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INTEGRAL OPERATORS ON THE OSHIMA COMPACTIFICATION OF A

RIEMANNIAN SYMMETRIC SPACE OF NON-COMPACT TYPE.

REGULARIZED TRACES AND CHARACTERS

APRAMEYAN PARTHASARATHY AND PABLO RAMACHER

Abstract. Consider a Riemannian symmetric space X = G/K of non-compact type, where G
denotes a connected, real, semi-simple Lie group with finite center, and K a maximal compact
subgroup of G. Let X̃ be its Oshima compactification, and (π,C(X̃)) the regular representation

of G on X̃. In this paper, a regularized trace for the convolution operators π(f) is defined,
yielding a distribution on G which can be interpreted as global character of π. In case that f has
compact support in a certain set of transversal elements, this distribution is a locally integrable
function, and given by a fixed point formula analogous to the formula for the global character
of an induced representation of G.
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1. Introduction

Let G be a connected, real, semi-simple Lie group with finite center, K a maximal compact
subgroup, and G/K the corresponding Riemannian symmetric space which is assumed to be of
non-compact type. In this paper, a distribution character for the regular representation of G on the
Oshima compactification of G/K is introduced, and a corresponding character formula is proved.
The paper is a continuation of [8], to which we shall refer in the following as Part I.

In his early work on infinite dimensional representations of semi-simple Lie groups, Harish–
Chandra [6] realized that the correct generalization of the character of a finite-dimensional repre-
sentation was a distribution on the group given by the trace of a convolution operator on represen-
tation space. This distribution character is given by a locally integrable function which is analytic
on the set of regular elements, and satisfies character formulas analogous to the finite dimensional
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case. Later, Atiyah and Bott [3] gave a similar description of the character of a parabolically
induced representation in their work on Lefschetz fixed point formulae for elliptic complexes. More
precisely, let H be a closed co-compact subgroup of G, and ! a representation of H on a finite
dimensional vector space V . If T (g) = (ι∗!)(g) is the representation of G induced by ! in the space
of sections over G/H with values in the homogeneous vector bundle G×H V , then its distribution
character is given by the distribution

ΘT : C∞
c (G) " f #−→ Tr T (f), T (f) =

∫

G

f(g)T (g)dG(g),

where dG denotes a Haar measure on G. The point to be noted is that T (f) is a smooth operator,
and since G/H is compact, does have a well-defined trace. On the other hand, assume that g ∈ G
acts on G/H only with simple fixed points. In this case, a transversal trace Tr! T (g) of T (g) can
be defined within the framework of pseudodifferential operators, which is given by a sum over fixed
points of g. Atiyah and Bott then showed that, on an open set GT ⊂ G,

ΘT (f) =

∫

GT

f(g)Tr! T (g)dG(g), f ∈ C∞
c (GT ).

This means that, on GT , the character ΘT of the induced representation T is represented by the
locally integrable function Tr! T (g), and its computation reduced to the evaluation of a sum over
fixed points. When G is a p-adic reductive group defined over a non-Archimdean local field of
characteristic zero, a similar analysis of the character of a parabolically induced representation
was carried out in [5].

In this paper, we consider the regular representation π of G on the Oshima compactification X̃

of a Riemannian symmetric space X = G/K of non–compact type given by

π(g)ϕ(x̃) = ϕ(g−1 · x̃), ϕ ∈ C∞(X̃).

Since the G-action on X̃ is not transitive, the corresponding convolution operators π(f), f ∈
C∞

c (G), are not smooth, and therefore do not have a well-defined trace. Nevertheless, it was shown
in Part I that they can be characterized as totally characteristic pseudodifferential operators of
order −∞. Using this fact, we are able to define a regularized trace Trreg π(f) for the operators
π(f), and in this way obtain a map

Θπ : C∞
c (G) " f #→ Trreg(f) ∈ C,

which is shown to be a distribution on G. This distribution is defined to be the character of the
representation π. We then show that, on a certain open set G(X̃) of transversal elements,

Trreg π(f) =

∫

G(X̃)
f(g)Tr! π(g)dG(g), f ∈ C∞

c (G(X̃)),

where, with the notation Φg(x̃) = g · x̃,

Tr! π(g) =
∑

x̃∈Fix(g)

1

|det (1− dΦg−1(x̃))|
,

the sum being over the (simple) fixed points of g ∈ G(X̃) on X̃. Thus, on the open set G(X̃), Θπ is
represented by the locally integrable function Tr! π(g), which is given by a formula similar to the
character of a parabolically induced representation. It is likely that similar distribution characters
could be introduced for G-manifolds with a dense union of open orbits, or for spherical varieties,
and that corresponding character formulae could be proved.

This paper is structured as follows. In Section 2, the main results of Part I that will be needed
in the sequel are recalled. The regularized trace for the convolution operators π(f) is defined
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in Section 3, while the transversal trace of a pseudodifferential operator is introduced in Section
4, followed by a discussion of the global character of an induced representation. After studying
G-actions on homogeneous spaces in Section 5, we prove that the distribution Θπ is regular on
the set of transversal elements G(X̃), and given by the locally integrable function Tr! π(g). This
is done in Section 6. In the last section, the Oshima compactification of X = SL(3,R)/SO(3) is
described in detail.

2. Preliminaries

In this section we shall briefly recall the main results of Part I relevant to our purposes. Let
G be a connected, real, semi-simple Lie group with finite centre and Lie algebra g, and denote by
〈X,Y 〉 = Tr (adX ◦ adY ) the Cartan-Killing form on g. Let θ be a Cartan involution on g, and

g = k⊕ p

the corresponding Cartan decomposition. Put 〈X,Y 〉θ := −〈X, θY 〉. Consider further a maximal
Abelian subspace a of p. Then ad (a) constitutes a commuting family of self-adjoint operators on
g relative to 〈, 〉θ, and one defines for each α ∈ a∗ the simultaneous eigenspaces gα = {X ∈ g :
[H,X ] = α(H)X for all H ∈ a}. Let Σ = {α ∈ a∗ : α -= 0, gα -= {0}} be the set of roots of
(g, a), Σ+ = {α ∈ Σ : α > 0} a set of positive roots, and ∆ = {α1, . . . , αl} the set of simple roots.
Define n+ =

⊕
α∈Σ+ gα, n− = θ(n+), and write K,A,N+ and N− for the analytic subgroups

of G corresponding to k, a, n+, and n−, respectively. Let M and M∗ be the centralizer and
the normalizer of a in K, respectively. Consider then the Oshima compactification X̃ of the
Riemannian symmetric space X = G/K which is assumed to be of non-compact type. It is a
simply connected, compact, real-analytic manifold without boundary carrying a real-analytic G-
action. The corresponding orbital decomposition of X̃ is of the form

(1) X̃ .
⊔

Θ⊂∆

2#Θ(G/PΘ(K)) (disjoint union),

the union being over subsets of ∆, where #Θ is the number of elements of Θ, and 2#Θ(G/PΘ(K))
denotes the disjoint union of 2#Θ copies of the homogeneous space G/PΘ(K), where PΘ(K) is a
certain closed subgroup of G associated to Θ. In particular, for Θ = ∆, one has P∆(K) = K,
while for Θ = ∅, P∅(K) = P . In what follows, denote by X̃Θ a component in X̃ isomorphic to
G/PΘ(K). The orbital decomposition is of normal crossing type, meaning that for every point in
X̃ there exists a local coordinate system (n1, . . . , nk, t1, . . . , tl) in a neighbourhood of that point
such that two points with coordinates (n1, . . . , nk, t1, . . . , tl) and (n′

1, . . . , n
′
k, t

′
1, . . . , t

′
l) belong to

the same G-orbit if, and only if, sgn tj = sgn t′j for all j = 1, . . . , l. For a detailed description of X̃,

the reader is referred to Part I. On X̃, there is a natural representation of G given by

π(g)ϕ(x̃) = ϕ(g−1 · x̃), ϕ ∈ C(X̃),

where C(X̃) denotes the Banach space of continuous, complex-valued functions on X̃. Let dG be a
Haar measure on G, and S(G) the space of rapidly decreasing functions on G introduced in Part

I, Definition 1. Let further Ω be the density bundle on X̃, and consider for every f ∈ S(G) the
continuous linear operator

π(f) : C∞(X̃) −→ C∞(X̃) ⊂ D′(X̃),

with Schwartz kernel given by the distributional section Kf ∈ D′(X̃× X̃,1! Ω). Let
{
(Ũmw , ϕ

−1
mw

)
}

w∈W
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be the finite atlas of X̃ constructed in Part I, where W = M∗/M denotes the Weyl group of (g, a),
and mw ∈ M∗, a representative of w ∈ W . The coordinates on each of the charts of this atlas are
then precisely of the form (n, t) = (n1, . . . , nk, t1, . . . , tl) described above. For each point x̃ ∈ X̃,

choose open neighborhoods W̃x̃ ⊂ W̃ ′
x̃ of x̃ contained in a chart Ũmw(x̃). Since X̃ is compact, we can

find a finite subcover of the cover
{
W̃x̃

}

x̃∈X̃

, and in this way obtain a finite atlas
{
W̃γ , ϕ−1

γ

}

γ∈I

of X̃, where for simplicity we wrote ϕγ = ϕmw(x̃). Further, let {αγ}γ∈I be a partition of unity

subordinate to the above atlas, and let {ᾱγ}γ∈I be another set of functions satisfying ᾱγ ∈ C∞
c (W̃ ′

γ)
and ᾱ

γ|W̃γ
≡ 1. Consider now the localization of π(f) with respect to the atlas above given by

Aγ
fu = [π(f)|W̃γ

(u ◦ ϕ−1
γ )] ◦ ϕγ , u ∈ C∞

c (Wγ), Wγ = ϕ−1
γ (W̃γ) ⊂ R

k+l.

Writing ϕg
γ = ϕ−1

γ ◦ g−1 ◦ ϕγ and x = (x1, . . . , xk+l) = (n, t) ∈ Wγ we obtain

Aγ
fu(x) =

∫

G

f(g)[(u ◦ ϕ−1
γ )ᾱγ ](g

−1 · ϕγ(x)) dG(g) =

∫

G

f(g)cγ(x, g)(u ◦ ϕg
γ)(x)dG(g),

where we put cγ(x, g) = ᾱγ(g−1 · ϕγ(x)). Next, define the smooth functions

(2) aγf (x, ξ) =

∫

G

ei(ϕ
g
γ(x)−x)·ξcγ(x, g)f(g)dG(g),

and let Tx be the diagonal (l×l)-matrix with entries xk+1, . . . , xk+l. Introduce the auxiliary symbol

(3) ãγf (x, ξ) = aγf (x, (1k ⊗ T−1
x )ξ) =

∫

G

eiΨγ(g,x)·ξcγ(x, g)f(g)dG(g),

where we put

Ψγ(g, x) = [(1k⊗T−1
x )(ϕg

γ(x)−x)] = (x1(g·x̃)−x1(x̃), . . . , xk(g·x̃)−xk(x̃), χ1(g, x̃)−1, . . . , χ
l
(g, x̃)−1),

the χj(g, x̃) being analytic functions, see Part I, equation (28). One of the main results of Part I
is the following

Theorem 1. Let f ∈ S(G). The restrictions of the operators π(f) to the manifolds with cor-

ners X̃∆ are totally characteristic pseudodifferential operators of class L−∞
b . More precisely, the

operators π(f) are locally of the form 1

Aγ
fu(x) =

∫
eix·ξaγf (x, ξ)û(ξ)d̄ξ, u ∈ C∞

c (Wγ),(4)

where aγf (x, ξ) = ãγf (x, ξ1, . . . , ξk, xk+1ξk+1, . . . , ξk+lxk+l), and ãγf(x, ξ) ∈ S−∞
la (Wγ × R

k+l
ξ ) is a

lacunary symbol given by (3). In particular, the kernel of the operator Aγ
f is determined by its

restrictions to W ∗
γ ×W ∗

γ , where W ∗
γ = {x ∈ Wγ : xk+1 · · ·xk+l -= 0}, and given by the oscillatory

integral

(5) KAγ
f
(x, y) =

∫
ei(x−y)·ξaγf (x, ξ)d̄ξ.

Proof. See Part I, Theorem 2. "

1Here and in what follows we shall adhere to the convention that, if not specified otherwise, integration is to be
performed over whole Euclidean space Rn, with n appropriate. In addition, we shall use the notation d̄ξ = (2π)−ndξ.
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3. Regularized traces

We shall now define a regularized trace for the convolution operators π(f) introduced in the
previous section. To begin with, note that, as a consequence of Theorem 1, we can write the kernel
of π(f) locally in the form

KAγ
f
(x, y) =

∫
ei(x−y)·ξaγf (x, ξ)d̄ξ =

∫
ei(x−y)·(1k⊗T−1

x )ξ ãγf (x, ξ)|det (1k ⊗ T−1
x )′(ξ)|d̄ξ

=
1

|xk+1 · · ·xk+l|
Ãγ

f (x, x1 − y1, . . . , 1−
yk+1

xk+1
, . . . ), xk+1 · · ·xk+l -= 0,

(6)

where Ãγ
f (x, y) denotes the inverse Fourier transform of the lacunary symbol ãγf (x, ξ) given by

(7) Ãγ
f (x, y) =

∫
eiy·ξãγf (x, ξ) d̄ξ.

Since for x ∈ Wγ , the amplitude ãγf (x, ξ) is rapidly falling in ξ, it follows that Ãγ
f (x, y) ∈ S(Rn

y ), the
Fourier transform being an isomorphism on the Schwartz space. Therefore, KAγ

f
(x, y) is rapidly

decreasing as |xj | → 0 for xj -= yj and k + 1 ≤ j ≤ k + l. Furthermore, by the lacunarity of ãγf ,
KAγ

f
(x, y) is also rapidly decaying as |yj | → 0, xj -= yj and k + 1 ≤ j ≤ k + l.

Consider now the partition of unity {αγ} subordinate to the atlas {(W̃γ , ϕ−1
γ )}. By equation

(6), the restriction of the kernel of Aγ
f to the diagonal is given by

KAγ
f
(x, x) =

1

|xk+1 · · ·xk+l|
Ãγ

f (x, 0), xk+1 · · ·xk+l -= 0.

These restrictions yield a family of smooth functions kγf (x̃) = KAγ
f
(ϕ−1

γ (x̃), ϕ−1
γ (x̃)) which define

a density kf on

2#l(G/K) ⊂ X̃.

Nevertheless, the functions kγf (x̃) are not locally integrable on the entire compactification X̃, so

that we cannot define a trace of π(f) by integrating the density kf over the diagonal ∆
X̃×X̃

. X̃.
Instead, we have the following

Proposition 1. Let f ∈ S(G), s ∈ C, and define for Re s > 0

Trs π(f) =
∑

γ

∫

Wγ

(αγ ◦ ϕγ)(x)|xk+1 · · ·xk+l|
sÃγ

f (x, 0)dx

=

〈

|xk+1 · · ·xk+l|
s,
∑

γ

(αγ ◦ ϕγ)Ã
γ
f (·, 0)

〉

.

Then Trs π(f) can be continued analytically to a meromorphic function in s with at most poles at
−1,−3, . . . . Furthermore, for s ∈ C− {−1,−3, . . .},

Θs
π : C∞

c (G) " f #→ Trs π(f) ∈ C(8)

defines a distribution density on G.

Proof. The fact that Trs π(f) can be continued meromorphically is a consequence of the analytic
continuation of |xk+1 · · ·xk+l|s as a distribution in Rk+l, proved by Bernshtein-Gel’fand in [4],
Lemma 2. One even has that

〈|xk+1|
s1 · · · |xk+l|

sl , u〉 , u ∈ C∞
c (Rk+l),

can be continued meromorphically in the variables s1, . . . , sl to Cl with poles si = −1,−3, . . . .
To see that (8) is a distribution density, note that Θs

π : C∞
c (G) → C is certainly linear. Since
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|xk+1 · · ·xk+l|s is a distribution, for any open, relatively compact subset ω ⊂ Rk+l there exist
Cω > 0 and Bω ∈ N such that

(9) | 〈|xk+1 · · ·xk+l|
s, u〉 | ≤ Cω

∑

|β|≤Bω

sup | ∂β u|, u ∈ C∞
c (ω).

Let now O ⊂ G be an arbitrary open, relatively compact subset, and f ∈ C∞
c (O). With equation

(7) one has

(10) Trs π(f) =

〈

|xk+1 · · ·xk+l|
s,
∑

γ

(αγ ◦ ϕγ)

∫
ãγf (·, ξ)d̄ξ

〉

.

By equation (38) of Part I, one computes for arbitrary N ∈ N that

eiΨγ(g,x)·ξ =
1

(1 + |ξ|2)N

2N∑

r=0

∑

|α|=r

bNα (x, g)dL(Xα)
[
eiΨγ(g,x)·ξ

]
,

where the coefficients bNα (x, g) are smooth, and at most of exponential growth in g. With (3) and
Proposition 1 of Part I we therefore obtain for ãγf (x, ξ) the expression

ãγf (x, ξ) =
1

(1 + |ξ|2)N

∫

G

eiΨγ (g,x)·ξ
2N∑

r=0

∑

|α|=r

(−1)rdL(X α̃)
[
bNα (x, g)cγ(x, g)f(g)

]
dG(g).

Inserting this in (10), and taking N sufficiently large, we obtain with (9) that

|Trs π(f)| ≤ CO

∑

|β|≤BO

sup |dL(Xβ)f |

for suitable CO > 0 and BO ∈ N. Since the universal enveloping algebra U(gC) can be identified
with the algebra of invariant differential operators on G, the assertion now follows with [9], page
480. "

Remark 1. Using Hironaka’s theorem on resolution of singularities, Bernshtein-Gel’fand [4] and
Atiyah [1] even proved the following general result. Let M be a real analytic manifold and f a
non-zero, real analytic function on M . Then |f |s, which is locally integrable for Re s > 0, extends
analytically to a distribution on M which is a meromorphic function of s in the whole complex
plane. The poles are located at the negative rational numbers, and their order does not exceed the
dimension of M . From this one deduces that if f : M → C is a non-zero analytic function, then
there exists a distribution S on M such that fS = 1. This is the Hörmander-Lojasiewicz theorem
on the division of distributions, and implies the existence of temperate fundamental solutions for
constant-coefficient differential operators.

Consider next the Laurent expansion of Θs
π(f) at s = −1. For this, let u ∈ C∞

c (Rk+l) be a test
function, and consider the expansion

〈|xk+1 · · ·xk+l|
s, u〉 =

∞∑

j=−q

Sj(u)(s+ 1)j ,

where Sk ∈ D′(Rk+l). Since |xk+1 · · ·xk+l|s+1 has no pole at s = −1, we necessarily must have

|xk+1 · · ·xk+l| · Sj = 0 for j < 0, |xk+1 · · ·xk+l| · S0 = 1

as distributions. Therefore S0 ∈ D′(Rk+l) represents a distributional inverse of |xk+1 · · ·xk+l|. By
repeating the reasoning of the proof of Proposition 1 we arrive at the following
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Proposition 2. For f ∈ S(G), let the regularized trace of the operator π(f) be defined by

Trreg π(f) =

〈

S0,
∑

γ

(αγ ◦ ϕγ)Ã
γ
f (·, 0)

〉

.

Then Θπ : C∞
c (G) " f #→ Trreg π(f) ∈ C constitutes a distribution density on G, which is called

the character of the representation π.

"

Remark 2. An alternative definition of Trreg π(f) could be given within the calculus of b-
pseudodifferential operators developed by Melrose. For a detailed description, the reader is referred
to [7], Section 6.

In what follows, we shall identify distributions with distribution densities on G via the Haar
measure dG. Our next aim is to understand the distributions Θs

π and Θπ in terms of the G-action on

X̃. We shall actually show that on a certain open set of transversal elements, they are represented
by locally integrable functions given in terms of fixed points. Similar expressions where derived by
Atiyah and Bott for the global character of an induced representation of G. Their work is based
on the concept of transversal trace of a pseudodifferential operator, and will be explained in the
next section.

4. Transversal trace and characters of induced representations

In [2], Atiyah and Bott extended the classical Lefschetz fixed point theorem to geometric en-
domorphisms on elliptic complexes. Their work relies on the concept of transversal trace of a
smooth operator, and its extension by continuity to pseudodifferential operators. The Lefschetz
theorem then follows by showing that the Lefschetz number of a geometric endomorphism is given
by an alternating sum of transversal traces, and extending an analogous alternating sum formula
for smooth endomorphisms. To explain the notion of transversal trace of a pseudodifferential
operator, let us introduce the following

Definition 1. Let M be a smooth manifold. A fixed point x0 of a smooth map f : M → M is
said to be simple if det (1− dfx0) -= 0, where dfx0 denotes the differential of f at x0. The map f
is called transversal if it has only simple fixed points.

Note that the non-vanishing condition on the determinant is equivalent to the requirement that
the graph of f intersects the diagonal transversally at (x0, x0) ∈ M×M , and hence the terminology.
In particular, a simple fixed point is an isolated fixed point. Let now U be an open subset of Rn,
V open in U , and consider a smooth map α : V → U with a simple fixed point at x0. We choose
V so small, that x #→ x− α(x) defines a diffeomorphism of V onto its image. Let Λ : V → U × U
be the map Λ(x) = (α(x), x), and assume that A ∈ L−∞(U) is a smooth operator with symbol
a(x, ξ). The kernel KA of A is a smooth function on U ×U , and its restriction Λ∗KA to the graph
of α defines a distribution on V according to

〈Λ∗KA, v〉 =

∫ ∫
ei(α(x)−x)·ξa(α(x), ξ)v(x) d̄ξ dx

=

∫ ∫
e−iy·ξ a(α(x(y)), ξ)v(x(y))

|det (1− dα(x(y)))|
dy d̄ξ, v ∈ C∞

c (V ),
(11)

where we made the substitution y = x−α(x), and the change in order of integration is permissible
because a(x, ξ) ∈ S−∞(U). Now, for a(x, ξ) ∈ Sl(U), we observe that by differentiating

∫
e−iy·ξa(α(x(y)), ξ)

v(x(y))

|det (1− dα(x(y)))|
dy
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with respect to ξ, and integrating by parts with respect to y, we obtain the estimate

|∂γξ

∫
e−iy·ξa(α(x(y)), ξ)

v(x(y))

|det (1− dα(x(y)))|
dy| ≤ C 〈ξ〉l−|β|

for arbitrary multi-indices γ and β and some constant C > 0. Thus, as an oscillatory integral, the
last expression in (11) defines a distribution on V for any a(x, ξ) ∈ Sl(U). The distribution Λ∗KA

is called the transversal trace of A ∈ Ll(U). If, in particular, a(x, ξ) = a(x) is a polynomial of
degree zero in ξ, one computes that

(12) Λ∗KA =
a(x0)δx0

|det (1− dα(x0))|
.

This diccussion can be globalized. Let X be a smooth manifold, E a vector bundle over X,
α : X → X a C∞-map with only simple fixed points, and

A : Γc(α
∗E) −→ Γ(E)

a pseudodifferential operator of order l between smooth sections. Denote the density bundle
on X by Ω, put F = α∗E, and define F ′ = F ∗ ⊗ Ω. The kernel KA is then a distributional
section of E ! F ′. In other words, KA ∈ D′(E ! F ′) = D′(X × X, E ! F ′). Similarly, one has
Kα∗A ∈ D′(X×X, F ! F ′), where α∗A denotes the composition

α∗A : Γc(F )
A

−→ Γ(E)
α∗

−→ Γ(F ).

If A ∈ L−∞(F,E), KA is a smooth section on X × X, and KA(x, y) ∈ Ex ⊗ F ′
y. In this case,

Kα∗A(x, y) = KA(α(x), y), so that one deduces Kα∗A(x, x) ∈ Eα(x) ⊗ F ′
x = Fx ⊗ (F ∗ ⊗ Ω)x .

L(Fx, Fx) ⊗ Ωx. As a consequence, TrKα∗A(x, x) becomes a section of Ω, where Tr denotes the
bundle homomorphism

(13) Tr : F ⊗ F ′ −→ Ω.

Hence, if X is compact, one can define the trace of α∗A as

Trα∗A =

∫

X

TrKα∗A(x, x).

This trace can be extended to arbitrary A ∈ Ll(X). Indeed, let ∆ be the diagonal in X×X, and
denote the canonical isomorphism ∆ . X also by ∆. The foregoing local considerations imply that
the map Θ : L(E ′(F ),Γ(E)) → Γ(F ⊗ F ′) given by A #→ ∆∗Kα∗A = Kα∗A(x, x) has an extension

Θ : Ll(F,E) −→ D′(F ⊗ F ′)

which is continuous with respect to the strong operator topology on bounded sets of Ll(F,E), see
[2], Proposition 5.3. Since the bundle homomorphism (13) induces continuous linear maps

Tr : Γ(F ⊗ F ′) −→ Γ(Ω), Tr : D′(F ⊗ F ′) −→ D′(Ω),

where D′(Ω) = D′(X,Ω) = Γc(Ω∗ ⊗ Ω)′ = Γc(1)′ = C∞
c (X)′ is the space of distribution densities

on X, we see that TrΘ(A) can be defined for any A ∈ Ll(F,E) in a unique way. Consequently, for
compact X, the map L−∞(F,E) → C, A → Trα∗A has a unique continuous extension

Trα : Ll(F,E) −→ C, A #→ TrαA = 〈TrΘ(A), 1〉 ,

called the transversal trace of A. In the case that A is induced by a bundle homomorphism ϕ, it
follows from (12) that

(14) TrαA =
∑

x∈Fix(α)

νx(A), νx(A) =
Trϕx

|det (1− dα(x))|
,

the sum being over the fixed points of α on X, see [2], Corollary 5.4.
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In the context of representation theory, this trace was employed by Atiyah and Bott in [3]
to compute the global character of an induced representation. Thus, let G be a Lie group, H
a closed subgroup of G, and ! a representation of H on a finite dimensional vector space V .
The representation of G induced by ! is a geometric endomorphism in the space of sections over
G/H with values in the homogeneous vector bundle G ×H V , and shall be denoted by T (g) =
(ι∗!)(g). Assume that G/H is compact, and let dG be a Haar measure on G. Consider a compactly
supported smooth function f ∈ C∞

c (G), and the corresponding convolution operator T (f) =∫
G
f(g)T (g)dG(g). It is a smooth operator, and, since G/H is compact, has a well defined trace.

Consequently, the map

ΘT : C∞
c (G) " f #−→ TrT (f) ∈ C

defines a distribution on G called the distribution character of the induced representation T . On
the other hand, assume that g ∈ G is such that lg−1 : G/H → G/H, xH #→ g−1xH , has only simple

fixed points. In this case, a transversal trace Tr! T (g) of T (g) can be defined according to

Tr! T (g) = Trlg−1 (Γ(ϕg)),

where ϕg : l∗g−1(G×H V ) → G×H V is the endomorphism associated to T (g) such that

T (g) = ϕg ◦ l
∗
g−1 ,

and Γ(ϕg) : Γ(l∗g−1(G×H V )) → Γ(G×H V ). Tr! T (g) is given by a sum over fixed points of g, and
one can show that, on an open set GT ⊂ G,

(15) ΘT (f) =

∫

GT

f(g)Tr! T (g)dG(g), f ∈ C∞
c (GT ).

Thus, the distribution character of a parabolically induced representation of a Lie group G is
represented on GT by the transversal trace of the corresponding geometric endomorphism. If G
is compact, the Lefschetz theorem reduces to the Hermann–Weyl formula by the theory of Borel
and Weil. It can be interpreted as expressing the character of a finite dimensional representation
as an alternating sum of characters of infinite dimensional representations. In what follows, we
shall prove similar formulae for the distributions Θπ and Θs

π defined in the previous section, after
reviewing some largely known facts about group actions on homogeneous spaces.

5. Fixed point actions on homogeneous spaces

Let G be a Lie group with Lie algebra g, H ⊂ G a closed subgroup with Lie algebra h, and
π : G → G/H the canonical projection. For an element g ∈ G, consider the natural left action
lg : G/H → G/H given by lg(xH) = gxH . Let AdG denote the adjoint action of G on g. We
begin with two well-known lemmata, see e.g. [3], page 463.

Lemma 1. lg−1 : G/H → G/H has a fixed point if and only if g ∈
⋃

x∈G xHx−1. Moreover, to
every fixed point xH one can associate a unique conjugacy class h(g, xH) in H.

Proof. Clearly,

lg−1(xH) = xH ⇐⇒ g−1xH = xH ⇐⇒ (g−1x)−1x ∈ H ⇐⇒ x−1gx = h(g, x),

where h(g, x) ∈ H . So lg−1 has a fixed point xH if, and only if, g ∈
⋃

x∈G xHx−1. Now, if y ∈ G
is such that xH = yH , then y = xh for some h ∈ H . This gives us that h(g, y) = y−1gy =
(xh)−1g(xh) = h−1(x−1gx)h = h−1h(g, x)h. Thus, as x varies over representatives of the coset
xH , h(g, x) varies over a conjugacy class h(g, xH) in H . "
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Lemma 2. Let xH be a fixed point of lg−1 and let h ∈ h(g, xH). Then

det (1− dlg−1)xH = det (1−AdG
H(h)),

where AdG
H : H → Aut(g/h) is the isotropy action of H on g/h.

Proof. Let Lg and Rg be the left and right translations, respectively, of g ∈ G on G. We begin
with the observation that

(16) π ◦ Lg−1 = lg−1 ◦ π,

where π is the natural map from G to G/H . Let e be the identity in G, and Tπ(e)(G/H) the
tangent space to G/H at the point π(e). The derivative dπ : g → Tπ(e)(G/H) is a surjective linear
map with kernel h, and therefore induces an isomorphism between g/h and Tπ(e)(G/H), which we
shall again denote by dπ. Notice also that, for h ∈ H , AdG(h) leaves h invariant and so induces a
map AdG

H(h) : g/h → g/h. Now, let xH be a fixed point of lg−1 , and take h ∈ h(g, xH). Choose x
in the coset xH such that g−1x = xh. For y ∈ G one computes

(π ◦ Lg−1 ◦Rh−1)(y) = π(g−1yh−1) = g−1yH = lg−1(yH) = (lg−1 ◦ π)(y),

so that

(17) π ◦ Lg−1 ◦Rh−1 = lg−1 ◦ π.

Observe, additionally, that Lg−1 ◦Rh−1 fixes x. We therefore see that Lg−1 ◦Rh−1 ◦Lx = Lx ◦Lh ◦
Rh−1 , which, together with equations (16) and (17), leads us to

(18) lx ◦ π ◦ Lh ◦Rh−1 = lg−1 ◦ lx ◦ π.

Differentiating this, and using the identification dlx ◦ dπ : g/h → Tπ(x)(G/H), we obtain the
commutative diagram

g/h
AdG

H (h)
−−−−−→ g/h

dlx◦dπ

0 dlx◦dπ

0

Tπ(x)(G/H)
dlg−1

−−−−→ Tπ(x)(G/H)

thus proving the lemma. "

Consider now the case when G is a connected, real, semi-simple Lie group with finite centre, θ a
Cartan involution of g, and g = k⊕ p the corresponding Cartan decomposition. Further, let K be
the maximal compact subgroup of G associated to k, and consider the corresponding Riemannian
symmetric space X = G/K which is assumed to be of non-compact type. By definition, θ is an
involutive automorphism of g such that the bilinear form 〈·, ·〉θ is strictly positive definite. In
particular, 〈·, ·〉θ|p×p is a symmetric, positive-definite, bilinear form, yielding a left-invariant metric
on G/K. Endowed with this metric, G/K becomes a complete, simply connected, Riemannian
manifold with non-positive sectional curvature. Such manifolds are called Hadamard manifolds.
Furthermore, for each g ∈ G, lg−1 : G/K → G/K is an isometry on G/K with respect to this
left-invariant metric. Note that Riemannian symmetric spaces of non-compact type are precisely
the simply connected Riemannian symmetric spaces with sectional curvature κ ≤ 0 and with no
Euclidean de Rham factor. We then have the following

Lemma 3. Let g ∈ G be such that lg−1 : G/K → G/K is transversal. Then lg−1 has a unique
fixed point in G/K.
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Proof. Let M be a Hadamard manifold, and ϕ an isometry on M that leaves two distinct points
x, y ∈ M fixed. By general theory, there is a unique minimal geodesic γ : R → M joining x and
y. Let γ(0) = x and γ(1) = y, so that ϕ ◦ γ(0) = ϕ(x) = x and ϕ ◦ γ(1) = ϕ(y) = y. Since
isometries take geodesics to geodesics, ϕ◦γ is a geodesic in M , joining x and y. By the uniqueness
of γ we therefore conclude that ϕ ◦ γ = γ. This means that an isometry on a Hadamard manifold
with two distinct fixed points also fixes the unique geodesic joining them point by point. Since, by
assumption, lg−1 : G/K → G/K has only isolated fixed points, the lemma follows. "

In what follows, we shall call an element g ∈ G transversal relative to a closed subgroup H if
lg−1 : G/H → G/H is transversal, and denote the set of all such elements by G(H).

Proposition 3. Let G be a connected, real, semi-simple Lie group with finite centre, and K a
maximal compact subgroup of G. Suppose rank(G) = rank(K). Then any regular element of G is
transversal relative to K. In other words, G′ ⊂ G(K), where G′ denotes the set of regular elements
in G.

Proof. If a regular element g is such that lg−1 : G/K → G/K has no fixed points, it is of course
transversal. Let, therefore, g ∈ G′ be such that lg−1 has a fixed point x0K. By Lemma 1, g must be
conjugate to an element k(g, x0) in K. Consider now a maximal family of mutually non-conjugate
Cartan subgroups J1, . . . , Jr in G, and put J ′

i = Ji ∩ G′ for i ∈ {1, . . . , r}. A result of Harish
Chandra then implies that

G′ =
r⋃

i=1

⋃

x∈G

xJ ′
i x

−1,

see [9], Theorem 1.4.1.7. From this we deduce that

g = xk(g, x0)x
−1 = yjy−1 for some x, y ∈ G, j ∈ J ′

i for some i.

Hence, k(g, x0) must be regular. Now, let T be a maximal torus ofK. It is a Cartan subgroup ofK,
and the assumption that rank(G) = rank(K) implies that that T is also Cartan in G. Let k(g, x0K)
be the conjugacy class in K associated to x0K, as in Lemma 1. As K is compact, the maximal
torus T intersects every conjugacy class in K. Varying x0 over the coset x0K, we can therefore
assume that k(g, x0) ∈ k(g, x0K) ∩ T . Thus, we conclude that k(g, x0) ∈ T ∩ G′. Note that, in
particular, we can choose Ji = T by the maximality of the J1, . . . , Jr. Now, for a regular element
h ∈ G belonging to a Cartan subgroup H one necessarily has det (1 − AdG

H(h)) -= 0, compare
the proof of Proposition 1.4.2.3 in [9]. Therefore det (1 − AdG

T (k(g, x0))) -= 0, and consequently,
det (1−AdG

K(k(g, x0))) -= 0. The assertion of the proposition now follows from Lemma 2. "

Corollary 1. Let G be a connected, real, semi-simple Lie group with finite centre, K a maximal
compact subgroup of G, and suppose that rank (G) = rank (K). Then the set of transversal elements
G(K) is open and dense in G.

Proof. Clearly, G(K) is open. Since the set of regular elements G′ is dense in G, the corollary
follows from the previous proposition. "

Remark 3. To close this section, let us remark that with G as above, and P a parabolic subgroup
of G, it is a classical result that G′ ⊂ G(P ), see [5], page 51.

6. Character formulae

Let the notation be as before. We are now in a position to describe the distributions Θs
π and

Θπ introduced in Section 3. Thus, let (π,C(X̃)) be the regular representation of G on the Oshima

compactification X̃ of the Riemannian symmetric space X = G/K of non-compact type, and denote
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by Φg(x̃) = g · x̃ the G-action on X̃. Let further G(X̃) ⊂ G be the set of elements g in G acting

transversally on X̃.

Remark 4. The set G(X̃) is open. Corollary 1 and Remark 3 imply that G(X̃) is dense if
rank (G/K) = 1, and non-empty if rank (G/K) = 2, and rank (G) = rank (K).

Theorem 2. Let f ∈ C∞
c (G) have support in G(X̃), and s ∈ C, Re s > −1. Then

(19) Trs π(f) =

∫

G(X̃)
f(g)




∑

x̃∈Fix(g)

∑

γ

αγ(x̃)|xk+1(κ−1
γ (x̃)) · · ·xk+l(κ−1

γ (x̃))|s+1

|det (1− dΦg−1(x̃))|



 dG(g),

where Fix(g) denotes the set of fixed points of g on X̃. In particular, Θs
π : C∞

c (G) " f → Trs π(f) ∈
C is regular on G(X̃).

Proof. By Proposition 1,

Trs π(f) =
∑

γ

∫

Wγ

(αγ ◦ ϕγ)(x)|xk+1 · · ·xk+l|
sÃγ

f (x, 0)dx

is a meromorphic function in s with possible poles at −1,−3, . . . . Assume that Re s > −1. Since
αγ ∈ C∞

c (W̃γ), and Ãγ
f (x, 0) =

∫
ãγf(x, ξ)d̄ξ, where ã

γ
f(x, ξ) ∈ S−∞

la (Wγ ×Rk+l) is rapidly decaying
in ξ by Theorem 1, we can interchange the order of integration to obtain

Trs π(f) =
∑

γ

∫ ∫

Wγ

(αγ ◦ ϕγ)(x)|xk+1 · · ·xk+l|
sãγf (x, ξ)dx d̄ξ.

Let χ ∈ C∞
c (Rk+l,R+) be equal 1 in a neighborhood of 0, and ε > 0. Then, by Lebesgue’s theorem

on bounded convergence,
Trs π(f) = lim

ε→0
Iε,

where we defined

Iε =
∑

γ

∫ ∫

Wγ

(αγ ◦ ϕγ)(x)|xk+1 · · ·xk+l|
sãγf (x, ξ)χ(εξ) dx d̄ξ.

Taking into account (3), and interchanging the order of integration once more, one sees that

Iε =

∫

G

f(g)
∑

γ

∫ ∫

Wγ

eiΨγ(g,x)·ξcγ(x, g)(αγ ◦ ϕγ)(x)|xk+1 · · ·xk+l|
sχ(εξ)dx d̄ξ dG(g),

everything in sight being absolutely convergent. Let us now set

Iε(g) = f(g)
∑

γ

∫ ∫

Wγ

eiΨγ(g,x)·ξcγ(x, g)(αγ ◦ ϕγ)(x)|xk+1 · · ·xk+l|
sχ(εξ)dx d̄ξ,

so that Iε =
∫
G
Iε(g) dG(g). We would like to pass to the limit under the integral, for which

we are going to show that limε→0 Iε(g) is an integrable function on G. For this, let us fix an

arbitrary g ∈ G(X̃). By definition, g acts only with simple fixed points on X̃. Since each of them is
isolated, g can have at most finitely many fixed points on X̃. Consider therefore a cut–off function
βg ∈ C∞(X̃,R+) which is equal 1 in a small neighborhood of each fixed point of g, and whose
support decomposes into a union of connected components each of them containing only one fixed
point of g. By choosing the support of βg sufficiently close to the fixed points we can, in addition,
assume that

(20) det (dΦg(x̃)− 1) -= 0 on suppβg.



INTEGRAL OPERATORS ON OSHIMA COMPACTIFICATIONS OF RIEMANNIAN SYMMETRIC SPACES 13

Since the action of G is real analytic, we obtain a family of functions βg(x̃) depending analytically

on g ∈ G(X̃). Multiplying the integrand of Iε(g) with βg ◦ ϕγ(x), and 1− βg ◦ ϕγ(x), respectively,
we obtain the decomposition

Iε(g) = I(1)ε (g) + I(2)ε (g).

Let us first examine what happens away from the fixed points. Integrating by parts 2N times with
respect to ξ yields

I(2)ε (g) = f(g)
∑

γ

∫ ∫

Wγ

eiΨγ(g,x)·ξcγ(x, g)(αγ(1− βg))(ϕγ(x))|xk+1 · · ·xk+l|
sχ(εξ)dx d̄ξ

= f(g)
∑

γ

∫ ∫

Wγ

eiΨγ(g,x)·ξ

|Ψγ(g, x)|2N
∆N
ξ [χ(εξ)]cγ(x, g)(αγ(1− βg))(ϕγ(x))|xk+1 · · ·xk+l|

sdx d̄ξ,

where ∆ξ = ∂2
ξ1 + · · ·+ ∂2

ξk+l
. Now, for arbitrary N ,

|∆N
ξ [χ(εξ)]| ≤ CN (1 + |ξ|2)−N ,

where CN does not depend on ε for 0 < ε ≤ 1. Furthermore, there exists a constant Mf > 0 such
that |Ψγ(g, x)|2N ≥ Mf on the support of 1 − βg ◦ ϕγ for all g ∈ supp f and γ. By Lebesgue’s
theorem, we may therefore pass to the limit under the integral, and obtain

lim
ε→0

I(2)ε (g) = 0.

Hence, as ε → 0, the main contributions to Iε(g) originate from the fixed points of g. To examine
these contributions, note that condition (20) implies that x #→ ϕg

γ(x)− x defines a diffeomorphism
on each of the connected components of supp(αγβg) ◦ϕγ onto their respective images. Performing
the change of variables y = x− ϕg

γ(x) we get

I(1)ε (g) = f(g)
∑

γ

∫ ∫

Wγ

eiΨγ(g,x)·ξcγ(x, g)(αγβg)(ϕγ(x))|xk+1 · · ·xk+l|
sχ(εξ)dx d̄ξ

= f(g)
∑

γ

∫ ∫
e−i(1k⊗T−1

x(y)
)y·ξ|xk+1(y) · · ·xk+l(y)|

s (αγβg)(ϕγ(x(y)))cγ(x(y), g)

|det (1− dϕg
γ(x(y)))|

χ(εξ)dy d̄ξ

= f(g)
∑

γ

∫
|xk+1(y) · · ·xk+l(y)|

scγ(x(y), g)
(αγβg)(ϕγ(x(y)))χ̂((1k ⊗ T−1

x(y))y/ε)

(2π)k+lεk+l|det (1− dϕg
γ(x(y)))|

dy

= f(g)
∑

γ

∫
|xk+1(εy) · · ·xk+l(εy)|

scγ(x(εy), g)
(αγβg)(ϕγ(x(εy)))χ̂((1k ⊗ T−1

x(εy))y)

(2π)k+l|det (1− dϕg
γ(x(εy)))|

dy.

Since in a neighborhood of a fixed point x̃ of g the Jacobian of the singular change of coordinates
z = (1k ⊗ T−1

x(εy))y converges to the expression |xk+1(κ−1
γ (x̃)) · · ·xk+l(κ−1

γ (x̃))|−1 as ε → 0, we

finally obtain with (2π)−k−l
∫
χ̂(y)dy = χ(0) = 1 that

lim
ε→0

I(1)ε (g) = lim
ε→0

f(g)

·
∑

γ

∫
|xk+1(εy(z)) · · ·xk+l(εy(z))|

scγ(x(εy(z)), g)
(αγβg)(ϕγ(x(εy(z))))| ∂ y/ ∂ z|

(2π)k+l|det (1− dϕg
γ(x(εy(z))))|

χ̂(z)dz

= f(g)
∑

x̃∈Fix(g)

∑

γ

αγ(x̃)|xk+1(κ−1
γ (x̃)) · · ·xk+l(κ−1

γ (x̃))|s+1

|det (1− dΦg−1(x̃))|
,
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since ᾱγ ≡ 1 on suppαγ , and βg(x̃) = 1. The limit function limε→0 Iε(g) is therefore clearly
integrable on G for Re s > −1, so that by passing to the limit under the integral one computes

Trs π(f) = lim
ε→0

Iε = lim
ε→0

∫

G

Iε(g) dG(g) =

∫

G

lim
ε→0

(
I(1)ε + I(2)ε

)
(g)dG(g)

=

∫

G

f(g)
∑

x̃∈Fix(g)

∑

γ

αγ(x̃)|xk+1(κ−1
γ (x̃)) · · ·xk+l(κ−1

γ (x̃))|s+1

|det (1 − dΦg−1(x̃))|
dG(g),

yielding the desired description of Θs
π. "

As an immediate consequence of the previous theorem, we see that if f ∈ C∞
c (G(X̃)), Trs π(f)

is not singular at s = −1. This observation leads to the following

Corollary 2. Let f ∈ C∞
c (G) have support in G(X̃). Then

Trreg π(f) = Tr−1 π(f) =

∫

G(X̃)
f(g)

∑

x̃∈Fix(g)

1

|det (1− dΦg−1(x̃))|
dG(g).

In particular, the distribution Θπ : f → Trreg(f) is regular on G(X̃).

Proof. Consider the Laurent expansion of Θs
π(f) at s = −1 given by

Trs π(f) =

〈

|xk+1 · · ·xk+l|
s,
∑

γ

(αγ ◦ ϕγ)Ã
γ
f (·, 0)

〉

=
∞∑

j=−q

Sj

(∑

γ

(αγ ◦ ϕγ)Ã
γ
f (·, 0)
)
(s+ 1)j ,

where Sk ∈ D′(Rk+l). Since by (19), Trs π(f) has no pole at s = −1, we necessarily must have

Sj

(∑

γ

(αγ ◦ ϕγ)Ã
γ
f (·, 0)
)
= 0 for j < 0,

so that

Tr−1 π(f) =

〈

S0,
∑

γ

(αγ ◦ ϕγ)Ã
γ
f (·, 0)

〉

= Trreg π(f).

The assertion now follows with the previous theorem. "

In particular, Corollary 2 implies that Trreg π(f) is invariantly defined. Now, interpreting π(g)

as a geometric endomorphism on the trivial bundle E = X̃× C over the Oshima compactification
X̃, a transversal trace Tr! π(g) of π(g) can be defined according to

Tr! π(g) = TrΦ
g−1 (Γ(ϕg)),

where ϕg : Φ∗
g−1E → E is the associated bundle homomorphism which identifies the fiber EΦg−1 (x̃)

with Ex̃, and satisfies (Trϕg)|x̃ = 1 at each fixed point x̃ of g. Taking into account (14), the
previous corollary can be reformulated, and we finally deduce the following character formula for
the distribution character of π.

Theorem 3. On the set of transversal elements G(X̃), the distribution Θπ : f → Trreg(f) is given
by

Trreg π(f) =

∫

G(X̃)
f(g)Tr! π(g)dG(g), f ∈ C∞

c (G(X̃)),

where

Tr! π(g) =
∑

x̃∈Fix(g)

1

|det (1− dΦg−1(x̃))|
,

the sum being over the (simple) fixed points of g ∈ G(X̃) on X̃.
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"

7. The case X = SL(3,R)/SO(3)

We shall finish this paper by describing in detail the Oshima compactification of the Riemannian
symmetric space X = SL(3,R)/SO(3). Thus, let g = sl(3,R) be the Lie algebra of G. A Cartan
involution θ : g → g is given by X #→ −Xt, where Xt denotes the transpose of X , and the
corresponding Cartan decomposition of g reads g = k ⊕ p, where k = {X ∈ sl(3,R) : Xt = −X},
and p = {X ∈ sl(3,R) : Xt = X}. Next, let

a = {D(a1, a2, a3) : a1, a2, a3 ∈ R, a1 + a2 + a3 = 0},

where D(a1, a2, a3) denotes the diagonal matrix with diagonal elements a1, a2 and a3. Then a is a
maximal Abelian subalgebra in p. Define ei : a → R by D(a1, a2, a3) #→ ai, i = 1, 2, 3. The set of
roots Σ of (g, a) is given by Σ = {±(ei − ej) : 1 ≤ i < j ≤ 3}. We order the roots such that the
positive roots are Σ+ = {e1 − e2, e2 − e3, e1 − e3}, and obtain ∆ = {e1 − e2, e2 − e3} as the set of
simple roots. The root space corresponding to the root e1 − e2 is given by

ge1−e2 =









0 x 0
0 0 0
0 0 0



 : x ∈ R




 ,

and similar computations show that

ge2−e3 =









0 0 0
0 0 z
0 0 0



 : z ∈ R




 , ge1−e3 =









0 0 y
0 0 0
0 0 0



 : y ∈ R




 .

For a subset Θ ⊂ ∆, let 〈Θ〉 denote those elements of Σ that are given as linear combinations of
the roots in Θ. Write 〈Θ〉± for Σ± ∩ 〈Θ〉. Put n±(Θ) =

∑
λ∈〈Θ〉± gλ, and n+Θ =

∑
λ∈Σ+−〈Θ〉+ gλ.

Let n−Θ = θ(n+Θ). Consider now the case Θ = {e1 − e2}. Then n+(e1 − e2) = ge1−e2 , and
n+e1−e2 = ge2−e3 ⊕ ge1−e3 . In other words,

n+e1−e2 =









0 0 y
0 0 z
0 0 0



 : y, z ∈ R




 .

Exponentiating, we find that the corresponding analytic subgroups are given by

N+(e1 − e2) =









1 x 0
0 1 0
0 0 1



 : x ∈ R




 , N+
e1−e2 =









1 0 y
0 1 z
0 0 1



 : y, z ∈ R




 .

In a similar fashion, we obtain that

n−(e1 − e2) = ge2−e1 =









0 0 0
x 0 0
0 0 0



 : x ∈ R




 ,

n−e1−e2 = θ(n+e1−e2) =









0 0 0
0 0 0
y z 0



 : y, z ∈ R




 ,

and that the corresponding analytic subgroups read

N−(e1 − e2) =









1 0 0
x 1 0
0 0 1



 : x ∈ R




 , N−
e1−e2 =









1 0 0
0 1 0
y z 1



 : y, z ∈ R




 .
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The Cartan-Killing form 〈·, ·〉 : g × g → R is given by (X,Y ) #→ Tr(XY ), and the modified
Cartan-Killing form by 〈X,Y 〉θ := −Tr(Xθ(Y )) = −Tr(X(−Y t)) = Tr(XY t). Next, let a(Θ) =∑

λ∈〈Θ〉+ RQλ, where Qλ = [θX,X ] for X ∈ gλ such that 〈X,X〉θ = 1. Also, let aΘ be the
orthogonal complement of a(Θ) with respect to 〈·, ·〉θ. Again, suppose that Θ = {e1−e2}. We find

Qe1−e2 =




1 0 0
0 −1 0
0 0 0



 ,

so that

a(e1 − e2) = RQe1−e2 =









r 0 0
0 −r 0
0 0 0



 : r ∈ R




 .

This in turn gives us that

ae1−e2 =









a 0 0
0 a 0
0 0 −2a



 : a ∈ R




 .

Exponentiation then shows that the corresponding analytic subgroups are

A(e1 − e2) =









a 0 0
0 a−1 0
0 0 1



 : a ∈ R
+




 , Ae1−e2 =









a 0 0
0 a 0
0 0 a−2



 : a ∈ R
+




 .

TakeK = SO(3) as a maximal compact subgroup of SL(3,R), and denote byMΘ(K) the centralizer
of aΘ in K. Observing that the adjoint action of a matrix group G is just the matrix conjugation,
we see that

Me1−e2(K) = ZK(ae1−e2) =

(
SO(2) 0

0 1

)
∪




1 0 0
0 −1 0
0 0 −1




(
SO(2) 0

0 1

)
.

Notice that Me1−e2(K) has 2 connected components. Put M = ZK(A), and let P = MAN+ be
the minimal parabolic subgroup given by the ordering of the roots of (g, a). For G = SL(3,R) one
computes

M =









1 0 0
0 1 0
0 0 1



 ,




1 0 0
0 −1 0
0 0 −1



 ,




−1 0 0
0 −1 0
0 0 1



 ,




−1 0 0
0 1 0
0 0 −1








 .

As Θ varies over the subsets of ∆, we get all the parabolic subgroups PΘ of G containing P , and
we write PΘ = MΘ(K)AN+. By definition, PΘ(K) = MΘ(K)AΘN

+
Θ so that, in particular,

Pe1−e2(K) =




(
SO(2) 0

0 1

)
∪




1 0 0
0 −1 0
0 0 −1




(
SO(2) 0

0 1

)

 ·









a 0 0
0 a 0
0 0 a−2



 : a ∈ R
+






·









1 0 y
0 1 z
0 0 1



 : z ∈ R




 .

The orbital decomposition of the Oshima compactification X̃ of X = SL(3,R)/SO(3) is therefore
given by

X̃ = G/P 8 2 ·G/Pe1−e2(K) 8 2 ·G/Pe2−e3(K) 8 22 ·G/K.
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