g ∈ V 1
γ , and the assertion follows. �

From Lemma 3 we deduce that

(28) tj(g · x̃) = t
qj
j (x̃)χj(g, x̃), x̃ ∈ W̃γ , g ∈ V

1
γ ,

where χj(g, x̃) is a function that is real-analytic in g and in x̃, and qj is the lowest power of tj that
occurs in the expansion (26), so that

(29) χj(g, x̃) 6= 0 ∀ x̃ ∈ W̃γ , g ∈ V
1
γ .

Indeed, χj(g, x̃) can only vanish if tj(x̃) = 0. But if this were the case, qj would not be the lowest
power, and we obtain (28). Furthermore, since tj(g · x̃) = tj(x̃) for g = e, one has q1 = · · · = ql.

Thus, for x̃ = ϕγ(x) ∈ W̃γ , x = (n, t), g ∈ V 1
γ , we have

ϕg
γ(x) = (n1(g · x̃), . . . , nk(g · x̃), t1(x̃)χ1

(g, x̃), . . . , tl(x̃)χl
(g, x̃)).

Note that similar formulas hold for x̃ ∈ Ũmw and g sufficiently close to the identity. The following

lemma describes the G-action on X̃ as far as the t-coordinates are concerned.

Lemma 4. Let X−λ,i and Hj the basis elements for n− and a introduced in Section 2, w ∈ W ,

and x̃ ∈ Ũmw . Then, for small s ∈ R,

χ
j
( esHi , x̃) = e−cij(mw)s,

where the cij(mw) represent the matrix coefficients of the adjoint representation of M∗ on a, and

are given by Ad (m−1
w )Hi =

∑l
j=1 cij(mw)Hj. Furthermore, when x̃ = π(e, n, t),

χj ( e
sX−λ,i , x̃) ≡ 1.



INTEGRAL OPERATORS ON OSHIMA COMPACTIFICATIONS OF RIEMANNIAN SYMMETRIC SPACES 15

Proof. Let Y ∈ g. As we saw in the proof of Lemma 1, the action of the one-parameter group
exp(sY ) on the homogeneous space G/PΘ(K) is given by equation (6), where N−

3 (s) ∈ n−, A1(s) ∈
a, A2(s) ∈ a(Θ). Denote the derivatives of N−

3 (s), A1(s), and A2(s) at s = 0 by N−
3 , A1, and

A2 respectively. The analyticity of the G-action implies that N−
3 (s), A1(s), A2(s) are real-analytic

functions in s. Furthermore, from (6) it is clear that N−
3 (0) = 0, A1(0) + A2(0) = 0, so that for

small s we have

A1(s) +A2(s) = (A1 +A2) s+
1

2

d2

ds2
(A1(s) +A2(s))|s=0 s

2 + . . .

N−
3 (s) = N−

3 s+
1

2

d2

ds2
N−

3 (s)|s=0 s
2 + . . . .

Next, fix mw ∈ M∗ and let Θ = ∆. The action of the one-parameter group corresponding to Hi

at x̃ = π(mw, n, t) ∈ Ũmw ∩ X̃∆ is given by

exp(sHi)mwnaK = mw

(
m−1

w exp(sHi)mw

)
naK = mw exp(sAd (m−1

w )Hi)naK.

As mw lies in M∗, exp(sAd (m−1
w )Hi) lies in A. Since A normalizes N−, we conclude that

exp(sAd (m−1
w )Hi)n exp(−sAd (m−1

w )Hi) belongs to N
−. Writing

n−1 exp(sAd (m−1
w )Hi)n exp(−sAd (m

−1
w )Hi) = expN−

3 (s)

we get

exp(sHi)mwnaK = mwn expN
−
3 (s)a exp(sAd (m−1

w )Hi)K.

In the notation of (6) we therefore obtainA1(s)+A2(s) = sAd (m−1
w )Hi, and by writing Ad (m−1

w )Hi =∑l
j=1 cij(mw)Hj we arrive at

a exp(A1(s) +A2(s)) = exp
( l∑

j=1

(cij(mw)s− log tj)Hj

)
.

In terms of the coordinates this shows that tj(exp(sHi) · x̃) = tj(x̃)e
−cij(mw)s for x̃ ∈ Ũmw ∩ X̃∆,

and by analyticity we obtain that χ
j
( esHi , x̃) = e−cij(mw)s for arbitrary x̃ ∈ Ũmw . On the other

hand, let Y = X−λ,i, and x̃ = ϕe(n, t) ∈ Ũe ∩ X̃∆. Then the action corresponding to X−λ,i at x̃ is
given by

exp(sX−λ,i)naK = n expN−
3 (s)aK,

where we wrote expN−
3 (s) = sAd (n−1) expX−λ,i. In terms of the coordinates this implies that

tj(exp(sX−λ,i) · x̃) = tj(x̃) showing that χ
j
( esX−λ,i , x̃) ≡ 1 for x̃ ∈ Ũe ∩ X̃∆, and, by analyticity,

for general x̃ ∈ Ũe, finishing the proof of the lemma. �

Let now x = (n, t) ∈ Wγ , and define the matrix

(30) Tx =



t1 0

. . .

0 tl


 ,

so that for x̃ = ϕγ(x) ∈ W̃γ , g ∈ V 1
γ ,

(1k ⊗ T
−1
x )(ϕg

γ(x)) = (x1(g · x̃), . . . , xk(g · x̃), χ1(g, x̃), . . . , χl
(g, x̃)),

and set

ψγ
ξ,x(g) = ei(1k⊗T−1

x )(ϕg
γ(x))·ξ,
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where ξ = (ξ1, . . . , ξk+l) ∈ Rk+l. Also, introduce the auxiliary symbol

(31) ãγf (x, ξ) = aγf (x, (1k ⊗ T
−1
x )ξ) = e−i(x1,...,xk,1,...,1).ξ

∫

G

ψγ
ξ,x(g)cγ(g)f(g)dg.

Clearly, ãγf (x, ξ) ∈ C∞(Wγ × Rk+l). Our next goal is to show that ãγf (x, ξ) is a lacunary symbol.
To do so, we shall need the following

Proposition 2. Let (L,C∞(G)) be the left regular representation of G. Let X−λ,i, Hj be the basis

elements of n− and a introduced in Section 2, and (W̃γ , ϕγ) an arbitrary chart. With x = (n, t) ∈

Wγ , x̃ = ϕγ(x) ∈ W̃γ , g ∈ V 1
γ one has

(32)



dL(X−λ,1)ψ

γ
ξ,x(g)

...
dL(Hl)ψ

γ
ξ,x(g)


 = iψγ

ξ,x(g)Γ(x, g)ξ,

with

(33) Γ(x, g) =

(
Γ1 Γ2

Γ3 Γ4

)
=




dL(X−λ,i)nj,x̃(g) dL(X−λ,i)χj(g, x̃)

dL(Hi)nj,x̃(g) dL(Hi)χj(g, x̃)




belonging to GL(l + k,R), where nj,x̃(g) = nj(g · x̃).

Proof. Fix a chart (W̃γ , ϕγ), and let x, x̃, g be as above. For X ∈ g, one computes that

dL(X)ψγ
ξ,x(g) =

d

ds
ei(1k⊗T−1

t )ϕ e−sX g
γ (x)·ξ|s=0 = iψγ

ξ,x(g)
[ k∑

i=1

ξidL(X)ni,x̃(g)

+

l+k∑

j=k+1

ξjdL(X)χj(g, x̃)
]
,

showing the first equality. To see the invertibility of the matrix Γ(x, g), note that for small s

χj( e
−sX g, x̃) = χj(g, x̃)χj( e

−sX , g · x̃).

Lemma 4 then yields

dL(Hi)χj(g, x̃) = χj(g, x̃)
d

ds

(
ecij(mwγ )s

)
|s=0

= χj(g, x̃)cij(mwγ ).

This means that Γ4 is the product of the matrix
(
cij(mwγ )

)
i,j

with the diagonal matrix whose

j-th diagonal entry is χj(g, x̃). Since
(
cij(mwγ )

)
i,j

is just the matrix representation of Ad (m−1
wγ

)

relative to the basis {H1, . . . , Hl} of a, it is invertible. On the other hand, χj(g, x̃) is non-zero for
all j ∈ {1, . . . , l} and arbitrary g and x̃. Therefore Γ4, being the product of two invertible matrices,
is invertible. Next, let us show that the matrix Γ1 is non-singular. Its (ij)th entry reads

dL(X−λ,i)nj,x̃(g) =
d

ds
nj,x̃( e

−sX−λ,i · g)|s=0 = (−X−λ,i|X̃)g·x̃(nj).

For Θ ⊂ ∆, q ∈ Rl, we define the k-dimensional submanifolds

LΘ(q) = {x̃ = ϕγ(n, q) ∈ W̃γ : qi 6= 0⇔ αi ∈ Θ},

and consider the decomposition Tg·x̃X̃Θ = Tg·x̃LΘ(q)⊕Ng·x̃LΘ(q) of Tg·x̃X̃Θ into the tangent and

normal space to LΘ(q) at the point g · x̃ ∈ X̃Θ. Since X̃Θ is a G-orbit, the group G acts transitively
on it. Now, as g varies over G in Lemma 1, one deduces that N−×A(Θ) acts locally transitively on
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X̃Θ. In addition, by the definition of LΘ(q), Ng·x̃LΘ(q) is spanned by the vector fields {−ti
∂
∂ti
}αi∈Θ.

Consequently, Tg·x̃LΘ(q) must be equal to the span of the vector fields {X−λ,i|X̃}, which means

that N− acts locally transitively on LΘ(q) for arbitrary Θ. Since the latter is parametrized by the
coordinates (n1, . . . , nk), one concludes that the matrix ((X−λ,i|X̃)g·x̃(nj))ij has full rank. Thus,

Γ1 is non-singular. On the other hand, if x̃ = π(e, n, t) ∈ Ũe, Lemma 4 implies

dL(X−λ,i)χj(g, x̃) = χj(g, x̃)
d

ds

(
χj(e

−sX−λ,i , g · x̃)
)
|s=0

= 0,

showing that Γ2 is identically zero, while Γ4 is a non-singular diagonal matrix in this case. Geomet-
rically, this amounts to the fact that the fundamental vector field corresponding toHj is transversal
to the hypersurface defined by tj = q ∈ R \ {0}, while the vector fields corresponding to the Lie al-
gebra elements X−λ,i, Hi, i 6= j, are tangential. We therefore conclude that Γ(x, g) is non-singular

if x̃ ∈ Ũe. But since the different copies X̃Θ(e,n,t)
of G/PΘ(e,n,t)

(K) ≃ N−×B(e,n,t) ⊂ N
−×Rl ≃ Ũe

in X̃ are isomorphic to each other, the same must hold if x̃ lies in one of the remaining charts Ũmwγ
,

and the assertion of the lemma follows.
�

We can now state the main result of this paper. In what follows, {(W̃γ , ϕγ)}γ∈I will always

denote the atlas of X̃ constructed above.

Theorem 2. Let X̃ be the Oshima compactification of a Riemannian symmetric space X ≃ G/K

of non-compact type, and f ∈ S(G) a rapidly decaying function on G. Let further
{
(W̃γ , ϕ

−1
γ )

}
γ∈I

be the atlas of X̃ construced above. Then the operators π(f) are locally of the form

Aγ
fu(x) =

∫
eix·ξaγf (x, ξ)û(ξ)d̄ξ, u ∈ C∞

c (Wγ),(34)

where aγf (x, ξ) = ãγf (x, ξ1, . . . , ξk, xk+1ξk+1, . . . , ξk+lxk+l), and ã
γ
f (x, ξ) ∈ S−∞

la (Wγ×R
k+l
ξ ) is given

by (31). In particular, the kernel of the operator Aγ
f is determined by its restrictions to W ∗

γ ×W
∗
γ ,

where W ∗
γ = {x = (n, t) ∈Wγ : t1 · · · tl 6= 0}, and given by the oscillatory integral

(35) KAγ
f
(x, y) =

∫
ei(x−y)·ξaγf (x, ξ)d̄ξ.

As a consequence, we obtain the following

Corollary 1. Let X̃∆ be an open G-orbit in X̃ isomorphic to G/K. Then the continuous linear
operators

π(f)
|X̃∆

: C∞
c (X̃∆) −→ C∞(X̃∆),

are totally characteristic pseudodifferential operators of class L−∞
b on the manifolds with corners

X̃∆.

�

Proof of Theorem 2. Our considerations will essentially follow the proof of Theorem 4 in [9]. Let

Γ(x, g) be the matrix defined in (33), and consider its extension as an endomorphism in C1[Rk+l
ξ ]

to the symmetric algebra S(C1[Rk+l
ξ ]) ≃ C[Rk+l

ξ ]. Since for x ∈ Wγ , g ∈ V 1
γ , Γ(x, g) is invertible,

its extension to SN (C1[Rk+l
ξ ]) is also an automorphism for any N ∈ N. Regarding the polynomi-

als ξ1, . . . , ξk+l as a basis in C1[Rk+l
ξ ], let us denote the image of the basis vector ξj under the
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endomorphism Γ(x, g) by Γξj , so that by (32)

Γξj = −iψ
γ
−ξ,x(g)dL(X−λ,j)ψ

γ
ξ,x(g), 1 ≤ j ≤ k,

Γξj = −iψ
γ
−ξ,x(g)dL(Hj)ψ

γ
ξ,x(g), k + 1 ≤ j ≤ k + l.

Every polynomial ξj1 ⊗ · · · ⊗ ξjN ≡ ξj1 . . . ξjN can then be written as a linear combination

(36) ξα =
∑

β

Λα
β(x, g)Γξβ1 · · ·Γξβ|α|

,

where the Λα
β(x, g) are real-analytic functions on Wγ × V 1

γ . We need now the following

Lemma 5. For arbitrary indices β1, . . . , βr, one has

irψγ
ξ,x(g)Γξβ1 · · ·Γξβr = dL(Xβ1 · · ·Xβr)ψ

γ
ξ,x(g)

+
r−1∑

s=1

∑

α1,...,αs

dβ1,...,βr
α1,...,αs

(x, g)dL(Xα1 · · ·Xαs)ψ
γ
ξ,x(g),

(37)

where the coefficients dβ1,...,βr
α1,...,αs

(x, g) ∈ C∞(W̃γ × supp cγ) are at most of exponential growth in g,
and independent of ξ.

Proof. The lemma is proved by induction. For r = 1 one has iψγ
ξ,x(g)Γξp = dL(Xp)ψ

γ
ξ,x(g),

where 1 ≤ p ≤ d. Differentiating the latter equation with respect to Xj , and writing Γξp =∑k+l
s=1 Γps(x, g) ξs, we obtain with (36) the equality

−ψγ
ξ,x(g)ΓξjΓξp = dL(XjXp)ψ

γ
ξ,x(g)−

k+l∑

s,r=1

(dL(Xj)Γps)(x, g)Λ
s
r(x, g)dL(Xr)ψ

γ
ξ,x(g).

Hence, the assertion of the lemma is correct for r = 1, 2. Now, assume that it holds for r ≤ N .
Setting r = N in equation (37), and differentiating with respect to Xp, yields for the left hand side

iN+1ψγ
ξ,x(g)ΓξpΓξβ1 · · ·ΓξβN

+iNψγ
ξ,x(g)

( k+l∑

s,q=1

(dL(Xp)Γβ1s)(x, g)Λ
s
q(x, g)Γξq

)
Γξβ2 · · ·ΓξβN + . . . .

By assumption, we can apply (37) to the products ΓξqΓξβ2 · · ·ΓξβN , . . . of at most N factors.
Since the functions ni,m(g) and χj(g,m), and consequently the coefficients of Γ(x, g), are at most
of exponential growth in g, the assertion of the lemma follows. �

End of proof of Theorem 2. Let us next show that ãγf (x, ξ) ∈ S−∞(Wγ ×R
k+l
ξ ). As already noted,

ãγf (x, ξ) ∈ C∞(Wγ × R
k+l
ξ ). While differentiation with respect to ξ does not alter the growth

properties of ãγf (x, ξ), differentiation with respect to x yields additional powers in ξ. Now, as an

immediate consequence of equations (36) and (37), one computes for arbitrary N ∈ N

(38) ψγ
ξ,x(g)(1 + ξ2)N =

2N∑

r=0

∑

|α|=r

bNα (x, g)dL(Xα)ψγ
ξ,x(g),

where the coefficients bNα (x, g) ∈ C∞(Wγ × V 1
γ ) are at most of exponential growth in g. Now,

(∂αξ ∂
β
x ã

γ
f )(x, ξ) is a finite sum of terms of the form

ξδe−i(x1,...xk,1,...,1)·ξ

∫

G

f(g)dδβ(x, g)ψ
γ
ξ,x(g)cγ(g)dg,
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the functions dδβ(x, g) ∈ C∞(Wγ × V 1
γ ) being at most of exponential growth in g. Making use of

equation (38), and integrating according to Proposition 1, we finally obtain for arbitrary α, β the
estimate

|(∂αξ ∂
β
x ã

γ
f )(x, ξ)| ≤

1

(1 + ξ2)N
Cα,β,K x ∈ K,

where K denotes an arbitrary compact set in Wγ , and N ∈ N. This proves that ãγf (x, ξ) ∈

S−∞(Wγ × R
k+l
ξ ). Since equation (34) is an immediate consequence of Fourier inversion formula,

it remains to show that ãγf (x, ξ) satisfies the lacunary condition (22) for each of the coordinates

ti. Now, it is clear that aγf ∈ S−∞(W ∗
γ × R

k+l
ξ ), since G acts transitively on each X̃∆. As a

consequence, the Schwartz kernel of the restriction of the operator Aγ
f : C∞

c (Wγ) → C∞(Wγ) to
W ∗

γ is given by the absolutely convergent integral
∫
ei(x−y)·ξaγf (x, ξ)d̄ξ ∈ C∞(W ∗

γ ×W
∗
γ ).

Next, let us write Wγ =
⋃

Θ⊂∆W
Θ
γ , where WΘ

γ = {x = (n, t) : ti 6= 0⇔ αi ∈ Θ}. Since on WΘ
γ

the function Aγ
fu depends only on the restriction of u ∈ C∞

c (Wγ) to W
Θ
γ , one deduces that

(39) suppKAγ
f
⊂

⋃

Θ⊂∆

WΘ
γ ×W

Θ
γ .

Therefore, each of the integrals
∫
ei(xj−yj)ξj ãγf (x, (1k ⊗ Tx)ξ) dξj , j = k + 1, . . . , k + l,

which are smooth functions on W ∗
γ ×W

∗
γ , must vanish if xj and yj do not have the same sign.

With the substitution rj = yj/xj − 1, ξjxj = ξ′j one finally arrives at the conditions
∫
e−irjξj ãγf (x, ξ) dξj = 0 for rj < −1, x ∈ W

∗
γ .

But since ãγf is rapidly decreasing in ξ, the Lebesgue bounded convergence theorem implies that

these conditions must also hold for x ∈ Wγ . Thus, the lacunarity of the symbol ãγf follows. The
fact that the kernel KAγ

f
must be determined by its restriction to W ∗

γ ×W
∗
γ , and hence by the

oscillatory integral (35), is now a consequence of [7], Lemma 4.1, completing the proof of Theorem
2. �

As a consequence of Theorem 2, we can locally write the kernel of π(f) in the form

KAγ
f
(x, y) =

∫
ei(x−y)·ξaγf (x, ξ)d̄ξ =

∫
ei(x−y)·(1k⊗T−1

x )ξãγf (x, ξ)|det (1k ⊗ T
−1
x )′(ξ)|d̄ξ

=
1

|xk+1 · · ·xk+l|
Ãγ

f (x, x1 − y1, . . . , 1−
yk+1

xk+1
, . . . ), xk+1 · · ·xk+l 6= 0,

(40)

where Ãγ
f (x, y) denotes the inverse Fourier transform of ãγf (x, ξ),

(41) Ãγ
f (x, y) =

∫
eiy·ξãγf (x, ξ) d̄ξ.

Since for x ∈ W γ the amplitude ãγf (x, ξ) is rapidly falling in ξ, it follows that Ãγ
f (x, y) ∈ S(R

n
y ),

the Fourier transform being an isomorphism on the Schwartz space. ThereforeKAγ
f
(x, y) is rapidly

decreasing as |xj | → 0 if xj 6= yj and k + 1 ≤ j ≤ k + l. Furthermore, by the lacunarity of ãγf ,

KAγ
f
(x, y) is also rapidly decaying as |yj | → 0 if xj 6= yj and k + 1 ≤ j ≤ k + l.
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5. Holomorphic semigroup and resolvent kernels

In this section, we shall study the holomorphic semigroup generated by a strongly elliptic op-

erator Ω associated to the regular representation (π,C(X̃)) of G, as well as its resolvent. Both the
holomorphic semigroup and the resolvent can be characterized as convolution operators of the type
considered before, so that we can study them by the methods developed in the previous section. In
particular, this will allow us to obtain a description of the asymptotic behavior of the semigroup

and resolvent kernels on X̃∆ ≃ X at infinity.
Let us begin by recalling some basic facts about elliptic operators and parabolic evolution

equations on Lie groups, our main reference being [10]. Let G be a Lie group, and π a continuous
representation of G on a Banach space B. Let further X1, . . . , Xd be a basis of the Lie algebra
Lie(G) of G, and

Ω =
∑

|α|≤q

cα dπ(X
α)

a strongly elliptic differential operator of order q associated with π, meaning that for all ξ ∈ Rd

one has the inequality Re (−1)q/2
∑

|α|=q cαξ
α ≥ κ|ξ|q for some κ > 0. By the general theory of

strongly continuous semigroups, its closure generates a strongly continuous holomorphic semigroup
of bounded operators given by

Sτ =
1

2πi

∫

Γ

eλτ (λ1+Ω)−1dλ,

where Γ is a appropriate path in C coming from infinity and going to infinity such that λ /∈ σ(Ω) for
λ ∈ Γ. Here | arg τ | < α for an appropriate α ∈ (0, π/2], and the integral converges uniformly with
respect to the operator norm. Furthermore, the subgroup Sτ can be characterized by a convolution
semigroup of complex measures µτ on G according to

Sτ =

∫

G

π(g)dµτ (g),

π being measurable with respect to the measures µτ . The measures µτ are absolutely continuous
with respect to Haar measure dG on G, and denoting by Kτ (g) ∈ L1(G, dG) the corresponding
Radon-Nikodym derivative, one has

Sτ = π(Kτ ) =

∫

G

Kτ (g)π(g)dG(g).

The function Kτ (g) ∈ L1(G, dG) is analytic in τ and g, and universal for all Banach representations.
It satisfies the parabolic differential equation

∂ Kτ

∂ τ
(g) +

∑

|α|≤q

cα dL(X
α)Kτ (g) = 0, lim

τ→0
Kτ (g) = δ(g),

where (L,C∞(G)) denotes the left regular representation of G. As a consequence, Kτ must be
supported on the identity component G0 of G. It is called the Langlands kernel of the holomorphic
semigroup Sτ , and satisfies the following L1- and L∞-bounds.

Theorem 3. For each κ ≥ 0, there exist constants a, b, c > 0, and ω ≥ 0 such that

(42)

∫

G0

|dL(Xα) ∂βτ Kτ (g)|e
κ|g| dG0(g) ≤ ab

|α|cβ|α|!β!(1 + τ−β−|α|/q)eωτ ,

for all τ > 0, β = 0, 1, 2, . . . and multi-indices α. Furthermore,

(43) |dL(Xα) ∂βτ Kτ (g)| ≤ ab
|α|cβ |α|!β!(1 + τ−β−(|α|+d+1)/q)eωτe−κ|g|,

for all g ∈ G0, where d = dimG0, and q denotes the order of Ω.
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A detailed exposition of these facts can be found in [10], pages 30, 152, 166, and 167. Let

now G = G, and (π,B) be the regular representation of G on C(X̃). Theorem 3 implies that the
Langlands kernelKτ belongs to the space S(G) of rapidly falling functions on G. As a consequence
of the previous considerations we obtain

Theorem 4. Let Ω be a strongly elliptic differential operator of order q associated with the reg-

ular representation (π,C(X̃)), and Sτ = π(Kτ ) the holomorphic semigroup of bounded operators
generated by Ω. Then the operators Sτ are locally of the form (34) with f being replaced by Kτ ,
and totally characteristic pseudodifferential operators of class L−∞

b on the manifolds with corners

X̃∆. Furthermore, on Wγ ×Wγ , the kernel of Sτ is given by

Sγ
τ (x, y) = KAγ

Kτ
(x, y) =

∫
ei(x−y)·ξaγKτ

(x, ξ)d̄ξ =
1

|xk+1 · · ·xk+l|
Ãγ

Kτ
(x, (1k ⊗ T

−1
x )(x− y)),

where xk+1 · · ·xk+l 6= 0, and Ãγ
Kτ

(x, y) was defined in (41). In particular, Sγ
τ (x, y) is rapidly

falling at infinity as |xj | → 0, or |yj| → 0, as long as xj 6= yj, where k+1 ≤ j ≤ k+ l. In addition,

(44) |Ãγ
Kτ

(x, y)| ≤

{
c1(1 + τ−(l+k+1)/q), 0 < τ ≤ 1,

c2e
ωτ , 1 < τ,

uniformly on compact subsets of Wγ ×Wγ for some constants ci > 0.

Proof. The first assertions are immediate consequences of Theorem 2, and its corollary. In order
to prove (44), note that for large N ∈ N one computes with (31), (38), and (41)

|Ãγ
Kτ

(x, y)| ≤

∫

Rk+l

|ãγKτ
(x, ξ)| d̄ξ =

∫

Rk+l

∣∣∣
∫

G

ψγ
ξ,x(g)cγ(g)Kτ (g)dG(g)

∣∣∣d̄ξ

=

∫

Rk+l

(1 + |ξ|2)−N
∣∣∣
∫

G

cγ(g)Kτ (g)

2N∑

r=0

∑

|α|=r

bNα (x, g)dL(Xα)ψγ
ξ,x(g)dG(g)

∣∣∣d̄ξ.

If we now apply Proposition 1, and take into account the estimate (42) we obtain

|Ãγ
Kτ

(x, y)| ≤

∫
(1 + |ξ|2)−N

∣∣∣
∫

G

ψγ
ξ,x(g)

2N∑

r=0

∑

|α|=r

dL(X α̃)[bNα (x, g)cγ(g)Kτ (g)]dG(g)
∣∣∣d̄ξ

≤

{
c1(1 + τ−2N/q), 0 < τ ≤ 1,

c2e
ωτ , 1 < τ,

for certain constants ci > 0. Expressing ξk+l+1
j ψγ

ξ,x(g) on {ξ ∈ R
n : |ξi| ≤ |ξj | for all i} as left

derivatives of ψγ
ξ,x(g) according to (36) and (37), and estimating the maximum norm on Rn by the

usual norm, a similar argument shows that the last estimate is also valid for N = (k + l + 1)/2,
compare (50). The proof is now complete. �

Let us now turn to the resolvent of the closure of the strongly elliptic operator Ω. By (42) one
has the bound ‖Sτ‖ ≤ ceωτ for some constants c ≥ 1, ω ≥ 0. For λ ∈ C with Reλ > ω, the
resolvent of Ω can then be expressed by means of the Laplace transform according to

(λ1+Ω)−1 = Γ(1)−1
∫ ∞

0

e−λτSτ dτ,

where Γ is the Γ-function. More generally, one can consider for arbitrary α > 0 the integral
transforms

(λ1+Ω)−α = Γ(α)
−1

∫ ∞

0

e−λττα−1Sτ dτ.



22 APRAMEYAN PARTHASARATHY AND PABLO RAMACHER

As it turns out, the functions

Rα,λ(g) = Γ(α)−1

∫ ∞

0

e−λττα−1Kτ (g) dτ

are in L1(G, eκ|g|dG), where κ ≥ 0 is such that ‖π(g)‖ ≤ ceκ|g| for some c ≥ 1. This implies that
the resolvent of Ω can be expressed as the convolution operator

(λ1+Ω)−α = π(Rα,λ) =

∫

G

Rα,λ(g)π(g) dG(g).

The resolvent kernels Rα,λ decrease exponentially as |g| → ∞, but they are singular at the identity
if d ≥ qα. More precisely, one has the following

Theorem 5. There exist constants b, c, λ0 > 0, and aα,λ > 0, such that

|dL(Xδ)Rα,λ(g)| ≤





aα,λ|g|−(d+|δ|−qα)e−(b(Reλ)1/q−c)|g|, d > qα,

aα,λ(1 + | log |g||)e−(b(Reλ)1/q−c)|g|, d = qα,

aα,λe
−(b(Reλ)1/q−c)|g|, d < qα

for each λ ∈ C with Reλ > λ0.

A proof of these estimates is given in [10], pages 238 and 245. Our next aim is to understand

the microlocal structure of the operators π(Rα,λ) on the Oshima compactification X̃ of X ≃ G/K.

Consider again the atlas
{
(W̃γ , ϕ

−1
γ )

}
γ∈I

of X̃ introduced in Section 4, and the local operators

(45) Aγ
Rα,λ

u = [π(Rα,λ)|W̃γ
(u ◦ ϕ−1

γ )] ◦ ϕγ ,

where u ∈ C∞
c (Wγ) and Wγ = ϕ−1

γ (W̃γ). By the Fourier inversion formula, Aγ
Rα,λ

is given by the

absolutely convergent integral

(46) Aγ
Rα,λ

u(x) =

∫

Rn

eix·ξaγRα,λ
(x, ξ)û(ξ)d̄ξ,

where

aγRα,λ
(x, ξ) =

∫

G

ei(ϕ
g
γ(x)−x)·ξcγ(g)Rα,λ(g)dG(g),

ãγRα,λ
(x, ξ) =

∫

G

ei[(1k⊗T−1
x )(ϕg

γ(x)−x)]·ξcγ(g)Rα,λ(g)dG(g)

are smooth functions on Wγ × Rk+l, since Rα,λ ∈ L1(G, eκ|g|dG), the notation being the same
as in Section 4. Moreover, in view of the L1-bound (42), the functions e−λτ τα−1ãγKτ

(x, ξ) and

e−λτ τα−1aγKτ
(x, ξ) are integrable in τ over (0,∞), and by Fubini we obtain the equalities

aγRα,λ
(x, ξ) = Γ(α)−1

∫ ∞

0

e−λττα−1aγKτ
(x, ξ)dτ,

ãγRα,λ
(x, ξ) = Γ(α)−1

∫ ∞

0

e−λττα−1ãγKτ
(x, ξ)dτ.

In what follows, we shall describe the microlocal structure of the resolvent (λ1 +Ω)−α on X̃, and
in particular, its kernel.
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Proposition 3. Let Q be the largest integer such that Q < qα. Then ãγRα,λ
(x, ξ) ∈ S−Q

la (Wγ ×

Rk+l). That is, for any compactum K ⊂Wγ , and arbitrary multi-indices β, ε there exist constants
CK,β,ε > 0 such that

(47) |(∂εx ∂
β
ξ ã

γ
Rα,λ

)(x, ξ)| ≤ CK,β,ε(1 + |ξ|
2)(−Q−|β|)/2, x ∈ K, ξ ∈ R

k+l,

and ãγRα,λ
satisfies the lacunary condition (22) for each of the coordinates xj, k + 1 ≤ j ≤ k + l.

Proof. For a fixed a chart chart (W̃γ , ϕγ) of X̃ we write x = (n, t) ∈ Wγ , x̃ = ϕγ(x) ∈ W̃γ as usual.
As a consequence of Proposition 2 and Lemma 5 one computes with (38) for arbitrary N ∈ N

(∂2βξ ãγRα,λ
)(x, ξ) =

∫

G

ei[(1k⊗T−1
x )(ϕg

γ(x)−x)]·ξ[i(1k ⊗ T
−1
x )(ϕg

γ(x) − x)]
2βcγ(g)Rα,λ(g)dG(g)

= (1 + |ξ|2)−Ne−i(x1,...,xk,1,...,1)·ξ
2N∑

r=0

∑

|δ|=r

∫

G

bNδ (x, g)dL(Xδ)ψγ
ξ,x(g)

·[i(1k ⊗ T
−1
x )(ϕg

γ(x) − x)]
2βcγ(g)Rα,λ(g)dG(g).

Now, nr(g · x̃)→ nr(x̃) and χr(g, x̃)→ 1 as g → e, so that due to the analyticity of the G-action

on X̃ one deduces

(48) |(1k ⊗ T
−1
x )(ϕg

γ(x)− x)| = |(n1(gx̃)− n1, . . . , χ1(gx̃)− 1, . . . )| = CK|g|, x ∈ K.

Indeed, let

(ζ1, . . . , ζd) 7→ eζ1X1+···+ζdXd = g

be canonical coordinates of the first type near the identity e ∈ G. We then have the power
expansions

(49) χr(g, x̃)− 1 =
∑

α,β,γ

crα,β,γn
αtβζγ , nr(g · x̃)− nr(x̃) =

∑

α,β,γ

drα,β,γn
αtβζγ ,

where the constant term vanishes, that is, crα,β,γ , d
r
α,β,γ = 0 if |γ| = 0. Hence,

|nr(g · x̃)− nr(x̃)|, |χr(g, x̃)− 1| ≤ C1|ζ| ≤ C2|g|,

compare [10], pages 12-13, and we obtain (48). With Theorem 5, we therefore have the pointwise
estimates

|[(1k ⊗ T
−1
x )(ϕg

γ(x) − x)]
β′

dL(Xδ′)Rα,λ(g)| ≤ CK,α,λ|g|
−(d+|δ′|−qα−|β′|)e−(b(Reλ)1/q−c)|g|

for some constant CK,α,λ > 0 uniformly on K×V 1
γ . Now, let 2Q̃ be the largest even number strictly

smaller than qα. Applying the same reasoning as in the proof of Proposition 1, one obtains for
N = Q̃+ |β|

(∂2βξ ãγRα,λ
)(x, ξ) = (1 + |ξ|2)−Q̃−|β|

2Q̃+2|β|∑

r=0

∑

|δ|=r

(−1)|δ|
∫

G

ei[(1k⊗T−1
x )(ϕg

γ(x)−x)]·ξ

·dL(X δ̃)
[
b
Q̃+|β|
δ (x, g)[i(1k ⊗ T

−1
x )(ϕg

γ(x) − x)]
2βcγ(g)Rα,λ(g)

]
dG(g),

since all the occuring combinations [(1k ⊗ T−1
x )(ϕg

γ(x) − x)]
β′

dL(Xδ′)Rα,λ(g) on the right hand
side are such that qα+ |β′| − |δ′| > 0, implying that the corresponding integrals over G converge.
Equality then follows by the left-invariance of dG(g), and Lebesgue’s Theorem on Dominated
Convergence. To show the estimate (47) in general for ε = 0, let x ∈ K, and ξ ∈ Rk+l be such
that |ξ| ≥ 1, and |ξ|max = max {|ξr| : 1 ≤ r ≤ k + l} = |ξj |. Using (36) and (37) we can express
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ξ
Q+|β|
j ψγ

ξ,x(g) as left derivatives of ψγ
ξ,x(g), and repeating the previous argument we obtain the

estimate

|(∂βξ ã
γ
Rα,λ

)(x, ξ)| = |ξj |
−Q−|β|

∣∣∣
Q+|β|∑

r=0

∑

|δ|=r

∫

G

bjδ(x, g)dL(X
δ)ψγ

ξ,x(g)

·[i(1k ⊗ T
−1
x )(ϕg

γ(x)− x)]
βcγ(g)Rα,λ(g)dG(g)

∣∣∣ ≤ C̃K,β
1

|ξ|
Q+|β|
max

≤ CK,β
1

|ξ|Q+|β|
,

(50)

where the coefficients bjδ(x, g) are at most of exponential growth in g. But since ãγRα,λ
(x, ξ) ∈

C∞(Wγ × Rk+l), we obtain (47) for ε = 0. Let us now turn to the x-derivatives. We have to

show that the powers in ξ that arise when differentiating (∂βξ ã
γ
Rα,λ

)(x, ξ) with respect to x can be

compensated by an argument similar to the previous considerations. Now, (49) clearly implies

∂εx (χr(g, x̃)− 1) = O(|g|), ∂εx (nr(g · x̃)− nr(x̃)) = O(|g|).

Thus, each time we differentiate the exponential ei[(1k⊗T−1
x )(ϕg

γ(x)−x)]·ξ with respect to x, the re-
sult is of order O(|ξ||g|). Therefore, expressing the ocurring powers ξε

′

ψγ
ξ,x(g) as left deriva-

tives of ψγ
ξ,x(g), we can repeat the preceding argument to absorb the powers in ξ, and (47) fol-

lows. Note next that the previous argument also implies aγRα,λ
(x, ξ) ∈ S−Q(W ∗

γ × R
k+l
ξ ), where

W ∗
γ = {x = (n, t) ∈Wγ : t1 · · · tl 6= 0}, the G-action being transitive on each X̃∆. The Schwartz

kernel KAγ
Rα,λ

of the restriction of the operator (45) to W ∗
γ is therefore given by the oscillatory

integral ∫
ei(x−y)·ξaγRα,λ

(x, ξ)d̄ξ ∈ D′(W ∗
γ ×W

∗
γ ),

which is C∞ off the diagonal. As in (39) we have suppKAγ
Rα,λ

⊂
⋃

Θ⊂∆W
Θ
γ ×W

Θ
γ , so that each

of the integrals
∫
ei(xj−yj)ξj ãγRα,λ

(x, (1k ⊗ Tx)ξ) dξj , j = k + 1, . . . , k + l,

must vanish if xj and yj do not have the same sign. Hence,
∫
e−irjξj ãγRα,λ

(x, ξ) dξj = 0 for rj < −1, x ∈W
∗
γ .

Since ãγRα,λ
(x, ξ) ∈ S−Q(Wγ×R

k+l
ξ ), these integrals are absolutely convergent for rj 6= 0. Lebesgue’s

Theorem on Bounded Convergence theorem then implies that these conditions must also hold for
x ∈Wγ . The proof of the proposition is now complete. �

Remark 1. One would actually expect that ãγRα,λ
(x, ξ) ∈ S−qα

la (Wγ×Rk+l), being the local symbol

of the resolvent (λ1 + Ω)−α. Nevertheless, the general estimates of Theorem 5 for the resolvent
kernels Rα,λ, which correctly reflect the singular behavior at the identity, are not sufficient to show
this, and more information about them is required. Indeed, dL(Xβ)Rα,λ ∈ L1(G, dG(g)) only
holds if 0 < qα− |β|.

We are now able to describe the microlocal structure of the resolvent (λ1+Ω)−α.

Theorem 6. Let Ω be a strongly elliptic differential operator of order q associated with the represen-

tation (π,C(X̃)) of G. Let ω ≥ 0 be given by Theorem 3, and λ ∈ C be such that Reλ > ω. Let fur-
ther α > 0, and denote by Q the largest integer such that Q < qα. Then (λ1+Ω)−α = π(Rα,λ) is lo-

cally of the form (46), where aγRα,λ
(x, ξ) = ãγRα,λ

(x, (1k⊗Tx)ξ), and ã
γ
Rα,λ

(x, ξ) ∈ S−Q
la (Wγ×Rk+l).
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In particular, (λ1 + Ω)−α is a totally characteristic pseudodifferential operators of class L−Q
b on

the manifolds with corners X̃∆. Furthermore, its kernel is locally given by the oscillatory integral

Rγ
α,λ(x, y) =

∫
ei(x−y)ξaγRα,λ

(x, ξ)d̄ξ =
1

|xk+1 · · ·xk+l|

∫
ei(1k⊗T−1

x )(x−y)·ξaγRα,λ
(x, ξ)d̄ξ,

where xk+1 · · ·xk+l 6= 0, x, y ∈ Wγ . R
γ
α,λ(x, y) is smooth off the diagonal, and rapidly falling at

infinity as |xj | → 0, or |yj| → 0, as long as xj 6= yj, where k + 1 ≤ j ≤ k + l.

Proof. The assertions of the theorem are direct consequences of our previous considerations, except
for the behavior of Rγ

α,λ(x, y) at infinity. Let k + 1 ≤ j ≤ k + l. While the behavior as |yj | → 0 is

a direct consequence of the lacunarity of ãγRα,γ
, the behavior as |xj | → 0 is a direct consequence of

the fact that, as oscillatory integrals,∫
ei(x−y)·ξaγRα,λ

(x, ξ)d̄ξ =
1

|x− y|2N

∫
ei(x−y)·ξ(∂2ξ1 + · · ·+ ∂2ξk+l

)NaγRα,λ
(x, ξ)d̄ξ,

where x 6= y, and N is arbitrarily large. �

Remark 2. The singular behavior of Rα,λ(g) at the identity corresponds to the fact that, as a

pseudodifferential operator of class L−Q
b , (λ1+Ω)−α has a kernel which is singular at the diagonal.

To conclude, let us say some words about the classical heat kernel on a Riemannian symmetric

space of non-compact type. Consider thus the regular representation (σ,C(X̃)) of the solvable Lie

group S = AN− ≃ X ≃ G/K on the Oshima compactification X̃ of X, and associate to every
f ∈ S(S) the corresponding convolution operator

∫

S

f(g)σ(g) dS(g).

Its restriction to C∞(X̃) induces again a continuous linear operator

σ(f) : C∞(X̃) −→ C∞(X̃) ⊂ D′(X̃),

and an examination of the arguments in Section 4 shows that an analogous analysis applies to the
operators σ(f). In particular, Theorem 2 holds for them, too. Let ̺ be the half sum of all positiv
roots, and

C =
∑

j

H2
j −

∑

j

Z2
j −

∑

j

[Xjθ(Xj) + θ(Xj)Xj ] ≡
∑

j

H2
j − 2̺+ 2

∑
X2

j mod U(g)k

be the Casimir operator in U(g), where {Hj}, {Zj}, and {Xj} are orthonormal basis of a, m, and
n−, respectively, and put C′ =

∑
j H

2
j − 2̺+ 2

∑
X2

j . Though −dπ(C′) is not a strongly elliptic

operator in the sense defined above, Ω = −dσ(C′) certainly is. Consequently, if K ′
τ (g) ∈ S(S)

denotes the corresponding Langlands kernel, Theorems 4 and 6 yield descriptions of the Schwartz

kernels of σ(K ′
τ ) and (λ1 + Ω)−α on X̃. On the other hand, denote by ∆ the Laplace-Beltrami

operator on X. Then

∆ϕ(gK) = ϕ(g : C) = ϕ(g : C′), ϕ ∈ C∞(X),

and the associated heat kernel hτ (g) on X coincides with the heat kernel on S associated to C′. But
the latter is essentially given by the Langlands kernel K ′

τ (g), being the solution of the parabolic
equation

∂ K ′
τ

∂ τ
(g)− dL(C′)K ′

τ (g) = 0, lim
τ→0

K ′
τ (g) = δ(g)

on S. In this particular case, optimal upper and lower bounds for hτ and the Bessel-Green-
Riesz kernels were given in [1] using spherical analysis under certain restrictions coming from the
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lack of control in the Trombi-Varadarajan expansion for spherical functions along the walls. Our

asymptotics for the kernels of σ(K ′
τ ) and (λ1 + Ω)−α on X̃∆ ≃ X are free of restrictions, and

in concordance with those of [1], though, of course, less explicit. A detailed description of the
resolvent of ∆ on X was given in [5], [6].
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[3] L. Hörmander, The analysis of linear partial differential operators, vol. III, Springer–Verlag, Berlin, Heidelberg,

New York, 1985.
[4] P. Loya, On the b-pseudodifferential calculus on manifolds with corners, PhD thesis, 1998.
[5] R. R. Mazzeo and R. B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically

constant negative curvature, J. Funct. Anal. 75 (1987), 260–310.
[6] R. R. Mazzeo and A. Vasy, Analytic continuation of the resolvent of the Laplacian on symmetric spaces of

noncompact type, J. Funct. Anal. 228 (2005), 311 368.
[7] R. Melrose, Transformation of boundary problems, Acta Math. 147 (1982), 149–236.
[8] T. Oshima, A realization of Riemannian symmetric spaces, J. Math. Soc. Japan 30 (1978), no. 1, 117–132.
[9] P. Ramacher, Pseudodifferential operators on prehomogeneous vector spaces, Comm. Partial Diff. Eqs. 31

(2006), 515–546.
[10] D. W. Robinson, Elliptic operators and Lie groups, Oxford University Press, Oxford, 1991.
[11] M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd edition, Springer–Verlag, Berlin, Heidelberg,

New York, 2001.
[12] G. Warner, Harmonic analysis on semi-simple Lie groups, vol. I, Springer–Verlag, Berlin, Heidelberg, New

York, 1972.

Aprameyan Parthasarathy and Pablo Ramacher, Fachbereich Mathematik und Informatik, Philipps-

Universität Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany

E-mail address: apra@mathematik.uni-marburg.de, ramacher@mathematik.uni-marburg.de


	1. Introduction
	2. The Oshima compactification of a Riemannian symmetric space
	3. Review of pseudodifferential operators
	4. Invariant integral operators
	5. Holomorphic semigroup and resolvent kernels
	References

