
ar
X

iv
:1

20
2.

47
09

v1
  [

m
at

h.
SP

]  
21

 F
eb

 2
01

2

EQUIVARIANT HEAT ASYMPTOTICS ON SPACES OF AUTOMORPHIC

FORMS

OCTAVIO PANIAGUA-TABOADA AND PABLO RAMACHER

Abstract. Let G be a connected, real, semisimple Lie group with finite center, and K a maximal
compact subgroup of G. In this paper, we derive K-equivariant asymptotics for heat traces
with remainder estimates on compact Riemannian manifolds carrying a transitive and isometric
G-action. In particular, we compute the leading coefficient in the Minakshishundaram-Pleijel
expansion of the heat trace for Bochner-Laplace operators on homogeneous vector bundles over
compact locally symmetric spaces of arbitrary rank.
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1. Introduction

Let G be a connected, real, semisimple Lie group with finite center, acting isometrically and
transitively on a compact, n-dimensional, real-analytic Riemannian manifold M . Let further K be
a maximal compact subgroup of G. In this paper, we derive K-equivariant asymptotics for traces
of heat semigroups associated to strongly elliptic operators on M with remainder estimates. In
particular, if M = Γ\G, where Γ is a discrete, torsion-free, uniform subgroup of G, we compute the
leading coefficient in the Minakshishundaram-Pleijel expansion of the heat trace of Bochner-Laplace
operators on homogeneous vector bundles over compact, locally symmetric spaces of arbitrary rank,
together with an estimate for the remainder.

The study of the asymptotic behavior of heat semigroups and their kernels has a long history.
One of the pioneering works in this direction was the derivation of an asymptotic expansion for the
fundamental solution of the heat equation on a compact manifold by Minakshisundaram and Pleijel
[15]. The first three coefficients in this expansion were computed by McKean and Singer [13] in
terms of geometric quantities, yielding corresponding expansions of heat traces. This culminated
in a heat theoretic proof of the index theorem by Atiyah, Bott and Patodi [1]. In the case of
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Riemannian symmetric spaces, an explicit expression for the fundamental solution of the heat
equation was given by Gangolli [10] using Harish-Chandra’s Plancherel theorem. Later, Donelly
[9] generalized the constructions in [15] and [3] to Riemannian manifolds admitting a properly
discontinuous group of isometries with compact quotient. Following these developments, Miatello
[14], and DeGeorge and Wallach [8] established asymptotic expansions for heat traces of Bochner-
Laplace operators on homogeneous vector bundles over compact, locally symmetric spaces of rank
one. Holomorphic semigroups generated by strongly elliptic operators on Lie groups have been
studied sytematically by Langlands [12], and Robinson and ter Elst [22], [24], giving lower and
upper bounds for their kernels. For further references, see also [7] and [4].

To illustrate our results, let (π,L2(M)) be the regular representation of G on the Hilbert space
of square integrable functions on M with respect to an invariant density, and ft the group kernel
of a strongly elliptic operator Ω of order q associated to the representation π, where t > 0. The
corresponding heat operator is then given by e−tΩ = π(ft), and characterized in Theorem 1 as a
pseudodifferential operator of order −∞. Due to the compactness of M , this implies that π(ft) is
of trace class. Using this characterization, we consider the decomposition

L2(M) =
⊕

σ∈K̂

L2(M)σ

of L2(M) into K-isotypic components, and derive asymptotics with remainder estimates for the
trace

tr(Pσ ◦ π(ft) ◦ Pσ)

of the restriction of π(ft) to the isotypic component L2(M)σ = Pσ(L2(M)) as t goes to zero,
Pσ being the corresponding projector, see Theorem 4. In order to do so, one has to describe the
asymptotic behavior of certain oscillatory integrals, which has been determined before in [21] while
studying the spectrum of an invariant elliptic operator. The difficulty here resides in the fact that,
since the critical sets of the corresponding phase functions are not smooth, a desingularization
procedure is required in order to apply the method of the stationary phase in a suitable resolution
space. In case that ft has an asymptotic expansion of the form

ft(g) ∼
1

td/q
e−b

(
d(g,e)q

t

)1/(q−1) ∞∑

j=0

cj(g)t
j , b > 0,

near the identity e ∈ G with analytic coefficients cj(g), where d = dimG, and d(g, e) denotes the
distance of g ∈ G from the identity with respect to the canonical left-invariant metric on G, we
show in Corollary 4 that

tr(Pσ ◦ π(ft) ◦ Pσ) =
dσ⊗σ [(πσ ⊗ πσ)|H : 1]

(2π)n−κt(n−κ)/q
c0(e) ṽol (Ξ/K) +O(t−(n−κ−1)/q(log t)Λ−1),

where (πσ , Vσ) ∈ σ, and ṽol (Ξ/K) is given by local integrals over the zero level set Ξ = J−1(0) of
the momentum map J : T ∗M → (k ⊕ k)∗ of the underlying action of K = K ×K on M . In fact,

ṽol (Ξ/K) represents a Gaussian volume of the symplectic quotient Ξ/K. Further, κ denotes the
dimension of a K-orbit of principal type, and H ⊂ K a principal isotropy group, while Λ is the
maximal number of elements of a totally ordered subset of the set of K-isotropy types.

As our main application, we consider the case M = Γ\G, where Γ ⊂ G is a discret, co-
compact subgroup. The previous results, combined with Selberg’s trace formula, then yield an
asymptotic description of Lσft at the identity, where Lσ denotes the projector onto the isotypic
component L2(G)σ of the left-regular representation (L,L2(G)) of G, see Proposition 3. Finally,
for torsion-free Γ, we are able to compute the first coefficient in the Minakshisundaram-Pleijel
expansion, together with an estimate for the remainder, of vector valued heat kernels on the
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compact locally symmetric space Γ\G/K, generalizing part of the work in [14] and [8] to arbitrary
rank. More precisely, let ∆σ be the Bochner-Laplace operator on the homogeneous vector bundle
Eσ = Γ\(G × Vσ)/K → Γ\G/K. Denote by λσ the Casimir eigenvalue of K corresponding to
σ ∈ K̂. Then, by Theorem 5,

tr e−t∆σ =
etλσ

∫
H
trπσ(kk

−1
1 ) dk1 dk

(2π)dimG/Kt
dimG/K

2

ṽol (Ξ/K) +O(etλσ t−(dimG/K−1)/2(log t)Λ−1),

where, again, ṽol (Ξ/K) is given by a Gaussian volume of the symplectic quotient Ξ/K.
This paper is organized as follows. The microlocal structure of general convolution operators

with rapidly decaying group kernels on paracompact, smooth manifolds is described in Section
2. In Section 3, the Langlands kernel of a semigroup generated by a strongly elliptic operator
on M is considered, and its equivariant heat trace is expressed in terms of oscillatory integrals.
Since the occuring phase functions do have singular critical sets, the stationary phase principle
cannot immediately be applied to describe the asymptotic behavior of those integrals. Instead,
we rely on the results in [21], where resolution of singularities was used to partially resolve the
singularities of the considered critical sets. This yields short-time asymptotics with remainder
estimates for equivariant heat traces in Section 4. Finally, in Section 5, we consider the particular
case M = Γ\G, where Γ denotes a uniform, torsion-free lattice in G, and apply our results to heat
traces of Bochner-Laplace operators on compact locally symmetric spaces of arbitrary rank.

2. Convolution operators

Let G be a connected, real, semisimple Lie group with finite center, and Lie algebra g. Denote
by 〈X,Y 〉 = tr (adX ◦ adY ) the Cartan-Killing form on g, and by θ a Cartan involution of g. Let

(1) g = k⊕ p

be the Cartan decomposition of g into the eigenspaces of θ, corresponding to the eigenvalues +1
and −1 , respectively. Put 〈X,Y 〉θ := −〈X, θY 〉. Then 〈·, ·〉θ defines a left-invariant metric on
G. With respect to this metric, we define d(g, h) as the geodesic distance between two points
g, h ∈ G, and set |g| = d(g, e), where e is the identity element of G. Note that d(g1g, g1h) = d(g, h)
for all g, g1, h ∈ G. In contrast to the Killing form, 〈·, ·〉θ is no longer Ad (G)-invariant, but still
Ad (K)-invariant, so that d(gk, hk) = d(g, h) for all g, h ∈ G, and k ∈ K. Indeed, one has the
following

Proposition 1. The modified Killing form 〈·, ·〉θ is Ad (K)-invariant, which implies that the cor-
responding Riemannian distance d on G is right K-invariant. In particular, |g| = |kgk−1| for all
g ∈ G and k ∈ K.

Proof. This seems to be a well-known fact, but for lack of references, we include a proof here.
Thus, let us first note that for k ∈ K, the morphisms Ad (k) and θ commute. Indeed, the inclusions
[k, k] ⊂ k, [p, p] ⊂ k, and [k, p] ⊂ p, together with the relation Ad (eX) = eadX , X ∈ g, imply that
Ad (K) k ⊂ k, Ad (K) p ⊂ p. Hence, Ad (k)θX = θAd (k)X for all X ∈ g. But then

〈Ad (k)X,Ad (k)Y 〉θ = −〈Ad (k)X, θAd (k)Y 〉 = −〈Ad (k)X,Ad (k)θY 〉 = −〈X, θY 〉 = 〈X,Y 〉θ

for all X,Y ∈ g, k ∈ K, showing the Ad (K)-invariance of 〈·, ·〉θ.
Next, we show that the Riemannian distance d is right K-invariant. For this purpose, recall

that for a curve c : [a, b]→ X on a Riemannian manifold X with metric ν, the length of c is given
by

L(c) =

∫ b

a

√
νc(s)(c′(s), c′(s))ds.
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Let now c : [a, b]→ G be a curve in G joining two points g, h ∈ G. We then assert that

(2)
d

dt
kc(t)k−1|t=t0 =

(
dLkc(t0)k−1

)
e
Ad (k)

(
(dLc(t0)−1)c(t0)c

′(t0)
)
, k ∈ G,

where Lg : G → G corresponds to left-translation by g ∈ G, and (dLg)h : ThG → TghG is its
differential at h ∈ G. Indeed, if ik : G → G denotes the interior automorphism h -→ khk−1,
its differential at the identity e is by definition Ad (k) = (dik)e : g → g. Furthermore, since
ik = Lk ◦Rk−1 = Rk−1 ◦ Lk, we have the identities

Ad (k) = (dLk)k−1 ◦ (dRk−1 )e = (dRk−1 )k ◦ (dLk)e.

Similarly, Lkc(t0)k−1 = Lk ◦ Lc(t0) ◦ Lk−1 implies (dLkc(t0)k−1)e = (dLk)c(t0)k−1 ◦ (dLc(t0)k−1 ◦
(dLk−1 )e. The left hand side of (2) now reads

d

dt
kc(t)k−1|t=t0 = (dLk)c(t0)k−1 ◦ (dRk−1 )c(t0)(c

′(t0)),

while the right hand side equals

(dLk)c(t0)k−1 ◦ (dLc(t0))k−1 ◦ (dLk−1)e ◦ (dLk)k−1 ◦ (dRk−1 )e ◦ (dLc(t0)−1)c(t0)(c
′(t0))

= (dLk)c(t0)k−1 ◦ (dRk−1 )c(t0) ◦ (dLc(t0))e ◦ (dLc(t0)−1)c(t0)(c
′(t0))

= (dLk)c(t0)k−1 ◦ (dRk−1 )c(t0)(c
′(t0)),

prooving (2). Write 〈X,X〉θ = ‖X‖
2
θ. The Ad (K)-invariance of 〈·, ·〉θ then implies

L(kck−1) =

∫ b

a

∥∥∥∥(dLkc(s)−1k−1)kc(s)k−1

( d

dt
kc(t)k−1|t=s

)∥∥∥∥
θ

ds

=

∫ b

a

∥∥Ad (k)
[
(dLc(t0)−1)c(t0)c

′(t0)
]∥∥
θ
ds =

∫ b

a

∥∥(dLc(t0)−1)c(t0)c
′(t0)

∥∥
θ
ds = L(c)

for arbitrary k ∈ K. Assume now that c is a shortest geodesic. The last equality then shows that
kck−1 is a shortest geodesic, too. Otherwise there would exist a geodesic c̃ joining kgk−1 and
khk−1 with L(c̃) < L(kck−1). But then L(k−1c̃k) < L(c), a contradiction. Therefore

d(g, h) = L(c) = L(kck−1) = d(kgk−1, khk−1) = d(gk−1, hk−1)

for all g, h ∈ G, k ∈ K, and the proposition follows. !

Let us consider next a paracompact C∞-manifold M of dimension n, and assume that G acts
on M in a smooth and transitive way. Let C(M) be the Banach space of continuous, bounded,
complex valued functions on M , equipped with the supremum norm, and let (π,C(M)) be the
corresponding continuous regular representation of G given by

π(g)ϕ(p) = ϕ(g · p), ϕ ∈ C(M), g ∈ G, p ∈M.

The representation of the universal enveloping algebra U of the complexification gC of g on the
space of differentiable vectors C(M)∞ will be denoted by dπ. We shall also consider the regular
representation of G on C∞(M) which, equipped with the topology of uniform convergence on com-
pacta, becomes a Fréchet space. This representation will be denoted by π as well. Let (L,C∞(G))
and (R,C∞(G)) be the left, respectively right regular representation of G. A function f on G is
said to be of at most of exponential growth, if there exists a κ > 0 such that |f(g)| ≤ Ceκ|g| for
some constant C > 0, and all g ∈ G. Let dg be a Haar measure on G. We then make the following

Definition 1. The space of rapidly decreasing functions on G, denoted by S(G), is given by all
functions f ∈ C∞(G) satisfying the following conditions:



EQUIVARIANT HEAT ASYMPTOTICS ON SPACES OF AUTOMORPHIC FORMS 5

i) For every κ ≥ 0, and X ∈ U, there exists a constant C > 0 such that

|dL(X)f(g)| ≤ Ce−κ|g|;

ii) for every κ ≥ 0, and X ∈ U, one has dL(X)f ∈ L1(G, eκ|g|dG).

The space S(G) was first introduced in [20], and motivated by the study of strongly elliptic
operators, and the semigroups generated by them, see Section 3. Let us now associate to every
f ∈ S(G) and ϕ ∈ C(M) the vector-valued integral

∫
G f(g)π(g)ϕ dG(g) ∈ C(M), yielding a

continuous linear operator

(3) π(f) =

∫

G
f(g)π(g) dg

on C(M). Its restriction to C∞
c (M) induces a continuous linear operator

π(f) : C∞
c (M) −→ C(M) ⊂ D′(M),

with Schwartz kernel given by the distribution section Kf ∈ D′(M × M,1 " ΩM ), where ΩM

denotes the density bundle of M . In what follows, we shall show that π(f) is an operator with
smooth kernel. As we shall see, the smoothness of the operators π(f) is a direct consequence of
the fact that G acts transitively on M .

Thus, let
{
(W̃ ′

ι ,ϕι)
}

ι∈I
be a locally finite atlas of M . By [11], page 273, there exists a locally

finite refinement
{
W̃ι

}

ι∈I
with the same index set such that W̃ι ⊂ W̃ ′

ι for every ι ∈ I. Assume that

the W̃ ′
ι are compact, and let {αι}ι∈I be a partition of unity subordinated to the atlas

{
(W̃ι,ϕι)

}

ι∈I
,

meaning that

(a) the αι are smooth functions, and 0 ≤ αι ≤ 1;

(b) suppαι ⊂ W̃ι;
(c)

∑
ι∈I αι = 1.

Let further {α′
ι}ι∈I be another set of functions satisfying condition (a), and in addition

(b’) suppα′
ι ⊂ W̃ ′

ι ;
(c’) α′

ι|W̃ι
≡ 1.

Consider now the localization of π(f) with respect to the latter atlas

Aιfu = [π(f)|W̃ι
(u ◦ ϕι)] ◦ ϕ

−1
ι , u ∈ C∞

c (Wι), Wι = ϕι(W̃ι) ⊂ Rn,

corresponding to the diagram

C∞
c (W̃ι)

π(f)|W̃ι−−−−−→ C∞(W̃ι)

ϕ∗
ι

2
2ϕ∗

ι

C∞
c (Wι)

Aι
f

−−−−→ C∞(Wι).

Let p ∈ W̃ι. Writing ϕg
ι = ϕι ◦ g ◦ ϕ−1

ι , and x = ϕι(p) = (x1, . . . , xn) ∈ Wι we obtain

Aιfu(x) =

∫

G
f(g)[(u ◦ ϕι)α

′
ι](g · ϕ

−1
ι (x)) dg =

∫

G
f(g)cι(x, g)(u ◦ ϕ

g
ι )(x) dg,

where we put cι(x, g) = α′
ι(g · ϕ

−1
ι (x)). Next, define the functions

(4) aιf (x, ξ) = e−ix·ξ

∫

G
eiϕ

g
ι (x)·ξcι(x, g)f(g) dg.
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Since f is rapidly falling, differentiation under the integral yields aιf (x, ξ) ∈ C∞(Wι×Rn). We can
now state

Theorem 1 (Structure theorem). Let M be a paracompact C∞-manifold of dimension n, and G
a connected, real, semisimple Lie group with finite center acting on M in a smooth and transitive
way. Let further f ∈ S(G) be a rapidly decaying function on G. Then the operator π(f) is a
pseudodifferential operator of class L−∞(M), that is, it is locally of the form 1

Aιfu(x) =

∫
eix·ξaιf (x, ξ)û(ξ) d̄ξ, u ∈ C∞

c (Wι),(5)

where the symbol aιf (x, ξ) ∈ S−∞(Wι,Rn) is given by (4), and d̄ξ = (2π)−n dξ. In particular, the
kernel of the operator Aιf is given by the oscillatory integral

(6) KAι
f
(x, y) =

∫
ei(x−y)·ξaιf (x, ξ) d̄ξ ∈ C∞(Wι ×Wι).

Proof. Our considerations will essentially follow the proof of Theorem 4 in [20], or Theorem 2
in [19]. For a review on pseudodifferential operators, the reader is referred to [23]. Fix a chart

(W̃ι,ϕι), and let p ∈ W̃ι, x = (x1, . . . , xn) = ϕι(p) ∈ Rn. In what follows we shall show that
aιf (x, ξ) belongs to the symbol class S−∞(Wι×Rn). For later purposes, we shall actually consider
the slightly more general amplitudes

aιι̃f (x, ξ; k1, k2) = e−iϕ
k1k2
ι̃ (x)·ξα′

ι̃(k1k2 · ϕ
−1
ι (x))

∫

G
eiϕ

k1gk2
ι (x)·ξcι(x, k1gk2)f(g) dg

= e−iϕ
k1k2
ι̃ (x)·ξα′

ι̃(k1k2 · ϕ
−1
ι (x))

∫

G
eiϕ

g
ι (x)·ξcι(x, g)(L(k1)R(k−1

2 )f)(g) dg,
(7)

where k1, k2 ∈ G. Here we took into account the unimodularity of G. In particular, aιf (x, ξ) =

aιιf (x, ξ; e, e). Denote by Vι,p the set of all g ∈ G such that g · p ∈ W̃ι. Assume that g ∈ Vι,p, and
write

ψιξ,x(g) = eiϕ
g
ι (x)·ξ.

For X ∈ g one computes that

dL(X)ψιξ,x(g) =
d

ds
eiϕ

e−sX g
ι (x)·ξ

|s=0 = iψιξ,x(g)
n∑

i=1

ξidL(X)xi,p(g),

where we put xi,p(g) = xi(g ·p). Let {X1, . . . , Xd} be a basis of g. Since G acts locally transitively

on W̃ι, the n× d matrix

(dL(Xj)xi,p(g))i,j

has maximal rank. As a consequence, there exists a neighborhood Ũp of p, and indices j1, . . . , jn
such that

det (dL(Xjk)xi,p′ (g))i,k 2= 0 ∀p′ ∈ Ũp.

Hence,

(8)





dL(Xj1)ψ
ι
ξ,x′(g)

...
dL(Xjn)ψ

ι
ξ,x′(g)



 = iψιξ,x′(g)M(x′, g)ξ,

1Here and in what follows we use the convention that, if not specified otherwise, integration is to be performed
over whole Euclidean space.
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where M(x′, g) =
(
dL(Xjk)xi,ϕ−1

ι (x′)(g)
)

i,k
∈ GL(n,R) is an invertible matrix for all x′ ∈ ϕι(Ũp).

Consider now the extension of M(x′, g) as an endomorphism in C1[Rn
ξ ] to the symmetric algebra

S(C1[Rn
ξ ]) 4 C[Rn

ξ ]. Since M(x′, g) is invertible, its extension to SN (C1[Rn
ξ ]) is also an automor-

phism for any N ∈ N. Regarding the polynomials ξ1, . . . , ξn as a basis in C1[Rn
ξ ], let us denote the

image of the basis vector ξj under the endomorphism M(x′, g) by Mξj , so that by (8)

Mξk = −iψι−ξ,x′(g)dL(Xjk)ψ
ι
ξ,x′(g), 1 ≤ k ≤ n.

In this way, each polynomial ξj1 ⊗ · · ·⊗ ξjN ≡ ξj1 . . . ξjN can be written as a linear combination

(9) ξα =
∑

β

Λαβ(x
′, g)Mξβ1 · · ·Mξβ|α|

,

where the Λαβ(x
′, g) are smooth functions given in terms of the matrix coefficients of M(x′, g). We

now have for arbitrary indices β1, . . . ,βr and all x′ ∈ ϕι(Ũp)

irψιξ,x′(g)Mξβ1 · · ·Mξβr = dL(Xβ1 · · ·Xβr)ψ
ι
ξ,x′(g)

+
r−1∑

s=1

∑

α1,...,αs

dβ1,...,βr
α1,...,αs

(x′, g)dL(Xα1 · · ·Xαs)ψ
ι
ξ,x′(g),

(10)

where the coefficients dβ1,...,βr
α1,...,αs

(x′, g) are smooth functions given by the matrix coefficients of
M(x′, g) which are at most of exponential growth in g, and independent of ξ, see Lemma 4 in
[19]. The key step in proving the theorem is that, as an immediate consequence of equations
(9) and (10), we can express (1 + |ξ|2)N as a linear combination of derivatives dL(Xα)ψιξ,x′(g),

obtaining for arbitrary N ∈ N and x′ ∈ ϕι(Ũp) the equality

(11) ψιξ,x′(g)(1 + |ξ|2)N =
2N∑

r=0

∑

|α|=r

bNα (x
′, g)dL(Xα)ψιξ,x′(g),

where the coefficients bNα (x
′, g) are at most of exponential growth in g. Let us now show that

aιι̃f (x, ξ; k1, k2) ∈ S−∞(Wι × Rn
ξ ) for each fixed k1, k2 ∈ K. Note that aιι̃f (x, ξ; k1, k2) ∈ C∞(Wι ×

Rn
ξ ×K ×K). While differentiation with respect to ξ does not alter the growth properties of the

functions aιι̃f (x, ξ; k1, k2), differentiation with respect to x yields additional powers in ξ. As one

computes, (∂αξ ∂
β
x a

ιι̃
f )(x, ξ; k1, k2) is a finite sum of terms of the form

ξδe−iϕk1k2
ι (x)·ξ

∫

G
ψιξ,x(g)(L(k1)R(k−1

2 )f)(g)dδβ′β′′(x, k1, k2, g)(∂
β′

x cι)(x, g) ∂
β′′

x [α′
ι̃(k1k2·ϕ

−1
ι (x))] dg,

the functions dδβ′β′′(x, k1, k2, g) being at most of exponential growth in g. Let next f1 ∈ S(G), and
assume that f2 ∈ C∞(G), together with all its derivatives, is at most of exponential growth. Then,
by [20], Proposition 1, we have

(12)

∫

G
f1(g)dL(X

ι)f2(g)dG(g) = (−1)|ι|
∫

G
dL(X ι̃)f1(g)f2(g)dG(g),

where for Xι = Xι1
i1
. . . Xιr

ir
we wrote X ι̃ = Xιr

ir
. . . Xι1

i1
, ι being an arbitrary multi-index. Let now

O denote an arbitrary compact set in Wι. By Heine–Borel, ϕ−1
ι (O) can be covered by a finite

number of neighborhoods Ũp. Making use of equation (11), and integrating according to (12), we
obtain for arbitrary multi-indices α,β the estimate

|(∂αξ ∂
β
x a

ιι̃
f )(x, ξ; k1, k2)| ≤

1

(1 + ξ2)N
Cα,β,O x ∈ O,
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where N ∈ N, since L(k1)R(k−1
2 )f ∈ S(G). This proves that aιι̃f (x, ξ; k1, k2) ∈ S−∞(Wι × Rn

ξ ) for
each fixed k1, k2 ∈ K. Since equation (5) is an immediate consequence of the Fourier inversion
formula, the proof of the theorem is now complete. !

Let dM be a fixed G-invariant density onM , and denote by L2(M) the space of square integrable
functions on M . In case that M is compact, the fact that the integral operators π(f) have smooth
kernels implies that they are trace-class operators in L2(M). Indeed, one has the following

Lemma 1. Let X be a compact manifold of dimension n with volume form dX. Let k : X×X→ C

be a kernel function of class C(n+1)(X×X). Then the operator

(Kf)(p) =

∫

X

k(p, q)f(q)dX(q), f ∈ L2(X, dX),

is trace class, and tr K =
∫
X
k(p, p) dX(p).

Proof. See [14], Lemma 2.2. !

In our situation, we obtain

Corollary 1. Let M be a compact, C∞-manifold of dimension n, and G a connected, real, semisim-
ple Lie group with finite center acting on M in a transitive way. If f ∈ S(G), then π(f) is a trace
class operator in L2(M), and

(13) trπ(f) =
∑

ι

∫

Wι

(αι ◦ ϕ
−1
ι )(x)KAι

f
(x, x) dx =

∑

ι

∫

M
αι(p)KAι

f
(ϕι(p),ϕι(p))jι(p)dM(p),

where dx denotes Lebesgue measure in Rn, and (ϕι)∗(dx) = jιdM .

Proof. By Theorem 1 , Kf ∈ C∞(M ×M,1 " ΩM ). Locally, the kernel Kf is determined by the
smooth functions (6). Restricting the latter to the respective diagonals in Wι, one obtains a family
of functions on M

kιf (p) = KAι
f
(ϕι(p),ϕι(p)), p ∈ W̃ι,

which define a density kfdM ∈ C∞(M,ΩM ) on M . Since M is compact, it can be integrated, and
by Lemma 1 we get

trπ(f) =

∫

M
kf (p) dM(p) =

∑

ι

∫

Wι

(αι ◦ ϕ
−1
ι )(x)KAι

f
(x, x) dx =

∑

ι

∫

W̃ι

αι(p)k
ι
f (p)jι(p)dM(p),

where we wrote (ϕι)∗(dx) = jιdM . !

3. Equivariant heat asymptotics

From now on, let M be a closed, real-analytic Riemannian manifold of dimension n, and G a
connected, real, semisimple Lie group with finite center acting transitively and isometrically on
M . Assume that M is endowed with a G-invariant density dM . Consider further a maximal
compact subgroup K of G, and let K̂ denote the set of all equivalence classes of unitary irreducible
representations of K. Let (πσ , Vσ) be a unitary irreducible representation of K of dimension dσ
belonging to σ ∈ K̂, and χσ(k) = trπσ(k) the corresponding character. As a unitary representation
of K, (π,L2(M)) decomposes into isotypic components according to

L2(M) 4
⊕

σ∈K̂

L2(M)σ,
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where L2(M)σ = Pσ(L2(M)), and Pσ = dσ
∫
K χσ(k)π(k) dk is the corresponding projector in

L2(M), dk being a Haar measure on K. Let f ∈ S(G), and consider the restriction Pσ ◦ π(f) ◦ Pσ
of the integral operator π(f) to the isotypic component L2(M)σ. As one computes, for ϕ ∈ L2(M),

[Pσ ◦ π(f) ◦ Pσ]ϕ(p) = d2σ

∫

K
χσ(k)[π(f) ◦ Pσ]ϕ(k · p) dk

= d2σ

∫

K

∫

G
χσ(k)f(g)Pσϕ(gk · p) dg dk

= d2σ

∫

K

∫

G

∫

K
χσ(k)f(g)χσ(k1)ϕ(k1gk · p) dk1 dg dk.

Since G is unimodular, one obtains

(14) Pσ ◦ π(f) ◦ Pσ = π(Hσ
f ),

where Hσ
f ∈ S(G) is given by

(15) Hσ
f (g) = d2σ

∫

K

∫

K
f(k−1

1 gk−1)χσ(k1)χσ(k)dk dk1.

Clearly, Hσ
f ∈ S(G), compare [2], Proposition 2.4. Note that if f is K-bi-invariant, π(f) commutes

with Pσ, so that Pσ ◦π(f)◦Pσ = Pσ ◦π(f) = π(f)◦Pσ. In Section 5, we shall also consider kernels
of the form ∫

K

∫

K
f(k−1

1 gk−1)σij(k)σlm(k1) dk dk1

where σij(k) = 〈ei,πσ(k)ej〉 are matrix elements of σ with respect to a basis {ei} of Vσ . With the
notation as in the previous section we now have the following

Proposition 2. Let f ∈ S(G), and σ ∈ K̂. Then π(Hσ
f ) is of trace class, and

tr π(Hσ
f ) =

d2σ
(2π)n

∑

ι,ι̃

∫

K

∫

K

∫

T∗M
eiΦιι̃(p,ξ,k1,k)αι(p)αι̃(k1k · p)χσ(k1)χσ(k)

· aιι̃f (ϕι(p), ξ; k1, k)jι(p)d(T
∗M)(p, ξ) dk dk1,

where d(T ∗M)(p, ξ) denotes the canonical density on the cotangent bundle T ∗M , and we set

Φιι̃(p, ξ, k1, k) = (ϕι̃(k1k · p)− ϕι(p)) · ξ,

while aιι̃f (x, ξ; k1, k2) ∈ S−∞(Wι × Rn
ξ ) was defined in (7).

Proof. By Corollary 1, π(Hσ
f ) is of trace class, and at the microlocal level one has

[
π(Hσ

f )(u ◦ ϕι)
]
(ϕ−1
ι (x)) = AιHσ

f
u(x), u ∈ C∞

c (Wι),

where AιHσ
f
is given by (5). By the unimodularity of G, together with (4) and (6),

KAι
Hσ

f

(x, y) =

∫
ei(x−y)·ξaιHσ

f
(x, ξ) d̄ξ =

∫ [∫

G
ei(ϕ

g
ι (x)−y)·ξcι(x, g)H

σ
f (g) dg

]
d̄ξ

= d2σ

∫ [∫

G

∫

K

∫

K
f(g)ei(ϕ

k1gk
ι (x)−y)·ξcι(x, k1gk)χσ(k1)χσ(k) dk dk1 dg

]
d̄ξ.

Let ψ ∈ C∞
c (Rn,R+) be equal 1 near the origin, and ε > 0. By Lebesgue’s theorem on bounded

convergence,

KAι
Hσ

f

(x, y) = lim
ε→0

∫
ei(x−y)·ξaιHσ

f
(x, ξ)ψ(εξ) d̄ξ,
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since aιHσ
f
(x, ξ) is rapidly falling in ξ. Arguing as in the proof of Corollary 1, one obtains for

tr π(Hσ
f ) the expression

lim
ε→0

d2σ
∑

ι

∫

W̃ι

∫ ∫

G

∫

K

∫

K
ei(ϕι(k1gk·p)−ϕι(p))·ξf(g)αι(p)cι(ϕι(p), k1gk)χσ(k1)χσ(k)ψ(εξ)

·jι(p) dk dk1 dg d̄ξ dM(p)

= lim
ε→0

d2σ
∑

ι,ι̃

∫

Wι

∫ ∫

G

∫

K

∫

K
ei(ϕι(k1gk·p)−ϕι̃(k1k·p))·ξei(ϕι̃(k1k·p)−ϕι(p))·ξf(g)αι(p)

·α′
ι(k1gk · p)αι̃(k1k · p)α′

ι̃(k1k · p)χσ(k1)χσ(k)ψ(εξ)jι(p) dk dk1 dgd̄ξ dM(p)

= lim
ε→0

d2σ
∑

ι,ι̃

∫

K

∫

K

∫

W̃ι

∫
ei(ϕι̃(k1k·p)−ϕι(p))·ξαι(p)αι̃(k1k · p)χσ(k1)χσ(k)ψ(εξ)

·aιι̃f (ϕι(p), ξ; k1, k)jι(p) d̄ξ dM(p) dk dk1,

where the change of order of integration is permissible, since everything is absolutely convergent.
Note that we used the equality

1 =
∑

ι̃

αι̃(k1k · p)α′
ι̃(k1k · p).

Finally, it was shown in the proof of Theorem 1 that aιι̃f (ϕι(p), ξ; k1, k) is rapidly falling in ξ, so
that we can pass to the limit under the integral, and the assertion follows. !

In what follows, we shall address the case where f = ft ∈ S(G), t > 0, is the Langlands kernel
of a semigroup generated by a strongly elliptic operator associated to the representation π. Our
main goal will be the derivation of asymptotics for

tr π(Hσ
ft) = tr(Pσ ◦ π(ft) ◦ Pσ)

as t→ 0+. Thus, let G be a Lie group and (π,B) a continuous representation of G in some Banach
space B. Denote by g the Lie algebra of G, and by X1, . . . , Xd a basis of it. Consider further a
strongly elliptic differential operator of order q associated to π

(16) Ω =
∑

|α|≤q

cαdπ(X
α),

meaning that Re (−1)q/2
∑

α=q

cαξ
α ≥ κ|ξ|q for all ξ ∈ Rd, and some κ > 0. The general the-

ory of strongly continuous semigroups establishes that its closure generates a strongly continuous
holomorphic semigroup of bounded operators which is given by

(17) Sτ =
1

2πi

∫

Λ
eλτ (λ + Ω)−1dλ,

where Λ is an appropiate path in C coming from infinity and going to infinity, and | arg τ | < η
for an appropiate η ∈ (0,π/2]. The integral converges uniformly with respect to the operator
norm, and for t > 0, the semigroup St can be characterized by a convolution semigroup {µt}t>0
of complexes measures on G according to

St =

∫

G
π(g)dµt(g),

the representation π being measurable with respect to the measures µt. The µt are absolutely
continuous with respect to Haar measure dG on G so that, if we denote by ft(g) ∈ L1(G, dG) the
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corresponding Radon-Nikodym derivatives, one has an expressions

(18) St = π(ft) =

∫

G
ft(g)π(g)dG(g), t > 0.

The function ft(g) ∈ L1(G, dG) is analytic in t ∈ R+
∗ and g ∈ G, universal for all Banach represen-

tations, and one can show that ft ∈ S(G). Moreover, it satisfies the following L∞ upper bounds.
There exist constants a, b, c1, c2 > 0 and ω ≥ 0 such that

(19) |(dL(Xα)∂ltft)(g)|t=τ ≤ ac|α|1 cl2|α|! l! τ
− |α|+d

q −leωτe−b(|g|q/τ)1/(q−1)

for all τ > 0, g ∈ G, l ∈ N, and multi-indices α. For a complete exposition of these facts the reader
is referred to [22], pages 30, 152, and 209, or [24]. In what follows, we shall call ft the Langlands,
or group kernel of the holomorphic semigroup St. Returning to our situation, let G = G, and π
be the regular representation of G on L2(M). Let us mention that as a consequence of the bounds
(19), we have the following

Corollary 2. There exist constants a, b, c1, c2 > 0 and ω ≥ 0 such that

|(dL(Xα)∂ltH
σ
ft)(g)|t=τ ≤ ac|α|1 cl2|α|! l! τ

− |α|+d
q −leωτe−b( d(gK,K)q

τ )1/(q−1)

for all τ > 0, g ∈ G, l ∈ N, and multi-indices α.

Proof. Clearly,

|Hσ
ft(g)|t=τ ≤ d2σ

∫

K

∫

K
|ft(k

−1
1 gk−1))| dk dk1.

According to (19) we therefore have

|Hσ
ft(g)| ≤ d2σa t

− d
q eωt

∫

K

∫

K
exp

(

−b

(
|k−1

1 gk−1|q

t

) 1
q−1

)

dk dk1,

where |k−1
1 gk−1| = d(k−1

1 gk−1, e) = d(gk−1, k1). Put X = G/K, and let g = k ⊕ p be a Cartan
decomposition of g. By restriction of the Killing form to TeX 4 p one obtains an invariant
Riemannian metric on X such that the canonical projection map G → X becomes a Riemannian
submersion. Now, if d(gK, hK) denotes the geodesic distance on X,

|g| = d(g, e) ≥ d(gK,K), g ∈ G,

compare [17], Theorem 3.1. By applying similar arguments to the derivatives, the corollary follows.
!

Let β ∈ C∞
c (G), 0 ≤ β ≤ 1 have support in a sufficiently small neighborhood U of e ∈ G

satisfying U = U−1, and assume that β = 1 close to e. We then have the following

Theorem 2. Consider a strongly elliptic differential operator Ω of order q ≥ 2 associated to
(π,L2(M)), and the corresponding semigroup St = π(ft) with Langlands kernel ft, t > 0. Let

σ ∈ K̂. Then
tr π(Hσ

ft) = trπ(Hσ
ftβ) +O(t∞),

where

tr π(Hσ
ftβ) =

d2σ
(2π)ntn/q

∑

ι

∫

K

∫

K

∫

T∗M
eiΦιι(p,ξ,k1,k)/t

1/q

αι(p)χσ(k1)χσ(k)

· bιft(ϕι(p), ξ/t
1/q; k1, k)jι(p) d(T

∗M)(p, ξ) dk dk1, t > 0,

and

bιft(ϕι(p), ξ; k1, k) = e−iϕι(k1k·p)·ξ

∫

U
eiϕι(k1gk·p)·ξcι(ϕι(p), k1gk)ft(g)β(g) dg
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is rapidly decaying in ξ, and vanishes if k1k ·p 2∈ W̃ ′
ι . Furthermore, for any multi-indices α,β, δ1, δ

| ∂αx ∂
β
ξ ∂

δ1
k1
∂δk[b

ι
ft(x, ξ/t

1/q; k1, k)]| ≤ C

for some constant C > 0 independent of 0 < t < 1.

Proof. To determine the asymptotic behavior of tr π(Hσ
ft
) as t → 0 by means of Proposition 2,

we first have to examine the t-dependence of the amplitude aιι̃ft(ϕι(p), ξ; k1, k) as t → 0 for fixed
k, k1 ∈ K. Let 0 ≤ β ≤ 1 be a test function on G with support in a sufficiently small neighborhood
U = U−1 of the identity that is identically 1 on a ball of radius R > 0 around e, and consider for
f ∈ S(G)

1aιι̃f (x, ξ; k1, k2) = e−iϕ
k1k2
ι̃ (x)·ξα′

ι̃(k1k2 · ϕ
−1
ι (x))

∫

G
eiϕ

k1gk2
ι (x)·ξcι(x, k1gk2)f(g)

· (1− β)(g) dg,

2aιι̃f (x, ξ; k1, k2) = e−iϕ
k1k2
ι̃ (x)·ξα′

ι̃(k1k2 · ϕ
−1
ι (x))

∫

G
eiϕ

k1gk2
ι (x)·ξcι(x, k1gk2)f(g)

· β(g) dg.

Similarly to (11), one has for arbitrary N ∈ N the equality

(20) ψιξ,x(k1gk2)(1 + |ξ|2)N =
2N∑

r=0

∑

|α|=r

bNα (x, g, k1, k2)dL(X
α)[ψιξ,x(k1gk2)],

where the coefficients bNα (x, g, k1, k2) are at most of exponential growth in g. With (12) and (19)
we obtain

| 1aιι̃ft(ϕι(p), ξ; k1, k)| ≤ c(1 + |ξ|2)−Neωtt−(d+2N)/qe−bRq/(q−1) [t1−q−1]

∫

G
e−b|g|q/(q−1)

eκ|g| dg

for small t > 0, and constants b, c > 0, κ,ω ≥ 0. Consequently, 1aιι̃ft(x, ξ; k1, k) vanishes to all
orders as t→ 0, or |ξ|→∞, provided that q ≥ 2, and with Proposition 2 we obtain the equality

tr π(Hσ
ft) = trπ(Hσ

ftβ) +O(tN )

=
d2σ

(2π)n

∑

ι,ι̃

∫

K

∫

K

∫

T∗M
eiΦιι̃(p,ξ,k1,k)αι(p)αι̃(k1k · p)χσ(k1)χσ(k)

· 2aιι̃ft(ϕι(p), ξ; k1, k)jι(p) d(T
∗M)(p, ξ) dk dk1 +O(tN )

for any N ∈ N. Let ψ ∈ C∞
c (Rn,R+) be equal 1 near the origin, and ε > 0. Repeating the

arguments in the proof of Proposition 2 with f replaced by ft · β one obtains for tr π(Hσ
ftβ

) the
expression

lim
ε→0

d2σ
∑

ι

∫

W̃ι

∫ ∫

U

∫

K

∫

K
ei(ϕι(k1gk·p)−ϕι(p))·ξft(g)β(g)αι(p)cι(ϕι(p), k1gk)χσ(k1)χσ(k)ψ(εξ)

·jι(p) dk dk1 dg d̄ξ dM(p)

= lim
ε→0

d2σ
∑

ι

∫

U

∫

K

∫

K

∫

W̃ι

∫
ei(ϕι(k1gk·p)−ϕι(k1k·p))·ξei(ϕι(k1k·p)−ϕι(p))·ξft(g)β(g)αι(p)

·α′
ι(k1gk · p)χσ(k1)χσ(k)ψ(εξ)jι(p) d̄ξ dM(p) dk dk1 dg.

Here we took into account that U ⊂ G can be chosen so small that for all k1, k2 ∈ K, g ∈ U , and
ι ∈ I

k1gk2 · p ∈ suppα′
ι =⇒ k1k2 · p ∈ W̃ ′

ι ,
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since I can be assumed to be finite due to the compactness of M . Consequently

bιf(x, ξ; k1, k2) = e−iϕk1k2
ι (x)·ξ

∫

U
eiϕ

k1gk2
ι (x)·ξcι(x, k1gk2)f(g)β(g) dg, f ∈ S(G),

is well defined, and bιft(ϕι(p), ξ; k1, k) = 0 for k1k · p 2∈ W̃ ′
ι . From the considerations in the proof

of Theorem 1, and (20) it follows that bιf(x, ξ; k1, k2) ∈ S−∞(Wι × Rn) for arbitrary k1, k2 ∈ K.
Thus, we arrive at

tr π(Hσ
ftβ) = lim

ε→0
d2σ

∑

ι

∫

K

∫

K

∫

W̃ι

∫
ei(ϕι(k1k·p)−ϕι(p))·ξαι(p)χσ(k1)χσ(k)ψ(εξ)

· bιft(ϕι(p), ξ; k1, k)jι(p) d̄ξ dM(p) dk dk1.

By passing to the limit under the integral, and performing the substitution ξ → ξ/t1/q, one finally
arrives at the desired result. To examine the t-dependence of the amplitude bιft(ϕι(p), ξ/t

1/q; k1, k)
as t→ 0, introduce canonical coordinates on U according to

(21) Ψ : Rd 6 ζ = (ζ1, . . . , ζd) -−→ g = e
∑
ζiXi ∈ U.

By the analyticity of the G-action on M we have the power expansion

[ϕk1k
ι (x) − ϕk1gk

ι (x)]j =
∑

|α|>0

cjα(x, k1, k)ζ
α, g ∈ U, x ∈ Wι,

where the coefficients cjα(x, k1, k) depend analytically on x, k1, and k. Performing the substitution
ζ -→ t1/qζ, and taking into account the bounds (19), one computes

|bιft(x, ξ/t
1/q; k1, k)| = td/q

∣∣∣
∫

t−1/qΨ−1(U)
ei

∑
|α|>0,j cjα(x,k1,k)(t

1/qζ)αξj/t
1/q

cι(x, k1e
t1/q

∑
ζiXik)

· (ftβ)(e
t1/q

∑
ζiXi)Ψ∗(dG)(ζ)

∣∣∣ ≤ c′eωt
∫

Rd

e−b′|ζ|q/(q−1)

Ψ∗(dG)(ζ)

for some constants b′, c′ > 0, and ω ≥ 0, where we took into account that there exists some constant
C > 0 such that C−1|ζ| ≤ |g| ≤ C|ζ|. A similar examination of the derivatives finally yields for
small t > 0 the estimate

| ∂αx ∂
β
ξ ∂

δ1
k1
∂δk[b

ι
ft(x, ξ/t

1/q; k1, k)]| ≤ C

for some constant C > 0 independent of 0 < t < 1, and arbitrary indices α,β, δ1, δ. !

Remark 1. Note that since bιft is rapidly decaying in ξ, for any N ∈ N there exists a constant
cN > 0 such that

|bιft(ϕι(p), ξ/t
1/q; k1, k)| ≤

cN
(1 + |ξ/t1/q|2)N

=
cN t2N/q

(t2/q + |ξ|2)N
≤

cN t2N/q

|ξ|2N
.

Therefore, if θ ∈ C∞
c (Rn, [0, 1]) is a cut-off function such that θ(ξ) = 1 for |ξ| ≤ 1, and θ(ξ) = 0

for |ξ| ≥ 2, then
∫

K

∫

K

∫

T∗M
|bιft(ϕι(p), ξ/t

1/q; k1, k)|(1− θ(ξ))d(T ∗M)(p, ξ) dk dk1 ≤ CN t2N/q

for any N ∈ N, and suitable constants CN .

Let us now regard the compact group

K = K ×K
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with Haar measure dK = dKdK . Take σ ∈ K̂, and (πσ , Vσ) ∈ σ. Then (πσ ⊗ πσ, Vσ ⊗ Vσ) is an
unitary irreducible representation of K belonging to σ ⊗ σ ∈ K̂ of dimension dσ⊗σ = d2σ, and the
corresponding character is given by

(χσ ⊗ χσ)(k1, k) = χσ(k1)⊗ χσ(k) = χσ(k1)χσ(k), k1, k ∈ K.

In what follows, we shall also write (k1, k) ·p = k1k ·p for the K-action on M . Note that this action
is still isometric, but no longer effective.

Corollary 3. Let σ ∈ K̂, and ψ ∈ C∞
c (Rn,R+) be equal 1 near the origin. Let further t, ε > 0.

Then

tr π(Hσ
ft) = lim

ε→0

dσ⊗σ
(2π)ntn/q

∑

ι

∫

K

∫

T∗M
eiΦιι(p,ξ,k1,k)/t

1/q

αι(p)(χσ ⊗ χσ)(k1, k)

· bιft(ϕι(p), ξ/t
1/q; k1, k)ψ(εξ)jι(p) d(T

∗M)(p, ξ)dK(k1, k) +O(t∞).

Proof. This is an immediate consequence of Theorem 2, and Lebesgue’s theorem on bounded
convergence. !

4. Singular equivariant asymptotics and resolution of singularities

The considerations of the previous section showed that, in order to describe the traces tr π(Hσ
ft
) =

tr(Pσ ◦ π(ft) ◦ Pσ) as t→ 0+, one has to study the asymptotic behavior of oscillatory integrals of
the form

I(µ) =

∫

K

∫

T∗W̃
eiΦ(p,ξ,k1,k)/µa(k1k · p, p, ξ, k1, k) d(T

∗M)(p, ξ)dK(k1, k)(22)

as µ → 0+ by means of the stationary phase principle, where (ϕ, W̃ ) are local coordinates on M ,

while a ∈ C∞
c (W̃ × T ∗W̃ ×K) is an amplitude which might depend on µ, and

(23) Φ(p, ξ, k1, k) = (ϕ((k1, k) · p)− ϕ(p)) · ξ.

Consider for this the cotangent bundle π : T ∗M →M , as well as the tangent bundle τ : T (T ∗M)→
T ∗M , and define on T ∗M the Liouville form

Θ(X) = τ(X)[π∗(X)], X ∈ T (T ∗M).

Regard T ∗M as a symplectic manifold with symplectic form ω = dΘ, and define for any element
X in the Lie algebra k⊕ k of K the function

JX : T ∗M −→ R, η -→ Θ(X̃)(η),

where X̃ denotes the fundamental vector field on T ∗M , respectively M , generated by X . K acts
on T ∗M in a Hamiltonian way, and the corresponding symplectic momentum map is given by

J : T ∗M → (k⊕ k)∗, J(η)(X) = JX(η).

Let us next compute the critical set of the phase function Φ. Clearly, ∂ξ Φ(p, ξ, k1, k) = 0 if, and

only if k1k · p = p. Write ϕ(p) = (x1, . . . , xn), η =
∑
ξi(dxi)p ∈ T ∗

p W̃ . Assuming that k1k · p = p,
one computes for any X ∈ k⊕ k

d

ds

(
ϕ( e−tX (k1, k) · p) · ξ

)

|t=0
=
∑

ξiX̃p(xi) =
∑

ξi(dxi)p(X̃p) = η(X̃p) = Θ(X̃)(η) = J(η)(X),

so that ∂(k1,k) Φ(p, ξ, k1, k) = 0 if, and only if J(η) = 0. A further computation shows that

∂x Φ(ϕ
−1(x), ξ, k1, k) = [ T (ϕ ◦ k1k ◦ ϕ

−1)∗,x − 1]ξ = ((k1k)
∗
x − 1) · ξ,
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so that ∂pΦ(p, ξ, k1, k) = 0 amounts precisely to the condition (k1k)∗ξ = ξ. Collecting everything
together one obtains

Crit(Φ) =
{
(p, ξ, k1, k) ∈ T ∗W̃ ×K : (Φ∗)(p,ξ,k1,k) = 0

}

=
{
(p, ξ, k1, k) ∈ (Ξ ∩ T ∗W̃ )×K : (k1, k) · (p, ξ) = (p, ξ)

}
,

(24)

where Ξ = J−1(0) denotes the zero level of the momentum map of K. Now, the major difficulty
resides in the fact that, unless the K-action on T ∗M is free, the considered momentum map is not
a submersion, so that Ξ and Crit(Φ) are not smooth manifolds. The stationary phase theorem can
therefore not immediately be applied to the integrals I(µ). Nevertheless, it was shown in [21] that
by constructing a strong resolution of the set

N = {(p, k1, k) ∈M ×K : (k1, k) · p = p}

a partial desingularization Z : X̃→ X = T ∗M ×K of the set

C = {(p, ξ, k1, k) ∈ Ξ×K : (k1, k) · (p, ξ) = (p, ξ)}

can be achieved, and applying the stationary phase theorem in the resolution space, an asymptotic
description of I(µ) can be obtained. More precisely, the map Z yields a partial monomialization
of the local ideal IΦ = (Φ) generated by the phase function (23) according to

Z∗(IΦ) · Ex̃,X̃ =
∏

j

σ
lj
j · Z−1

∗ (IΦ) · Ex̃,X̃,

where E
X̃

denotes the structure sheaf of rings of X̃, σj are local coordinate functions near each

x̃ ∈ X̃, and lj natural numbers. As a consequence, the phase function factorizes locally according

to Φ ◦ Z ≡
∏
σ
lj
j · Φ̃wk, and one shows that the weak transforms Φ̃wk have clean critical sets.

Asymptotics for the integrals I(µ) are then obtained by pulling them back to the resolution space

X̃, and applying the stationary phase theorem to the Φ̃wk with the variables σj as parameters. As
a consequence, one obtains

Theorem 3. Let M be a connected, closed Riemannian manifold, and K a compact, connected
Lie group acting isometrically on M . For K = K ×K, consider the oscillatory integral

I(µ) =

∫

K

∫

T∗W̃
eiΦ(p,ξ,k1,k)/µa((k1, k) · p, p, ξ, k1, k) d(T

∗M)(p, ξ)dK(k1, k), µ > 0,

where (ϕ, W̃ ) are local coordinates on M , while a ∈ C∞
c (W̃ × T ∗W̃ × K) is an amplitude which

might depend on the parameter µ, and Φ(p, ξ, k1, k) = (ϕ((k1, k) · p) − ϕ(p)) · ξ. Furthermore,

assume that for all multi-indices one has | ∂αx ∂
β
ξ ∂

δ1
k1
∂δk a| ≤ C with a constant C > 0 independent

of µ. Then I(µ) has the asymptotic expansion

I(µ) = (2πµ)κL0 +O
(
µκ+1(logµ−1)Λ−1

)
, µ→ 0+,

where κ is the dimension of a K-orbit of principal type in M , Λ the maximal number of elements
of a totally ordered subset of the set of K-isotropy types, and the leading coefficient is given by

(25) L0 =

∫

Reg C

a(k1k · p, p, ξ, k1, k)

|det Φ′′(p, ξ, k1, k)N(p,ξ,k1,k)Reg C |1/2
d(Reg C)(p, ξ, k1, k),

where Reg C denotes the regular part of C, and d(Reg C) the induced volume density. In particular,
the integral over Reg C exists.

Proof. See [21], Theorem 11. !
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As a consequence, one obtains the following asymptotic description as t → 0 for trπ(Hσ
ft
) =

tr(Pσ ◦ π(ft) ◦ Pσ).

Theorem 4. Let σ ∈ K̂, and t > 0. Then

tr π(Hσ
ft) =

dσ⊗σ
(2π)n−κt(n−κ)/q

∑

ι

∫

Reg C
αι(p)b

ι
ft(ϕι(p), ξ/t

1/q; k1, k)(χσ ⊗ χσ)(k1, k)jι(p)

·
d(Reg C)(p, ξ, k1, k)

|det Φ′′
ιι(p, ξ, k1, k)N(p,ξ,k1,k)Reg C |1/2

+O(t−(n−κ−1)/q(log t)Λ−1),

where κ is the dimension of a K-orbit of principal type in M , and Λ the maximal number of
elements of a totally ordered subset of the set of K-isotropy types.

Proof. This is an immediate consequence of Corollary 3, and Theorem 3, together with Lebesgue’s
theorem on bounded convergence. !

In general, it is not possible to obtain more explicit expressions for the leading term, unless one
has more knowledge about the Langlands kernels ft as t → 0. In particular, the bounds (19) are
not sufficient for this purpose. We shall therefore make the following assumption, which should
hold in many cases.

Assumption 1. The function ft has an asymptotic expansion of the form

ft(g) ∼
1

td/q
e−b

(
|g|q

t

)1/(q−1) ∞∑

j=0

cj(g)t
j , |g| << 1,

where b > 0, and the coefficients cj(g) are analytic in g.

We then have the following

Corollary 4. Let Assumption 1 be fulfilled. Then

trπ(Hσ
ft) =

dσ⊗σ
(2π)n−κt(n−κ)/q

[(πσ ⊗ πσ)|H : 1]
∑

ι

∫

RegΞ
F̂ι(p, ξ)αι(p)jι(p)

d(RegΞ)(p, ξ)

volO(p,ξ)

+O(t−(n−κ−1)/q(log t)Λ−1),

where F̂ι(p, ξ) = c0(e)
∫
Rd e

i
∑

l,j cjl (p)ζlξj e−b|e
∑

ζiXi |q/(q−1)
Ψ∗(dG)(ζ) is rapidly falling in ξ, and

O(p,ξ) denotes the K-orbit in T ∗M through (p, ξ), while [(πσ ⊗ πσ)|H : 1] is the multiplicity of
the trivial representation in the restriction of the unitary irreducible representation πσ ⊗ πσ to a
principal isotopy group H ⊂ K. Actually,

ṽol (Ξ/K) =
∑

ι

∫

RegΞ
F̂ι(p, ξ)αι(p)jι(p)

d(RegΞ)(p, ξ)

volO(p,ξ)

represents a Gaussian volume of the symplectic quotient Ξ/K.

Proof. On Reg C we have k1k · p = p, so that

bιft(ϕι(p), ξ; k1, k) = e−iϕι(p)·ξ

∫

U
eiϕι(k1gk

−1
1 ·p)·ξα′

ι(k1gk
−1
1 · p)ft(g)β(g) dg

=

∫

U
ei[ϕι(g·p)−ϕι(p)]·ξα′

ι(g · p)(ftβ)(k
−1
1 gk1) dg,
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since we can assume that U is invariant under conjugation with K. Consider further, with respect
to the coordinates (21), the expansion

[ϕι(g · p)− ϕι(p)]j =
∑

|α|>0

cjα(p)ζ
α, g ∈ U, p ∈ W̃ι,

where the coefficients cjα(p) depend analytically on p. Under Assumption 1, Taylor expansion in
τ = t1/q at τ = 0 gives

bιft(ϕι(p), ξ/t
1/q; k1, k) =

∫

t−1/qΨ−1(U)
ei

∑
|α|>0,j cjα(p)(t

1/qζ)αξj/t
1/q

α′
ι(e

t1/q
∑
ζiXi · p)

· td/q(ftβ)(k
−1
1 et

1/q ∑
ζiXik1)Ψ

∗(dG)(ζ)

=

∫

t−1/qΨ−1(U)
ei

∑
|α|>0,j cjα(p)(t1/qζ)αξj/t

1/q

α′
ι(e

t1/q
∑
ζiXi · p)c0

(
et

1/q ∑
ζiAd (k−1

1 )Xi

)

· e−b(|et
1/q ∑

ζiXi |q/t)1/(q−1)

β(k−1
1 et

1/q ∑
ζiXik1)Ψ

∗(dG)(ζ) +O(t)

= α′
ι(p)c0(e)

∫

Rd

ei
∑

l,j cjl (p)ζlξje−b|e
∑

ζiXi |q/(q−1)

Ψ∗(dG)(ζ) +O(t1/q),

(26)

where the notation is the same as in the proof of Theorem 2. Here we took into account that by

Proposition 1 we have |g| = |kgk−1| for all g ∈ G and k ∈ K. Furthermore, |et
1/q ∑

ζiXi |q/t =

|e
∑
ζiXi |. Let us now remark that for any smooth, compactly supported function u on Ξ ∩ T ∗W̃ι,

and any v ∈ C∞(K), one has the formula

(27)

∫

Reg C

v(k1, k)u(p, ξ)d(Reg C)(p, ξ, k1, k)

|det Φ′′
ιι(p, ξ, k1, k)|N(p,ξ,k1,k)Reg C |1/2

=

∫

H

v(k1, k) dk1 dk·
∫

RegΞ
u(p, ξ)

d(RegΞ)(p, ξ)

volO(p,ξ)
,

compare [6], Lemma 7, where H is a principal K-isotropy group, and O(p,ξ) the K-orbit in T ∗M
through (p, ξ). In particular,

∫

H

(χσ ⊗ χσ)(k1, k)dk1dk = [(πσ ⊗ πσ)|H : 1],

where [(πσ ⊗ πσ)|H : 1] denotes the multiplicity of the trivial representation in the restriction to H

of the unitary irreducible representation πσ ⊗ πσ. The assertion now follows with Theorem 4. !

To motivate Assumption 1, and to illustrate our results, let us consider the classical heat kernel
on G. Thus, consider a Cartan decomposition of g as in (1), and let X1, . . . Xp be an orthonormal
basis of p, and Y1, . . . , Yl an orthonormal basis for k with respect to 〈·, ·〉θ. If Ω and ΩK denote the
Casimir elements of G and K, one has

Ω =
p∑

i=1

X2
i −

l∑

i=1

Y 2
i , ΩK = −

l∑

i=1

Y 2
i .

Let

P = −Ω+ 2ΩK = −
p∑

i=1

X2
i −

l∑

i=1

Y 2
i .

Then dR(P ) is the Beltrami-Laplace operator ∆G on G with respect to the left invariant metric.
dR(P ) is a strongly elliptic operator associated to R, and generates a strongly continuous semi-
group which coincides with the classical heat semigroup e−t∆G, whose kernel pt is given by the
corresponding universal Langlands kernel. In particular,

(28) e−t∆G = R(pt),



18 OCTAVIO PANIAGUA-TABOADA AND PABLO RAMACHER

see [17], Section 3. Let us now recall that on Riemannian manifolds admitting a properly discontin-
uous group of isometries with compact quotient, a fundamental solution of the heat equation with
Gaussian bounds can be constructed explicitly [9]. Furthermore, every real, semisimple Lie group
possesses a discrete, torsion-free subgroup with compact quotient [5]. If therefore H(t, g, h) is the
fundamental solution of the heat equation ∂ / ∂ t +∆G on G constructed in this way, the Gauss-
ian bounds imply that it coincides with the Langlands kernel pt, so that H(t, g, h) = pt(g−1h).
Furthermore, one has an asymptotic expansion of the form

H(t, g, h) ∼ (4πt)−d/2e−
d2(g,h)

4t

∞∑

j=0

tjuj(g, h),

valid in a sufficiently small neighborhood of the diagonal in G×G, see [9], Theorem 3.3. As before,
d(g, h) denotes the geodesic distance between two points with respect to the left invariant metric
on G, and u0(g, g) = 1. Corollary 4 then implies

Corollary 5. Let ∆G be the Laplace-Beltrami operator on G, and pt ∈ S(G) its heat kernel. Then

trπ(Hσ
pt
) =

dσ⊗σ
(2π)n−κt(n−κ)/2

[(πσ ⊗ πσ)|H : 1]ṽol (Ξ/K) +O(t−(n−κ−1)/2(log t)Λ−1),

where

ṽol (Ξ/K) =
∑

ι

∫

RegΞ
F̂ι(p, ξ)αι(p)jι(p)

d(RegΞ)(p, ξ)

volO(p,ξ)
,

and F̂ι(p, ξ) = (4π)−d/2
∫
Rd e

i
∑

l,j cjl (p)ζlξje−|e
∑

ζiXi |2/4Ψ∗(dG)(ζ).

!

5. Homogeneous vector bundles on compact locally symmetric spaces

In this section, we apply the previous analysis to heat traces of Bochner-Laplace operators on
compact, locally symmetric spaces. In the rank one case, this problem was already considered by
Miatello [14] and DeGeorge and Wallach [8]. As before, let G denote a connected, real, semisimple
Lie group with finite center, and Γ a discrete, uniform subroup of G. Consider M = Γ\G, and de-
note by πΓ(g)ϕ(h) = ϕ(hg), g, h ∈ G, the right regular representation 2 of G in the space L2(Γ\G)
of square integrable functions on Γ\G. Since Γ\G is compact, the right regular representation
decomposes discretely according to

(29) πΓ 4
⊕

0∈Ĝ

m0π0,

where Ĝ stands for the set of equivalence classes of irreducible unitary representations of G,
(π0, H0) ∈ 5, and m0 < ∞ denotes the multiplicity of 5 in (πΓ,L2(Γ\G)). For f ∈ C∞

c (G), the
Bochner integral πΓ(f) =

∫
G f(g)πΓ(g) dg defines a bounded operator on L2(Γ\G) whose kernel is

given by the C∞ function

(30) kf (g, h) =
∑

γ∈Γ

f(g−1γh), g, h ∈ G,

the series converging uniformly on compacta. The regularity of the kernel implies that πΓ(f) is of
trace class, and

tr πΓ(f) =

∫

Γ\G
kf (g, g) dg =

∫

Γ\G

∑

γ∈Γ

f(g−1γg) dg.

2More precisely, πΓ(g)ϕ(Γh) = ϕ(Γhg), where Γh ∈ Γ\G, g ∈ G.
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Note that we are slightly abusing of notation, and denoting the invariant measure on Γ\G also by
dg. If f ∈ L1(G), the operator πΓ(f) is still defined, but might not be of trace class. If f ∈ S(G)
is rapidly falling, it was shown in Theorem 1 that πΓ(f) is a smooth operator, which by Corollary
1 implies that it has a well-defined trace. As in the case of a compactly supported f , one can show
that for f ∈ S(G) the kernel of πΓ(f) is given globally by the expression (30), and that it satisfies
Selberg’s trace formula. Indeed, one has the following

Lemma 2. Let f ∈ S(G) be a rapidly decaying function on G. Then the series kf (g, h) =∑
γ∈Γ f(h

−1γg) converges uniformly on compacta to a C∞ function, and represents the integral

kernel of the bounded operator πΓ(f) : L2(Γ\G)→ L2(Γ\G).

Proof. By Definition 1, for all κ > 0 we have the inequality

|f(h−1γg)| ≤ Cκe
−κ|h−1γg|, g, h ∈ G,

as well as for all derivatives of all orders of f . Consequently,

(31)
∑

γ∈Γ

|f(h−1γg)| ≤
∑

γ∈Γ

e−κ d(h−1γg,e) =
∑

γ∈Γ

e−κ d(γg,h),

since left-translation by h is an isometry. Now, recall that for a metric space (X, d), and a discrete
infinite subgroup Γ′ ⊂ Iso(X) of the isometry group of X the corresponding Poincaré series is
defined by

(32) P (s, p, q) =
∑

γ∈Γ′

e−s d(p,γq), p, q ∈ X, s > 0.

By general theory [18], for each discrete subgroup Γ′, there exists a δΓ′ > 0, called the critical
exponent of Γ′, such that P (s, p, q) converges for s > δΓ′ and diverges for s < δΓ′ . Furthermore,
the exponent δΓ′ does not depend on p or q. The estimate (31) means that for fixed g, h ∈ G, the
series kf (g, h) is majorized by the Poincaré series

∑
γ∈Γ e

−κ d(γg,h). Choosing κ > δΓ, we deduce
that kf (g, h) is absolutely convergent for fixed g, h ∈ G. To see that (g, h) -→ kf (g, h) is continuous,
note that
∣∣∣kf (h, g)− kf (z, g)

∣∣∣ =
∣∣∣
∑

γ∈Γ

f(h−1γg)−
∑

γ∈Γ

f(z−1γg)
∣∣∣

≤
∑

γ∈Γ
‖γ‖≤R

∣∣∣f(h−1γg)− f(z−1γg)
∣∣∣+

∣∣∣
∑

γ∈Γ
‖γ‖>R

f(h−1γg)
∣∣∣+

∣∣∣
∑

γ∈Γ
‖γ‖>R

f(z−1γg)
∣∣∣.

Since the sum
∑
γ∈Γ f(h

−1γg) converges, the last two terms in the last inequality can be made as
small as required by choosing R big enough, while the first term becomes small if d(h, z) is small,
being a finite some of continuous functions. Thus, (g, h) -→ kf (g, h) is continuous. Since the same
argument works for all derivatives, f(h, g) converges uniformly on compacta to a C∞ function. To
see that kf (g, h) represents the Schwartz kernel of πΓ(f) for f ∈ S(G), note that πΓ(f) acts on
ϕ ∈ L2(Γ\G) according to

(33) (πΓ(f)ϕ)(h) =

∫

G
f(g)ϕ(hg) dg =

∫

G
f(h−1g)ϕ(g) dg, h ∈ G,

the integral being absolutely convergent due to the inequality

|αβ| ≤
1

2
|α|2 +

1

2
|β|2, α, β ∈ C,
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and the fact that if f is rapidly decreasing, f · f is rapidly decreasing, too. By Fubini’s theorem,
and the first part of the lemma we therefore obtain for each h ∈ G

(πΓ(f)ϕ)(h) =

∫

Γ\G




∑

γ∈Γ

f(h−1γg)ϕ(γg)



 dg =

∫

Γ\G
kf (h, g)ϕ(g) dg,

since ϕ(γg) = ϕ(g). Thus, πΓ(f) is an integral operator with kernel kf (h, g) ∈ C∞(Γ\G×Γ\G). !

Corollary 6. Let f ∈ S(G). Then f satisfies Selberg’s trace formula

(34)
⊕

0∈Ĝ

m0 tr π0(f) =
∑

[γ]

vol (Γγ\Gγ)
∫

Gγ\G
f(g−1γg) dg,

where [γ] denotes the conjugacy class of γ in Γ, and Γγ and Gγ are the centralizers of γ in Γ and
G, respectively.

Proof. Lemma 1 and 2 yield

trπΓ(f) =

∫

Γ\G
kf (g, g)dx =

∫

Γ\G

∑

γ∈Γ

f(g−1γg) dg.

Denoting by [γ] the conjugacy class of γ, and by Γγ the centralizer of γ in Γ one deduces

trπΓ(f) =

∫

Γ\G

∑

[γ]

∑

δ∈Γγ\Γ

f(g−1δ−1γδg) dg =
∑

[γ]

∫

Γ\G

∑

δ∈Γγ\Γ

f(g−1δ−1γδg) dg,

everything being uniformly convergent. Replacing the inner sum by an integral with a counting
measure dδ yields

trπΓ(f) =
∑

[γ]

∫

Γ\G

∫

Γγ\Γ
f(g−1δ−1γδg)dδ dg =

∑

[γ]

∫

Γγ\G
f(y−1γy)dy,

where we took into account that for any sequence G1 ⊂ G2 ⊂ G of unimodular groups, a right
invariant measure on G1\G can be written as the product of right invariant measures on G2\G,
and G1\G2, respectively. With the same argument, the above equality can be rewritten as

tr πΓ(f) =
∑

[γ]

∫

Gγ\G

∫

Γγ\Gγ

f(v−1u−1γuv)dudv,

where Gγ denotes the centralizer of γ in G. Since u−1γu = γ, and Γγ\Gγ is compact, one finally
obtains the geometric side of the trace formula

trπΓ(f) =
∑

[γ]

vol(Γγ\Gγ)
∫

Gγ\G
f(g−1γg) dg.

To obtain the spectral side, note that according to the decomposition (29) we have

tr πΓ(f) =
⊕

0∈Ĝ

m0 tr π0(f),

where π0(f) =
∫
G f(g)π0(g) dg is of trace class, and defines a distribution

θ0 : C
∞
c (G) 6 f -→ trπ0(f) ∈ C

on G which represents the global character of 5. Selberg’s trace formula for f ∈ S(G) now
follows. !
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Consider next a maximal compact subgroup K of G, and σ ∈ K̂. As a consequence of Theorem
4, and Selberg’s formula (34) we obtain

Proposition 3. Let ft ∈ S(G), t > 0, be the Langlands kernel of a semigroup generated by a
strongly elliptic operator associated to the representation πΓ. Then

(Lσft)(e) =
dσ⊗σ

(2π)dimG/Kvol (Γ\G) t
dim G/K

q

∑

ι

∫

Reg C
αι(p)b

ι
ft(ϕι(p), ξ/t

1/q; k1, k)(χσ ⊗ χσ)(k1, k)

·jι(p)
d(Reg C)(p, ξ, k1, k)

|det Φ′′
ιι(p, ξ, k1, k)N(p,ξ,k1,k)Reg C |1/2

,

up to terms of order O(t−(dimG/K−1)/q(log t)Λ−1), the notation being as in Theorem 4. Here
Lσ denotes the projector onto the isotypic component L2(G)σ. If, in addition, Assumption 1 is
satisfied, the leading term of (Lσft)(e) is given by

dσ⊗σ [(πσ ⊗ πσ)|H : 1]

(2π)dimG/Kvol (Γ\G) t
dim G/K

q

ṽol (Ξ/K),

where

ṽol (Ξ/K) =
∑

ι

∫

RegΞ
F̂ι(p, ξ)αι(p)jι(p)

d(RegΞ)(p, ξ)

volO(p,ξ)
,

and F̂ι(p, ξ) = c0(e)
∫
Rd e

i
∑

l,j cjl (p)ζlξje−b|e
∑

ζiXi |q/(q−1)
Ψ∗(dG)(ζ).

Proof. By Theorem 2, trπΓ(Hσ
ftβ

) = tr πΓ(Hσ
ft
) + O(t∞), where 0 ≤ β ≤ 1 is a test function on

G with support in a sufficiently small neighborhood U of e ∈ G, and which is equal 1 close to e.
Furthermore, by Theorem 4,

tr πΓ(H
σ
ft) =

dσ⊗σ

(2π)dimG/Kt
dim G/K

q

∑

ι

∫

Reg C
αι(p)b

ι
ft(ϕι(p), ξ/t

1/q; k1, k)(χσ ⊗ χσ)(k1, k)jι(p)

·
d(Reg C)(p, ξ, k1, k)

|det Φ′′
ιι(p, ξ, k1, k)N(p,ξ,k1,k)Reg C |1/2

+ O(t−(dimG/K−1)/q(log t)Λ−1).

Next, recall that for any γ ∈ Γ ⊂ G, the G-conjugacy class [γ]G is closed. Furthermore, every
compactum in G meets only finitely many [γ]G, see [16], Lemma 8.1. Consequently, by choosing
the support of β sufficiently small, we obtain with (34)

trπΓ(H
σ
ftβ) = vol (Γ\G)Hσ

ft(e),

and the assertion follows with Theorem 4, and Corollary 4. !

We now apply our results to heat kernels of Bochner-Laplace operators on compact, locally
symmetric spaces. Let (πσ, Vσ) be an irreducible unitary representation of K of class σ ∈ K̂.
Consider the associated homogeneous vector bundle Ẽσ = (G × Vσ)/K over G/K, and endow it
with the G-invariant Hermitian fibre metric induced by the inner product in Vσ. Let g = k ⊕ p

be a Cartan decomposition of g as in (1), and consider the unique G-invariant connection ∇̃ on
Ẽσ given by the condition that if s is a smooth cross section, Y ∈ p, and Π : G → G/K is the
canonical projection, then

∇̃Π∗(Y )(s) =
d

dt
s( etY K)|s=0,

Π∗ being the differential of Π at e ∈ G. Let further ∆̃σ = ∇̃∗∇̃ be the Bochner Laplace operator of
∇̃, and denote by C∞(Ẽσ), C∞

c (Ẽσ), and L2(Ẽσ) the usual spaces of sections of Ẽσ. With respect
to the identification

C∞(Ẽσ) = (C∞(G) ⊗ Vσ)
K ,
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where (C∞(G) ⊗ Vσ)K =
{
ϕ : G→ Vσ is smooth and ϕ(gk) = πσ(k)−1ϕ(g), k ∈ K, g ∈ G

}
, and

the corresponding identifications for C∞
c (Ẽσ) and L2(Ẽσ), one has

∆̃σ = −dR(Ω)⊗ id + id ⊗ dπσ(ΩK) = −dR(Ω)⊗ id + λσid

for some λσ ≥ 0, Ω and ΩK being the Casimir elements of G and K, respectively, see [14],
Proposition 1.1. As it turns out, the operator ∆̃σ : C∞

c (Ẽσ) → L2(Ẽσ) is essentially self-adjoint,
and has a unique self-adjoint extension which we shall also denote by ∆̃σ. It is a positive operator,

and we denote the corresponding heat semigroup by e−t∆̃σ . It is given by

(35) (e−t∆̃σϕ)(g) =

∫

G
hσt (g1)ϕ(gg1) dg1, ϕ ∈ (L2(G)⊗ Vσ)

K ,

where hσt : G→ End(Vσ) is square integrable, and has the covariance property

hσt (g) = πσ(k)h
σ
t (k

−1gk1)πσ(k1)
−1, g ∈ G, k, k1 ∈ K.

As one can show, hσt is actually given in terms of the classical heat kernel pt introduced in (28)
according to

(36) hσt (g) = etλσ

∫

K

∫

K
pt(k

−1gk1)πσ(kk
−1
1 ) dk1 dk,

see [2] and [17], Section 3. Let now Γ be a discrete, uniform, torsion-free subgroup of G. Then Γ
acts without fixed points on G/K, and Γ\G/K constitutes a compact, locally symmetric space.
Let Eσ = Γ\Ẽσ → Γ\G/K be the pushdown of the homogenous vector bundle Ẽσ → G/K. Again,
we have identification

C∞(Eσ) = (C∞(Γ\G)⊗ Vσ)
K ,

and similarly for C∞
c (Eσ), and L2(Eσ). Since ∆̃σ is G-invariant, it induces an elliptic, essentially

self-adjoint operator ∆σ = ∇∗∇ : C∞(Eσ) → L2(Eσ), where ∇ is the pushdown of the canonical
connection ∇̃. Let e−t∆σ be the corresponding heat semigroup. With respect to a basis {ei} of
Vσ , we obtain with (35) and (36)

[e−t∆σϕ)(g)]j =
dimσ∑

k=1

πΓ(
jkHσ

t )[ϕ(g)]k, ϕ ∈ (L2(Γ\G)⊗ Vσ)
K ,

where
jkHσ

t (g) = etλσ

∫

K

∫

K
pt(k

−1gk1)(πσ(kk
−1
1 ))jk dk1 dk.

Thus, e−t∆σ is given by the matrix of convolution operators πΓ(jkHσ
t ). The kernels jkHσ

t are
essentially of the same form as the kernels Hσ

pt
defined in (15), and we arrive at

Theorem 5. Let σ ∈ K̂, and ∆σ be the Bochner-Laplace operator on the homogeneous vector
bundle Eσ = Γ\(G× Vσ)/K → Γ\G/K. Then

tr e−t∆σ =
etλσ

∫
H
trπσ(kk

−1
1 )dk1dk

(2π)dimG/Kt
dimG/K

2

ṽol (Ξ/K) +O(etλσ t−(dimG/K−1)/2(log t)Λ−1),

where

ṽol (Ξ/K) =
∑

ι

∫

RegΞ
F̂ι(p, ξ)

αι(p)jι(p)d(RegΞ)(p, ξ)

vol O(p,ξ)
,

and F̂ι(p, ξ) = (4π)−d/2
∫
Rd e

i
∑

l,j cjl (p)ζlξj e−|e
∑

ζiXi |2/4Ψ∗(dG)(ζ), b > 0, the notation being the
same as in Corollary 5.
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Proof. By Theorem 4, and (26), we have

tr πΓ(
jkHσ

t ) =
etλσ

(2π)dimG/Kt
dim G/K

2

∑

ι

∫

Reg C
F̂ι(p, ξ)

(πσ(kk
−1
1 ))jkαι(p)jι(p)d(Reg C)(p, ξ, k1, k)

|det Φ′′
ιι(p, ξ, k1, k)N(p,ξ,k1,k)Reg C |1/2

up to terms of order O(etλσ t−(dimG/K−1)/2(log t)Λ−1). The assertion now follows with (27). !
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