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SINGULAR EQUIVARIANT ASYMPTOTICS AND THE MOMENTUM MAP.

RESIDUE FORMULAE IN EQUIVARIANT COHOMOLOGY

PABLO RAMACHER

Abstract. Let M be a smooth manifold and G a compact connected Lie group acting on M

by isometries. In this paper, we study the equivariant cohomology of X = T ∗M , and relate it to
the cohomology of the Marsden-Weinstein reduced space via certain residue formulae. In case
that X is a compact symplectic manifold with a Hamiltonian G-action, similar residue formulae
were derived by Jeffrey, Kirwan et al. [26, 25].
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1. Introduction

Let X be a symplectic manifold carrying a Hamiltonian action of a compact, connected Lie
group G with Lie algebra g, and denote the corresponding momentum map by J : X → g∗. In case
that X is compact and 0 a regular value of the momentum map, the cohomology of the Marsden-
Weinstein reduced spaceXred = J−1(0)/G was expressed by Jeffrey and Kirwan [26] in terms of the
equivariant cohomology ofX via certain residue formulae. If 0 is not a regular value, similar residue
formulae were derived by them and their collaborators [25] for nonsingular, connected, complex
projective varieties X. These formulae rely on the localization theorem for compact group actions
of Berline-Vergne [4, 3], and are related to the non-Abelian localization theorem of Witten [40].
The intention of this paper is to extend their results to non-compact situations, and derive similar
residue formulae in case that X is given by the cotangent bundle of a G-manifold.
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Let X be a smooth manifold carrying a smooth action of a connected Lie group G. According
to Cartan [11], its equivariant cohomology can be defined by replacing the algebra Λ(X) of smooth
differential forms on X by the algebra (S(g∗)⊗ Λ(X))G of G-equivariant polynomial mappings

" : g # X $−→ "(X) ∈ Λ(X),

where g denotes the Lie algebra of G. Let X̃ denote the fundamental vector field on X generated
by an element X ∈ g. Defining equivariant exterior differentiation by

D"(X) = d("(X))− ιX̃("(X)), X ∈ g, " ∈ (S(g∗)⊗ Λ(X))G,

where d and ι denote the usual exterior differentiation and contraction, the equivariant cohomology
of the G-action on X is given by the quotient

H∗
G(X) = KerD/ ImD,

which is canonically isomorphic to the topological equivariant cohomology introduced in [2] in case
that G is compact, an assumption that we will make from now on. The main difference between
ordinary and equivariant cohomology is that the latter has a larger coefficient ring, namely S(g∗),
and that it depends on the orbit structure of the underlying G-action. Let us now assume that X
admits a symplectic structure ω which is left invariant by G. By Cartan’s homotopy formula,

0 = LX̃ω = d ◦ ιX̃ω + ιX̃ ◦ dω = d ◦ ιX̃ω,

where L denotes the Lie derivative with respect to a vector field, implying that ιX̃ω is closed for
each X ∈ g. G is said to act on X in a Hamiltonian fashion, if this form is even exact, meaning
that there exists a linear function J : g → C∞(X) such that for each X ∈ g, the fundamental
vector field X̃ is equal to the Hamiltonian vector field of J(X), so that

d(J(X)) + ιX̃ω = 0.

An immediate consequence of this is that for any equivariantly closed form " the form given
by ei(J(X)−ω)"(X) is equivariantly closed, too. Following Souriau and Kostant, one defines the
momentum map of a Hamiltonian action as the equivariant map

J : X −→ g∗, J(η)(X) = J(X)(η).

Assume next that 0 ∈ g∗ is a regular value of J, which is equivalent to the assumption that the
stabilizer of each point of J−1(0) is finite. In this case, J−1(0) is a smooth manifold, and the
corresponding Marsden-Weinstein reduced space, or symplectic quotient

Xred = J−1(0)/G

is an orbifold with a unique symplectic form ωred determined by the identity ι∗ ω = π∗ ωred, where
π : J−1(0) → Xred and ι : J−1(0) ↪→ X denote the canoncial projection and inclusion, respectively.
Furthermore, π∗ induces an isomorphism between H∗(Xred) and H∗

G(J
−1(0)). Consider now the

map

K : H∗
G(X)

ι∗
−→ H∗

G(J
−1(0))

(π∗)−1

−→ H∗(Xred),

and assume that X is compact and oriented. In this case, Kirwan [28] showed that K defines
a surjective homomorphism, so that the cohomology of Xred should be computable from the
equivariant cohomology of X. This is the content of the residue formula of Jeffrey and Kirwan
[26], which for any " ∈ H∗

G(X) expresses the integral

(1)

∫

Xred

e−iωredK(") =

∫

Xred

dimXred/2∑

k=0

(−iωred)k

k!
K(")[dimXred−2k]



SINGULAR EQUIVARIANT ASYMPTOTICS AND THE MOMENTUM MAP 3

in terms of data of X. More precisely, let T ⊂ G be a maximal torus, and XT its fixed point
set. Then (1) is given by a sum over the components F of XT of certain residues involving the
restriction of " to the G-orbit G ·F and the equivariant Euler form χNF of the normal bundle NF
of F . The departing point of their work is the observation that the integral (1) should be given by
the g-Fourier transform of the tempered distribution

g # X $→

∫

X

ei(J(X)−ω)"(X)

evaluated at 0 ∈ g∗. The mentioned formula of Jeffrey and Kirwan is then essentially a conse-
quence of the localization formula of Berline and Vergne [4]. In case that 0 ∈ g∗ is not a regular
value, analogous residue formulae were derived in [25] for nonsingular, connected, complex pro-
jective varieties X within the framework of geometric invariant theoretic quotients, under some
weak assumptions about the group action. In this situation, there is no longer a surjection from
equivariant cohomology onto the cohomology of the corresponding quotient, whose singularities
are worse than in the orbifold case. Nevertheless, their is still a surjection onto its intersection
cohomology, which is a direct summand of the ordinary cohomology of any resolution of singulari-
ties of the quotient. Using a canonical desingularization procedure for such quotients developed by
Kirwan [29] in combination with certain residue operations established by Guillemin and Kalkman
[21], residue formulae for intersection pairings can then be derived.

Historically, the Berline-Vergne localization formula emerged as a generalization of a result of
Duistermaat and Heckman [17] concerning the pushforward of the Liouville measure of a com-
pact, symplectic manifold carrying a Hamiltonian torus action along the momentum map. As it
turns out, this pushforward is a piecewise polynomial measure, or equivalently, its inverse Fourier
transform is exactly given by the leading term in the stationary phase approximation. The study
of the pushforward of the Liouville measure was motivated by attempts of finding an asymptotic
approximation to the Kostant multiplicity formula [31] in order to examine the partition function
occuring in that formula, which otherwise is very difficult to evaluate [22]. On the other side, the
origin of the Berline-Vergne localization formula can be traced back to a residue formula for holo-
morphic vector fields derived by Bott [7], which was inspired by the generalized Lefschetz formula
of Atiyah and Bott [1].

In this paper, we shall prove a residue formula in case that X = T ∗M is given by the cotangent
bundle of a smooth manifold M on which a compact, connected Lie group G acts by general
isometries. For this, we shall determine the asymptotic behavior of integrals of the form

Iς(µ) =

∫

g

[∫

X

ei(J(η)−ς)(X)/µa(η, X) dη

]
dX, µ → 0+,

via the stationary phase principle, where ς ∈ g∗, a ∈ C∞
c (X× g) is an amplitude, dη the Liouville

measure on X, and dX denotes an Euclidean measure on g given by an Ad (G)-invariant inner
product on g. While asymptotics for Iς(µ) can be easily obtained for free group actions, one
meets with serious difficulties when singular orbits are present. The reason is that, when trying
to examine these integrals in case that ς ∈ g∗ is not a regular value of the momentum map, the
critical set of (J(η)−ς)(X) is no longer smooth, so that, a priori, the stationary phase principle can
not be applied in this case. Instead, we shall circumvent this obstacle in the case ς = 0 by partially
resolving the singularities of the critical set of the momentum map, and then apply the stationary
phase theorem in a suitable resolution space. By this we are able to obtain asymptotics for I0(µ)
with remainder estimates in the case of singular group actions. This approach was developed first
in [13, 36] to describe the spectrum of an invariant elliptic operator on a compact G-manifold,
where similar integrals occur, and used in the derivation of equivariant heat asymptotics in [35].
The asymptotic description of Iς(µ) in a neighborhood of ς = 0 then allows us to derive the
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following residue formula. Let " ∈ H∗
G(T

∗M) be of the form "(X) = α + Dβ(X), where α is a
closed, basic differential form on T ∗M of compact support, and β is an equivariant differential
form of compact support. Fix a maximal torus T ⊂ G, and denote the corresponding root system
by ∆(g, t). Assume that the dimension κ of a principal G-orbit is equal to d = dim g, and denote
the product of the positive roots by Φ. Let further W be the Weyl group and H a principal
isotropy group of the G-action. Denote the principal stratum of J−1(0) by Reg J−1(0), and put
RegXred = Reg J−1(0)/G. Also, let r : Λ∗(X) → Λ∗−κ(Reg J−1(0)) be the natural restriction
map, and write K̃ = (π∗)−1 ◦ r. Then, by Theorem 7,

(2π)d
∫

RegXred

K̃(e−iωα) =
|H |

|W | volT
Res

(
Φ2

∑

F∈F

uF

)
,

where F denotes the set of components of the fixed point set of the T -action on X = T ∗M , and
the uF are rational functions on t given by

uF : t # Y $−→ (−2π)rkF/2eiJY (F )

∫

F

e−iω"(Y )

χNF (Y )
,

JY (F ) being the constant value of J(Y ) on F . The definition of the residue operation, given in
Section 2, relies on the fact that the Fourier transform of uF is a piecewise polynomial measure.
Our approach is in many respects similar to the one of Jeffrey, Kirwan et al., but differs from their’s
in that it is based on the stationary phase principle, which suggests that it should be possible to
find a new proof of their results, and extend them to general symplectic manifolds.

Acknowledgements. The author wishes to thank Michèle Vergne for pointing out to him that
the results in [36] could be related to equivariant cohomology, and teaching him many things about
the field. This research was financed in its beginnings by the grant RA 1370/2-1 of the German
Research Foundation (DFG).

2. Localization in equivariant cohomology

Let X be a 2n-dimensional, paracompact, symplectic manifold with symplectic form ω and
Riemannian metric g. Since ω is non-degenerate, ωn/n! yields a volume form on X called the
Liouville form, whose existence is equivalent to the fact that X is orientable. Define a bundle
morphism J : TX → TX by setting

gη(JX,Y) = ωη(X,Y), X,Y ∈ TηX,

and assume that J is normed in such a way that J 2 = −1, which defines J uniquely. J constitutes
an almost-complex structure that is compatible with ω, meaning that

ωη(JX,JY) = ωη(X,Y), ωη(X,JX) > 0.

Furthermore, gη(JX,JY) = gη(X,Y). (X,J , g) is consequently an almost-Hermitian manifold.
Next, assume thatX carries a Hamiltonian action of a compact, connected Lie groupG of dimension
d, and denote the corresponding Kostant-Souriau momentum map by

J : X → g∗, J(η)(X) = JX(η) = J(X)(η).

By definition, dJX + ιX̃ω = 0 for all X ∈ g, where X̃ denotes the vector field on X given by

(X̃f)(η) =
d

dt
f(e−tX · η)|t=0, X ∈ g, f ∈ C∞(X).

By this choice, the mapping X $→ X̃ becomes a Lie-algebra homomorphism, so that in particular

[̃X,Y ] = [X̃, Ỹ ]. Also note that J is G-equivariant in the sense that J(g−1η) = Ad ∗(g)J(η).
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In what follows, we assume that g is endowed with an Ad (G)-invariant inner product, which
allows us to identify g∗ with g. Let further dX and dξ be corresponding measures on g and g∗,
respectively, and denote by

Fg : S(g∗) → S(g), Fg : S ′(g) → S ′(g∗)

the g-Fourier transform on the Schwartz space and the space of tempered distributions, respectively.
In this paper, we intend to relate the equivariant cohomology H∗

G(X) of X to the cohomology of
the symplectic quotient

Xred = Ω0/G, Ως = J−1(ς).

Following [40] and [26], we consider for this the map

X $→ Lα(X) =

∫

X

eiJXα, X ∈ g, α ∈ Λc(X),

regarded as a tempered distribution in S ′(g), where Λc(X) denotes the algebra of differential forms
on X of compact support. If (X,ω) is a compact symplectic manifold, G a torus, and α = σn/n!
the Liouville measure, Lα is the Duistermaat-Heckman integral, and corresponds to the inverse
g-Fourier transform of the pushforward J∗(σn/n!) of the Liouville form along the momentum map.
In this case, the g-Fourier transform of Lα is exactly J∗(σn/n!) and a piecewise polynomial measure
on g∗ [17].

We are therefore interested in the g-Fourier transform FgLα of Lα in general, and particularly,
in its description near 0 ∈ g∗. Take an Ad ∗(G)-invariant function ϕ ∈ C∞

c (g∗) with total integral
equal to one and g-Fourier transform ϕ̂(X) = (Fgϕ)(X) =

∫
g∗ e−i〈ξ,X〉ϕ(ξ) dξ, where we wrote

ξ(X) = 〈ξ, X〉. Then ϕε(ξ) = ϕ(ε−1ξ)/εd, ε > 0, constitutes an approximation of the δ-distribution
in g∗ at 0 as ε → 0, and we consider the limit

lim
ε→0

〈FgLα,ϕε〉 = lim
ε→0

∫

g

Lα(X)ϕ̂(εX) dX = lim
ε→0

∫

g

∫

X

eiJX/εα ϕ̂(X)
dX

εd
,(2)

where we took into account that ϕ̂ε(X) = ϕ̂(εX). Next, fix a maximal torus T ⊂ G of dimension
dT with Lie algebra t, and consider the root space decomposition

gC = tC ⊕
⊕

γ∈∆

gγ ,

where ∆ = ∆(g, t) denotes the set of roots of g with respect to t, and gγ are the corresponding root
spaces. Since dimC gγ = 1, the decomposition implies d − dT = dimR g − dimR t = |∆|. Assume
that α is such that Lα is Ad (G)-invariant. Using Weyl’s integration formula [26, Lemma 3.1], (2)
can be rewritten as

(3) lim
ε→0

〈FgLα,ϕε〉 =
volG

|W |volT
lim
ε→0

∫

t

[∫

X

eiJY α

]
ϕ̂(εY )Φ2(Y )dY,

where Φ(Y ) =
∏

γ∈∆+
γ(Y ) and∆+ is the set of positive roots, whileW = W (g, t) denotes the Weyl

group. Here volG and volT stand for the volumes of G and T with respect to the corresponding
volume forms on G and T induced by the invariant inner product on g and its restriction to t,
respectively. In what follows, we shall express this limit in terms of the set

FT = {η ∈ X : t · η = η ∀ t ∈ T }

of fixed points of the underlying T -action. The connected components of FT are smooth submani-
folds of possibly different dimensions, and we denote the set of these components by F . Let F ∈ F
be fixed, and consider the normal bundle NF of F . As can be shown, the real vector bundle NF
can be given a complex structure, and splits into a direct sum of two-dimensional real bundles
PF
q , which can be regarded as complex line bundles over F . For each η ∈ F , the fibers (PF

q )η
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are T -invariant, and endowing them with the standard complex structure, the action of t can be
written as

(PF
q )η # v $→ iλF

q (Y )v ∈ (PF
q )η, Y ∈ t,

where the λF
q ∈ t∗ are the weights of the torus action [20]. They do not depend on η. Now, if " is

an equivariantly closed form, Le−iω+(Y )(Y ) can be computed using

Theorem 1 (Localization formula of Berline-Vergne). Let X be a smooth n-dimensional manifold
acted on by a compact Lie group G, and " an equivariantly closed form on X with compact support.
For Y ∈ g, let X0 denote the zero set of Y . Then "(Y )[n] is exact outside X0, and

∫

X

"(Y ) =

∫

X0

(−2π)rkNX0/2 "(Y )

χNX0(Y )
,

where NX0 denotes the normal bundle of X0, which has been endowed with an orientation com-
patible with the one of X0, and χNX0 is the equivariant Euler form of the normal bundle.

Proof. The proof is the same as the proof of [3, Theorem 7.13], which consists essentially in a
local computation, except for [3, Lemma 7.14] which, nevertheless, can be easily generalized to
equivariantly closed forms with compact support on non-compact manifolds. !

To apply this theorem in our context, recall that an element Y ∈ t is called regular, if the set
{exp(sY ) : s ∈ R} is dense in T . The set of regular elements, in the following denoted by t′, is
dense in t, and

(4)
{
η ∈ X : Ỹη = 0

}
= FT , Y ∈ t′.

We then have the following

Corollary 1. Let " ∈ H∗
G(X) be an equivariantly closed form on X of compact support, and Y ∈ t′.

Then

Le−iω+(Y )(Y ) =

∫

X

ei(JY −ω)"(Y ) =
∑

F∈F

uF (Y ),

where the uF are rational functions on t given by

(5) uF : t # Y $−→ (−2π)rkNF/2eiJY (F )

∫

F

e−iω"(Y )

χNF (Y )
,

JY (F ) being the constant value of JY on F .

Proof. Since Y $→ ei(JY −ω)"(Y ) defines an equivariantly closed form, the assertion follows imme-
diately from the previous theorem and (4). !

In the last corollary, the equivariant Euler class is given by

χNF (Y ) =
∏

q

(c1(P
F
q ) + λF

q (Y )),

where c1(PF
q ) ∈ H2(F ) denotes the first Chern class of the complex line bundle PF

q . Thus,

1

χNF (Y )
=

1∏
q λ

F
q (Y )

∏

q

(
1 +

c1(PF
q )

λF
q (Y )

)−1
=

1∏
q λ

F
q (Y )

∏

q

∑

0≤rq

(−1)rq
(c1(PF

q )

λF
q (Y )

)rq
.

Note that the sum in the last expression is finite, since c1(PF
q )/λF

q (Y ) is nilpotent. Consequently,
the inverse makes sense. Let us also note that the set of critical points of JX is given by

CritJX =
{
η ∈ X : X̃η = 0

}
, X ∈ g,
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and is clean in the sense of Bott. Indeed, CritJX is a smooth submanifold consisting of possibly
several components of different dimension. On the other hand, the Hessian of JX is given by the
symmetric bilinear form

Hess JX : Tη(X)× Tη(X) −→ R, (X1,X2) $→ (X̃1)η(X̃2(JX)), η ∈ CritJX ,

where X̃2(JX) = dJX(X̃2) = −ιX̃ω(X̃2), and X̃ denotes the extension of a vector X ∈ Tη(X) to a
vector field. Now,

X̃i(ω(X̃, X̃j)) = L
X̃i
(ιX̃ ι

X̃j
ω) = ιL

X̃i
X̃ ιX̃j

ω + ιX̃ L
X̃i
(ι

X̃j
ω)

= ιL
X̃i

X̃ ι
X̃j
ω + ιX̃ ιL

X̃i
X̃j
ω + ιX̃ ι

X̃j
L
X̃i
(ω),

(6)

so that at a point η ∈ CritJX one computes

−HessJX(X1,X2) = X̃1(ω(X̃, X̃2)) = −ω([X̃, X̃1], X̃2),(7)

since X̃ vanishes on CritJX . But the Lie derivative X $→ (LX̃X̃)η = [X̃, X̃]η defines an invertible
endomorphism of NηCritJX . Consequently, the Hessian of JX is transversally non-degenerate and
CritJX is clean.

We would like to compute (3) using Corollary 1, but since the rational functions (5) are not
locally integrable on t, we cannot proceed directly. Instead note that, since Φ2 and ϕ̂ have analytic
continuations to tC = t⊗ C, Cauchy’s integral theorem yields for arbitrary Z ∈ t

∫

t

[∫

X

ei(JY −ω)"(Y )

]
(ϕ̂εΦ

2)(Y )dY =

∫

t

[∫

X

ei(JY +iZ−ω)"(Y + iZ)

]
(ϕ̂εΦ

2)(Y + iZ)dY.

Here we took into account that by the Theorem of Paley-Wiener-Schwartz [24, Theorem 7.3.1]
ϕ̂ε(Y + iZ) is rapidly falling in Y . Let now Λ be a proper cone in the complement of all the
hyperplanes

{
Y ∈ t : λF

q (Y ) = 0
}
, so that Y ∈ Λ necessarily implies λF

q (Y ) .= 0 for alle q and F .
By the foregoing considerations, uF defines a holomorphic function on t + iΛ, and for arbitrary
compacta M ⊂ IntΛ, there is an estimate of the form

|uF (ζ)| ≤ C(1 + |ζ|)N , ζ = Y + iZ, Im ζ ∈ M,

for some N ∈ N. The functions uFΦk, k = 0, 1, 2, . . . , are holomorphic on t+ iΛ, too, and satisfy
similar bounds. Then, by [24, Theorem 7.4.2], there exists for each k a distribution UΦk

F ∈ D′(t∗)
such that

(8) e−〈·,Z〉UΦk

F ∈ S ′(t∗), F−1
t (e−〈·,Z〉UΦk

F ) = (uFΦk)(·+ iZ), Z ∈ Λ.

We therefore obtain with Corollary 1 for arbitrary Z ∈ Λ and ς ∈ t∗ the equality
∫

t

[∫

X

ei(JY −ω)"(Y )

]
(e−i〈ς,·〉ϕ̂εΦ

2)(Y )dY =
∑

F∈F

〈
(uFΦ2)(·+ iZ), (e−i〈ς,·〉ϕ̂ε)(·+ iZ)

〉

=
∑

F∈F

〈
e−〈·,Z〉UΦ2

F ,F−1
t

(
(e−i〈ς,·〉ϕ̂ε)(·+ iZ)

)〉

=
∑

F∈F

〈
UΦ2

F ,F−1
t

(
e−i〈ς,·〉ϕ̂ε

)〉
.

(9)

Remark 1. Let us mention that for arbitrary ς ∈ t∗

F−1
t (e−i〈ς,·〉ϕ̂ε)(ξ) =

1

εdT
(F−1

t ϕ̂)
(ξ − ς

ε

)
, ξ ∈ t∗,
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constitutes an approximation of the δ-distribution in t∗ at ς , since for arbitrary v ∈ C∞
c (t∗)

〈
F−1

t (e−i〈ς,·〉ϕ̂ε), v
〉
=

∫

t∗
(F−1

t ϕ̂)(ξ)v(εξ + ς) dξ → v(ς)ϕ̂(0) = v(ς), ε→ 0.

Remark 2. Alternatively, each of the summands in (9) can be expressed as
〈
(uFΦ)(·+ iZ), (e−i〈ς,·〉Φϕ̂ε)(·+ iZ)

〉

= (2π)|∆+|
〈
F−1

t (e−〈·,Z〉UΦ
F ), (e−i〈ς,·〉Ft(Φϕε))(·+ iZ)

〉
= (2π)|∆+|

〈
UΦ
F , (Φϕε)(·− ς)

〉
,

where we used the equality Φϕ̂ε = ΦFg(ϕε) = (2π)|∆+|Ft(Φϕε), see [26, Lemma 3.4], and the fact
that (e−i〈ς,·〉Ft(ϕεΦ))(·+ iZ) = Ft(e〈·,Z〉(ϕεΦ)(·− ς)), or as

〈
uF (·+ iZ), (e−i〈ς,·〉Φ2ϕ̂ε)(·+ iZ)

〉

= (2π)|∆+|
〈
F−1

t (e−〈·,Z〉UF ), (e
−i〈ς,·〉Ft(DΦ(Φϕε)))(·+ iZ)

〉
= (2π)|∆+| 〈UF , DΦ(Φϕε)(·− ς)〉 ,

where DΦ denotes the differential operator such that Ft(DΦ(Φϕε)) = ΦFt(Φϕε).

As a consequence of equations (2), (3), and (9) we arrive at

Proposition 1. Let " be an equivariantly closed differential form. Then

lim
ε→0

〈
Fg

(
Le−iω+(·)(·)

)
,ϕε

〉
= lim

ε→0

∫

g

∫

X

ei(JX/ε−ω)"(X/ε) ϕ̂(X)
dX

εd

=
vol G

|W |vol T
lim
ε→0

∑

F∈F

〈
UΦ2

F ,F−1
t

(
ϕ̂ε

)〉
.

!

In order to further investigate the distributions UΦk

F , note that the functions uFΦk are given by
a linear combination of terms of the form

eiJY (F )

ΠqλF
q (Y )rq

P (Y ), P ∈ C[t∗].

The crucial observation is now that, due to this fact, the uFΦk are tempered distributions whose
t-Fourier transforms are piecewise polynomial measures [26, Proposition 3.6]. By the continuity of
the Fourier transform in S ′ we therefore have

Ft(uFΦk) = Ft

(
lim
t→0

uFΦk(·+ itZ)
)
= lim

t→0
Ft(uFΦk(·+ itZ)) = lim

t→0
e−〈·,tZ〉UΦk

F = UΦk

F .

Thus, UΦk

F ∈ S ′(t∗) is the t-Fourier transform of uFΦk, and, in particular, a piecewise polynomial

measure. Motivated by Proposition 1, we are interested in the behavior of UΦk

F near the orgin,
which leads us to the following

Definition 1. Let ς ∈ t∗ be such that for all F ∈ F the Fourier transforms UΦk

F are smooth on
the segment tς, t ∈ (0, δ). We then define the so-called residues

ResΛ,ς(uFΦk) = lim
t→0

UΦk

F (tς).
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Note that the limit defining ResΛ,ς(uFΦk) certainly exists, but does depend on ς (and Λ) as

UΦk

F is not continuous at the origin. Furthermore, for arbitrary Z ∈ Λ,

ResΛ,ς(uFΦk) = lim
t→0

lim
ε→0

∫

t∗
UΦk

F (ξ)F−1
t (e−i〈tς,·〉ϕ̂ε)(ξ) dξ

= lim
t→0

lim
ε→0

〈
F−1

t

(
UΦk

F e−〈·,Z〉
)
,
(
e−i〈tς,·〉ϕ̂ε

)
(·+ iZ)

〉

= lim
t→0

lim
ε→0

∫

t

(uFΦk)(Y + iZ)e−i〈tς,Y +iZ〉ϕ̂ε(Y + iZ)dY,

in concordance with the definition of the residues in [26, Section 8]. In particular, this implies

∑

F∈F

ResΛ,ς(uFΦk) = lim
t→0

lim
ε→0

∫

t

[∫

X

ei(J−tς)(Y )e−iω"(Y )

]
Φk(Y )ϕ̂(εY ) dY.(10)

Similarly,

∑

F∈F

UΦk

F (ς) = lim
ε→0

∫

t

[∫

X

ei(J−ς)(Y )e−iω"(Y )

]
Φk(Y )ϕ̂(εY ) dY.

For a deeper understanding of the residues and the limits in Proposition 1, we are therefore led to
a systematic study of the asymptotic behavior of integrals of the form

(11) Iς(µ) =

∫

g

[∫

X

eiψς(η,X)/µa(η, X) dη

]
dX, µ → 0+,

where g is the Lie algebra of an arbitrary connected, compact Lie group G, a ∈ C∞
c (X × g) is an

amplitude, dη = ωn/n! the Liouville measure on X, and dX an Euclidean measure on g given by
an Ad (G)-invariant inner product on g, while

(12) ψς(η, X) = J(η)(X)− ς(X), ς ∈ g∗.

This will occupy us in the next sections.

3. The stationary phase theorem and resolution of singularities

In what follows, we shall describe the asymptotic behavior of the integrals Iς(µ) defined in (11)
by means of the stationary phase principle. As we shall see, the critical set of the corresponding
phase function is in general not smooth. We shall therefore first partially resolve its singularities,
and then apply the stationary phase principle in a suitable resolution space. We begin by recalling

Theorem A (Stationary phase theorem for vector bundles). Let M be an n-dimensional, oriented
manifold, and π : E → M an oriented vector bundle of rang l. Let further α ∈ Λq

cv(E) be a
differential form on E with compact support along the fibers, τ ∈ Λn+l−q

c (M) a differential form
on M of compact support, ψ ∈ C∞(E), and consider the integral

(13) I(µ) =

∫

E
eiψ/µ(π∗τ) ∧ α, µ > 0.

Let ι : M ↪→ E denote the zero section. Assume that the critical set of ψ coincides with ι(M),
and that the transversal Hessian of ψ is non-degenerate along ι(M). Then, for each N ∈ N, I(µ)
possesses an asymptotic expansion of the form

I(µ) = eiψ0/µei
π
4 σψ(2πµ)

l
2

N−1∑

j=0

µjQj(ψ;α, τ) +RN (µ),
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where ψ0 and σψ denote the value of ψ and the signature of the transversal Hessian along ι(M),
respectively. The coefficients Qj are given by measures supported on M , and can be computed

explicitly, as well as the remainder term RN (µ) = O(µl/2+N ).

Proof. See Appendix A. !

If the critical set of the phase function is not smooth, the stationary phase principle can not be
applied a priori, and one faces serious difficulties in describing the asymptotic behavior of oscillatory
integrals. We shall therefore first partially resolve the singularities of the critical set, and then apply
the stationary phase principle in a suitable resolution space. To explain our approach, let M be
a smooth variety, OM the structure sheaf of rings of M, and I ⊂ OM an ideal sheaf. The aim in
the theory of resolution of singularities is to construct a birational morphism Π : M̃ → M such
that M̃ is smooth, and the inverse image ideal sheaf Π∗I is locally principal. This is called the
principalization of I, and implies resolution of singularities. That is, for every quasi-projective
variety X , there is a smooth variety X̃ , and a birational and projective morphism π : X̃ → X .
Vice versa, resolution of singularities implies principalization. If Π∗(I) is monomial, that is, if for

every x̃ ∈ M̃ there are local coordinates σi and natural numbers ci such that

Π∗(I) · Ox̃,M̃ =
∏

i

σci
i · Ox̃,M̃,

one obtains strong resolution of singularities, which means that, in addition to the properties
stated above, π is an isomorphism over the smooth locus of X , and π−1(SingX ) a divisor with
simple normal crossings. Consider next the derivative D(I) of I, which is the sheaf ideal that is
generated by all derivatives of elements of I. Let further Z ⊂ M be a smooth subvariety, and
π : BZM → M the corresponding monoidal transformation with center Z and exceptional divisor
F ⊂ BZM. Assume that (I,m) is a marked ideal sheaf with m ≤ ordZI. The total transform π∗I
vanishes along F with multiplicity ordZI, and by removing the ideal sheaf OBZM(−ordZI ·F ) from
π∗I we obtain the birational, or weak transform π−1

∗ I of I. Take local coordinates (x1, . . . , xn) on
M such that Z = (x1 = · · · = xr = 0). As a consequence,

y1 =
x1

xr
, . . . , yr−1 =

xr−1

xr
, yr = xr, . . . , yn = xn

define local coordinates on BZM, and for (f,m) ∈ (I,m) one has

π−1
∗ (f(x1, . . . , xn),m) = (y−m

r f(y1yr, . . . yr−1yr, yr, . . . , yn),m).

By the work of Hironaka [23], resolutions are known to exist, and we refer the reader to [30] for a
detailed exposition.

Consider now an oscillatory integral of the form (13) in case that the critical set C = ι(M) ⊂
E = M of the phase function ψ is not clean. Let IC be the ideal sheaf of C, and Iψ = (ψ) the
ideal sheaf generated by the phase function ψ. Then D(Iψ) = DC . The essential idea behind our
approach to singular asymptotics is to construct a partial monomialization

Π∗(Iψ) · Ox̃,M̃ = σc1
1 · · ·σck

k Π−1
∗ (Iψ) · Ox̃,M̃, x̃ ∈ M̃,

of the ideal sheaf Iψ = (ψ) via a suitable resolution Π : M̃ → M in such a way that D(Π−1
∗ (Iψ))

is a resolved ideal sheaf. As a consequence, the phase function factorizes locally according to
ψ ◦Π ≡ σc1

1 · · ·σck
k · ψ̃wk, and we show that the corresponding weak transforms ψ̃wk = Π−1

∗ (ψ) have

clean critical sets in the sense of Bott [6]. Here σ1, . . . ,σk are local variables near each x̃ ∈ M̃ and
ci are natural numbers. This enables one to apply the stationary phase theorem in the resolution
space M̃ to the weak transforms ψ̃wk with the variables σ1, . . . ,σk as parameters. Note that by
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Hironaka’s theorem, Iψ can always be monomialized. But in general, this monomialization would
not be explicit enough to allow an application of the stationary phase theorem.

4. Equivariant asymptotics and the momentum map

We commence now with our study of the asymptotic behavior of the integrals (11) by means
of the generalized stationary phase theorem. To determine the critical set of the phase function
ψς(η, X), let {X1, . . . , Xd} be a basis of g, and write X =

∑d
i=1 siXi. Due to the linear dependence

of JX in X ,

∂si ψς(η, X) = JXi(η)− ς(Xi),

and because of the non-degeneracy of ω,

JX,∗ = 0 ⇐⇒ dJX = −ιX̃ω = 0 ⇐⇒ X̃ = 0.

Hence,

Crit(ψς) = {(η, X) ∈ X× g : ψς,∗(η, X) = 0} =
{
(η, X) ∈ Ως × g : X̃η = 0

}
,(14)

where Ως = J−1(ς) is the ς-level of the momentum map. Now, the major difficulty in applying the
generalized stationary phase theorem in our setting stems from the fact that, due to the singular
orbit structure of the underlying group action, Ως and, consequently, the considered critical set
Crit(ψς), are in general singular varieties. In fact, if the G-action on X is not free, Ως and the
symplectic quotients Ως/Gς are no longer smooth for general ς ∈ g∗, whereGς denotes the stabilizer
of ς under the co-adjoint action. Nevertheless, both Ως and Ως/Gς have Whitney stratifications
into smooth submanifolds, see Lerman-Sjamaar [37], and Ortega-Ratiu [34, Theorems 8.3.1 and
8.3.2], which correspond to the stratification of X into orbit types, see Duistermaat-Kolk [18]. In
particular, one has the following

Lemma 1. Ως has a principal stratum RegΩς , which is an open and dense subset of Ως , and a
smooth submanifold in X of codimension equal to the dimension κ of a principal G-orbit in X.
Furthermore,

(15) Tη(Reg Ως) = [Tη(G · η)]ω = (g · η)ω , η ∈ Reg Ως ,

where we denoted the symplectic complement of a subspace V ⊂ TηX by V ω, and wrote g · η =

{X̃η : X ∈ g}.

Proof. Let RegX denote the union of all orbits of principal type in X, so that RegΩς = Ως∩RegX.
By the principal orbit theorem, RegX is open and dense, and the assertion follows with [34,
Corollary 4.6.2 and (5.5.7)]. !

Let us consider first the case when ς ∈ g∗ is a regular value of the momentum map, which is
equivalent to the fact that G acts locally freely on Ως , meaning that

(16) X̃η .= 0 for all η ∈ Ως , 0 .= X ∈ g.

Consequently, all stabilizers Gη of points η ∈ Ως are finite, and therefore either of principal or
exceptional type. In this case, both Ως and Crit(ψς) = Ως × {0} are smooth, and dim g · η = κ
for all η ∈ Ως , where κ is the dimension of a principal G-orbit. Furthermore, (16) implies that
κ = dim g. We then have the following

Proposition 2. Let X be a paracompact, symplectic manifold of dimension 2n with a Hamiltonian
action of a compact Lie group G of dimension d. Assume that ς ∈ g∗ is a regular value of the
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momentum map J : X → g∗, and let Iς(µ) be defined as in (11). Then, for each N ∈ N, there
exists a constant CN,ψς ,a such that

∣∣∣Iς(µ)− (2πµ)κ
N−1∑

j=0

µjQj(ψς , a)
∣∣∣ ≤ CN,ψς ,a µ

N ,

where the coefficients Qj are given explicitly in terms of measures on Ως .

Proof. As already noted, Cς = Crit(ψς) = Ως × {0} is a smooth manifold of dimension 2κ, and due
to (15) we have

T(η,0)Cς 5 TηΩς = (g · η)ω , N(η,0)Cς = J (g · η)× Rd,

where J : TX → TX denotes the bundle homomorphism introduced in Section 2. By definition,
the Hessian of ψς at (η, 0) ∈ Cς is given by the symmetric bilinear form

Hessψς : T(η,0)(X× g)× T(η,0)(X× g) → C, (v1, v2) $→ ṽ1(ṽ2(ψς))(η, 0).

Let {X̃1, . . . , X̃2n} be a local orthonormal frame in TX and {e1, . . . , ed} the standard basis in Rd

corresponding to an orthonormal basis {A1, . . . , Ad} of g. In the basis

((X̃i)η; 0), (0; ej), i = 1, . . . , 2n, j = 1, . . . , d,

of T(η,X)(X× g) = TηX× Rd, Hessψς is then given by the matrix

A = −

(
0 ωη(Ãj , X̃i)

ωη(Ãi, X̃j) 0

)

= −

(
0 gη(J Ãj , X̃i)

gη(J Ãi, X̃j) 0

)

.

Indeed, for arbitrary X ∈ g one has X̃i(JX) = dJX(X̃i) = −ιX̃ω(X̃i), and with (6) we obtain

(X̃i)η(ω(0̃, X̃j)) = 0. In order to compute the transversal Hessian of ψς , we have to exhibit a basis

for N(η,0)Cς . Let therefore {B1, . . . , Bκ} be another basis of g = g⊥η such that {(B̃1)η, . . . , (B̃κ)η}
is an orthonormal basis of g · η, where we remind the reader that κ = d. It is then easy to see that

Bk = (J (B̃k)η; 0), B′
k = (0; gη(Ã1, B̃k), . . . , gη(Ãκ, B̃k)), k = 1, . . . ,κ,

constitutes a basis of N(η,0)Cς with 〈Bk,Bl〉 = δkl, Bk ⊥ B′
l, and 〈B′

k,B
′
l〉 = (Ξ)kl, where Ξ is given

by the linear transformation

(17) Ξ : g · η −→ g · η : X $→
κ∑

j=1

gη(X, Ãj)(Ãj)η.

With these definitions one computes

A(Bk) =
(
0;−

2n∑

j=1

gη(J Ã1, X̃j)gη(J B̃k, X̃j), . . .
)

=(0;−gη(J Ã1,J B̃k), . . . ,−gη(J Ãκ,J B̃k)) = −B′
k,

A(B′
k) =

(
−
( κ∑

j=1

gη(J Ãj , X̃1)gη(Ãj , B̃k), . . .
)
; 0
)
= ((gη(Ξ(B̃k)η,J X̃1), . . . ); 0).

Since the {J (B̃1)η, . . . ,J (B̃κ)η} form an orthonormal basis of J (g · η), we obtain

A(B′
k) = −(JΞ(B̃k)η; 0) = −

κ∑

j=1

gη(JΞ(B̃k)η,J (B̃j)η)Bj .
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Thus, the transversal Hessian Hessψς(η, 0)|N(η,0)Cς is given by the non-degenerate matrix

(18) Atrans =

(
0 −1κ

−Ξ|g·η 0

)
.

By the non-stationary principle, we can choose the support of the amplitude a in the integral Iς(µ)
close to Cς . Identifying a tubular neighborhood of Cς with a neighborhood of the zero section in
NCς , the assertion now follows with Theorem A by integrating along the fibers of ν : NCς → Cς .
The exact form of the coefficients can be read off from (62), in which ψ′′ corresponds to Atrans.
Note that the submersion Pς : Cς → Ως , (η, 0) $→ η is simply the identity, so that measures on Cς
are identical with measures on Ως . !

Let us resume the considerations in Section 2, the notation being the one introduced previously,
and consider the following, more specific oscillatory integrals.

Lemma 2. Let " = Dβ be an equivariantly exact form on X of compact support, ς ∈ g∗, and
ε > 0. Then ∫

g

[∫

X

ei(J−ς)(X)e−iω"(X)

]
ϕ̂ε(X)dX = 0.

Proof. The proof is essentially an elaboration of an argument given in [26, Equation (8.20)]. In what
follows, write ω̄(X) = ω − JX for the extension of the symplectic form to an equivariantly closed
form, and assume that β =

∑
θjβj , θj ∈ Sj(g∗), where the βj are differential forms of compact

support. Let further ϕ ∈ C∞
c (g∗) and δ = δ(ε) > 0 be such that suppϕε ⊂ B(0, δ). Define

∆δ = {η ∈ X : |J(η)− ς | < δ}, and let ∆δ ⊂ ∆′
δ be a smooth domain with smooth boundary ∂∆′

δ.
Since Dσ(X)[2n] = d(σ(X)[2n−1]) for any equivariant differential form σ, one computes

∫

g

[∫

X

e−iω̄(X)"(X)

]
e−iς(X)ϕ̂ε(X)dX =

∫

g

[∫

X

D
(
e−iω̄β

)
(X)

]
e−iς(X)ϕ̂ε(X) dX

=

∫

g

[∫

X

d
(
(e−iω̄β)(X)

)]
e−iς(X)ϕ̂ε(X) dX =

∫

X

d

(∫

g

e−iς(X)ϕ̂ε(X)(e−iω̄β)(X) dX

)

=
∑

j

∫

X

d

(∫

g

ei(J−ς)(X)ϕ̂ε(X)θj(X) dXe−iωβj

)

=
∑

j

∫

X

d

(∫

g

ei(J−ς)(X)Fg(θj(−i ∂ξ)ϕε)(X) dXe−iωβj

)

= (2π)d
∑

j

∫

∆′

δ

d
(
[(θj(−i ∂ξ)ϕε) ◦ (J− ς)]e−iωβj

)

= (2π)d
∑

j

∫

∂∆′

δ

[(−iθj(∂ξ)ϕε) ◦ (J− ς)]e−iωβj = 0

since ϕε ◦ (J − ς) vanishes on ∂∆′
δ. Hereby we used the Theorem of Stokes for differential forms

with compact support, see [38, page 119]. !

Proposition 3. Let ς ∈ g∗ be a regular value of J : X → g∗, α ∈ Λc(X), and θ ∈ Sr(g∗). Then

lim
ε→0

∫

g

[∫

X

ei(J−ς)(X)α

]
θ(X)ϕ̂(εX) dX =

(2π)dvol G

|HG|

∫

J−1(ς)

ι∗ς (F )

vol OG

for some form F ∈ Λc(X) explicitly given in terms of J, α and θ, where HG denotes a principal
isotropy group of the G-action, and OG(η) = G · η the G-orbit through a point η ∈ X, while
ις : J−1(ς) ↪→ X is the inclusion.
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Proof. Let ψς(η, X) = (J(η)− ς)(X), so that the limit in question reads

lim
ε→0

1

εd+r

∫

g

[∫

X

eiψς/εα

]
θ ϕ̂ dX.

Proposition 2 yields for the integral above an asymptotic expansion with leading power εd and
coefficients Qr,j given by measures on Cς = Crit(ψς) = Ως × {0} ≡ Ως . In order to compute them,
let {Bk,B′

l} be the basis of N(η,0)Cς introduced in the proof of Proposition 2, and let {sk, s′l} be
corresponding coordinates in N(η,0)Cς . The transversal Hessian of ψς is given by the matrix (18).
By the non-stationary principle, we can choose the support of α close to Ως . Identify a tubular
neighborhood of Ως with a neighborhood of the zero section in NΩς . Integrating along the fibers
of ν : NCς 5 NΩς × g → Cς then yields

∫

g

[∫

X

eiψς/εα

]
θ ϕ̂ dX =

∫

NCς

eiψς/εθ ϕ̂ α dX =

∫

Cς

ν∗
(
eiψς/εθ ϕ̂ α dX

)
.

Assume now that with respect to the trivialization of ν given by the frame {Bk,B′
l} we have

α dX ≡ f ν∗(β) ∧ ds ∧ ds′, β ∈ Λc(Ως),

for some smooth function f . Applying (62) we obtain for arbitrary large N ∈ N an expansion of
the form

ν∗
(
eiψς/εθ ϕ̂ α dX

)

=
β

det (Atrans(η, 0)/2πiε)1/2

∑

p−q<N

∑

2p≥3q

εp−q

p! q! ij 2p
〈
A−1

transD,D
〉p

(θ ϕ̂ f Hq)(η, 0) +RN ,
(19)

where η ∈ Ως , D = −i(∂s1 , . . . , ∂sκ , ∂s′1
, . . . , ∂s′κ), (θ ϕ̂)(η, s, s

′) = (θ ϕ̂)(X(s′)), and

H(η, s, s′) = ψς(η, s, s
′)−

〈
Atrans

( s
s′

)
,
( s

s′

)〉/
2, ψς(η, s, s

′) = JX(s′)(η, s)− ς(X(s′)),

is a smooth function vanishing at (η, 0) of order 3. The inner sum with p − q = j therefore
corresponds to a differential operator of order 2j acting on θ ϕ̂ f , since in this case 2p−3q = 2j−q,
the maximal order being attained for p = j and q = 0. Now, since ψς(η, X) depends linearly on
X , derivatives at s′ = 0 of ψς(η, s, s′), and consequently of H(η, s, s′), of order greater or equal
3 vanish, unless exactly one s′-derivative occurs. On the other hand, θ vanishes at X(s′) = 0 of
order r. Furthermore, due to the particular form of Atrans in (18),

〈
A−1

transD,D
〉
≡
∑

ckl ∂sk ∂s′l

is a differential operator of first order in the s′-variables. Consequently, the inner sums in (19) with
p < r + q must vanish, and for N = p− q = r, only terms proportional to ϕ̂(0) occur. Summing
up we have shown that

Qr,j = 0, for all j = 0, . . . , r − 1,

the leading term being of order εd+r, and we obtain

lim
ε→0

1

εd+r

∫

g

[∫

X

ei(J−ς)(X)/εα

]
θ(X)ϕ̂(X) dX

= (2π)dϕ̂(0)

∫

J−1(ς)

i∗ς (F )

|detΞ|1/2
=

(2π)dϕ̂(0) volG

|HG|

∫

J−1(ς)

i∗ς (F )

volOG
,

where F ∈ Λc(X) is explicitly given in terms of α, J and θ. Here we took into account that
|detΞ|g·η|1/2 = vol (G · η) |Gη|/volG for η ∈ Ως , [12, Lemma 3.6]. Since ϕ̂(0) = 1, the assertion
follows. !



SINGULAR EQUIVARIANT ASYMPTOTICS AND THE MOMENTUM MAP 15

Let T ⊂ G be a maximal torus, and consider next the composition JT : X → t∗ of the momentum
map J with the restriction map from g∗ to t∗, which yields a momentum map for the T -action on
X. Then J−1

T (ς)/Tς 5 J−1
T (ς)/T . Also, define

KT
ς : H∗

T (X)
ι∗ς,T
−→ H∗

T (J
−1
T (ς))

(π∗

ς,T )−1

−→ H∗(J−1
T (ς)/T ),

ις,T : J−1
T (ς) ↪→ X being the inclusion, and πς,T : J−1

T (ς) → J−1
T (ς)/T the canonical projection. In

what follows, we shall also write ΩT
ς = J−1

T (ς). We then have the following

Proposition 4. Consider the segment {tς : 0 < t < 1, ς ∈ t∗}, and assume that it consists of reg-

ular values of JT : X → t∗ and that all UΦ2

F are smooth on the segment. Then, if " ∈ H∗
G(X) is an

equivariantly closed form of compact support,

∑

F∈F

Resς,Λ(uFΦ2) =
(2π)dT vol T

|HT |

∫

RegΩT
0 /T

KT
0 (F ),

where KT
0 = (π∗

0,T )
−1 ◦ i∗0,T is defined over RegΩT

0 /T , and F is explicitly given in terms of e−iω",
Φ, and J. In particular, the sum of the residues is independent of ς and Λ, and will be denoted by

Res
(
Φ2

∑

F∈F

uF

)
.

Proof. By (10) and the previous proposition,

(20)
∑

F∈F

Resς,Λ(uFΦ2) =
(2π)dT volT

|HT |
lim
t→0

∫

ΩT
tς/T

KT
tς(F ),

where d = dim g = dim t+ |∆| = dT + 2|∆+|. We now assert that for sufficiently small t > 0 there
exists a birational map

Ξtς : Ω
T
tς/T −→ ΩT

0 /T

which is a diffeomorphism over RegΩT
0 /T . To see this, consider an embedded resolution Π :

X̃ → X of ΩT
0 [5]. By the functoriality of the resolution, the strict transform Ω̃T

0 is a T -invariant

submanifold of the resolution space X̃, and there exists an invariant tubular neighborhood W̃ of
Ω̃T

0 . Let p̃ : W̃ → Ω̃T
0 be the canonical projection. For sufficiently small t > 0, Π−1(ΩT

tς) is

contained in W̃ . Since ΩT
tς is diffeomorphic to Π−1(ΩT

tς), which by Lemma 1 is diffeomorphic to

Ω̃T
0 , we obtain the birational map

ΩT
tς

Π−1

−→ Π−1(ΩT
tς)

p̃
−→ Ω̃T

0
Π
−→ ΩT

0 .

Dividing by T then yields the desired map Ξtς . As a consequence, we obtain with Lebesgue’s
theorem as t → 0

∫

ΩT
tς/T

KT
tς(F ) =

∫

Ξ−1
tς (RegΩT

0 /T )
KT

tς(F ) =

∫

RegΩT
0 /T

(Ξ−1
tς )∗(KT

tς(F )) →

∫

RegΩT
0 /T

KT
0 (F ),

and the assertion follows with (20). !

Corollary 2. Let the notation be as in Section 2, and " ∈ H∗
G(X) an equivariantly closed differ-

ential form. Then

lim
ε→0

〈
Fg

(
Le−iω+(·)(·)

)
,ϕε

〉
=

vol G

|W |vol T
Res

(
Φ2

∑

F∈F

uF

)
.
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Proof. Since UΦ2

F is a piecewise polynomial measure, and F−1
t (ϕ̂ε) ∈ S(t∗),

〈
UΦ2

F ,F−1
t (ϕ̂ε)

〉
=

∫

t∗
UΦ2

F (ες)(F−1
t ϕ̂)(ς) dς .

Furthermore, for 0 < ε ≤ 1 and almost every ς ∈ t∗ we have the estimate |UΦ2

F (ες)(F−1
t ϕ̂)(ς)| ≤

C(1 + |ς |)N |(F−1
t ϕ̂)(ς)| for some C,N > 0. Taking into account Remark 1 and the previous

proposition, an application of Lebesgue’s theorem on bounded convergence then yields

lim
ε→0

∑

F∈F

〈
UΦ2

F ,F−1
t (ϕ̂ε)

〉
= lim

ε→0

∫

t∗

∑

F∈F

UΦ2

F (ες)(F−1
t ϕ̂)(ς) dς = ϕ̂(0)Res

(
Φ2

∑

F∈F

uF

)
,

and the assertion follows with Proposition 1. !

Thus, in order to derive the residue formula mentioned in the introduction, we are left with the
task of evaluating the limit limε→0

〈
FgLe−iω+(·)(·),ϕε

〉
in terms of the reduced space Xred. This

amounts to an examination of the asymptotic behavior of the integrals (11) in case that ς ∈ g∗,
and in particular ς = 0, is a singular value of the momentum map, in which case Crit(ψς) is a
singular variety. From now on, we will only be considering the case ς = 0, and simply write ψ for
ψ0, I(µ) for I0(µ), and so on. As explained in the previous section, we shall partially resolve the
singularities of the critical set Crit(ψ) first, and then make use of the stationary phase principle
in a suitable resolution space. Partial desingularizations of the zero level set Ω = J−1(0) of
the momentum map and the symplectic quotient Ω/G have been obtained by Meinrenken-Sjamaar
[32] for compact symplectic manifolds with a Hamiltonian compact Lie group action by performing
blowing-ups along minimal symplectic suborbifolds containing the strata of maximal depth in Ω.
In the context of geometric invariant-theoretic quotients, partial desingularizations were studied
in [29] and [25].

From now on, we will restrict ourselves to the case where X is given by the cotangent bundle of
a Riemannian manifold. For a general symplectic manifold, the desingularization process should
be similar, but more involved, and we intend to deal with this case at some other occasion. Thus,
let M be a Riemannian manifold of dimension n, γ : T ∗M → M its cotangent bundle, and
τ : T (T ∗M) → T ∗M the tangent bundle, endowed with corresponding Riemannian structures [33].
Define on T ∗M the Liouville form

Θη(X) = τ(X)[γ∗(X)], X ∈ Tη(T
∗M).

We then regard T ∗M as a symplectic manifold with symplectic form ω = dΘ and Riemannian
metric g. Assume now that M carries an isometric action of a compact, connected Lie group G
with Lie algebra g, and define for every X ∈ g the function

JX : T ∗M −→ R, η $→ Θ(X̃)(η).

Note that Θ(X̃)(η) = η(X̃π(η)). The function JX is linear in X , and due to the invariance of the
Liouville form [10] one has

LX̃Θ = dJX + ιX̃ω = 0, ∀X ∈ g,

where L denotes the Lie derivative. Hence, the infinitesimal action of X ∈ g on T ∗M is given by
the Hamiltonian vector field defined by JX , which means that G acts on T ∗M in a Hamiltonian
way. The corresponding symplectic momentum map is then given by

J : T ∗M → g∗, J(η)(X) = JX(η).

Note that

(21) η ∈ Ω ⇐⇒ ηm ∈ Ann(Tm(G ·m)) ∀m ∈ M,
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where Ann (Vm) ⊂ T ∗
mM denotes the annihilator of a vector subspace Vm ⊂ TmM .

Example 1. In case that M = Rn, let (q1, . . . , qn, p1, . . . pn) denote the canonical coordinates on
T ∗Rn 5 R2n. Let further G ⊂ GL(n,R) be a closed subgroup acting on T∗Rn by g · (q, p) =
(g q, T g−1 p). The symplectic form reads ω = dθ =

∑n
i=1 dpi ∧ dqi, where θ =

∑
pi dqi is the

Liouville form, and the corresponding momentum map is given by

J : T ∗Rn 5 Rn × Rn → g∗, J(q, p)(X) = θ(X̃)(q, p) = 〈Xq, p〉 ,

where 〈·, ·〉 denotes the Euclidean inner product in Rn. In this case, for ς ∈ g∗,

Crit(ψς) =
{
(q, p,X) ∈ Ως × g : X ∈ g(q,p)

}
,

where Ως = {(q, p) ∈ T ∗Rn : 〈Aq, p〉 − ς(A) = 0 for all A ∈ g} and g(q,p) is given by the set of all
X ∈ g such that Xq = 0, Xp = 0.

By Lemma 1, Ω has a principal stratum RegΩ, which is an open and dense subset of Ω, and
a smooth submanifold in T ∗M of codimension equal to the dimension κ of a principal G-orbit in
T ∗M . Furthermore, Tη(Reg Ω) = [Tη(G · η)]ω = (g · η)ω, η ∈ Reg Ω. We describe next the smooth
part of the critical set (14) for the phase function ψ(η)(X) = J(η)(X).

Lemma 3. The smooth part of Crit(ψ) corresponds to

(22) RegCrit(ψ) = {(η, X) ∈ RegΩ× g : X ∈ gη} ,

and constitutes a submanifold of codimension 2κ. Furthermore,

(23) T(η,X)RegCrit(ψ) =

{

(X, w) ∈ (g · η)ω × Rd :
d∑

i=1

wi(X̃i)η = [X̃, X̃]η

}

,

where X̃ denotes an extension of X to a vector field 1.

Proof. Since the Lie algebra of Gη is given by gη = {X ∈ g : X̃η = 0}, the first assertion
is clear from (14). To see the second, let (η(t), X(t)) be a smooth curve in Reg Ω × g. Writing
X(t) =

∑
sj(t)Xj with respect to a basis {X1, . . . , Xd} of g, one computes for any f ∈ C∞(Reg Ω)

d

dt
X̃(t)η(t)f|t=t0 =

d∑

j=1

d

dt

(
sj(t)(X̃j)η(t)f

)

|t=t0

=
d∑

j=1

ṡj(t0)(X̃jf)(η(t0)) +
d∑

j=1

sj(t0)
d

dt
(X̃jf)(η(t))|t=t0 .

Writing X = η̇(t0) ∈ Tη(t0)Reg Ω, one has d
dt(X̃jf)(η(t))|t=t0 = X̃η(t0)(X̃jf), so that if (η(t), X(t))

is a curve in RegCrit(ψ) one obtains

d∑

j=1

ṡj(t0)(X̃j)η(t0)f +
d∑

j=1

sj(t0)[X̃, X̃j ]η(t0)f = 0,

since X̃(t0)η(t0)(X̃f) = 0, and the assertion follows with (15). !

Before we start with the actual desingularization process of the phase function ψ, let us mention
the following

Proposition 5. The mapping P : Reg Crit(ψ) → Reg Ω, (η, X) $→ η is a submersion.

1In the proposition below, we shall actually see that [X̃, X̃]η ∈ g · η for X ∈ gη and X ∈ (g · η)ω .
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Proof. Let η ∈ Reg Ω andX ∈ gη. We show that [X̃, X̃]η ∈ g·η for all X ∈ TηReg Ω. To begin, note
that πG : Reg Ω → Reg Ω/G is a submersion and a principal fiber bundle with ker(πG)∗,η = g · η
[34, Theorem 8.1.1]. If therefore η(t) ∈ Reg Ω denotes a curve with η(0) = η, η̇(0) = X, and g ∈ Gη,
differentiation of πG(g · η(t)) = πG(η(t)) yields X− g∗,η(X) ∈ ker(πG)∗,η = g · η. Consequently,

(24)
d

dt
(e−tX)∗,ηX|t=0 = lim

t→0
t−1

[
(e−tX)∗,ηX− X

]
∈ g · η,

where we made the identification TX(TηReg Ω) 5 TηReg Ω. Now, for arbitrary Y ∈ g [34, Propo-
sition 4.2.2],

ωη([X̃, X̃], Ỹ ) = −ωη([X̃, Ỹ ], X̃)− ωη([Ỹ , X̃], X̃) = 0,

since X̃η = 0, and X̃η = X ∈ (g · η)ω . Hence, [X̃, X̃ ]η ∈ (g · η)ω . Furthermore, for arbitrary
f ∈ C∞(T ∗M),

[X̃, X̃]ηf = X̃η(X̃f) =
d

ds
(X̃f)(η(s))|s=0 =

d

dt

(
d

ds
f(e−tX · η(s))|s=0

)

|t=0

=
d

dt

( ˜(e−tX)∗,ηX|t=0

)
η
f,

so that with (24)

(25) [X̃, X̃ ]η =
d

dt
(e−tX)∗,ηX|t=0 ∈ g · η.

The previous lemma then implies that P∗,(η,X) : T(η,X)RegCrit(ψ) → TηReg Ω, (X, w) $→ X is a
surjection, and the assertion follows. !

Remark 3. Note that for η ∈ Reg Ω, and X ∈ gη, the previous proposition implies that the Lie
derivative defines a homomorphism

(26) LX : g · η # X $−→ LX̃(X̃)η = [X̃, X̃]η ∈ g · η.

5. The desingularization process in the case X = T ∗M , ς = 0

We shall now proceed to a partial desingularization of the critical set of the phase function (12)
for X = T ∗M , ς = 0, and derive an asymptotic description of the integral (11) in this case. An
analogous desingularization process was already implemented in [36] to describe the asymptotic
distribution of eigenvalues of an invariant elliptic operator. The desingularization employed here
constitutes a local version of the latter, and for this reason is slightly simpler. Indeed, the phase
function considered in [36] is a global analogue of ψ(η, X) = J(η)(X). It should be noticed,
however, that these phase functions are not equivalent in the sense of Duistermaat [16], so that
the corresponding desingularization processes can not be reduced to each other 2. To begin, we
shall need a suitable G-invariant covering of M . In its construction, we shall follow Kawakubo [27],
Theorem 4.20. For a more detailed survey on compact group actions, we refer the reader to [36],
Section 3. Thus, let (H1), . . . , (HL) denote the isotropy types of M , and arrange them in such a
way that

Hj is conjugate to a subgroup of Hi ⇒ i ≤ j.

Let H ⊂ G be a closed subgroup, and M(H) the union of all orbits of type G/H . Then M has a
stratification into orbit types according to

M = M(H1) ∪ · · · ∪M(HL).

2Observe that a similar phenomenon occurs in [19].
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By the principal orbit theorem, the set M(HL) is open and dense in M , while M(H1) is a G-
invariant submanifold. Denote by ν1 the normal G-vector bundle of M(H1), and by f1 : ν1 → M
a G-invariant tubular neighbourhood of M(H1) in M . Take a G-invariant metric on ν1, and put

Dt(ν1) = {v ∈ ν1 : ‖v‖ ≤ t} , t > 0.

We then define the G-invariant submanifold with boundary

M2 = M − f1(
◦
D1/2 (ν1)),

on which the isotropy type (H1) no longer occurs, and endow it with a G-invariant Riemannian
metric with product form in a G-invariant collar neighborhood of ∂M2 in M2. Consider now the
union M2(H2) of orbits in M2 of type G/H2, a G-invariant submanifold of M2 with boundary, and
let f2 : ν2 → M2 be a G-invariant tubular neighborhood of M2(H2) in M2, which exists due to the
particular form of the metric on M2. Taking a G-invariant metric on ν2, we define

M3 = M2 − f2(
◦
D1/2 (ν2)),

which constitutes a G-invariant submanifold with corners and isotropy types (H3), . . . (HL). Con-
tinuing this way, one finally obtains for M the decomposition

M = f1(D1/2(ν1)) ∪ · · · ∪ fL(D1/2(νL)),

where we identified fL(D1/2(νL)) with ML. This leads to the covering

M = f1(
◦
D1 (ν1)) ∪ · · · ∪ fL(

◦
D1 (νL)), fL(

◦
D1 (νL)) =

◦
ML .

Let us now start resolving the singularities of the critical set Crit(ψ). For this, we will set up
an iterative desingularization process along the strata of the underlying G-action, where each step
in our iteration will consist of a decomposition, a monoidal transformation, and a reduction. For
simplicity, we shall assume that at each iteration step the set of maximally singular orbits is con-
nected. Otherwise each of the connected components, which might even have different dimensions,
has to be treated separately.

First decomposition. Take 1 ≤ k ≤ L− 1. As before, let fk : νk → Mk be an invariant tubular
neighborhood of Mk(Hk) in

Mk = M −
k−1⋃

i=1

fi(
◦
D1/2 (νi)),

a manifold with corners on which G acts with the isotropy types (Hk), (Hk+1), . . . , (HL), and put

Wk = fk(
◦
D1 (νk)), WL =

◦
ML, so that M = W1 ∪ · · ·∪WL. Write further Sk = {v ∈ νk : ‖v‖ = 1}.

Introduce a partion of unity {χk}k=1,...,L subordinate to the covering {Wk}, and with the notation
of (11) define

Ik(µ) =

∫

T∗Wk

∫

g

eiψ(η,X)/µ(aχk)(η, X) dX dη,

so that I(µ) = I1(µ) + · · ·+ IL(µ). As will be explained in Lemma 6, the critical set of ψ is clean
on the support of aχL, so that we can apply directly the stationary phase theorem to compute the
integral IL(µ). But if k ∈ {1, . . . , L− 1}, the sets

Ωk = Ω ∩ T ∗Wk,

Critk(ψ) =
{
(η, X) ∈ Ωk × g : X̃η = 0

}

are no longer smooth manifolds, so that the stationary phase theorem can not a priori be applied
in this situation. Instead, we shall resolve the singularities of Critk(ψ), and after this apply
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the principle of the stationary phase in a suitable resolution space. For this, introduce for each
x(k) ∈ Mk(Hk) the decomposition

g = gx(k) ⊕ g⊥x(k) ,

where gx(k) denotes the Lie algebra of the stabilizer Gx(k) of x(k), and g⊥
x(k) its orthogonal comple-

ment with respect to some Ad (G)-invariant inner product in g. Let furtherA1(x(k)), . . . , Ad(k)(x(k))
be an orthonormal basis of g⊥

x(k) , and B1(x(k)), . . . , Be(k)(x(k)) an orthonormal basis of gx(k) . Con-
sider the isotropy algebra bundle over Mk(Hk)

isoMk(Hk) → Mk(Hk),

as well as the canonical projection

πk : Wk → Mk(Hk), m = fk(x
(k), v(k)) $→ x(k), x(k) ∈ Mk(Hk), v

(k) ∈ (νk)x(k) ,

where fk(x(k), v(k)) = (expx(k) ◦γ(k))(v(k)), and

γ(k)(v(k)) =
Fk(x(k))

(1 +
∥∥v(k)

∥∥)1/2
v(k)

is an equivariant diffeomorphism from (νk)x(k) onto its image, Fk : Mk(Hk) → R being a smooth,
G-invariant positive function, see Bredon [9, pages 306-307]. We consider then the induced bundle

π∗
kisoMk(Hk) =

{
(fk(x

(k), v(k)), X) ∈ Wk × g : X ∈ gx(k)

}
,

and denote by

Πk : Wk × g → π∗
kisoMk(Hk)

the canonical projection which is obtained by considering geodesic normal coordinates around
π∗
k isoMk(Hk), and identifying Wk × g with a neighborhood of the zero section in the normal

bundle N π∗
k isoMk(Hk). Note that the fiber of the normal bundle to π∗isoMk(Hk) at a point

(fk(x(k), v(k)), X) can be identified with g⊥
x(k) . Integrating along the fibers of the normal bundle

to π∗
k isoMk(Hk) we therefore obtain for Ik(µ) the expression

∫

π∗

k isoMk(Hk)

[∫

Π−1
k (m,B(k))×T∗

mWk

eiψ/µaχk Φk d(T ∗
mWk) dA

(k)

]

dB(k) dm

=

∫

Mk(Hk)

[ ∫

g×π−1
k (x(k))

[ ∫

T∗

exp
x(k) v(k)

Wk

eiψ/µaχk Φk d(T ∗
exp

x(k) v(k)Wk)
]
dA(k) dB(k) dv(k)

]
dx(k),

(27)

where

γ(k)
( ◦
D1 (νk)x(k)

)
× g⊥x(k) × gx(k) # (v(k), A(k), B(k)) $→ (expx(k) v(k), A(k) +B(k)) = (m,X)

are coordinates on g × π−1
k (x(k)), while dm, dx(k), dA(k), dB(k), dv(k), and d(T ∗

mWk) are suitable

measures on Wk, Mk(Hk), g⊥x(k) , gx(k) , γ(k)(
◦
D1 (νk)x(k)), and T ∗

mWk, respectively, such that

dX dη ≡ Φk d(T
∗
exp

x(k) v(k)Wk)(η)dA
(k) dB(k) dv(k) dx(k),

where Φk is a Jacobian.
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First monoidal transformation. Let now k ∈ {1, . . . , L− 1} be fixed. For the further analysis
of the integral Ik(µ), we shall sucessively resolve the singularities of Critk(ψ), until we are in
position to apply the principle of the stationary phase in a suitable resolution space. To begin
with, we perform a monoidal transformation

ζk : BZk(Wk × g) −→ Wk × g

in Wk×g with center Zk = isoMk(Hk). For this, let us write A(k)(x(k),α(k)) =
∑

α(k)
i A(k)

i (x(k)) ∈

g⊥
x(k) , B(k)(x(k),β(k)) =

∑
β(k)
i B(k)

i (x(k)) ∈ gx(k) , and

γ(k)(v(k)) =
c(k)∑

i=1

θ(k)i v(k)i (x(k)) ∈ γ(k)
( ◦
D1 (νk)x(k)

)
,

where {v(k)1 , . . . , v(k)
c(k)} denotes an orthonormal frame in νk. With respect to these coordinates we

have Zk =
{
T (k) = (α(k), θ(k)) = 0

}
, so that

BZk(Wk × g) =
{
(m,X, [t]) ∈ Wk × g× RPc(k)+d(k)−1 : T (k)

i tj = T (k)
j ti,

}
,

ζk : (m,X, [t]) $−→ (m,X).

Let us now cover BZk(Wk × g) with charts {(ϕ+
k, U

+
k )}, where U+

k = BZk(Wk × g)∩ (Wk × g× V+),

V+ =
{
[t] ∈ RPc(k)+d(k)−1 : t+ .= 0

}
, and ϕ+

k is given by the canonical coordinates on V+. As a

consequence, we obtain for ζk in each of the θ(k)-charts {U+
k }1≤+≤c(k) the expressions

ζ+k = ζk ◦ ϕ
+
k : (x(k), τk,

+ṽ(k), A(k), B(k))
′ζ(k$−→ (x(k), τk

+ṽ(k), τkA
(k), B(k))

$−→ (expx(k) τk
+ṽ(k), τkA

(k) +B(k)) ≡ (m,X),
(28)

where τk ∈ (−1, 1),

+ṽ(k)(x(k), θ(k)) = γ(k)
((

v(k)+ (x(k)) +
c(k)∑

i.=+

θ(k)i v(k)i (x(k))
)/√

1 +
∑

i.=+

(θ(k)i )2
)
∈ γ(k)( +S+

k )x(k) ,

and
+S+

k =
{
v ∈ νk : v =

∑
sivi, s+ > 0, ‖v‖ = 1

}
.

Note that for each 1 ≤ " ≤ c(k),
Wk 5 fk(

+S+
k × (−1, 1))

up to a set of measure zero. Now, for given m ∈ M , let Zm ⊂ TmM be a neighborhood of zero
such that expm : Zm −→ M is a diffeomorphism onto its image. Then

(expm)∗,v : TvZm −→ Texpm vM, v ∈ Zm,

and g · expm v = Lg(expm v) = expLg(m)(Lg)∗,m(v). As a consequence, since B(k) ∈ gx(k) , we
obtain

B̃(k)
exp

x(k) τk (ṽ(k) =
d

dt
expx(k)

(
L

e−tB(k)

)
∗,x(k)(τk

+ṽ(k))|t=0 = (expx(k))∗,τk (ṽ(k)

(
λ(B(k))(τk

+ṽ(k))
)

= τk(expx(k))∗,τk (ṽ(k)

(
λ(B(k))( +ṽ(k))

)
,

where we denoted by

λ : gx(k) −→ gl(νk,x(k)), B(k) $→
d

dt
(L

e−tB(k) )∗,x(k)|t=0
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the linear representation of gx(k) in νk,x(k) , and made the canonical identification Tv(νk,x(k)) ≡

νk,x(k) for any v ∈ (νk)x(k) . With π(η) = expx(k) τk +ṽ(k) we therefore obtain for the phase function
the factorization

ψ(η, X) = η(X̃π(η)) = η
( ˜(τkA(k) +B(k))exp

x(k) τk (ṽ(k)

)

= τk
[
η
(
Ã(k)

exp
x(k) τk (ṽ(k)

)
+ η

(
(expx(k))∗,τk (ṽ(k) [λ(B(k))+ṽ(k)]

)]
.

Similar considerations hold for ζk in the α(k)-charts {U+
k }c(k)+1≤+≤c(k)+d(k) , so that we get on the

resolution space

ψ ◦ (id fiber ⊗ ζk) =
(k)ψ̃tot = τk ·

(k)ψ̃wk,

(k)ψ̃tot and (k)ψ̃wk being the total and weak transform of the phase function ψ, respectively.

Example 2. In the case M = T ∗Rn and G ⊂ GL(n,R) a closed subgroup, the phase function
factorizes with respect to the canonical coordinates η = (q, p) according to

ψ(q, p,X) = 〈Xq, p〉 =
〈(

τkA
(k) +B(k)

)
expx(k) τk

+ṽ(k), p
〉

= τk
[〈

A(k)x(k) +B(k) +ṽ(k), p
〉
+ τk

〈
A(k) +ṽ(k), p

〉]
,

where we took into account that in Rn the exponential map is given by expx(k) v(k) = x(k) + v(k).

Introducing a partition {u+k} of unity subordinated to the covering {U+
k } now yields

Ik(µ) =
c(k)∑

+=1

I+k (µ) +
d(k)∑

+=c(k)+1

Ĩ+k (µ),

where the integrals I+k (µ) and Ĩ+k (µ) are given by the expressions

∫

BZk
(Wk×g)

u+k(id fiber ⊗ ζk)
∗(eiψ/µaχkdXdη).

As we shall see in Section 9, the weak transform (k)ψ̃wk has no critical points in the α(k)-charts,
which implies that the integrals Ĩk(µ)+ contribute to I(µ) only with higher order terms. In what
follows, we shall therefore restrict ourselves to the examination of the integrals I+k (µ). Setting
a+k = (u+k ◦ ϕ

+
k)[(aχk) ◦ (id fiber ⊗ ζ+k )] we obtain with (27) and (28)

I+k (µ) =

∫

Mk(Hk)×(−1,1)

[ ∫

γ(k)((Sk)x(k) )×g
x(k)×g⊥

x(k)

[ ∫

T∗

exp
x(k) τkṽ(k)Wk

ei
τk
µ

(k)ψ̃wk

a+k Φ̃+
k

d(T ∗
exp

x(k) τkṽ(k)Wk)
]
dA(k) dB(k) dṽ(k)

]
dτk dx(k),

where dṽ(k) is a suitable measure on the set γ(k)((Sk)x(k)) such that

dX dη ≡ Φ̃+
k d(T ∗

exp
x(k) τkṽ(k)Wk) dA

(k) dB(k) dṽ(k) dτk dx
(k),

Φ̃+
k being a Jacobian. Furthermore, a computation shows that Φ̃+

k = |τk|c
(k)+d(k)−1 Φk ◦ ′ζ+k .
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First reduction. Let us now assume that there exists a m ∈ Wk with orbit type G/Hj , and let
x(k) ∈ Mk(Hk), v(k) ∈ (νk)x(k) be such that m = fk(x(k), v(k)). Since we can assume that m lies in
a slice at x(k) around the G-orbit of x(k), we have Gm ⊂ Gx(k) , see Kawakubo [27, pages 184-185],
and Bredon [9, page 86]. Hence, Hj 5 Gm must be conjugate to a subgroup of Hk 5 Gx(k) . Now,
G acts on Mk with the isotropy types (Hk), (Hk+1), . . . , (HL). The isotropy types occuring in Wk

are therefore those for which the corresponding isotropy groups Hk, Hk+1, . . . , HL are conjugate
to a subgroup of Hk, and we shall denote them by

(Hk) = (Hi1), (Hi2 ), . . . , (HL).

Now, for every x(k) ∈ Mk(Hk), (νk)x(k) is an orthogonal Gx(k) -space; therefore Gx(k) acts on
(Sk)x(k) with isotropy types (Hi2), . . . , (HL), cp. Donnelly [15, pp. 34]. Furthermore, by the
invariant tubular neighborhood theorem, one has the isomorphism

Wk/G 5 (νk)x(k)/Gx(k) ,

so that G acts on Sk = {v ∈ νk : ‖v‖ = 1} with isotropy types (Hi2), . . . , (HL) as well. As will
turn out, if G acted on Sk only with type (HL), the critical set of (k)ψ̃wk would be clean in the
sense of Bott, and we could proceed to apply the stationary phase theorem to compute Ik(µ). But
in general this will not be the case, and we are forced to continue with the iteration.

Second decomposition. Let now x(k) ∈ Mk(Hk) be fixed. Since γ(k) : νk → νk is an equivariant
diffeomorphism onto its image, γ(k)((Sk)x(k)) is a compact Gx(k) -manifold, and we consider the
covering

γ(k)((Sk)x(k)) = Wki2 ∪ · · · ∪WkL, Wkij = fkij (
◦
D1 (νkij )), WkL = Int(γ(k)((Sk)x(k))L),

where fkij : νkij → γ(k)((Sk)x(k))ij is an invariant tubular neighborhood of γ(k)((Sk)x(k))ij (Hij ) in

γ(k)((Sk)x(k))ij = γ(k)((Sk)x(k))−
j−1⋃

r=2

fkir (
◦
D1/2 (νkir )), j ≥ 2,

and fkij (x
(ij), v(ij)) = (expx(ij) ◦γ(ij))(v(ij )), x(ij) ∈ γ(k)((Sk)x(k))ij (Hij ), v

(ij) ∈ (νkij )x(ij) , γ
(ij) :

νkij → νkij being an equivariant diffeomorphism onto its image. Let further {χkij} denote a
partition of unity subordinated to the covering

{
Wkij

}
, and define

I+kij (µ) =

∫

Mk(Hk)×(−1,1)

[ ∫

γ(k)((Sk)x(k) )×g
x(k)×g⊥

x(k)

[ ∫

T∗

exp
x(k) τkṽ(k)Wk

ei
τk
µ

(k)ψ̃wk

a+k

χkij Φ̃
+
k d(T ∗

exp
x(k) τkṽ(k)Wk)

]
dA(k) dB(k) dṽ(k)

]
dτk dx(k),

so that I+k (µ) = I+ki2 (µ) + · · · + I+kL(µ). It is important to note that the partition functions χkij

depend smoothly on x(k) as a consequence of the tubular neighborhood theorem, by which in
particular γ(k)(Sk)/G 5 γ(k)((Sk)x(k))/Gx(k) , and the smooth dependence in x(k) of the induced
Riemannian metric on γ(k)((Sk)x(k)), and the metrics on the normal bundles νkij . Since Gx(k)

acts on WkL only with type (HL), the iteration process for I+kL(µ) ends here. For the remaining
integrals I+kij (µ) with k < ij < L, let us denote by

iso γ(k)((Sk)x(k))ij (Hij ) → γ(k)((Sk)x(k))ij (Hij )

the isotropy algebra bundle over γ(k)((Sk)x(k))ij (Hij ), and by πkij : Wkij → γ(k)((Sk)x(k))ij (Hij )

the canonical projection. For x(ij) ∈ γ(k)((Sk)x(k))ij (Hij ), consider the decomposition

g = gx(k) ⊕ g⊥x(k) = (gx(ij) ⊕ g⊥
x(ij)

)⊕ g⊥x(k) .
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Let further A
(ij)
1 , . . . , A

(ij)

d(ij ) be an orthonormal basis in g⊥
x(ij)

, as well as B
(ij)
1 , . . . , B

(ij)

e(ij ) be an

orthonormal basis in gx(ij) , and {v(kij)1 , . . . , v
(kij)

c(ij)
} an orthonormal frame in νkij . Integrating along

the fibers in a neighborhood of π∗
kij

iso γ(k)((Sk)x(k))ij (Hij ) ⊂ Wkij × gx(k) then yields for I+kij (µ)
the expression
∫

Mk(Hk)×(−1,1)

[ ∫

γ(k)((Sk)x(k) )ij (Hij )

[ ∫

π−1
kij

(x(ij))×g
x(k)×g⊥

x(k)

[ ∫

T∗

exp
x(k) τk exp

x
(ij)

v
(ij )

Wk

ei
τk
µ

(k)ψ̃wk

×a+kχkij Φ
+
kij

d(T ∗
exp

x(k) τk exp
x
(ij ) v(ij )Wk)

]
dA(k) dA(ij) dB(ij) dv(ij)

]
dx(ij)

]
dτkdx

(k),

where Φ+
kij

is a Jacobian, and

γ(ij)
( ◦
D1 (νkij )x(ij)

)
×g⊥

x(ij)
×gx(ij) # (v(ij), A(ij), B(ij)) $→ (expx(ij ) v(ij), A(ij)+B(ij)) = (ṽ(k), B(k))

are coordinates on π−1
kij

(x(ij)) × gx(k) , while dx(ij), and dA(ij), dB(ij), dv(ij) are suitable measures

in the spaces γ(k)((Sk)x(k))ij (Hij ), and g⊥
x(ij)

, gx(ij) , γ
(ij)

( ◦
D1 (νkij )x(ij)

)
, respectively, such that

we have the equality Φ̃+
k dB

(k) dṽ(k) ≡ Φ+
kij

dA(ij) dB(ij) dv(ij) dx(ij).

Second monoidal transformation. Let us fix an l such that k < l < L, (Hl) ≤ (Hk), and
consider in BZk(Wk × g) a monoidal transformation

ζkl : BZkl(BZk(Wk × g)) −→ BZk(Wk × g)

with center

Zkl 5
⋃

x(k)∈Mk(Hk)

(−1, 1)× iso γ(k)((Sk)x(k))l(Hl).

Let A(l) ∈ g⊥
x(l) and B(l) ∈ gx(l) be arbitrary and write A(l)(x(k), x(l),α(l)) =

∑
α(l)
i A(l)

i (x(k), x(l)) ∈

g⊥
x(l) , B(l)(x(k), x(l),β(l)) =

∑
β(l)
i B(l)

i (x(l)) ∈ gx(l) , as well as

γ(l)(v(l))(x(k), x(l), θ(l)) =
c(l)∑

i=1

θ(l)i v(kl)i (x(k), x(l)).

Then Zkl 5
{
α(k) = 0, α(l) = 0, θ(l) = 0

}
locally, which in particular shows that Zkl is a manifold.

If we now cover BZkl(BZk(Wk × g)) with the standard charts, we shall see again in Section 9
that modulo higher order terms the main contributions to I+kl(µ) come from the (θ(k), θ(l))-charts.
Therefore it suffices to examine ζkl in one of these charts, in which it reads

ζ+σkl : (x(k), τk, x
(l), τl, ṽ

(l), A(k), A(l), B(l))
′ζ(σkl$−→ (x(k), τk, x

(l), τlṽ
(l), τlA

(k), τlA
(l), B(l))

$−→ (x(k), τk, expx(l) τlṽ
(l), τlA

(k), τlA
(l) +B(l)) ≡ (x(k), τk, ṽ

(k), A(k), B(k)),

where

ṽ(l)(x(k), x(l), θ(l)) ∈ γ(l)
(
(S+

kl)x(l)

)
.

Note that Zkl has normal crossings with the exceptional divisor Ek = ζ−1
k (Zk) = {τk = 0}, and

that

Wkl 5 fkl(S
+
kl × (−1, 1))
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up to a set of measure zero, where Skl denotes the sphere subbundle in νkl, and we set S+
kl ={

v ∈ Skl : v =
∑

viv
(kl)
i , vσ > 0

}
for some σ. Consequently, the phase function factorizes accord-

ing to

ψ ◦ (id fiber ⊗ (ζ+k ◦ ζ
+σ
kl )) =

(kl)ψ̃tot = τk τl ·
(kl)ψ̃wk,

which in the given charts reads

ψ(η, X) = τk

[
η
(
τ̃lA(k)

exp
x(k) τk exp

x(l) τlṽ(l)

)

+η
(
(expx(k))∗,τk exp

x(l) τlṽ(l) [λ(τlA
(l) +B(l)) expx(l) τlṽ

(l)]
)]

= τkτl
[
η
(
Ã(k)

exp
x(k) τk exp

x(l) τlṽ(l)

)
+ η

(
(expx(k))∗,τk exp

x(l) τlṽ(l) [λ(A(l)) expx(l) τlṽ
(l)]

)

+η
(
(expx(k))∗,τk exp

x(l) τlṽ(l)

[
(expx(l))∗,τlṽ(l) [(λ(B(l))ṽ(l)]

])]

where we took into account that

λ(B(l)) expx(l) τlṽ
(l) =

d

dt
expx(l)

(
L

e−tB(l)

)
∗,x(k)τlṽ

(l)
|t=0 = (expx(l))∗,τlṽ(l)

(
λ(B(l))τlṽ

(l)
)
.

Since the weak transforms klψ̃wk have no critical points in the (θ(k),α(l))-charts, modulo lower
order terms, I+kl(µ) is given by a sum of integrals of the form

I+σkl (µ) =

∫

Mk(Hk)×(−1,1)

[ ∫

γ(k)((Sk)x(k) )l(Hl)×(−1,1)

[ ∫

γ(l)((Skl)x(l) )×g
x(l)×g⊥

x(l)×g⊥

x(k)

[ ∫

T∗

m(kl)Wk

× ei
τkτl
µ

(kl)ψ̃wk

a+σkl Φ̃+σ
kl d(T ∗

m(kl)Wk)
]
dA(k) dA(l) dB(l) dṽ(l)

]
dτl dx

(l)
]
dτk dx

(k),

where we wrote m(kl) = expx(k) τk expx(l) τlṽ(l), a
+σ
kl are smooth amplitudes with compact support

in a (θ(k), θ(l))-chart labeled by the indices ",σ, and dṽ(l) is a suitable measure in γ(l)((Skl)x(l))
such that we have the equality

dX dη ≡ Φ̃+σ
kl d(T ∗

m(kl)Wk) dA
(k) dA(l) dB(l) dṽ(l) dτl dx

(l) dτk dx
(k).

Furthermore, Φ̃+σ
kl = |τl|c

(l)+d(k)+d(l)−1Φ+
kl ◦

′ζ+σkl .

Second reduction. Now, the group Gx(k) acts on γ(k)((Sk)x(k))l with the isotropy types (Hl) =
(Hij ), (Hij+1 ), . . . , (HL). By the same arguments given in the first reduction, the isotropy types
occuring in Wkl constitute a subset of these types, and we shall denote them by

(Hl) = (Hir1
), (Hir2

), . . . , (HL).

Consequently, Gx(k) acts on Skl with the isotropy types (Hir2
), . . . , (HL). Again, if G acted on Skl

only with type (HL), we shall see later that the critical set of (kl)ψ̃wk would be clean. However, in
general this will not be the case, and we have to continue with the iteration.

N-th decomposition. Denote by Λ ≤ L the maximal number of elements that a totally ordered
subset of the set of isotropy types can have. Assume that 3 ≤ N < Λ, and let {(Hi1), . . . , (HiN )}
be a totally ordered subset of the set of isotropy types with i1 < · · · < iN < L. Let fi1 , fi1i2 ,
Si1 , Si1i2 , as well as x(i1) ∈ Mi1(Hi1), x(i2) ∈ γ(i1)

(
(S+

i1
)x(i1)

)
i2
(Hi2) be defined as in the first

two iteration steps. Let now j < N , and assume that fi1...ij , Si1...ij ,... have already been defined.
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For each x(iN−1), let γ(iN−1)((Si1...iN−1)x(iN−1))iN be the submanifold with corners of the Gx(iN−1) -

manifold γ(iN−1)((Si1...iN−1)x(iN−1)) from which all the isotropy types less than (HiN ) have been
removed. Consider the invariant tubular neighborhood

fi1...iN = exp ◦γ(iN) : νi1...iN → γ(iN−1)((Si1...iN−1)x(iN−1))iN

of the set of maximal singular orbits γ(iN−1)((Si1...iN−1)x(iN−1))iN (HiN ), and define Si1...iN as

the sphere subbundle in νi1...iN over γ(iN−1)((Si1...iN−1)x(iN−1))iN (HiN ). Put further Wi1...iN =

fi1...iN (
◦
D1 (νi1...iN )) and denote the corresponding integral in the decomposition of I

+i1 ...+iN−1

i1...iN−1
(µ)

by I
+i1 ...+iN−1

i1...iN
(µ). For a point x(iN ) ∈ γ(iN−1)((Si1...iN−1)x(iN−1))iN (HiN ) we then consider the

decomposition
gx(iN−1) = gx(iN ) ⊕ g⊥x(iN ) ,

and set d(iN ) = dim g⊥
x(iN )

, e(iN ) = dim gx(iN ), yielding the decomposition

g = gx(i1) ⊕ g⊥x(i1) = (gx(i2) ⊕ g⊥x(i2))⊕ g⊥x(i1) = · · · = gx(iN ) ⊕ g⊥x(iN ) ⊕ · · ·⊕ g⊥x(i1) .(29)

Denote by {A(iN )
r (x(i1), . . . , x(iN ))} a basis of g⊥

x(iN )
, and by {B(iN )

r (x(i1), . . . , x(iN ))} a basis of

gx(iN ). For arbitrary elements A(iN ) ∈ g⊥
x(iN ) and B(iN ) ∈ gx(iN ) write

A(iN ) =
d(iN )∑

r=1

α(iN )
r A(iN )

r (x(i1), . . . , x(iN )), B(iN ) =
e(iN )∑

r=1

β(iN )
r B(iN )

r (x(i1), . . . , x(iN )),

and put

ṽ(iN )(x(iN ), θ(iN )) = γ(iN )




(
v(i1...iN )
+ (x(iN )) +

c(iN )∑

r .=+

θ(iN )
r v(i1...iN )

r (x(iN ))
)/√

1 +
∑

r .=+

(θ(iN )
r )2





for some ", where
{
v(i1...iN )
r

}
is an orthonormal frame in νi1...iN . Finally, we shall use the notations

m(ij ...iN ) = expx(ij) [τij expx(ij+1)[τij+1 expx(ij+2)[. . . [τiN−2 expx(iN−1)[τiN−1 expx(iN ) [τiN ṽ(iN )]]] . . . ]]],

X(ij ...iN ) = τij · · · τiNA(ij) + τij+1 · · · τiNA(ij+1) + · · ·+ τiN−1τiNA(iN−1) + τiNA(iN ) +B(iN ),

where j = 1, . . . , N .

N-th monoidal transformation. Let the monoidal transformations ζi1 and ζi1i2 be defined as in
the first two iteration steps, and assume that ζi1...ij have already been defined for j < N . Consider
the monoidal transformation

ζi1...iN : BZi1...iN
(BZi1...iN−1

(. . . BZi1
(Wk × g) . . . )) −→ BZi1...iN−1

(. . . BZi1
(Wk × g) . . . )

with center

Zi1...iN 5
⋃

x(i1),...,x(iN−1)

(−1, 1)N−1 × isoγ(iN−1)((Si1...iN−1)x(iN−1))iN (HiN ).

Denote by ζ
+i1
i1

◦ · · · ◦ ζ
+i1 ...+iN
i1...iN

a local realization of the sequence of monoidal transformations

ζi1 ◦ · · · ◦ ζi1...iN in a set of (θ(i1), . . . , θ(iN ))-charts labeled by the indices "i1 , . . . , "iN . Now, for an
arbitrary element B(i1) ∈ gi1 one computes

(B̃i1))m(i1...iN ) =
d

dt
e−tB(i1)

·m(i1...iN )
|t=0 =

d

dt
expx(i1)

[
( e−tB(i1)

)∗,x(i1) [τi1m
(i2...iN )]

]
|t=0

= (expx(i1))∗,τi1m(i2...iN ) [λ(B(i1))τi1m
(i2...iN )].

(30)
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By iteration we obtain for arbitrary A(ij) ∈ g⊥ij , 2 ≤ j ≤ N ,

(Ãij))m(i1...iN ) =
d

dt
expx(i1)

[
τi1 expx(i2) [. . . [τij−1 ( e

−tA(ij)

)∗,x(i1)m(ij ...iN )] . . . ]
]
|t=0

= (expx(i1))∗,τi1m(i2...iN )

[
τi1(expx(i2))∗,τi2m(i3...iN ) [. . . [τij−1λ(A

(ij ))m(ij ...iN )] . . . ]
]
,

(31)

and similarly

(B̃iN ))m(i1...iN ) = (expx(i1))∗,τi1m(i2...iN )

[
τi1(expx(i2))∗,τi2m(i3...iN ) [. . . [τiNλ(B

(iN ))ṽ(iN )] . . . ]
]
.

(32)

As a consequence, the phase function factorizes locally according to
(i1...iN )ψ̃tot = ψ◦(id fiber⊗(ζ

+i1
i1

◦· · ·◦ζ
+i1 ...+iN
i1...iN

)) = J(ηm(i1...iN ))(X(i1...iN )) = τi1 · · · τiN
(i1...iN )ψ̃wk,

where in the given charts (i1...iN )ψ̃wk is given by

ηm(i1 ...iN )

(
Ã(i1)

m(i1...iN )

)
+

N∑

j=2

ηm(i1...iN )

(
(expx(i1))∗,τi1m(i2...iN )

[
(expx(i2))∗,τi2m(i3...iN )

[
. . . (expx(ij−1))∗,τij−1m

(ij ...iN ) [λ(A(ij))m(ij ...iN )] . . .
]])

+ ηm(i1...iN )

(
(expx(i1))∗,τi1m(i2...iN )

[
(expx(i2))∗,τi2m(i3...iN )

[
. . .

(expx(iN ))∗,τiN ṽ(iN ) [λ(B(iN ))ṽ(iN )] . . .
]])

.

(33)

Modulo lower order terms, I(µ) is then given by a sum of integrals of the form

I
+i1 ...+iN
i1...iN

(µ)

=

∫

Mi1 (Hi1 )×(−1,1)

[ ∫

γ(i1)((Si1)x(i1) )i2(Hi2 )×(−1,1)
. . .

[ ∫

γ(iN−1)((Si1...iN−1)x(iN−1) )iN (HiN )×(−1,1)

[ ∫

γ(iN )((Si1...iN )
x(iN ) )×g

x(iN )×g⊥

x(iN )
×···×g⊥

x(i1)
×T∗

m(i1 ...iN )
Wi1

ei
τ1...τN

µ
(i1...iN )ψ̃wk

a
+i1 ...+iN
i1...iN

Φ̃
+i1 ...+iN
i1...iN

d(T ∗
m(i1...iN )Wi1) dA

(i1) . . . dA(iN ) dB(iN ) dṽ(iN )
]
dτiN dx(iN ) . . .

]
dτi2 dx

(i2)
]
dτi1 dx

(i1).

(34)

Here a
+i1 ...+iN
i1...iN

are amplitudes with compact support in a system of (θ(i1), . . . , θ(iN ))-charts labelled
by the indices "i1 . . . "iN , while

Φ̃
+i1 ...+iN
i1...iN

=
N∏

j=1

|τij |
c(ij )+

∑j
r=1 d(ir)−1Φ

+i1 ...+iN
i1...iN

,

where Φ
+i1 ...+iN
i1...iN

are smooth functions which do not depend on the variables τij .

N-th reduction. For each x(iN−1), the isotropy groupGx(iN−1) acts on γ(iN−1)((Si1...iN−1)x(iN−1))iN
by the types (HiN ), . . . , (HL). The types occuring in Wi1...iN constitute a subset of these, and
Gx(iN−1) acts on the sphere bundle Si1...iN over the submanifold γ(iN−1)((Si1...iN−1)x(iN−1))iN (HiN ) ⊂
Wi1...iN with one type less.

End of iteration. As before, let Λ ≤ L be the maximal number of elements of a totally ordered
subset of the set of isotropy types. After maximally N = Λ − 1 steps, the end of the iteration is
reached.
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6. Phase analysis of the weak transforms. Smoothness of the critical sets

We shall now prove the smoothness of the critical sets of the weak transforms. We continue with
the notation of the previous sections, and consider a sequence of local monoidal transformations
ζ
+i1
i1

◦ · · · ◦ ζ
+i1 ...+iN
i1...iN

corresponding to a totally ordered subset {(Hi1 ), . . . , (HiN )} of non-principal
isotropy types that are maximal in the sense that, if there is an isotropy type (HiN+1) with
iN < iN+1 such that

{
(Hi1 ), . . . , (HiN+1)

}
is a totally ordered subset, then (HiN+1) = (HL). For

later purposes, let us define certain geometric distributions E(ij) and F (iN ) on M by setting

E(i1)

m(i1...iN ) = Span{Ỹm(i1...iN ) : Y ∈ g⊥x(i1)},

E
(ij)

m(i1...iN ) = (expx(i1))∗,τi1m(i2...iN ) . . . (expx(ij−1))∗,τij−1m
(ij ...iN ) [λ(g⊥

x(ij ))m(ij ...iN )],

F (iN )

m(i1...iN ) = (expx(i1))∗,τi1m(i2...iN ) . . . (expx(iN ))∗,τiN ṽ(iN ) [λ(gx(iN ))ṽ(iN )],

(35)

where 2 ≤ j ≤ N . Note that by (29), (31) and (32) we have

Tm(i1...iN )(G ·m(i1...iN )) = E(i1)

m(i1...iN ) ⊕
N⊕

j=2

τi1 . . . τij−1E
(ij)

m(i1...iN ) ⊕ τi1 . . . τiNF (iN )

m(i1...iN ) .(36)

By construction, for τij .= 0, 1 ≤ j ≤ N , the G-orbit through m(i1...iN ) is of principal type G/HL,
which amounts to the fact that Gx(iN−1) acts on Si1...iN only with the isotropy type (HL), where
we understand that Gx(i0) = G. We then have the following

Theorem 2. Let {(Hi1 ), . . . , (HiN )} be a maximal, totally ordered subset of non-principal isotropy

types, and ζ
+i1
i1

◦ · · · ◦ ζ
+i1 ...+iN
i1...iN

a corresponding sequence of local monoidal transformations in a set

of (θ(i1), . . . , θ(iN ))-charts labeled by the indices "i1 , . . . , "iN . Let ηm(i1...iN ) ∈ π−1(m(i1...iN )), and
consider the factorization

J(ηm(i1...iN ))(X(i1...iN )) = (i1...iN )ψ̃tot = τi1 · · · τiN
(i1...iN )ψ̃wk, pre

of the phase function ψ after N iteration steps, where (i1...iN )ψ̃wk,pre is given by (33).3 Let further

(i1...iN )ψ̃wk

denote the pullback of (i1...iN )ψ̃wk, pre along the substitution τ = δi1...iN (σ) given by the sequence
of monoidal transformations

δi1...iN : (σi1 , . . .σiN ) $→ σi1(1,σi2 , . . . ,σiN ) = (σ′
i1 , . . . ,σ

′
iN ) $→ σ′

i2 (σ
′
i1 , 1, . . . ,σ

′
iN ) = (σ′′

i1 , . . . ,σ
′′
iN )

$→ σ′′
i3(σ

′′
i1 ,σ

′′
i2 , 1, . . . ,σ

′′
iN ) = · · · $→ · · · = (τi1 , . . . , τiN ).

Then the critical set Crit( (i1...iN )ψ̃wk) of (i1...iN )ψ̃wk is given by all points

(σi1 , . . . ,σiN , x(i1), . . . , x(iN ), ṽ(iN ), A(i1), . . . , A(iN ), B(iN ), ηm(i1...iN ))

satisfying the conditions

(I) A(ij) = 0 for all j = 1, . . . , N , and λ(B(iN ))ṽ(iN ) = 0;

(II) ηm(i1...iN ) ∈ Ann
(
E

(ij)

m(i1...iN )

)
for all j = 1, . . . , N ;

(III) ηm(i1...iN ) ∈ Ann
(
F (iN )

m(i1 ...iN )

)
.

Furthermore, Crit( (i1...iN )ψ̃wk) is a C∞-submanifold of codimension 2κ, where κ = dimG/HL is
the dimension of a principal orbit.

3Note that (i1...iN )ψ̃wk,pre was denoted in (33) by (i1...iN )ψ̃wk .
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Proof. To begin with, let σi1 · · ·σiN .= 0, so that all τij are non-zero. In this case, the sequence of

monoidal transformations ζ
+i1
i1

◦ · · · ◦ ζ
+i1 ...+iN
i1...iN

◦ δi1...iN constitutes a diffeomorphism, so that

Crit( (i1...iN )ψ̃tot)σi1 ···σiN .=0 = {(σi1 , . . . ,σiN , x(i1), . . . , x(iN ), ṽ(iN ), A(i1), . . . , A(iN ), B(iN ), ηm(i1...iN )) :

(ηm(i1...iN ) , X (i1...iN )) ∈ Crit(ψ), σi1 · · ·σiN .= 0}.

Now,
(ηm(i1...iN ) , X(i1...iN )) ∈ Crit(ψ) ⇔ ηm(i1...iN ) ∈ Ω, X̃(i1...iN )

η
m(i1...iN )

= 0.

Furthermore, X̃η = 0 clearly implies X̃π(η) = π∗(X̃η) = 0. Since the point m(i1...iN ) lies in a slice

at x(i1), the condition X̃(i1...iN )

m(i1...iN ) = 0 means that the vector field X̃(i1...iN ) must vanish at x(i1) as

well. Hence, X(i1...iN ) ∈ gx(i1) , since

gm = Lie(Gm) =
{
X ∈ g : X̃m = 0

}
, m ∈ M.

Now

gx(iN ) ⊂ gx(iN−1) ⊂ · · · ⊂ gx(i1)

and g⊥
x(ij+1) ⊂ gx(ij) imply

X̃(i1...iN )

x(i1) = τi1 . . . τiN
∑

α(i1)
r (Ã(i1)

r )x(i1) = 0.

Thus we conclude α(i1) = 0, which gives X(i2...iN ) = X(i1...iN ) ∈ gm(i1...iN ) , and consequently
X(i2...iN ) ∈ gm(i2...iN ) by (30). A repetition of the above argument yields that the condition

X̃(i1...iN )

m(i1...iN ) = 0 is equivalent to (I) in the case that all σij are different from zero. Actually, the
same argument shows that for σij .= 0

(37) gm(i1...iN ) = gṽ(iN ) ,

since gṽ(iN ) ⊂ gx(iN ) . Next, ηm(i1...iN ) ∈ Ω means that

J(ηm(i1...iN ))(X) = ηm(i1...iN )(X̃m(i1...iN )) = 0 ∀X ∈ g,

which by (21) is equivalent to ηm(i1 ...iN ) ∈ Ann(Tm(i1...iN )(G · m(i1...iN ))). If σij .= 0 for all
j = 1, . . . , N , (II) and (III) imply that

ηm(i1...iN )

(
(expx(i1))∗,τi1m(i2...iN ) [. . . (expx(ij−1))∗,τiN−1m

(iN ) [λ(gx(iN−1))m(iN )] . . .
])

= 0,

since gx(iN−1) = gx(iN ) ⊕ g⊥
x(iN ) . By repeatedly using this argument, we conclude with (36) that

for σij .= 0

(38) (II), (III) ⇐⇒ ηm(i1...iN ) ∈ Ann(Tm(i1...iN )(G ·m(i1...iN ))).

Taking everything together therefore gives

Crit( (i1...iN )ψtot)σi1 ···σiN .=0

= {(σi1 , . . . ,σiN , x(i1), . . . , x(iN ), ṽ(iN ), A(i1), . . . , A(iN ), B(iN ), ηm(i1...iN )) :

σi1 · · ·σiN .= 0, (I)-(III) are fulfilled and B̃(iN ),v
η
m(i1 ...iN )

= 0}.

(39)

Here Xv
η denotes the vertical component of a vector field X ∈ T (T ∗M) with respect to the decom-

position Tη(T ∗M) = T v ⊕ T h, T v being the tangent space to the fiber, and T h the tangent space
to the zero section at η. We now assert that

Crit( (i1...iN )ψ̃wk) = Crit( (i1...iN )ψ̃tot)σi1 ···σiN .=0.
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To show this, let (κ,O) be a chart on M with coordinates κ(m) = (q1, . . . , qn), and introduce on
T ∗O the coordinates

ηm =
∑

pi(dqi)m, κ̃(η) = (q1, . . . , qn, p1, . . . , pn), η ∈ T ∗O.

Write ηm(i1 ...iN ) =
∑

pi( dqi)m(i1...iN ) , and still assume that all σij are different from zero. Then

all τij are different from zero, too, and ∂p
(i1...iN )ψ̃wk = 0 is equivalent to

∂p J(ηm(i1...iN ))(X(i1...iN )) = ( dq1(X̃
(i1...iN )

m(i1...iN )), . . . , dqn(X̃
(i1...iN )

m(i1...iN ))) = 0,

which gives us the condition X̃(i1...iN )

m(i1...iN ) = 0. By (37) we therefore obtain condition I) in the case

that all σij are different from zero. Let next Nx(i1)(G ·x(i1)) be the normal space in Tx(i1)M to the

orbit G · x(i1), on which Gx(i1) acts, and define Nx(ij+1)(Gx(ij ) · x(ij+1)) successively as the normal

space to the orbit Gx(ij ) · x(ij+1) in the Gx(ij) -space Nx(ij )(Gx(ij−1) · x(ij)), where we understand
that Gx(i0) = G. By Bredon [9, page 308], these actions can be assumed to be orthogonal. Set

(40) V (i1...ij) =
j⋂

r=1

Nx(ir)(Gx(ir−1) · x(ir)) = Nx(ij)(Gx(ij−1) · x(ij)).

With the identification T0(TmM) 5 TmM one has

(41) (expm)∗,0 : T0(TmM) −→ TmM, (expm)∗,0 5 id ,

and similarly (expx(ij))∗,0 5 id for all j = 2, . . . , N . Therefore, if τij = 0 for all j, then E(i1)

x(i1) =

Tx(i1)(G · x(i1)), and

E
(ij)

x(i1) 5 T
x(ij)(Gx(ij−1) · x(ij)) ⊂ V (i1...ij−1), 2 ≤ j ≤ N,

while F (iN )
x(i1) 5 Tṽ(iN )(Gx(iN ) · ṽ(iN )) ⊂ V (i1...iN ). Therefore E

(ij)

x(i1) ∩ V (i1...ij) = {0}, so that we
obtain the direct sum of vector spaces

(42) E(i1)
x(i1) ⊕ E(i2)

x(i1) ⊕ · · ·⊕ E(iN )
x(i1) ⊕ F (iN )

x(i1) ⊂ Tx(i1)M.

Let now one of the σij be equal to zero, so that all τij are zero. With the identification (41) one
has

(i1...iN )ψ̃wk =
∑

pi dqi
(
Ã(i1)

x(i1) +
N∑

j=2

λ(A(ij ))x(ij) + λ(B(iN ))ṽ(iN )
)
,(43)

and ∂p
(i1...iN )ψ̃wk = 0 is equivalent to

Ã(i1)
x(i1) +

N∑

j=2

λ(A(ij))x(ij) + λ(B(iN ))ṽ(iN ) = 0.

Since x(ij) ∈ γ(ij−1)(Si1...ij−1 )x(ij−1)) ⊂ V (i1...ij−1), we see that for every j = 2, . . . , N

λ
(∑

r

α(ij)
r A(ij)

r

)
x(ij) ∈ Tx(ij)(Gx(ij−1) · x(ij)) ⊂ V (i1...ij−1).

In addition, (Ã(i1)
r )x(i1) ∈ Tx(i1)(G · x(i1)), and λ

(∑
r β

(iN )
r B(iN )

r

)
ṽ(iN ) ∈ V (i1...iN ), so that taking

everything together we obtain with (42) for arbitrary σij

∂p
(i1...iN )ψ̃wk = 0 ⇐⇒ (I).

In particular, one concludes that (i1...iN )ψ̃wk must vanish on its critical set. Since

d( (i1...iN )ψ̃tot) = d(τi1 . . . τiN ) · (i1...iN )ψ̃wk + τi1 . . . τiN d ((i1...iN )ψ̃wk),
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one sees that
Crit( (i1...iN )ψ̃wk) ⊂ Crit( (i1...iN )ψ̃tot).

In turn, the vanishing of ψ on its critical set implies

Crit( (i1...iN )ψ̃wk)σi1 ···σiN .=0 = Crit( (i1...iN )ψ̃tot)σi1 ...σiN .=0.

Therefore, by continuity,

(44) Crit( (i1...iN )ψ̃tot)σi1 ···σiN .=0 ⊂ Crit( (i1...iN )ψ̃wk).

In order to see the converse inclusion, let us consider next the α-derivatives. Clearly,

∂α(i1)
(i1...iN )ψ̃wk = 0 ⇐⇒ ηm(i1...iN )(Ỹm(i1 ...iN )) = 0 ∀Y ∈ g⊥x(i1) .

For the remaining derivatives one computes

∂
α

(ij )
r

(i1...iN )ψ̃wk

= ηm(i1...iN )

(
(expx(i1))∗,τi1m(i2...iN )

[
. . . (expx(ij−1))∗,τij−1m

(ij ...iN ) [λ(A(ij )
r )m(ij ...iN )] . . .

])
,

from which one deduces that for j = 2, . . . , N

∂α(ij )
(i1...iN )ψ̃wk = 0 ⇐⇒ ∀Y ∈g⊥

x(ij )

ηm(i1 ...iN )

(
(expx(i1))∗,τi1m(i2...iN )

[
. . . (expx(ij−1))∗,τij−1m

(ij ...iN ) [λ(Y )m(ij ...iN )] . . .
])

= 0.

In a similar way,

∂β(ij)
(i1...iN )ψ̃wk = 0 ⇐⇒ ∀Z ∈gx(iN )

ηm(i1...iN )

(
(expx(i1))∗,τi1m(i2...iN )

[
. . . (expx(iN ))∗,τiN ṽ(iN ) [λ(Z)ṽ(iN )] . . .

])
= 0.

by which the necessity of the conditions (I)–(III) is established. In order to see their sufficiency,
let them be fulfilled, and assume again that σij .= 0 for all j = 1, . . . , N . Then (38) implies that

ηm(i1 ...iN ) ∈ Ann(Tm(i1...iN )(G ·m(i1...iN ))). Now, if σij .= 0, G ·m(i1...iN ) is of principal type G/HL

in M , so that the isotropy group ofm(i1...iN ) must act trivially on Nm(i1...iN )(G·m(i1...iN )), compare
Bredon [9, page 181]. If therefore X = XT + XN denotes an arbitrary element in Tm(i1...iN )M =
Tm(i1...iN )(G ·m(i1...iN )))⊕Nm(i1...iN )(G ·m(i1...iN ))), and g ∈ Gm(i1...iN ) , one computes

g · ηm(i1...iN )(X) = [(Lg−1)∗gm(i1 ...iN )ηm(i1...iN ) ](X) = ηm(i1...iN )((Lg−1)∗,m(i1...iN )(XN ))

= ηm(i1...iN )(XN ) = ηm(i1...iN )(X).

In view of λ(B(iN ))ṽ(iN ) = 0 and (37) we therefore get the condition B̃(iN ),v
η
m(i1...iN ) = 0. Let us now

assume that one of the σij equals zero. Then

(II), (III) ⇔

{
ηx(i1) ∈ Ann(T

x(ij)(Gx(ij−1) · x(ij))) ∀ j = 1, . . . , N,
ηx(i1) ∈ Ann(Tṽ(iN )(Gx(iN ) · ṽ(iN ))).

(45)

Lemma 4. The orbit of the point ṽ(iN ) in the Gx(iN )-space V (i1...iN ) is of principal type.

Proof of the lemma. By assumption, for σij .= 0, 1 ≤ j ≤ N , the G-orbit of m(i1...iN ) is of principal
type G/HL in M . The theory of compact group actions then implies that this is equivalent to
the fact that m(i2...iN ) ∈ V (i1) is of principal type in the Gx(i1)-space V (i1), see Bredon [9, page
181], which in turn is equivalent to the fact that m(i3...iN ) ∈ V (i1i2) is of principal type in the
Gx(i2) -space V (i1i2), and so forth. Thus, m(ij ...iN ) ∈ V (i1...ij−1) must be of principal type in the
Gx(ij−1) -space V (i1...ij−1) for all j = 1, . . .N , and the assertion follows. !
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As a consequence of the previous lemma, the stabilizer of ṽ(iN ) must act trivially onNṽ(iN )(Gx(iN ) ·
ṽ(iN )). If therefore X = XT + XN denotes an arbitrary element in

Tx(i1)M 5
N⊕

j=1

Tx(ij)(Gx(ij−1) · x(ij))⊕ Tṽ(iN )(Gx(iN ) · ṽ(iN ))⊕Nṽ(iN )(Gx(iN ) · ṽ(iN )),

we obtain with (45)

g · ηx(i1)(X) = [(Lg−1)∗gx(i1)ηx(i1) ](X) = ηx(i1)((Lg−1)∗,x(i1)(XN ))

= ηx(i1)(XN ) = ηx(i1)(X), g ∈ Gṽ(iN ) .

Collecting everything together we have shown for arbitrary σij that

∂p,α(i1),...,α(iN ),β(iN )
(i1...iN )ψ̃wk = 0 ⇐⇒ (I), (II), (III) =⇒ B̃(iN ),v

η
m(i1...iN )

= 0.(46)

By (39) and (44) we therefore conclude

(47) Crit( (i1...iN )ψ̃tot)σi1 ···σiN .=0 = Crit( (i1...iN )ψ̃wk).

Thus we have computed the critical set of (i1...iN )ψ̃wk, and it remains to show that it is a C∞-
submanifold of codimension 2κ. By our previous considerations, we have the characterization

Crit( (i1...iN )ψ̃wk)

=
{
A(ij) = 0, λ(B(iN ))ṽ(iN ) = 0, ηm(i1 ...iN ) ∈ Ann

( N⊕

j=1

E
(ij)

m(i1...iN ) ⊕ F (iN )

m(i1...iN )

)}
.

(48)

Note that the condition B̃(iN ),v
η
m(i1 ...iN ) = 0 is already implied by the others. Now, dimE

(ij)

m(i1 ...iN ) =

dimGx(ij−1) · x(ij). Since for σi1 · · ·σiN .= 0 the G-orbit of m(i1...iN ) is of principal type G/HL in
M , one computes in this case with (36)

κ =dimG ·m(i1...iN ) = dimTm(i1...iN )(G ·m(i1...iN ))

= dim[E(i1)

m(i1...iN ) ⊕
N⊕

j=2

τi1 . . . τij−1E
(ij)

m(i1...iN ) ⊕ τi1 . . . τiNF (iN )

m(i1...iN ) ]

=
N∑

j=1

dimE
(ij)

m(i1...iN ) + dimF (iN )

m(i1...iN ) .

But since the dimension of the spaces E
(ij)

m(i1 ...iN ) and F (iN )

m(i1...iN ) does not depend on the variables
σij , we obtain the equality

(49) κ =
N∑

j=1

dimE
(ij)

m(i1...iN ) + dimF (iN )

m(i1...iN )

for arbitrary m(i1...iN ). Note that, in contrast, the dimension of Tm(i1...iN )(G ·m(i1...iN )) collapses,
as soon as one of the τij becomes zero. Since the annihilator of a subspace of TmM is itself a linear
subspace of T ∗

mM , we arrive at a vector bundle with (n− κ)-dimensional fiber that is locally given
by the trivialization

(
(σij , x

(ij), ṽ(iN )),Ann
( N⊕

j=1

E
(ij)

m(i1...iN ) ⊕ F (iN )

m(i1...iN )

))
$→ (σij , x

(ij), ṽ(iN )).
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Consequently, by equation (48) we see that Crit( (i1...iN )ψ̃wk) is equal to the total space of the
fiber product of the mentioned vector bundle with the isotropy algebra bundle given by the local
trivialization

(σij , x
(ij), ṽ(iN ), gṽ(iN )) $→ (σij , x

(ij), ṽ(iN )).

Lastly, since by equation (37) we have gṽ(iN ) = gm(i1,...,iN ) in case that all σij are different from
zero, we necessarily have dim gṽ(iN ) = d− κ, which concludes the proof of the theorem. !

7. Phase analysis of the weak transforms. Non-degeneracy of the transversal
Hessians

In this section, we prove the non-degeneracy of the transversal Hessians of the weak transforms.
To begin with, let M be a n-dimensional Riemannian manifold, and C the critical set of a function
ψ ∈ C∞(M), which is assumed to be a smooth submanifold in a chart O ⊂ M . Let further

α : (x, y) $→ m, β : (q1, . . . , qn) $→ m, m ∈ O,

be two systems of local coordinates on O, such that α(x, y) ∈ C if and only if y = 0. As one
computes, the transversal Hessian is given by

(50) ∂yk ∂yl(ψ ◦ α)(x, 0) = Hessψ|α(x,0)(α∗,(x,0)(∂yk),α∗,(x,0)(∂yl)),

Let us now write x = (x′, x′′), and consider the restriction of ψ onto the C∞-submanifold

Mc′ = {m ∈ O : m = α(c′, x′′, y)} .

We write ψc′ = ψ|Mc′
, and denote the critical set of ψc′ by Cc′ , which contains C ∩Mc′ as a subset.

Introducing on Mc′ the local coordinates α′ : (x′′, y) $→ α(c′, x′′, y), we obtain

∂yk ∂yl(ψc′ ◦ α
′)(x′′, 0) = Hessψc′|α(x′′,0)(α

′
∗,(x′′,0)(∂yk),α

′
∗,(x′′,0)(∂yl)).

Let us now assume Cc′ = C ∩Mc′ , a transversal intersection. Then Cc′ is a submanifold of Mc′ ,
and the normal space to Cc′ as a submanifold of Mc′ at a point α′(x′′, 0) is spanned by the vector
fields α′

∗,(x′′,0)(∂yk). Since clearly

∂yk ∂yl(ψc′ ◦ α
′)(x′′, 0) = ∂yk ∂yl(ψ ◦ α)(x, 0), x = (c′, x′′),

we thus have proven the following

Lemma 5. Assume that Cc′ = C ∩Mc′ . Then the restriction

Hessψ(α(c′, x′′, 0))|Nα(c′,x′′,0)C

of the Hessian of ψ to the normal space Nα(c′,x′′,0)C defines a non-degenerate quadratic form if,
and only if the restriction

Hessψc′(α
′(x′′, 0))|Nα′(x′′,0)Cc′

of the Hessian of ψc′ to the normal space Nα′(x′′,0)Cc′ defines a non-degenerate quadratic form.

!

We can now state the main result of this section, the notation being the same as in the previous
ones.

Theorem 3. Let {(Hi1 ), . . . , (HiN )} be a maximal, totally ordered subset of non-principal isotropy

types of the G-action on M , and ζ
+i1
i1

◦ · · · ◦ ζ
+i1 ...+iN
i1...iN

a corresponding sequence of local monoidal
transformations labeled by the indices "i1 , . . . , "iN . Consider the corresponding factorization

(i1...iN )ψ̃tot = τi1 . . . τiN
(i1...iN )ψ̃wk, pre = τi1 (σ) . . . τiN (σ) (i1...iN )ψ̃wk
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of the phase function (12). Then, for each point of the critical manifold Crit( (i1...iN )ψ̃wk), the
restriction of

Hess (i1...iN )ψ̃wk

to the normal space to Crit( (i1...iN )ψ̃wk) at the given point defines a non-degenerate symmetric
bilinear form.

Note that by construction, for τij .= 0, 1 ≤ j ≤ N , the G-orbit through m(i1...iN ) is of principal
type G/HL. For the proof of Theorem 3 we need the following

Lemma 6. Let (η, X) ∈ Crit(ψ), and π(η) ∈ M(HL). Then (η, X) ∈ RegCrit(ψ). Furthermore,
the restriction of the Hessian of ψ at the point (η, X) to the normal space N(η,X)RegCrit(ψ) defines
a non-degenerate quadratic form.

Proof. The first assertion is clear from (15) and (22), since

η ∈ Ω, Gπ(η) ∼ HL ⇒ Gη = Gπ(η).

To see the second, note that by the last implication

(51) η ∈ Ω ∩ T ∗M(HL), X̃π(η) = 0 =⇒ X̃η = 0.

Let now {q1, . . . , qn} be local coordinates on M , π(η) = m = m(q), and write ηm =
∑

pi(dqi)m,
X =

∑
siXi, where {X1, . . . , Xd} denotes a basis of g. Then

ψ(η, X) =
∑

pi(dqi)m(X̃m),

and
∂p ψ(η, X) = 0 ⇐⇒ X̃m = 0, ∂s ψ(η, X) = 0 ⇐⇒ η ∈ Ω.

As a consequence of (51), on T ∗M(HL)× g we get

∂p,s ψ(η, X) = 0 =⇒ ∂q ψ(η, X) = 0.

Let ψq(p, s) denote the phase function regarded as a function of the coordinates p, s alone, while
q is regarded as a parameter. Lemma 5 then implies that on T ∗M(HL) × g the study of the
transversal Hessian of ψ can be reduced to the study of the transversal Hessian of ψq. Now, with
respect to the coordinates s, p, the Hessian of ψq is given by

(
0 (dqi)m((X̃j)m)

(dqj)m((X̃i)m) 0

)
.

A computation shows that the kernel of the corresponding linear transformation is isomorphic to

Tp,s(Critψq) 5
{
(p̃, s̃) ∈ Rn × Rd :

∑
p̃j(dqj)m(q) ∈ Ann(Tm(q)(G ·m(q))),

∑
s̃jXj ∈ gm(q)

}
.

The lemma then follows with the following general observation. Let B be a symmetric bilinear
form on an n-dimensional K-vector space V , and B = (Bij)i,j the corresponding Gramsian matrix
with respect to a basis {v1, . . . , vn} of V such that

B(u,w) =
∑

i,j

uiwjBij , u =
∑

uivi, w =
∑

wivi.

We denote the linear operator given by B with the same letter, and write

V = kerB ⊕W.

Consider the restriction B|W×W of B to W ×W , and assume that B|W×W (u,w) = 0 for all u ∈ W ,
but w .= 0. Since the Euclidean scalar product in V is non-degenerate, we necessarily must have
Bw = 0, and consequently w ∈ kerB ∩ W = {0}, which is a contradiction. Therefore B|W×W

defines a non-degenerate symmetric bilinear form. !
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Proof of Theorem 3. As before, let m = m(q1, . . . , qn) be local coordinates on M , and write ηm =∑
pi(dqi)m. For σi1 · · ·σiN .= 0, the sequence of monoidal transformations ζ

+i1
i1

◦ · · · ◦ ζ
+i1 ...+iN
i1...iN

◦
δi1...iN constitutes a diffeomorphism, so that by the previous lemma the restriction of

Hess (i1...iN )ψ̃tot(σij , x
(ij), ṽ(iN ),α(ij),β(iN ), p)

to the normal space of

Crit( (i1...iN )ψtot)σi1 ···σiN .=0

defines a non-degenerate quadratic form. Next, one computes for the Hessian of the total transform
(
∂2 (i1...iN )ψ̃tot

∂ γk ∂ γl

)

k,l

= τi1 (σ) · · · τiN (σ)

(
∂2 (i1...iN )ψ̃wk

∂ γk ∂ γl

)

k,l

+

( (
∂2(τi1(σ)···τiN (σ))

∂ σirσis

)

r,s
0

0 0

)
(i1...iN )ψ̃wk +R,

where R is a matrix whose entries contain first order derivatives of (i1...iN )ψ̃wk as factors. But
since (i1...iN )ψ̃wk vanishes along its critical set, and

Crit( (i1...iN )ψ̃tot)σi1 ···σiN .=0 = Crit((i1...iN )ψ̃wk)|σi1 ···σiN .=0,

we conclude that the transversal Hessian of (i1...iN )ψ̃wk does not degenerate along the manifold
Crit((i1...iN )ψ̃wk)|σi1 ···σiN .=0. Therefore, it remains to study the transversal Hessian of (i1...iN )ψ̃wk

in the case that any of the σij vanishes. Now, the proof of Theorem 2, in particular (46), showed
that

∂p,α(i1),...,α(iN ),β(iN )
(i1...iN )ψ̃wk = 0 =⇒ ∂σi1 ,...σiN ,x(i1),...,x(iN ),ṽ(iN )

(i1...iN )ψ̃wk = 0.

If therefore
(i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN )(α

(ij ),β(iN ), p)

denotes the weak transform of the phase function ψ regarded as a function of the variables
(α(i1), . . . ,α(iN ),β(iN ), p) alone, while the variables (σi1 , . . . ,σiN , x(i1), . . . , x(iN ), ṽ(iN )) are kept
fixed,

Crit
(
(i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN )

)
= Crit

(
(i1...iN )ψ̃wk

)
∩
{
σij , x

(ij), ṽ(iN ) = constant
}
,

a transversal intersection. Thus, the critical set of (i1...iN )ψ̃wk
σij ,x

(ij),ṽ(iN ) is equal to the fiber over

(σij , x
(ij), ṽ(iN )) of the vector bundle

(
(σij , x

(ij), ṽ(iN )), gṽ(iN ) ×Ann
( N⊕

j=1

E(ij)

m(i1...iN ) ⊕ F (iN )

m(i1...iN )

))
$→ (σij , x

(ij), ṽ(iN )),

and in particular a smooth submanifold. Lemma 5 then implies that the study of the transversal
Hessian of (i1...iN )ψ̃wk can be reduced to the study of the transversal Hessian of (i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN ) .

The crucial fact is now contained in the following

Proposition 6. Assume that σi1 · · ·σiN = 0. Then

kerHess (i1...iN )ψ̃wk
σij ,x

(ij),ṽ(iN )(0, . . . , 0,β
(iN ), p) 5 T(0,...,0,β(iN ),p)Crit

(
(i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN )

)

for all (0, . . . , 0,β(iN ), p) ∈ Crit
(
(i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN )

)
, and arbitrary x(ij), ṽ(ij).
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Proof. Let σi1 · · ·σiN = 0. With (33), or directly from (43) one computes or the second derivatives
of the weak transform at a critical point (0, . . . , 0,β(iN ), p)

∂
α

(i1)
s

∂pr
(i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN ) = dqr((Ã

(i1)
s )x(i1)),

∂
α

(ij)
s

∂pr
(i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN ) = dqr(λ(A

(ij )
s )x(ij)),

∂
β
(iN )
s

∂pr
(i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN ) = dqr(λ(B

(iN )
s )ṽ(iN )),

while all other second derivatives vanish. Thus, for σi1 · · ·σij = 0, the Hessian of the function
(i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN ) with respect to the coordinates p,α(ij),β(ij) is given on its critical set by the

matrix




0 dqr((Ã
(i1)
s )x(i1)) . . . dqr(λ(A

(iN )
s )x(ij )) dqr(λ(B

(iN )
s )ṽ(iN ))

dqs((Ã
(i1)
r )x(i1)) 0 . . . 0 0
...

...
...

...
...

dqs(λ(A
(iN )
r )x(ij)) 0 . . . 0 0

dqs(λ(B
(iN )
r )ṽ(iN )) 0 . . . 0 0




.

Let us now compute the kernel of the linear transformation corresponding to this matrix. Cleary,
the vector (p̃, α̃(i1), . . . , α̃(iN ), β̃(iN )) lies in the kernel if and only if

(a)
∑

α̃(i1)
s (Ã(i1)

s )x(i1) + · · ·+
∑

α̃(iN )
s λ(A(iN )

s )x(iN ) +
∑

β̃(iN )
s λ(B(iN )

s )ṽ(iN ) = 0 ;

(b)
∑

p̃sdqs((Ỹ (i1))x(i1)) = 0 for all Y (i1) ∈ g⊥
x(i1) ,

∑
p̃sdqs(λ(g⊥x(ij ))x(ij)) = 0, 2 ≤ j ≤ N ;

(c)
∑

p̃sdqs(λ(gx(iN ))ṽ(iN )) = 0.

Let E(ij), F (iN ), and V (i1...iN ) be defined as in (35) and (40). Then

∑
α̃(ij)
r (Ã(i1)

r )x(i1) + · · ·+
∑

α̃(iN )
r λ(A(iN )

r )x(iN ) +
∑

β̃(iN )
r λ(B(iN )

r )ṽ(iN ) ∈
N⊕

j=1

E
(ij)

x(i1) ⊕ F (iN )

x(i1) ,

so that for condition (a) to hold, it is necessary and sufficient that

α̃(ij) = 0, 1 ≤ j ≤ N,
∑

β̃(iN )
r λ(B(iN )

r )ṽ(iN ) = 0.

Condition (b) is equivalent to
∑

p̃s(dqs)x(i1) ∈ Ann(E(ij)

x(i1)) for al j = 1, . . . , N . Similarly, condition

(c) is equivalent to
∑

p̃s(dqs)x(i1) ∈ Ann(F (iN )

x(i1)). On the other hand, by (48),

T(0,...,0,β(iN ),p)Crit
(
(i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN )

)
=
{
(α̃(i1), . . . , α̃(iN ), β̃(iN ), p̃) : α̃(ij) = 0,

∑
β̃(iN )
r λ(B(iN )

r ) ∈ gṽ(iN ) ,
∑

p̃s(dqs)x(i1) ∈ Ann
( N⊕

j=1

E
(ij)

x(i1) ⊕ F (iN )
)}

,

and the proposition follows. !

The previous proposition implies that for σi1 · · ·σiN = 0

Hess (i1...iN )ψ̃wk
σij ,x

(ij),ṽ(iN )(0, . . . , 0,β
(iN ), p)

|N
(0,...,0,β(iN ),p)

Crit
(

(i1...iN )ψ̃wk

σij
,x

(ij )
,ṽ(iN )

)

defines a non-degenerate symmetric bilinear form for all points (0, . . . , 0,β(iN ), p) lying in the
critical set of (i1...iN )ψ̃wk

σij ,x
(ij),ṽ(iN ) , and Theorem 3 follows with Lemma 5. !
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8. Asymptotics in the resolution space

We are now in position to give an asymptotic description of the integrals I
+i1 ...+iN
i1...iN

(µ) defined
in (34). Since the considered integrals are absolutely convergent, we can interchange the order of
integration by Fubini, and write

I
+i1 ...+iN
i1...iN

(µ) =

∫

(−1,1)N
Ĵ
+i1 ...+iN
i1...iN

( µ

τi1 · · · τiN

) N∏

j=1

|τij |
c(ij)+

∑j
r=1 d(ir)−1 dτiN . . . dτi1 ,

where we set

Ĵ
+i1 ...+iN
i1...iN

(ν) =

∫

Mi1 (Hi1 )

[ ∫

γ(i1)((Si1)x(i1) )i2(Hi2 )
. . .

[ ∫

γ(iN−1)((Si1...iN−1)x(iN−1))iN (HiN )

[ ∫

γ(iN )((Si1...iN )
x(iN ) )×g

x(iN )×g⊥

x(iN )
×···×g⊥

x(i1)
×T∗

m(i1...iN )
Wi1

ei
(i1...iN )ψ̃wk,pre/ν a

+i1 ...+iN
i1...iN

Φ
+i1 ...+iN
i1...iN

d(T ∗
m(i1...iN )Wi1) dA

(i1) . . . dA(iN ) dB(iN ) dṽ(iN )
]
dτiN dx(iN ) . . .

]
dτi2 dx

(i2)
]
dτi1 dx

(i1),

and introduced the new parameter

ν =
µ

τi1 · · · τiN
.

Now, for an arbitrary 0 < ε < T to be chosen later we define

1I
+i1 ...+iN
i1...iN

(µ) =

∫

((−1,1)\(−ε,ε))N
Ĵ
+i1 ...+iN
i1...iN

( µ

τi1 · · · τiN

) N∏

j=1

|τij |
c(ij )+

∑j
r=1 d(ir)−1 dτiN . . . dτi1 ,

2I
+i1 ...+iN
i1...iN

(µ) =

∫

(−ε,ε)N
Ĵ
+i1 ...+iN
i1...iN

( µ

τi1 · · · τiN

) N∏

j=1

|τij |
c(ij)+

∑j
r=1 d(ir)−1 dτiN . . . dτi1 .

Lemma 7. One has c(ij) +
∑j

r=1 d
(ir) − 1 ≥ κ for arbitrary j = 1, . . . , N .

Proof. We first note that for j = 1, . . . , N − 1

c(ij) = dim(νi1...ij )x(ij) ≥ dimG
x(ij ) ·m(ij+1...iN ) + 1.

Indeed, (νi1...ij )x(ij ) is an orthogonal Gx(ij ) -space, so that the dimension of the Gx(ij )-orbit of

m(ij+1...iN ) ∈ γ(ij)((Si1...ij )x(ij)) can be at most c(ij)−1. Now, under the assumption σi1 · · ·σiN .= 0,
(29), (31) and (32) imply

Tm(ij+1...iN )(Gx(ij ) ·m(ij+1...iN )) 5 Tm(i1...iN )(Gx(ij ) ·m(i1...iN ))

= E
(ij+1)

m(i1...iN ) ⊕
N⊕

k=j+2

τij+1 . . . τik−1E
(ik)

m(i1 ...iN ) ⊕ τij+1 . . . τiNF (iN )

m(i1 ...iN ) ,

where the distributions E(ij), F (iN ) where defined in (35). On then computes

dimGx(ij ) ·m(ij+1...iN ) =dimTm(ij+1...iN )(Gx(ij) ·m
(ij+1...iN ))

=
N∑

l=j+1

dimE(il)

m(i1 ...iN ) + dimF (iN )

m(i1...iN ) ,

which implies

c(ij) ≥
N∑

l=j+1

dimE(il)

m(i1 ...iN ) + dimF (iN )

m(i1...iN ) + 1
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for arbitrary σij . On the other hand, one has

d(ij) = dim g⊥
x(ij)

= dim[λ(g⊥
x(ij )) · x(ij)] = dim[λ(g⊥

x(ij )) ·m(ij ...iN )] = dimE
(ij)

m(i1...iN ) .

For j = 1, . . . , N − 1, the assertion of the lemma now follows with (49). Since

c(iN ) = dim(νi1...iN )x(iN ) ≥ dimGx(iN ) · ṽ(iN ) + 1,

a similar argument yields the assertion for j = N . !

As a consequence of the lemma, we obtain for 2I
+i1 ...+iN
i1...iN

(µ) the estimate

2I
+i1 ...+iN
i1...iN

(µ) ≤ C

∫

(−ε,ε)N

N∏

j=1

|τij |
c(ij)+

∑j
r=1 d(ir)−1 dτiN . . . dτi1

≤ C

∫

(−ε,ε)N

N∏

j=1

|τij |
κ dτiN . . . dτi1 =

2C

κ+ 1
εN(κ+1)

(52)

for some C > 0. Let us now turn to the integral 1I
+i1 ...+iN
i1...iN

(µ). After performing the change of
variables δi1...iN one obtains

1I
+i1 ...+iN
i1...iN

(µ) =

∫

ε<|τij (σ)|<1

J
+i1 ...+iN
i1...iN

( µ

τi1 (σ) · · · τiN (σ)

) N∏

j=1

|τij (σ)|
c(ij )+

∑j
r=1 d(ir)−1 |detDδi1...iN (σ)| dσ,

where J
+i1 ...+iN
i1...iN

(ν) is defined like Ĵ
+i1 ...+iN
i1...iN

(ν), but with (i1...iN )ψ̃wk,pre being replaced by (i1...iN )ψ̃wk
σ ,

which denotes the weak transform of the phase function ψ as a function of the variables x(ij),
ṽ(iN ),α(ij),β(iN ), p alone, while the variables σ = (σi1 , . . .σiN ) are regarded as parameters. The
idea is now to make use of the principle of the stationary phase to give an asymptotic expansion
of J

+i1 ...+iN
i1...iN

(ν).

Theorem 4. Let σ = (σi1 , . . . ,σiN ) be a fixed set of parameters. Then, for every Ñ ∈ N there
exists a constant CÑ,(i1...iN )ψ̃wk

σ
> 0 such that

|J
+i1 ...+iN
i1...iN

(ν)− (2π|ν|)κ
Ñ−1∑

j=0

|ν|jQj(
(i1...iN )ψ̃wk

σ ; ai1...iNΦi1...iN )| ≤ CÑ,(i1...iN )ψ̃wk
σ

|ν|Ñ ,

with explicit expressions and estimates for the coefficients Qj. Moreover, the constants CÑ,(i1...iN )ψ̃wk
σ

and the coefficients Qj have uniform bounds in σ.

Proof. As a consequence of Theorems 2 and 3, together with Lemma 5, the phase function
(i1...iN )ψ̃wk

σ has a clean critical set, meaning that

• the critical set Crit((i1...iN )ψ̃wk
σ ) is a C∞-submanifold of codimension 2κ for arbitrary σ;

• the transversal Hessian

Hess (i1...iN )ψ̃wk
σ (x(ij ), ṽ(iN ),α(ij),β(iN ), p)

|N
(x

(ij),ṽ(iN ),α
(ij),β(iN ),p)

Crit
((i1...iN )

ψ̃wk
σ

)

defines a non-degenerate symmetric bilinear form for arbitrary σ at every point of the
critical set of (i1...iN )ψ̃wk

σ .

Thus, the necessary conditions for applying the principle of the stationary phase to the integral
Jσi1 ,...,σiN

(ν) are fulfilled, and we obtain the desired asymptotic expansion by Theorem C. To see
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the existence of the uniform bounds, note that as an examination of the proof of Theorem A shows,
the constants CN,ψ in Theorem C are bounded from above by

sup
m∈C∩suppa

∥∥∥∥
(
ψ′′(m)|NmC

)−1
∥∥∥∥

see also [36, Remark 1]. We therefore have

CÑ,(i1...iN )ψ̃wk
σ

≤ C′
Ñ

sup
x(ij),ṽ(iN ),α(ij ),β(iN ),p

∥∥∥∥
(
Hess (i1...iN )ψ̃wk

σ |NCrit((i1...iN )ψ̃wk
σ )

)−1
∥∥∥∥ .

But since by Lemma 5 the transversal Hessian

Hess (i1...iN )ψ̃wk
σ |N

(x
(ij),ṽ(iN ),α

(ij),β(iN ),p)
Crit((i1...iN )ψ̃wk

σ )

is given by

Hess (i1...iN )ψ̃wk
|N

(σij
,x

(ij),ṽ(iN ),α
(ij )

,β(iN ),p)
Crit((i1...iN )ψ̃wk),

we finally obtain the estimate

CÑ,(i1...iN )ψ̃wk
σ

≤ C′
Ñ

sup
σij ,x

(ij),ṽ(iN ),α(ij ),β(iN ),p

∥∥∥∥
(
Hess (i1...iN )ψ̃wk

|NCrit((i1...iN )ψ̃wk)

)−1
∥∥∥∥ ≤ CÑ ,i1...iN

by a constant independent of σ. Similarly, one can show the existence of bounds of the form

|Qj(
(i1...iN )ψ̃wk

σ ; ai1...iNΦi1...iN )| ≤ C̃j,i1...iN ,

with constants C̃j,i1...iN independent of σ. !

Remark 4. Before going on, let us remark that for the computation of the integrals 1I
+i1 ...+iN
i1...iN

(µ)

it is only necessary to have an asymptotic expansion for the integrals J
+i1 ...+iN
i1...iN

(ν) in the case that
σi1 · · ·σiN .= 0, which can also be obtained without Theorems 2 and 3 using only the factorization
of the phase function ψ given by the resolution process, together with Lemma 6. Nevertheless, the
main consequence to be drawn from Theorems 2 and 3 is that the constants CÑ,(i1...iN )ψ̃wk

σ
and

the coefficients Qj in Theorem 4 have uniform bounds in σ.

As a consequence of Theorem 4, we obtain for arbitrary Ñ ∈ N

|J
+i1 ...+iN
i1...iN

(ν)− (2π|ν|)κQ0(
(i1...iN )ψ̃wk

σ ; ai1...iNΦi1...iN )|

≤
∣∣∣J+i1 ...+iN

i1...iN
(ν)− (2π|ν|)κ

Ñ−1∑

l=0

|ν|lQl(
(i1...iN )ψ̃wk

σ ; ai1...iNΦi1...iN )
∣∣∣

+ (2π|ν|)κ
Ñ−1∑

l=1

|ν|l|Ql(
(i1...iN )ψ̃wk

σ ; ai1...iNΦi1...iN )| ≤ c1|ν|
Ñ + c2|ν|

κ
Ñ−1∑

l=1

|ν|l
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with constants ci > 0 independent of both σ and ν. From this we deduce

∣∣∣ 1I+i1 ...+iN
i1...iN

(µ)− (2πµ)κ
∫

ε<|τij (σ)|<1
Q0

N∏

j=1

|τij (σ)|
c(ij )+

∑j
r=1 d(ir)−1−κ|detDδi1...iN (σ)| dσ

∣∣∣

≤ c3µ
Ñ

∫

ε<|τij (σ)|<1

N∏

j=1

|τij (σ)|
c(ij )+

∑j
r=1 d(ir)−1−Ñ |detDδi1...iN (σ)| dσ

+ c4µ
κ
Ñ−1∑

l=1

µl

∫

ε<|τij (σ)|<1

N∏

j=1

|τij (σ)|
c(ij )+

∑j
r=1 d(ir)−1−κ−l |detDδi1...iN (σ)| dσ

≤ c5µ
Ñ

N∏

j=1

(− log ε)ij max
{
1,

N∏

j=1

εc
(ij)+

∑j
r=1 d(ir)−Ñ

}

+ c6

Ñ−1∑

l=1

µκ+l
N∏

j=1

(− log ε)ilj max
{
1,

N∏

j=1

εc
(ij)+

∑j
r=1 d(ir)−κ−l

}
,

where the exponents ij and ilj can take the values 0 or 1. We now set ε = µ1/N . Taking into
account Lemma 7, one infers that the right hand side of the last inequality can be estimated by

µk+1(logµ)N .

so that for sufficiently large Ñ ∈ N we finally obtain an asymptotic expansion for I
+i1 ...+iN
i1...iN

(µ) by
taking into account (52), and the fact that

(2πµ)κ
∫

0<|τij |<µ1/N

Q0

N∏

j=1

|τij |
c(ij )+

∑j
r=1 d(ir)−1−κ dτiN . . . dτi1 = O(µκ+1).

Theorem 5. Let the assumptions of Theorem 2 be fulfilled. Then

I
+i1 ...+iN
i1...iN

(µ) = (2πµ)κL
+i1 ...+iN
i1...iN

+O(µκ+1(logµ)N ),

where the leading coefficient L
+i1 ...+iN
i1...iN

is given by

(53) L
+i1 ...+iN
i1...iN

=

∫

Crit((i1...iN )ψ̃wk)

a
+i1 ...+iN
i1...iN

Φ
+i1 ...+iN
i1...iN

dCrit((i1...iN )ψ̃wk)

|Hess((i1...iN )ψ̃wk)NCrit((i1...iN )ψ̃wk)|
1/2

,

where dCrit((i1...iN )ψ̃wk) denotes the induced measure.

!

9. Statement of the main result

Let us now return to our departing point, that is, the asymptotic behavior of the integral (11)
in case that ς = 0 is a singular value of the momentum map. For this, we still have to examine the
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contributions to I(µ) coming from integrals of the form

Ĩ
+i1 ...+iΘ
i1...iΘ

(µ) =
∫

Mi1 (Hi1 )×(−1,1)

[ ∫

γ(i1)((Si1)x(i1) )i2(Hi2 )×(−1,1)
. . .

[ ∫

γ(iΘ−1)((Si1...iΘ−1)x(iΘ−1))iΘ (HiΘ )×(−1,1)

[ ∫

γ(iΘ)((Si1...iΘ )
x(iΘ) )×g

x(iΘ)×g⊥

x(iΘ)×···×g⊥

x(i1)×T∗

m(i1 ...iΘ)Wi1

ei
τ1...τΘ

µ
(i1...iΘ)ψ̃wk

a
+i1 ...+iΘ
i1...iΘ

Φ̃
+i1 ...+iΘ
i1...iΘ

d(T ∗
m(i1...iΘ)Wi1)(η) dA

(i1) . . . dA(iΘ) dB(iΘ) dṽ(iΘ)
]
dτiΘ dx(iΘ) . . .

]
dτi2 dx

(i2)
]
dτi1 dx

(i1),

where {(Hi1), . . . , (HiΘ)} is an arbitrary totally ordered subset of non-principal isotropy types,
while a

+i1 ...+iΘ
i1...iΘ

is a smooth amplitude which is supposed to have compact support in a system of

(θ(i1), . . . , θ(iN−1),α(iN ))-charts labeled by the indices "i1 . . . "iΘ , and

Φ̃
+i1 ...+iΘ
i1...iΘ

=
Θ∏

j=1

|τij |
c(ij)+

∑j
r d(ir)−1Φ

+i1 ...+iΘ
i1...iΘ

,

Φi1...iΘ being a smooth function which does not depend on the variables τij . Now, a computation

of the p-derivatives of (i1...iΘ)ψ̃wk in any of the α(iΘ)-charts shows that (i1...iΘ)ψ̃wk has no critical
points there. By the non-stationary phase theorem, see Hörmander [24, Theorem 7.7.1], one then
computes for arbitrary Ñ ∈ N

|Ĩ
+i1 ...+iΘ
i1...iΘ

(µ)| ≤ c7µ
Ñ

∫

ε<|τij |<1

Θ∏

j=1

|τij |
c(ij )+

∑j
r d(ir)−1−Ñdτ + c8ε

Θ(κ+1) ≤ c9 max
{
µÑ , µκ+1

}
,

where we took ε = µ1/Θ. Choosing Ñ large enough, we conclude that

|Ĩ
+i1 ...+iΘ
i1...iΘ

(µ)| = O(µκ+1).

As a consequence of this we see that, up to terms of order O(µκ+1), I(µ) can be written as a sum

I(µ) =
Λ−1∑

N=1

∑

i1<···<iN
+i1 ,...,+iN

I
+i1 ...+iN
i1...iN

(µ) +
Λ−1∑

N=1

∑

i1<···<iN−1<L
+i1 ,...,+iN−1

I
+i1 ...+iN−1

i1...iN−1L
(µ),(54)

where the first term is a sum over maximal, totally ordered subsets of non-principal isotropy types,
while the second term is a sum over totally ordered subsets of non-principal isotropy types. The
asymptotic behavior of the integrals I

+i1 ...+iN
i1...iN

(µ) has been determined in the previous section, and

using Lemma 6 it is not difficult to see that the integrals I
+i1 ...+iN−1

i1...iN−1L
(µ) have analogous asymptotic

descriptions. We can now state the main result of this paper.

Theorem 6. Let M be a connected Riemannian manifold, and G a compact, connected Lie group
G with Lie algebra g acting isometrically and effectively on M . Consider the oscillatory integral

I(µ) =

∫

T∗M

∫

g

eiψ(η,X)/µa(η, X) dX dη, µ > 0,

where the phase function
ψ(η, X) = J(η)(X)

is given by the momentum map J : T ∗M → g∗ corresponding to the Hamiltonian action on T ∗M ,
dη is the Liouville measure on T ∗M , and dX an Euclidean measure given by an Ad (G)-invariant
inner product on g, while a ∈ C∞

c (T ∗M × g). Then I(µ) has the asymptotic expansion

I(µ) = (2πµ)κL0 +O(µκ+1(logµ)Λ−1), µ → 0+.
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Here κ is the dimension of an orbit of principal type in M , Λ the maximal number of elements of
a totally ordered subset of the set of isotropy types, and the leading coefficient is given by 4

(55) L0 =

∫

Reg C

a(η, X)

|Hessψ(η, X)|N(η,X)Reg C |1/2
d(Reg C)(η, X),

where Reg C denotes the regular part of the critical set C = Crit(ψ) of ψ, and d(Reg C) the measure
induced by dη dX. In particular, the integral over Reg C exists.

Remark 5. Note that equation (55) in particular means that the obtained asymptotic expansion
for I(µ) is independent of the explicit partial resolution we used.

Proof. By (54) and Theorem 5 one has

I(µ) = (2πµ)κL0 +O(µκ+1(logµ)Λ−1), µ → 0+,

where L0 is given by a sum of integrals of the form (53). It therefore remains to show the equality
(55). For this, we shall introduce certain cut-off functions for the singular part SingΩ of Ω. Choose
a Riemmanian metric on T ∗M , and denote the corresponding distance on T ∗M by d. Let K be a
compact subset in T ∗M , δ > 0, and consider the set

(SingΩ ∩K)δ = {η ∈ T ∗M : d(η, η′) < δ for some η′ ∈ SingΩ ∩K} .

By using a partition of unity, one can show the existence of a test function uδ ∈ C∞
c ((SingΩ∩K)3δ)

satisfying uδ = 1 on (SingΩ ∩K)δ, see Hörmander [24, Theorem 1.4.1]. Now, let K be such that
suppη a ⊂ K. We then assert that the limit

(56) lim
δ→0

∫

Reg C

[a(1− uδ)](η, X)

|det ψ′′(η, X)|N(η,X)Reg C |1/2
d(Reg C)(η, X)

exists and is equal to L0, where d(Reg C) is the measure on Reg C induced by dη dX . Indeed, define

Iδ(µ) =

∫

T∗M

∫

g

e
i
µψ(η,X)[a(1− uδ)](η, X) dX dη.

Since (η, X) ∈ Sing C implies η ∈ SingΩ, a direct application of Theorem C for fixed δ > 0 gives

(57) |Iδ(µ)− (2πµ)κL0(δ)| ≤ Cδµ
κ+1,

where Cδ > 0 is a constant depending only on δ, and

L0(δ) =

∫

Reg C

[a(1− uδ)](η, X)

|det ψ′′(η, X)|N(η,X)Reg C |1/2
d(Reg C)(η, X).

On the other hand, applying our previous considerations to Iδ(µ) instead of I(µ), we obtain again
an asymptotic expansion of the form (57) for Iδ(µ), where now the first coefficient is given by
a sum of integrals of the form (53) with a replaced by a(1 − uδ). Since the first term in the
asymptotic expansion (57) is uniquely determined, the two expressions for L0(δ) must be identical.
The existence of the limit (56) now follows by the Lebesgue theorem on bounded convergence, the
corresponding limit being given by L0. Let now a+ ∈ C∞

c (T ∗M × g,R+). Since one can assume
that |uδ| ≤ 1, the lemma of Fatou implies that

∫

Reg C
lim
δ→0

[a+(1− uδ)](η, X)

|det ψ′′(η, X)|N(η,X)Reg C |1/2
d(Reg C)(η, X)

4A more explicit expression for L0 will be given in Proposition 7.
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is mayorized by the limit (56), with a replaced by a+, and we obtain

∫

Reg C

a+(η, X)

|det ψ′′(η, X)|N(η,X)Reg C |1/2
|d(Reg C)(η, X)| < ∞.

Choosing a+ to be equal 1 on a neighborhood of the support of a, and applying the theorem of
Lebesgue on bounded convergence to the limit (56), we obtain equation (55). !

In what follows, we shall compute the leading term (55) in a more explicit way, and begin by
computing the determinant of the transversal Hessian of the phase function ψ(η, X), the notation
being as in Theorem 6.

Lemma 8. Let (η, X) ∈ Reg C be fixed. Then

detHessψ(η, X)|N(η,X)Reg C = det (Ξ − LX ◦ LX)|g·η,

where LX : g · η → g · η denotes the linear mapping (26) given by the Lie derivative, and Ξ the
linear transformation on g · η defined in (17).

Proof. Let (η, X) ∈ Reg C be fixed and {A1, . . . , Ad} an orthonormal basis of g such that {A1, . . . , Aκ}
is a basis of g⊥η and {Aκ+1, . . . , Ad} a basis of g · η. With respect to the basis

((X̃i)η; 0), (0; ej), i = 1, . . . , 2n, j = 1, . . . , d,

of T(η,X)(T
∗M × g) = Tη(T ∗M)× Rd introduced in the proof of Proposition 2, the Hessian

Hessψ : T(η,X)(T
∗M × g)× T(η,X)(T

∗M × g) → C, (v1, v2) $→ ṽ1(ṽ2(ψ))(η, X)

is given by the matrix

A =

(
ωη([X̃, X̃i], X̃j) −ωη(Ãj , X̃i)

−ωη(Ãi, X̃j) 0

)

.

Indeed, X̃i(JX) = dJX(X̃i) = −ιX̃ω(X̃i), and by (6) we have (X̃i)η(ω(X̃, X̃j)) = −ωη([X̃, X̃i], X̃j),

since X̃η = 0. If therefore J : T (T ∗M) → T (T ∗M) denotes the bundle homomorphism introduced
in Section 2, we obtain

A =

(
JLX −gη(J Ãj , X̃i)

−gη(J Ãi, X̃j) 0

)

,

where LX : Tη(T ∗M) → Tη(T ∗M),X $→ [X̃, X̃]η denotes the linear transformation induced by the
Lie derivative, and restricts to a map on g · η by Remark 3. Let {B1, . . . , Bκ} be another basis of
g⊥η such that {(B̃1)η, . . . , (B̃κ)η} is an orthonormal basis of g · η, and recall that by (15) we have
TηReg Ω = (g · η)ω . Taking into account (23) and g · η ⊂ (g · η)ω one sees that

Bk = (J (B̃k)η; 0), B′
k = (LX(B̃k)η; gη(Ã1, B̃k), . . . , gη(Ãκ, B̃k), 0, . . . , 0), k = 1, . . . ,κ,
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constitutes a basis of N(η,X)Reg C with 〈Bk,Bl〉 = δkl, Bk ⊥ B′
l, and 〈B′

k,B
′
l〉 = (Ξ + LXLX)kl,

where Ξ was defined in (17). One now computes

A(Bk) =
(
JLXJ (B̃k)η;−

2n∑

j=1

gη(J Ã1, X̃j)gη(J B̃k, X̃j), . . .
)

=(−LX(B̃k)η;−gη(J Ã1,J B̃k), . . . ,−gη(J Ãκ,J B̃k), 0, . . . , 0) = −B′
k,

A(B′
k) =

(
JLXLX(B̃k)η −

( κ∑

j=1

gη(J Ãj , X̃1)gη(Ãj , B̃k), . . .
)
;

−
2n∑

j=1

gη(J Ã1, X̃j)gη(LX(B̃k)η, X̃j), . . .
)
= (JLXLX(B̃k)η + (gη(Ξ(B̃k)η,J X̃1), . . . );

− gη(J Ã1, LX(B̃k)η), . . . ).

Since LX defines an endomorphism of g · η and g · η ⊂ (g · η)ω we have gη(J Ã1, LX(B̃k)η) =

ωη(Ã1, LX(B̃k)η) = 0. Furthermore, the {J (B̃1)η, . . . ,J (B̃κ)η} form an orthonormal basis of
J (g · η), and we obtain

A(B′
k) = (J (LXLX − Ξ)(B̃k)η; 0) =

κ∑

j=1

gη(J (LXLX − Ξ)(B̃k)η,J (B̃j)η)Bj.

Taking all together, one sees that the transversal Hessian Hessψ(η, X)|N(η,X)Reg C is given by the
matrix (

0 −1κ
(LXLX − Ξ)|g·η 0

)
,

and the assertion follows. !

Proposition 7. The leading term in (55) is given by

L0 =
volG

volH

∫

RegΩ

[∫

gη

a(η, X) dX

]
d(RegΩ)(η)

vol Oη
,

where H denotes a principal isotropy group, and vol Oη the volume of the G-orbit through η, while
dX is the measure on gη induced by the invariant inner product on g.

Proof. The proof is based on the following integration formula, compare [12, Lemma 3.4]. Let
(X, hX) and (Y, hY) be two Riemannian manifolds and F : X → Y a smooth submersion. Then,
for b ∈ C∞

c (X) one has

(58)

∫

X

b(x) dX(x) =

∫

Y

[∫

F−1(y)
b(z)

d(F−1(y))(z)

|det dzF ◦ tdzF )|1/2

]

dY(y),

where d(F−1(y)) denotes the Riemannian measure induced by the one of X on F−1(y), and the
transposed operator of the differential dxF : TxX → TF (x)Y is given by the operator tdxF :
TF (x)Y → TxX which is uniquely determined by the condition

hX(X, tdxF (Y)) = hY(dxF (X),Y), X ∈ TxX, Y ∈ TF (x)Y.

Consider now the map P : Reg C → Reg Ω, (η, X) → η, which is a submersion by Proposition
5. In order to apply the previous integration formula, we have to compute the determinant of
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d(η,X)P ◦ td(η,X)P at a point (η, X) ∈ Reg C. For this, let G denote the orthogonal complement
of g · η in TηReg Ω. We then assert that

(59) d(η,X)P ◦ td(η,X)P|G = id .

Indeed, let Y ∈ G. As was shown in the proof of Proposition 5, [Ỹ, X̃ ]η ∈ g · η. On the other

hand, the fact that g · η and G are invariant under Gη, together with (25), imply that [Ỹ, X̃]η ∈ G.

Hence [Ỹ, X̃]η = 0. Taking into account (23) we infer from this that (Y, 0) ∈ T(η,X)Reg C, and
consequently tdP(η,X)(Y) = (Y, 0). Thus, d(η,X)P ◦ td(η,X)P (Y) = Y, and (59) follows. For the
computation of the determinant of d(η,X)P ◦ td(η,X)P it therefore suffices to consider its restriction
to g · η, and with the notation as in Lemma 8 we shall show that

(60) d(η,X)P ◦ td(η,X)P|g·η = (Ξ− LX ◦ LX)−1 ◦ Ξ.

Consider thus an element X ∈ g · η, and write td(η,X)P (X) = (Y, w). Denote the Ad (G)-invariant
inner product in g by 〈·, ·〉, and let again {A1, . . . , Ad} be an orthonormal basis of g such that g⊥η
is spanned by the elements {A1, . . . , Aκ}, and gη by {Aκ+1, . . . , Ad}. From (23) it is clear that for

each j = 1, . . . ,κ we have ((Ãj)η; 〈[X,Aj ], A1〉 , . . . , 〈[X,Aj ], Ad〉) ∈ T(η,X)Reg C. By definition of
the transposed we therefore have

g(X, (Ãj)η) = g(Y, (Ãj)η) +
d∑

k=1

wk 〈[X,Aj ], Ak〉 .

Consequently, g(X − Y, (Ãj)η) =
∑d

k=1 wk 〈[X,Aj ], Ak〉. If Ξ denotes the linear transformation
introduced in (17), we obtain

Ξ(X−Y) =
κ∑

j=1

d∑

k=1

wk 〈[X,Aj ], Ak〉 (Ãj)η =
d∑

j=1

d∑

k=1

wk 〈Aj , [Ak, X ]〉 (Ãj)η =
d∑

k=1

wk
˜[Ak, X ]η.

Let f ∈ C∞(T ∗M). Due to X̃η = 0 we have ˜[Ak, X ]ηf = (Ãk)η(X̃f). Combined with the fact that∑d
k=1 wk(Ãk)η = −[Ỹ, X̃]η this implies

−
d∑

k=1

wk
˜[Ak, X ]ηf = [Ỹ, X̃]η(X̃f) = [[Ỹ, X̃], X̃]ηf = [X̃, [X̃, Ỹ]]ηf,

and consequently

Ξ(Y − X) = [X̃, [X̃, Ỹ]]η = LX([X̃, Ỹ]η) = LX ◦ LX(Y).

Thus, Y = (Ξ− LX ◦ LX)−1 ◦ Ξ(X), and (60) follows. Taking all together we have shown that

det d(η,X)P ◦ td(η,X)P = det−1(Ξ− LX ◦ LX) · detΞ,

and with Lemma 8 and the integration formula (58) we obtain

L0 =

∫

Reg C

a(η, X) d(Reg C)(η, X)

|Hessψ(η, X)|N(η,X)Reg C |1/2
=

∫

RegΩ

[∫

gη

a(η, X) dX

]
d(RegΩ)(η)

|detΞ|g·η|1/2
,

where d(RegΩ) denotes the volume form induced by dη dX . The assertion of the proposition now
follows by noting that |detΞ|g·η|1/2 = volOη · volGη/volG, compare [12, Lemma 3.6].

!
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10. Residue formulae for X = T ∗M

We are now in position to derive residue formulae for the cotangent bundle of a G-manifold.
Thus, let M be an n-dimensional, connected Riemannian manifold, and G a d-dimensional, com-
pact, connected Lie group with maximal torus T ⊂ G acting on M by isometries. Let Θ be
the Liouville form on T ∗M , ω = dΘ the symplectic form, denote the corresponding momentum
map by J : T ∗M → g∗, J(η)(X) = JX(η) = Θ(X̃)(η), and write Ω = J−1(0). Let further
π : RegΩ → RegXred = RegΩ/G be the canonical projection, and consider the map

K̃ : H∗+κ
G (T ∗M)

r
−→ H∗

G(RegΩ)
(π∗)−1

−→ H∗(RegXred),

where r : Λ∗(T ∗M) → Λ∗−κ(RegΩ) denotes the natural restriction map described in (64) and κ is
the dimension of a principal G-orbit. As an application of Theorem 6, we are able to compute the
limit (2) in case that κ equals d = dim g. It corresponds to the leading term in the expansion.

Corollary 3. Assume that the dimension κ of a principal G-orbit in M equals d = dim g. Let
α ∈ Λc(T ∗M) and ϕ ∈ C∞

c (g∗) have total integral one. Then

lim
ε→0

〈FgLα,ϕε〉 =
(2π)d vol G

|H |

∫

RegΩ
a(η)

d(RegΩ)(η)

vol Oη
=

(2π)d vol G

|H |

∫

RegΩ

r(α)

vol Oη
,

where H denotes a principal isotropy group of the G-action, and we wrote α[2n] = a(η)dη, dη being
Liouville measure.

Proof. By (2), Theorem 6, and Proposition 7 one deduces

L0 = lim
ε→0

〈FgLα,ϕε〉 =
(2π)dvolG

volH

∫

RegΩ

[∫

gη

ϕ̂(X) dX

]

a(η)
d(RegΩ)(η)

vol Oη
.

Since κ = dim g, we have gη = {0} for all η ∈ RegΩ; in particular, H ∼ Gη is a finite group.
Hence, volH ≡ |H | and

∫
gη

ϕ̂(X) dX = ϕ̂(0) = 1, and we obtain the first equality. To see the

second, assume that α is supported in a neighborhood of C. Let K ⊂ T ∗M be a compact subset
such that suppα ⊂ K, and uδ ∈ C∞

c (SingΩ ∩K)3δ a family of cut-off functions as in the proof of
Theorem 6. Denote the normal bundle to Reg C = RegΩ× {0} ≡ RegΩ by ν : N Reg C → C, and
identify a tubular neighborhood of Reg C with a neighborhood of the zero section in N Reg C. A
direct application of Theorem A then yields with Lemma 8

L0(δ) = lim
ε→0

∫

g

∫

X

eiJX/ε(1− uδ)α ϕ̂(X)
dX

εd
=

(2π)d volG

|H |

∫

RegΩ

r((1 − uδ)α)

vol Oη
,

where only the leading term (63) is relevant. Repeating the arguments in the proof of Theorem 6
then shows that

L0 = lim
δ→0

L0(δ) =
(2π)d volG

|H |

∫

RegΩ

r(α)

vol Oη
.

!

With the notation as in Sections 2 and 4, we finally arrive at the following

Theorem 7. Let " ∈ H∗
G(T

∗M) be of the form "(X) = α + Dν(X), where α is a closed, basic
differential form on T ∗M of compact support, and ν an equivariant differential form of compact
support. Assume that the dimension κ of a principal G-orbit equals d = dim g. Then

(2π)d
∫

RegXred

K̃(e−iωα) =
|H |

|W | vol T
Res

(
Φ2

∑

F∈F

uF

)
.
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Proof. Let α be a basic differential form on T ∗M . By definition, α is G-invariant and satisfies
ιX̃α = 0 for all X ∈ g. It is therefore a constant map from g to Λ(T ∗M), and belongs to
(S(g∗) ⊗ Λ(T ∗M))G. Furthermore, Dα = 0 iff dα = 0, so that α ∈ H∗

G(T
∗M). The assertion is

now a consequence of Corollaries 2 and 3, together with Lemma 2, by which

volG

|W | volT
Res

(
Φ2

∑

F∈F

uF

)
= lim

ε→0

〈
Fg

(
Le−iω+(·)(·)

)
,ϕε

〉
=

(2π)d volG

|H |

∫

RegΩ

r(e−iωα)

vol Oη

=
(2π)d volG

|H |

∫

RegXred

K̃(e−iωα).

!

Remark 6. In order to fully describe the cohomology of the quotient RegXred, it would still
be necessary to consider more general forms " ∈ H∗

G(T
∗M) than the ones examined in Theorem

7. For this, one would need a full asymptotic expansion for the integrals studied in Theorem 6,
and we intend to tackle this problem in a future paper. Nevertheless, the considered forms " are
already quite general in the following sense. Let G act locally freely on a symplectic manifold X,
which means that all stabilizer groups are finite, and assume that the action is Hamiltonian. As
a consequence, 0 is a regular value of the momentum map and X/G is an orbifold. Furthermore,
one has the isomorphism

H∗
G(X) 5 H∗(X/G),

which implies that any equivariantly closed differential form " can be written in the form

"(X) = α+Dν(X),

where α is a closed, basic differential form on T ∗M of compact support, and ν is an equivariant
differential form of compact support [20].

Let X be a 2n-dimensional symplectic manifold with a Hamiltonian G-action. For general, not
necessarily equivariantly closed α ∈ Λc(X), no similar formulae can be expected, and non-local
remainder terms will occur. To see this, let us first deduce an expansion for Lα(X) using the
stationary phase principle. For this, recall that for fixed X ∈ g the critical set of JX is clean in
the sense of Bott, and equal to FT in case that X ∈ t′ is a regular element.

Lemma 9. Let X ∈ g, and suppose that suppα ∩ CritJX = ∅. Then Lα ∈ S(g).

Proof. Let (γ,O) be a Darboux chart on X, so that the symplectic form ω and the corresponding
Liouville form read

ω ≡
n∑

i=1

dpi ∧ dqi,
ωn

n!
≡ dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn.

Assume that α[2n] = f · ωn

n! ∈ Λc(X) is supported in O, so that
∫

X

eiJXα =

∫

γ(O)
eiJX◦γ−1(q,p)(f ◦ γ−1)(q, p) dq dp,

where JX ◦ γ−1(q, p) depends linearly on X . Let now suppα ∩CritJX = ∅. Writing

eiJX◦γ−1

=
1

i|(JX ◦ γ−1)′|2

n∑

j=1

(
∂

∂ qj
(JX ◦ γ−1)

∂

∂ qj
+

∂

∂ pj
(JX ◦ γ−1)

∂

∂ pj

)
eiJX◦γ−1

,

and integrating by parts we obtain Lα(X) = O(|X |−∞) on g. Similarly, if {X1, . . . , Xd} denotes a
basis of g, and X =

∑
siXi, the same arguments yield for arbitrary multi-indices γ the estimate

∂γs Lα(X) = O(|X |−∞) on g, and the assertion follows. !
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Next, let Y ∈ t′ be a regular element, so that CritJY = FT , F ∈ F a connected component of
FT , and ν : NF → F the normal bundle of F . As usual, we identify a neighborhood of the zero
section of NF with a tubular neighborhood of F , and assume in the following that the support of
α is contained in that neighborhood. Integration along the fiber yields

Lα(Y ) =

∫

F
ν∗(e

iJY α).

To obtain a localization formula for Lα(Y ) via the stationary phase principle, consider an oriented
trivialization {(Uj ,ϕj)}j∈I of ν : NF → F . Let {s1, . . . , sl} be the fiber coordinates on NF|Uj

given by ϕj , and Assume that α is given on ν−1(Uj) by

αj = fj(x, s) (ν
∗βj) ∧ ds1 ∧ · · · ∧ dsl, βj ∈ Λ2n−l(Uj), x ∈ Uj,

where fj is compactly supported. The cleanness of CritJY implies that the function s $→ JY (x, s) =
JY ◦ ϕ−1

j (x, s) has a non-degenerate critical point at s = 0 for each x ∈ Uj , so that by choosing
the support of fj sufficiently small we can assume that there are no other critical points. Define
now the function HY (x, s) = JY (x, s) − 〈J ′′

Y (x, 0)s, s〉 /2, which depends linearly on Y . As in the
proof of Theorem A one computes for any N ∈ N

ν∗(e
iJY αj) =

1

det (J ′′
Y (x, 0)/2πi)

1/2

·




∑

r−k≤N

∑

3k≤2r

1

r!k!

(〈
Ds,

J ′′
Y (x, 0)

−1

2i
Ds

〉r

(iHY (x, ·))
kfj(x, ·)

)
(x, 0) +Rj,N+1(Y )



 · βj ,

where Rj,N+1 is an explicitly given smooth function on t′ of order O(|Y |−N−1) given by

Rj,N+1(Y ) =
βj

det (J ′′
Y (x, 0)/2πi)

1/2

·
∞∑

k=0

∫

Rl

∞∑

r=3N+1

1

(2π)lk!r!

(〈
J ′′
Y (x, 0)

−1ξ, ξ
〉

2i

)r

F
(
HY (x, ·)

kfj(x, ·)
)
(ξ) dξ.

As a consequence, we obtain the desired localization formula.

Proposition 8. Let α ∈ Λc(T ∗M), and Y ∈ t′. Then, for arbitrary N ∈ N,

Lα(Y ) =
∑

F∈F

∑

j

∫

F

1

det (J ′′
Y (x, 0)/2πi)

1/2

·




∑

r−k≤N

∑

3k≤2r

1

r!k!

(〈
Ds,

J ′′
Y (x, 0)

−1

2i
Ds

〉r

(iHY (x, ·))
kfj(x, ·)

)
(x, 0)



 · βj +RN+1(Y ),

where RN+1 is an explicitely given, smooth function on t′ of order O(|Y |−N−1).

!

The limit (3) can now be studied taking into account (7) and Cauchy’s integral theorem, together
with the theorems of Paley-Wiener-Schwartz, leading to corresponding residue formulae with non-
local terms.
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Appendix A. The generalized stationary phase theorem

In this appendix, we include a proof of the generalized stationary phase theorem in the set-
ting of vector bundles. It is a direct consequence of the projection formula and the stationary
phase approximation, and implies the classical generalized stationary phase theorem for manifolds.
Sketches of proofs for the latter can also be found in Combescure-Ralston-Robert [14, Theorem
3.3], as well as Varadarajan [39, pp. 199].

Theorem A (Stationary phase theorem for vector bundles). Let M be an n-dimensional, oriented
manifold, and π : E → M an oriented vector bundle of rang l. Let further α ∈ Λq

cv(E) be a
differential form on E with compact support along the fibers, τ ∈ Λn+l−q

c (M) a differential form
on M of compact support, ψ ∈ C∞(E), and consider the integral

I(µ) =

∫

E
eiψ/µ(π∗τ) ∧ α, µ > 0.

Let ι : M ↪→ E denote the zero section. Assume that the critical set of ψ coincides with ι(M),
and that the transversal Hessian Hesstrans ψ of ψ is non-degenerate along ι(M). Then, for each
N ∈ N, I(µ) possesses an asymptotic expansion of the form

(61) I(µ) = eiψ0/µe
iπ
4 σψ (2πµ)

l
2

N−1∑

j=0

µjQj(ψ;α, τ) +RN (µ),

where ψ0 and σψ denote the value of ψ and the signature of the transversal Hessian along ι(M),
respectively. The coefficients Qj are given by measures supported on M , and can be computed

explicitly, as well as the remainder term RN (µ) which is of order O(µl/2+N ).

Proof. Let π∗ : Λ∗
cv(E) → Λ∗−l(M) denote integration along the fiber in E, which lowers the degree

by the fiber dimension. By the projection formula [8, Proposition 6.15] one has
∫

E
eiψ/µ(π∗τ) ∧ α =

∫

M
τ ∧ π∗(e

iψ/µα).

Let {Uj}j∈I be an open covering of M and {(Uj ,ϕj)}j∈I , ϕj : π−1(Uj) → Uj × Rl, an oriented
trivialization of π : E → M . Write s1, . . . , sl for the fiber coordinates on E|Uj

given by ϕj . Since
I(µ) vanishes if q < l, we assume in the following that q ≥ l and that α is given on π−1(Uj) by

αj = fj(x, s) (π
∗βj) ∧ ds1 ∧ · · · ∧ dsl, βj ∈ Λq−l(Uj), x ∈ Uj ,

where the function fj ∈ C∞(Uj × Rl) is compactly supported along the fibers. By assumption,
s $→ ψ(x, s) = ψ ◦ ϕ−1

j (x, s) has a non-degenerate critical point at s = 0 for each x ∈ Uj , so that
in view of the non-stationary phase theorem [24, Theorem 7.7.1] we can assume that there are no
other critical points by choosing the support of fj sufficiently small. Then, letting ψ(x, 0) = 0 and
setting H(x, s) = ψ(x, s) − 〈ψ′′(x, 0)s, s〉 /2, one computes on π−1(Uj)

π∗(e
iψ/µαj) =

∫

Rl

eiψ(x,s)/µfj(x, s)ds · βj =

∫

Rl

ei〈ψ
′′(x,0)s,s〉/2µeiH(x,s)/µfj(x, s)ds · βj

=
∞∑

k=0

ik

µkk!

∫

Rl

ei〈ψ
′′(x,0)s,s〉/2µH(x, s)kfj(x, s)ds · βj .

Note that it is permissible to interchange the order of summation and integration, since H(x, s) =
O(|s|3), so that under the hypothesis supps fj(x, ·) ⊂ B(0, 1) one has for suitable C > 0 the
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estimate

∣∣∣fj(x, ·)
Ñ∑

k=0

H(x, ·)k

µkk!

∣∣∣ ≤ C|fj(x, ·)|
Ñ∑

k=0

1

µkk!
≤ Ce1/µ|fj(x, ·)|, Ñ ∈ N,

yielding an integrable majorand. Put Dk = −i ∂k. Taking into account
∫

Rl

〈
ξ,ψ′′(x, 0)−1ξ

〉r
F
(
H(x, ·)kfj(x, ·)

)
(ξ) dξ = (2π)l

( 〈
Ds,ψ

′′(x, 0)−1Ds

〉r
H(x, ·)kfj(x, ·)

)
(0)

we obtain with Parseval’s formula for arbitrary Ñ ∈ N

π∗(e
iψ/µαj) =

βj
det (ψ′′(x, 0)/2πµi)1/2

∞∑

k=0

ik

(2π)lµkk!

∫

Rl

e−iµ〈ψ′′(x,0)−1ξ,ξ〉/2F
(
H(x, ·)kfj(x, ·)

)
(ξ) dξ

=
βj

det (ψ′′(x, 0)/2πµi)1/2

∞∑

k=0

ik

µkk!




Ñ−1∑

r=0

(−iµ)r

2rr!

(〈
Ds,ψ

′′(x, 0)−1Ds

〉r
H(x, ·)kfj(x, ·)

)
(0)

+

∫

Rl

∞∑

r=Ñ

(−iµ)r

(2π)l2rr!

(〈
ψ′′(x, 0)−1ξ, ξ

〉)r
F
(
H(x, ·)kfj(x, ·)

)
(ξ) dξ



 .

Note that interchanging integration and summation in the last term is in general not possible due
to the lack of an integrable majorand. Since H(x, s) vanishes of third order at s = 0, the local
terms are zero unless 3k ≤ 2r. Consequently, for general ψ and arbitrary N ∈ N we arrive at

π∗(e
iψ/µαj) =

eiψ(x,0)/µ · βj
det (ψ′′(x, 0)/2πµi)1/2

·




∑

r−k≤N

µr−k
∑

3k≤2r

1

r! k! 2r ir−k

(〈
Ds,ψ

′′(x, 0)−1Ds

〉r
H(x, ·)kfj(x, ·)

)
(0) +Rj,N+1



 ,

(62)

where Rj,N+1 is explicitly given by

Rj,N+1 =
eiψ(x,0)/µ · βj

det (ψ′′(x, 0)/2πµi)1/2

·
∞∑

k=0

ik

µkk!

∫

Rl

∞∑

r=3N+1

(−iµ)r

(2π)l2rr!

(〈
ψ′′(x, 0)−1ξ, ξ

〉)r
F
(
H(x, ·)kfj(x, ·)

)
(ξ) dξ.

Moreover, by [24, Theorem 7.7.5] one has Rj,N+1 = O(µN+1). The assertion now follows by

integrating over M , and by taking det (ψ′′(x, 0)/2πµi)1/2 = (2πµ)−l/2|detψ′′(x, 0)|1/2e
−iπ
4 σψ into

account. In particular, the leading coefficient is given by

(63) Q0(ψ;α, τ) =

∫

M

τ ∧ r(α)

|detHesstrans ψ|1/2
,

where the restriction map r : Λq(E) → Λq−l(M) is locally given by

hj (π
∗γj) ∧ dsσ(1) ∧ · · · ∧ dsσ(p) $−→

{
(−1)sgnσι∗(hj) γj , p = l,

0, p < l,
(64)

γj ∈ Λq−p(Uj), hj ∈ C∞(Uj × Rl), σ being a permutation in p variables.
!
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Remark B. (1) In the proof of the last theorem, one can also use the lemma of Morse. This
simplifies the proof, but gives less explicit expressions for the coefficients Qj , since the Morse
diffeomorphism is not given explicitly. Indeed, by Morse’s Lemma, we can choose the trivialization
of π : E → M in such a way that

ψ(x, s) =
1

2
〈s, Sxs〉 , Sx ∈ Sym(l,R), detSx .= 0,

where the symmetric matrix Sx depends smoothly on x ∈ Uj. Parseval’s formula then yields

π∗(e
iψ/µαj) =

∫

Rl

eiψ(x,s)/µfj(x, s)ds · βj

=
eiπ sgnSx/4µl/2

(2π)l/2|detSx|1/2

∫

Rl

e−iµ〈S−1
x ξ,ξ〉/2F

(
fj(x, ·)

)
(ξ) dξ · βj

=
eiπ sgnSx/4µl/2

(2π)l/2|detSx|1/2

[

(2π)l
N−1∑

r=0

µr

r!

(〈
Ds,

S−1
x

2i
Ds

〉r

fj(x, ·)

)
(x, 0)

+

∫

Rl

∞∑

r=N

µr

r!

(〈S−1
x ξ, ξ

〉

2i

)r
F
(
fj(x, ·)

)
(ξ) dξ

]

· βj .

By integrating over M , the assertion of Theorem A follows.
(2) In general, it is not possible to say anything about the convergence of the sum in (61) as

N →∞, and consequently, about the limit limN→∞ RN (µ), due to the lack of control of the growth
of the derivatives ∂αs fj(x, 0) as |α| →∞.

From Theorem A we can now infer the classical generalized stationary phase theorem.

Theorem C (Generalized stationary phase theorem for manifolds). Let M be a n-dimensional,
orientable Riemannian manifold with volume form dM , ψ ∈ C∞(M) a real valued phase function,
µ > 0, and set

I(µ) =

∫

M
eiψ(m)/µa(m) dM(m),

where a(m) ∈ C∞
c (M) denotes a compactly supported function on M . Let

C =
{
m ∈ M : ψ∗ : TmM → Tψ(m)R is zero

}

be the critical set of the phase function ψ, and assume that C is clean in the sense that

(1) C is a smooth submanifold of M of dimension p in a neighborhood of the support of a;
(2) for all m ∈ C, the restriction ψ′′(m)|NmC of the Hessian of ψ at the point m to the normal

space NmC is a non-degenerate quadratic form.

Then, for all N ∈ N, there exists a constant CN,ψ > 0 such that

|I(µ)− eiψ0/µe
iπ
4 σψ (2πµ)

n−p
2

N−1∑

j=0

µjQj(ψ; a)| ≤ CN,ψµ
N sup

l≤2N

∥∥Dla
∥∥
∞,M

,

where Dl is a differential operator on M of order l and ψ0 the constant value of ψ on C, while σψ
denotes the constant value of the signature of the transversal Hessian Hessψ(m)|NmC on C. The

coefficients Qj can be computed explicitly, and for each j there exists a constant C̃j,ψ > 0 such that

|Qj(ψ; a)| ≤ C̃j,ψ sup
l≤2j

∥∥Dla
∥∥
∞,C

.
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In particular,

Q0(ψ; a) =

∫

C

a(m)

|detHessψ(m)|NmC |1/2
dσC(m),

where dσC is the induced volume form on C.

Proof. Due to the non-stationary phase principle, we can assume that a dM is supported in a
tubular neighborhood of C. Identifying the latter with the total space NC of the normal bundle of
C, the assertion follows with Theorem A. !
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