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SINGULAR EQUIVARIANT ASYMPTOTICS AND THE MOMENTUM MAP.
RESIDUE FORMULAE IN EQUIVARIANT COHOMOLOGY

PABLO RAMACHER

ABSTRACT. Let M be a smooth manifold and G a compact connected Lie group acting on M
by isometries. In this paper, we study the equivariant cohomology of X = T* M, and relate it to
the cohomology of the Marsden-Weinstein reduced space via certain residue formulae. In case
that X is a compact symplectic manifold with a Hamiltonian G-action, similar residue formulae
were derived by Jeffrey, Kirwan et al. [26] 25].
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1. INTRODUCTION

Let X be a symplectic manifold carrying a Hamiltonian action of a compact, connected Lie
group G with Lie algebra g, and denote the corresponding momentum map by J : X — g*. In case
that X is compact and 0 a regular value of the momentum map, the cohomology of the Marsden-
Weinstein reduced space X,..q = J~1(0)/G was expressed by Jeffrey and Kirwan [26] in terms of the
equivariant cohomology of X via certain residue formulae. If 0 is not a regular value, similar residue
formulae were derived by them and their collaborators [25] for nonsingular, connected, complex
projective varieties X. These formulae rely on the localization theorem for compact group actions
of Berline-Vergne [ [3], and are related to the non-Abelian localization theorem of Witten [40].
The intention of this paper is to extend their results to non-compact situations, and derive similar
residue formulae in case that X is given by the cotangent bundle of a G-manifold.
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Let X be a smooth manifold carrying a smooth action of a connected Lie group G. According
to Cartan [I1], its equivariant cohomology can be defined by replacing the algebra A(X) of smooth
differential forms on X by the algebra (S(g*) ® A(X))€ of G-equivariant polynomial mappings

0:93 X — o(X) € A(X),

where g denotes the Lie algebra of G. Let X denote the fundamental vector field on X generated
by an element X € g. Defining equivariant exterior differentiation by

Do(X) = d(o(X)) — g (e(X)), X €g o€ (S(g") ®AX))“,

where d and ¢ denote the usual exterior differentiation and contraction, the equivariant cohomology
of the G-action on X is given by the quotient

HE(X) =KerD/Im D,

which is canonically isomorphic to the topological equivariant cohomology introduced in [2] in case
that G is compact, an assumption that we will make from now on. The main difference between
ordinary and equivariant cohomology is that the latter has a larger coefficient ring, namely S(g*),
and that it depends on the orbit structure of the underlying G-action. Let us now assume that X
admits a symplectic structure w which is left invariant by G. By Cartan’s homotopy formula,

0=Lzw=doigw+igodw=doLgw,

where £ denotes the Lie derivative with respect to a vector field, implying that ¢ zw is closed for
each X € g. GG is said to act on X in a Hamiltonian fashion, if this form is even exact, meaning
that there exists a linear function J : g — C°°(X) such that for each X € g, the fundamental
vector field X is equal to the Hamiltonian vector field of J (X), so that

d(J(X)) + 15w = 0.

An immediate consequence of this is that for any equivariantly closed form ¢ the form given
by e(/(X)=@)o(X) is equivariantly closed, too. Following Souriau and Kostant, one defines the
momentum map of a Hamiltonian action as the equivariant map

I:X—g" In)X)=JX)n).

Assume next that 0 € g* is a regular value of J, which is equivalent to the assumption that the
stabilizer of each point of J~1(0) is finite. In this case, J~(0) is a smooth manifold, and the
corresponding Marsden- Weinstein reduced space, or symplectic quotient

Xred - J_l(o)/G

is an orbifold with a unique symplectic form w,..q determined by the identity ¢* w = 7* wyeq, Where
7:J71(0) = X,eq and ¢ : J71(0) — X denote the canoncial projection and inclusion, respectively.
Furthermore, 7* induces an isomorphism between H*(X,cq) and Hg(J7'(0)). Consider now the
map
* %)L
K : H5(X) 5 Hy(371(0) ™5 H*(Xea),

and assume that X is compact and oriented. In this case, Kirwan [28] showed that K defines
a surjective homomorphism, so that the cohomology of X,.q should be computable from the
equivariant cohomology of X. This is the content of the residue formula of Jeffrey and Kirwan
[26], which for any ¢ € Hf(X) expresses the integral

dim X,eq/2

—iWred (_iwred)k
(1) e K(o) = s > 1 Kl@)dim X, a2
red ’

red k=0
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in terms of data of X. More precisely, let T C G be a maximal torus, and X7 its fixed point
set. Then () is given by a sum over the components F of X7 of certain residues involving the
restriction of p to the G-orbit G- F' and the equivariant Euler form y g of the normal bundle N F
of F. The departing point of their work is the observation that the integral (Il) should be given by
the g-Fourier transform of the tempered distribution

g3 X — / eI (X)=w) p(X)
X

evaluated at 0 € g*. The mentioned formula of Jeffrey and Kirwan is then essentially a conse-
quence of the localization formula of Berline and Vergne [4]. In case that 0 € g* is not a regular
value, analogous residue formulae were derived in [25] for nonsingular, connected, complex pro-
jective varieties X within the framework of geometric invariant theoretic quotients, under some
weak assumptions about the group action. In this situation, there is no longer a surjection from
equivariant cohomology onto the cohomology of the corresponding quotient, whose singularities
are worse than in the orbifold case. Nevertheless, their is still a surjection onto its intersection
cohomology, which is a direct summand of the ordinary cohomology of any resolution of singulari-
ties of the quotient. Using a canonical desingularization procedure for such quotients developed by
Kirwan [29] in combination with certain residue operations established by Guillemin and Kalkman
[21], residue formulae for intersection pairings can then be derived.

Historically, the Berline-Vergne localization formula emerged as a generalization of a result of
Duistermaat and Heckman [I7] concerning the pushforward of the Liouville measure of a com-
pact, symplectic manifold carrying a Hamiltonian torus action along the momentum map. As it
turns out, this pushforward is a piecewise polynomial measure, or equivalently, its inverse Fourier
transform is exactly given by the leading term in the stationary phase approximation. The study
of the pushforward of the Liouville measure was motivated by attempts of finding an asymptotic
approximation to the Kostant multiplicity formula [31] in order to examine the partition function
occuring in that formula, which otherwise is very difficult to evaluate [22]. On the other side, the
origin of the Berline-Vergne localization formula can be traced back to a residue formula for holo-
morphic vector fields derived by Bott [7], which was inspired by the generalized Lefschetz formula
of Atiyah and Bott [I].

In this paper, we shall prove a residue formula in case that X = T*M is given by the cotangent
bundle of a smooth manifold M on which a compact, connected Lie group G acts by general
isometries. For this, we shall determine the asymptotic behavior of integrals of the form

Iq(u)=/ Uxe“ﬂ”)—@(x)/ﬂa(n,){)dn dX, -0t
g

via the stationary phase principle, where ¢ € g*, a € C*(X x g) is an amplitude, dn the Liouville
measure on X, and dX denotes an Euclidean measure on g given by an Ad (G)-invariant inner
product on g. While asymptotics for I.(u) can be easily obtained for free group actions, one
meets with serious difficulties when singular orbits are present. The reason is that, when trying
to examine these integrals in case that ¢ € g* is not a regular value of the momentum map, the
critical set of (J(n) —¢)(X) is no longer smooth, so that, a priori, the stationary phase principle can
not be applied in this case. Instead, we shall circumvent this obstacle in the case ¢ = 0 by partially
resolving the singularities of the critical set of the momentum map, and then apply the stationary
phase theorem in a suitable resolution space. By this we are able to obtain asymptotics for Ip(u)
with remainder estimates in the case of singular group actions. This approach was developed first
in [I3, 6] to describe the spectrum of an invariant elliptic operator on a compact G-manifold,
where similar integrals occur, and used in the derivation of equivariant heat asymptotics in [35].
The asymptotic description of I.(u) in a neighborhood of ¢ = 0 then allows us to derive the
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following residue formula. Let o € HE(T*M) be of the form o(X) = a + DB(X), where « is a
closed, basic differential form on T*M of compact support, and § is an equivariant differential
form of compact support. Fix a maximal torus T' C G, and denote the corresponding root system
by A(g,t). Assume that the dimension x of a principal G-orbit is equal to d = dim g, and denote
the product of the positive roots by ®. Let further W be the Weyl group and H a principal
isotropy group of the G-action. Denote the principal stratum of J=1(0) by RegJ~1(0), and put
Reg X,ea = RegJ™1(0)/G. Also, let r : A*(X) — A*~%(RegJ~%(0)) be the natural restriction
map, and write £ = (7*)~! o r. Then, by Theorem [T}

& =i |H| 2
(27T)d/ K(e7"“a) = ————Res( P up ),
Reg X ed |W| volT ( };7: )

where F denotes the set of components of the fixed point set of the T-action on X = T*M, and
the up are rational functions on t given by

up:t3Y —> (—27r)rkF/2e“"(F)/ LQ(Y),

r XNF(Y)
Jy (F) being the constant value of J(Y) on F. The definition of the residue operation, given in
Section 2] relies on the fact that the Fourier transform of up is a piecewise polynomial measure.
Our approach is in many respects similar to the one of Jeffrey, Kirwan et al., but differs from their’s
in that it is based on the stationary phase principle, which suggests that it should be possible to
find a new proof of their results, and extend them to general symplectic manifolds.

Acknowledgements. The author wishes to thank Michele Vergne for pointing out to him that
the results in [36] could be related to equivariant cohomology, and teaching him many things about
the field. This research was financed in its beginnings by the grant RA 1370/2-1 of the German
Research Foundation (DFG).

2. LOCALIZATION IN EQUIVARIANT COHOMOLOGY

Let X be a 2n-dimensional, paracompact, symplectic manifold with symplectic form w and
Riemannian metric g. Since w is non-degenerate, w™/n! yields a volume form on X called the
Liouville form, whose existence is equivalent to the fact that X is orientable. Define a bundle
morphism J : TX — TX by setting

gn(jfu m) = wﬁ(%vﬁj)v %7 2) € Tnxa

and assume that 7 is normed in such a way that J2 = —1, which defines J uniquely. J constitutes
an almost-complex structure that is compatible with w, meaning that

wn (T X, JY) = Wﬁ(%vﬁj)v wn(X, JXx) > 0.

Furthermore, ¢,(J7%,J9) = ¢,(%X,92). (X,J,9) is consequently an almost-Hermitian manifold.

Next, assume that X carries a Hamiltonian action of a compact, connected Lie group G of dimension
d, and denote the corresponding Kostant-Souriau momentum map by
J: X =g" Jn)(X) = Jx(n) = J(X)(n)

By definition, dJx +tgw = 0 for all X € g, where X denotes the vector field on X given by

v d —tX oo

(X)) = fe™ -my=o, X eg [feCT(X).

By this choice, the mapping X X becomes a Lie-algebra homomorphism, so that in particular

[X,Y] = [)?, }7] Also note that J is G-equivariant in the sense that J(g~'n) = Ad *(g)J(n).
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In what follows, we assume that g is endowed with an Ad (G)-invariant inner product, which
allows us to identify g* with g. Let further dX and d€ be corresponding measures on g and g*,
respectively, and denote by

Fg:8(g") — S(g), Fq:8'(9) = S'(97)

the g-Fourier transform on the Schwartz space and the space of tempered distributions, respectively.
In this paper, we intend to relate the equivariant cohomology H¢ (X) of X to the cohomology of
the symplectic quotient

Xred = QO/Gv Q= J_l(g)'

Following [40] and [26], we consider for this the map
X = LyX)= / eXa, Xeg,  acA(X),
X

regarded as a tempered distribution in §’(g), where A.(X) denotes the algebra of differential forms
on X of compact support. If (X,w) is a compact symplectic manifold, G a torus, and a = ¢™/n!
the Liouville measure, L, is the Duistermaat-Heckman integral, and corresponds to the inverse
g-Fourier transform of the pushforward J.(o™/n!) of the Liouville form along the momentum map.
In this case, the g-Fourier transform of L,, is exactly J.(c™/n!) and a piecewise polynomial measure
on g* [17].

We are therefore interested in the g-Fourier transform FyL, of L, in general, and particularly,
in its description near 0 € g*. Take an Ad*(G)-invariant function ¢ € C(g") with total integral
equal to one and g-Fourier transform ¢(X) = (Fy9)(X f e~ HEX) o (€) dE, where we wrote

E(X) = (&, X). Then p.(£) = (7€) /el e > 0, constltutes an approximation of the J-distribution
in g* at 0 as ¢ — 0, and we consider the limit

dX
- _ _ iJx /e
(2) glir(l) (FgLa, pe) ;%ALQ( P(eX)dX = hm// ad( )

e—0

where we took into account that ¢.(X) = $(eX). Next, fix a maximal torus T C G of dimension
dp with Lie algebra t, and consider the root space decomposition

C:tC@@g’y,

YEA
where A = A(g, t) denotes the set of roots of g with respect to t, and g, are the corresponding root
spaces. Since dimc g, = 1, the decomposition implies d — dr = dimg g — dimg t = |A|. Assume
that « is such that L, is Ad (G)-invariant. Using Weyl’s integration formula [26, Lemma 3.1], (2]
can be rewritten as

. _ volG . iTy R 9
3) lig (FyLvipe) = ot [ | [ e9va) glevyorwar.

where ®(Y) = HveA+ ~v(Y) and Ay is the set of positive roots, while W = W (g, t) denotes the Weyl
group. Here volG and volT stand for the volumes of G and T" with respect to the corresponding
volume forms on G and T induced by the invariant inner product on g and its restriction to ¢,
respectively. In what follows, we shall express this limit in terms of the set

={neX:t-n=n VteT}

of fixed points of the underlying T-action. The connected components of FT are smooth submani-
folds of possibly different dimensions, and we denote the set of these components by F. Let F' € F
be fixed, and consider the normal bundle NF' of F'. As can be shown, the real vector bundle N F
can be given a complex structure, and splits into a direct sum of two-dimensional real bundles

PqF , which can be regarded as complex line bundles over F. For each n € F, the fibers (Pf )y
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are T-invariant, and endowing them with the standard complex structure, the action of t can be
written as

(P )y 2 v id (Y)v e (P, Y €t
where the )\5 € t* are the weights of the torus action [20]. They do not depend on 7. Now, if g is
an equivariantly closed form, L.-i. oy (Y") can be computed using

Theorem 1 (Localization formula of Berline-Vergne). Let X be a smooth n-dimensional manifold
acted on by a compact Lie group G, and o an equivariantly closed form on X with compact support.
ForY € g, let Xo denote the zero set of Y. Then o(Y )i is evact outside Xo, and

[ Camprars_oV)
/X oY) /X (-m) 2

where NXq denotes the normal bundle of Xg, which has been endowed with an orientation com-
patible with the one of Xo, and xnx, s the equivariant Fuler form of the normal bundle.

Proof. The proof is the same as the proof of [3, Theorem 7.13], which consists essentially in a
local computation, except for [3, Lemma 7.14] which, nevertheless, can be easily generalized to
equivariantly closed forms with compact support on non-compact manifolds. O

To apply this theorem in our context, recall that an element Y € t is called regular, if the set
{exp(sY) : s € R} is dense in T. The set of regular elements, in the following denoted by t', is
dense in t, and

(4) {nex;?,,:o}:FT, Yet.
We then have the following

Corollary 1. Let p € H{(X) be an equivariantly closed form on X of compact support, andY € t'.
Then

Le*i“’g(Y)(Y) = ‘/Xei(JY_W)Q(Y) = Z uF(Y)u

FeF

where the up are rational functions on t given by

(5) up:t3Y —s (_QW)rkNF/%iJY(F)/ &9(5/{
P xnr(Y)

Jy (F) being the constant value of Jy on F.

Proof. Since Y — ¢!(/v=%)p(Y") defines an equivariantly closed form, the assertion follows imme-
diately from the previous theorem and (). ([l

In the last corollary, the equivariant Euler class is given by

xvr(Y) = [Jle(B) + A7 (),

a
where ¢1(P[') € H?(F) denotes the first Chern class of the complex line bundle PJ". Thus,
1 1 Cl(PF) -1 1 - cl(PF) rq
- F H(1+ Ty ) - F HZ(_l)q( Ty ) :
wro) - LU Sry) T L2 Y e

Note that the sum in the last expression is finite, since ¢1(PF)/AF(Y') is nilpotent. Consequently,
the inverse makes sense. Let us also note that the set of critical points of Jx is given by

CritJX:{neX:)N(n:O}, X eg,
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and is clean in the sense of Bott. Indeed, Crit Jx is a smooth submanifold consisting of possibly
several components of different dimension. On the other hand, the Hessian of Jx is given by the
symmetric bilinear form

Hess Jx : T,,(X) x T,(X) — R, (X1,%2) = (X1),(X2(Jx)),  n € CritJyx,

where X5(Jx) = dJx(X2) = —ng(f%g), and X denotes the extension of a vector X € T,(X) to a
vector field. Now,

- %l(w(;(, Z%J)) =Lz, (LXL;ij) =l X E,Y + 5 L3, (L;ij)
=l XY +ix Loy ByW +ig L?ejﬁii(w)’

so that at a point n € Crit Jx one computes

(7) —Hess Jx (X1, %) = X1 (w(X, %2)) = —w([X, X1], X2),

since X vanishes on Crit.Jx. But the Lie derivative X — (£ 5(%)77 = [X, i]n defines an invertible
endomorphism of N,Crit Jx. Consequently, the Hessian of Jx is transversally non-degenerate and
Crit Jx is clean.

We would like to compute ([B) using Corollary [I, but since the rational functions (&) are not
locally integrable on t, we cannot proceed directly. Instead note that, since ®2 and ¢ have analytic
continuations to t€ = t ® C, Cauchy’s integral theorem yields for arbitrary Z € t

/t [ /X ei<JY—w>g(Y)] (9-D%)(Y)dY = /t [ /X e Uv+iz=9) o(y 14 Z)| (p-*)(Y +iZ)dY.

Here we took into account that by the Theorem of Paley-Wiener-Schwartz [24, Theorem 7.3.1]
@ (Y +iZ) is rapidly falling in Y. Let now A be a proper cone in the complement of all the
hyperplanes {Y et: Ag(Y) = O}, so that Y € A necessarily implies Ag(Y) # 0 for alle ¢ and F.
By the foregoing considerations, ur defines a holomorphic function on t + ¢A, and for arbitrary
compacta M C Int A, there is an estimate of the form

ur(Q<CA+[C)N, (=Y +iZ, Im(eM,

for some N € N. The functions up®*, k = 0,1,2,..., are holomorphic on t + iA, too, and satisfy
similar bounds. Then, by [24, Theorem 7.4.2], there exists for each k a distribution Ug?k € D'(t%)
such that

(8) AU e S'(t), FlU e CAULRY) = (updk)(-+iZ),  ZeA.
We therefore obtain with Corollary [l for arbitrary Z € A and ¢ € t* the equality

10w panmiar = ¥ (urad +i2), g0 +i2))

FeF

©) =Y (VR F (0 +i2) )

FeF

= > (U (e ).

FeF

Remark 1. Let us mention that for arbitrary ¢ € t*

FMe )0 = e (F (520, eer,

gdr
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constitutes an approximation of the d-distribution in t* at ¢, since for arbitrary v € C°(t*)

(F e 00.0) = [ T eN@ue +9)de = o(0p0) =), =0
.
Remark 2. Alternatively, each of the summands in (@) can be expressed as

((ur®)(- +i2), (eI 0p)(- +i2))
= 2m)2(FTH (e WDUR), (7 Fu@p))(- +i2) ) = (2m) 21 (UR, (9p.)(- = <)),
where we used the equality ®p. = ®F,(p.) = (2m) 2+ F(Pep.), see [26, Lemma 3.4], and the fact
that (e7%) Fi(p.®))(- +iZ) = Fi(e" % (0. P)(- — <)), or as
(up(-+i2), (7 I0%0.)(- +i2))
= (2m) 241 (F (A p), (7 FDa(@p)) (- +2)) = (20)/ 41 (Up, Da(@pc)(- — ).
where Dg denotes the differential operator such that Fi(Dg(Pp.)) = DF(Dpe).
As a consequence of equations (2)), @), and (@) we arrive at

Proposition 1. Let ¢ be an equivariantly closed differential form. Then

lim<]:g(Le MQ()( —hm// x/emw) o(X /e) (X )

e—0 e—0

|WU|OllJOCZ;T e50 Z < 8)>

O
In order to further investigate the distributions Ug’k, note that the functions up®* are given by
a linear combination of terms of the form

iy (F)

WP(Y), P e C[t"].

The crucial observation is now that, due to this fact, the up®* are tempered distributions whose
t-Fourier transforms are piecewise polynomial measures [26, Proposition 3.6]. By the continuity of
the Fourier transform in S’ we therefore have

. . . . . p— k k
Filupd®®) = ft(}%mﬂf(- + th)) = }%ﬁ(wqﬂf(- +itZ)) = lim e GOyt = Ul
Thus, U;Ifk € &'(t*) is the t-Fourier transform of ur®*, and, in particular, a piecewise polynomial

measure. Motivated by Proposition [l we are interested in the behavior of Ul?k near the orgin,
which leads us to the following

Definition 1. Let ¢ € t* be such that for all F' € F the Fourier transforms Ul?k are smooth on
the segment ts, t € (0,9). We then define the so-called residues

Res™* (up@") = lim UZ* (k).
—
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Note that the limit defining Res™*(up®¥) certainly exists, but does depend on ¢ (and A) as
Ug?k is not continuous at the origin. Furthermore, for arbitrary Z € A,

Res™ (up®*) = lim lim | UL ()F (e ) p,.)(€) de

t—=0e—0 Ji«

= lim lim (FT (UR"e™02)), (7450, (- +i2))

t—0e—0

= lim lim [(up®*)(Y +iZ)e Y+ o (Y +iZ)dY,

t—=0e—0 J¢

in concordance with the definition of the residues in [26, Section 8]. In particular, this implies

A kY — o T H(T—t)(Y) —iw kv A
(10) %Res (up®) tlgr(l)glg% t [/Xe e Q(Y):| ¥(V)p(eY) dY.

Similarly,

> UE" () = lim [/ ei(‘]_g)(y)e_iwg(y)] O (Y)p(eY) dY.
Fer o0 e lUx

For a deeper understanding of the residues and the limits in Proposition [} we are therefore led to
a systematic study of the asymptotic behavior of integrals of the form

(1) 1 = [ [ e oxman x)ao] ax. o
g X

where g is the Lie algebra of an arbitrary connected, compact Lie group G, a € C*(X X g) is an
amplitude, dn = w™/n! the Liouville measure on X, and dX an Euclidean measure on g given by
an Ad (G)-invariant inner product on g, while

(12) Pe(n, X) =I()(X) —<(X),  <ceg”

This will occupy us in the next sections.

3. THE STATIONARY PHASE THEOREM AND RESOLUTION OF SINGULARITIES

In what follows, we shall describe the asymptotic behavior of the integrals I.(u) defined in (IT))
by means of the stationary phase principle. As we shall see, the critical set of the corresponding
phase function is in general not smooth. We shall therefore first partially resolve its singularities,
and then apply the stationary phase principle in a suitable resolution space. We begin by recalling

Theorem A (Stationary phase theorem for vector bundles). Let M be an n-dimensional, oriented
manifold, and m : E — M an oriented vector bundle of rang l. Let further o € A%, (E) be a
differential form on E with compact support along the fibers, T € A"T'=9(M) a differential form
on M of compact support, v € C*°(E), and consider the integral

(13) I(p) = /Ee“/’/“(w*T) Aa, > 0.

Let v : M — E denote the zero section. Assume that the critical set of 1 coincides with (M),
and that the transversal Hessian of ¢ is non-degenerate along «(M). Then, for each N € N, I(u)
possesses an asymptotic expansion of the form
N-1
, . . 4
1) = e/ @mn)s 3 1w0Qy(Ws0,7) + R (k).

Jj=0
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where o and oy denote the value of ¥ and the signature of the transversal Hessian along v(M),
respectively. The coefficients Q; are given by measures supported on M, and can be computed

explicitly, as well as the remainder term Ry (u) = O(ul/?+N).

Proof. See Appendix A. O

If the critical set of the phase function is not smooth, the stationary phase principle can not be
applied a priori, and one faces serious difficulties in describing the asymptotic behavior of oscillatory
integrals. We shall therefore first partially resolve the singularities of the critical set, and then apply
the stationary phase principle in a suitable resolution space. To explain our approach, let M be
a smooth variety, O the structure sheaf of rings of M, and I C O an ideal sheaf. The aim in
the theory of resolution of singularities is to construct a birational morphism II : M — M such
that M is smooth, and the inverse image ideal sheaf IT*I is locally principal. This is called the
principalization of I, and implies resolution of singularities. That is, for every quasi-projective
variety X, there is a smooth variety X and a birational and projective morphism 7 : X — X
Vice versa, resolution of singularities 1mphes principalization. If IT*(I) is monomial, that is, if for
every I € Mv there are local coordinates o; and natural numbers ¢; such that

O~’V—1_[0C1 mﬂ’

one obtains strong resolution of singularities, which means that, in addition to the properties
stated above, 7 is an isomorphism over the smooth locus of X, and 71 (Sing X) a divisor with
simple normal crossings. Consider next the derivative D(I) of I, which is the sheaf ideal that is
generated by all derivatives of elements of I. Let further Z C M be a smooth subvariety, and
m: Bz M — M the corresponding monoidal transformation with center Z and exceptional divisor
F C Bz M. Assume that (I,m) is a marked ideal sheaf with m < ordzI. The total transform =*I
vanishes along F with multiplicity ordzI, and by removing the ideal sheaf Op, p(—ordzI-F') from

7*I we obtain the birational, or weak transform w11 of I. Take local coordinates (x1,...,2,) on
M such that Z = (x; = --- = 2, =0). As a consequence,
Ty Ty—1
Y= —5- - Yr—1 = yYr = Try ooy Yn = T
Ty Ty

define local coordinates on Bz M, and for (f, m) € (I, m) one has

ng(f(fl, cyTp), M) = (y;mf(ylyrv Y 1Yrs Yrs -+ Yn)s ).

By the work of Hironaka [23], resolutions are known to exist, and we refer the reader to [30] for a
detailed exposition.

Consider now an oscillatory integral of the form (I3) in case that the critical set C = (M) C
E = M of the phase function ¢ is not clean. Let Ic be the ideal sheaf of C, and I, = (¢) the
ideal sheaf generated by the phase function ¢. Then D(Iy) = D¢. The essential idea behind our
approach to singular asymptotics is to construct a partial monomialization

' (Iy) - O, =05 ol I (Iy)- O, o, TeM,

of the ideal sheaf I, = () via a suitable resolution II : M — M in such a way that DI (1))
is a resolved ideal sheaf. As a consequence, the phase function factorizes locally according to
poll =of' -0k %% and we show that the corresponding weak transforms ¢** = IT; 1 () have
clean critical sets in the sense of Bott [6]. Here o1, ..., 0 are local variables near each Z € M and
¢; are natural numbers. This enables one to apply the stationary phase theorem in the resolution
space M to the weak transforms 1/3“”“ with the variables o1, ..., 0% as parameters. Note that by



SINGULAR EQUIVARIANT ASYMPTOTICS AND THE MOMENTUM MAP 11

Hironaka’s theorem, I, can always be monomialized. But in general, this monomialization would
not be explicit enough to allow an application of the stationary phase theorem.

4. EQUIVARIANT ASYMPTOTICS AND THE MOMENTUM MAP

We commence now with our study of the asymptotic behavior of the integrals (IIJ) by means
of the generalized stationary phase theorem. To determine the critical set of the phase function
e(n, X),let {X1,..., X4} be abasis of g, and write X = E'Z:l $;X;. Due to the linear dependence
of Jx in X,

6Si ¢<(77= X) = JXi (77) - <(Xi)7

and because of the non-degeneracy of w,
Jx.=0 <= dix=—-150=0 <= X=0.

Hence,
(14)  Crit(we) = {0, X) € X x g1 v, X) = 0} = { (1, X) € % x g: K, =0},

where . = J71(c) is the ¢-level of the momentum map. Now, the major difficulty in applying the
generalized stationary phase theorem in our setting stems from the fact that, due to the singular
orbit structure of the underlying group action, ). and, consequently, the considered critical set
Crit(t).), are in general singular varieties. In fact, if the G-action on X is not free, Q¢ and the
symplectic quotients €. /G are no longer smooth for general ¢ € g*, where G denotes the stabilizer
of ¢ under the co-adjoint action. Nevertheless, both Q¢ and Q./G. have Whitney stratifications
into smooth submanifolds, see Lerman-Sjamaar [37], and Ortega-Ratiu [34, Theorems 8.3.1 and
8.3.2], which correspond to the stratification of X into orbit types, see Duistermaat-Kolk [18]. In
particular, one has the following

Lemma 1. Q. has a principal stratum RegQc, which is an open and dense subset of ), and a
smooth submanifold in X of codimension equal to the dimension k of a principal G-orbit in X.
Furthermore,

(15) Ty(Reg Q) = [T, (G -n)]” = (g-m)*, 1€ Reg Qs

where we denoted the symplectic complement of a subspace V- C T,X by V¥, and wrote g -1 =
{X,: X eg}.

Proof. Let Reg X denote the union of all orbits of principal type in X, so that Reg Q. = Q.NReg X.
By the principal orbit theorem, RegX is open and dense, and the assertion follows with [34]
Corollary 4.6.2 and (5.5.7)]. O

Let us consider first the case when ¢ € g* is a regular value of the momentum map, which is
equivalent to the fact that G acts locally freely on ()., meaning that

(16) X,#0 forallneQ,0+#X eg.

Consequently, all stabilizers G, of points n € ). are finite, and therefore either of principal or
exceptional type. In this case, both Q. and Crit(¢.) = Q¢ x {0} are smooth, and dimg-n = &
for all n € Q., where & is the dimension of a principal G-orbit. Furthermore, (I8 implies that
k = dim g. We then have the following

Proposition 2. Let X be a paracompact, symplectic manifold of dimension 2n with a Hamiltonian
action of a compact Lie group G of dimension d. Assume that ¢ € g* is a regular value of the
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momentum map J : X — g*, and let I.(n) be defined as in [[Il). Then, for each N € N, there
exists a constant Cn y_.qa Such that

N-—1
1) = (2m)™ S 1Q; (0, 0)| < Covsa i™,
7=0

where the coefficients Q; are given explicitly in terms of measures on €.

Proof. As already noted, C. = Crit(¢.) = Q¢ x {0} is a smooth manifold of dimension 2«, and due
to (I5) we have

Tn0)Ce =T = (81, Npole=JT(g-n) xR,
where J : TX — TX denotes the bundle homomorphism introduced in Section 2l By definition,
the Hessian of ¢ at (n,0) € C. is given by the symmetric bilinear form

Hess tb¢ @ T(,0)(X % @) X T( 0(X x g) — C, (v1,v2) = 01(02(1)¢)) (1, 0).

Let {%1, . ,%271} be a local orthonormal frame in TX and {ey,...,eq} the standard basis in R¢
corresponding to an orthonormal basis {A1,..., Ag} of g. In the basis

(X);0),  (0e), i=1,....2n, j=1,...,d,
of Ty, x)(X x g) = T, X x R?, Hess ¢ is then given by the matrix

A= 0 w(AnX)) 0 g,(JA; %)
B wn(Ai,f{j) 0 - gn(in,:{j) 0 '

Indeed, for arbitrary X € g one has X;(Jx) = dJx(¥X;) = —ng(%i), and with (@) we obtain
(%:)n(w (0,%,)) = 0. In order to compute the transversal Hessian of 1., we have to exhibit a basis

for N;,0)Cs. Let therefore {By,..., B,} be another basis of g = g;- such that {(El)n, cee (Eﬁ)n}
is an orthonormal basis of g- 7, where we remind the reader that x = d. It is then easy to see that

By = (J(Bi)yi0),  Bi= (0599(A1, Br), ., (A, Br)),  k=1,0,5,

constitutes a basis of N, 0)C; with (B, B) = 6x1, By, L By, and (By,, B)) = (E)x, where = is given
by the linear transformation

[1]

tgen—r g X Y ga(X A (A)),.

j=1

(17)
With these definitions one computes
A(Br) =(0; - ign(ﬂl,%jmnuék,%ﬁ, )
p
=(0: =g9(T A1, TBr), ... —gn(T Ax, T By)) = =B,
ABp) =( - (f;gnmj,%ngn(ﬁj,éw, 2):0) = ((9n(E(Br)ys TE), .. ):0).
p=
Since the {7 (B1)y, - -, J(Bx)y} form an orthonormal basis of 7 (g - ), we obtain

ABL) = —(TE(Br)yi0) = = > gy(TE(Bi)y, T (Bj)n) Bj.

Jj=1
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Thus, the transversal Hessian Hess ¢ (n, 0), Niy.0)Ce 18 given by the non-degenerate matrix

0 -1,
(18) »Atrans = < - 0 > .

=g
By the non-stationary principle, we can choose the support of the amplitude a in the integral I ()
close to C.. Identifying a tubular neighborhood of C. with a neighborhood of the zero section in
NC,, the assertion now follows with Theorem [A] by integrating along the fibers of v : NC. — C..
The exact form of the coefficients can be read off from (62]), in which " corresponds to Atrans-
Note that the submersion P. : Cc — ), (n,0) — 7 is simply the identity, so that measures on Cc
are identical with measures on Q. (]

Let us resume the considerations in Section 2] the notation being the one introduced previously,
and consider the following, more specific oscillatory integrals.

Lemma 2. Let o = DS be an equivariantly exact form on X of compact support, s € g*, and

€ >0. Then
/ U =X p(X) | po(X)dX = 0.
g X

Proof. The proof is essentially an elaboration of an argument given in [26], Equation (8.20)]. In what
follows, write @(X) = w — Jx for the extension of the symplectic form to an equivariantly closed
form, and assume that 8 = 3 6;8;, 6; € S7(g*), where the 3; are differential forms of compact
support. Let further ¢ € CP(g*) and § = d(¢) > 0 be such that suppy. C B(0,d). Define
As ={neX:|J(n) —<| <0}, and let A5 C Aj be a smooth domain with smooth boundary 9 Aj.
Since Do (X)jan) = d(0(X)[2n—1)) for any equivariant differential form o, one computes

/g[/xeiw(X)g(X)] e M (X)dX = /U i“ﬂ)(x)} e 5 (X)dX
—/J/xd@““ﬂmﬂ gy ax = [ a (/ Zg‘Xeﬁ(X)(eiwﬁ)(X)dX)

:Z /X d< / ImIM 5 (X)0,(X) dXe“ﬂj)
3 / ([ emo00ro,iogen00axe s,
DY [, 11609200 @ = )
-G’y /  [C0020) 0 1= e =0

since ¢, o (J — <) vanishes on 0 A;. Hereby we used the Theorem of Stokes for differential forms
with compact support, see [38, page 119]. O

Proposition 3. Let ¢ € g* be a regular value of J : X — g*, a € A.(X), and 6 € S"(g*). Then
, 27)%wol HF
lim [/ eW@(X)a} 0(X)p(eX)dX = @m) vl G G/ L (F)
e—0 g X |Hg| I-1() vol OG

for some form F € A.(X) explicitly given in terms of J, a and 0, where Hg denotes a principal
isotropy group of the G-action, and Og(n) = G - n the G-orbit through a point n € X, while
te : J7Y(s) = X is the inclusion.
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Proof. Let v¢(n, X) = (J(n) —¢)(X), so that the limit in question reads

1 .
3 i) /e b
im(l)ad”/g[/xe a}@cde.

Proposition [ yields for the integral above an asymptotic expansion with leading power ¢ and
coefficients @, ; given by measures on C; = Crit(¢.) = Q¢ x {0} = Q. In order to compute them,
let {By,B;} be the basis of N, ¢)C. introduced in the proof of Proposition 2 and let {s,s;} be
corresponding coordinates in N, 0)C;. The transversal Hessian of v is given by the matrix (IZ).
By the non-stationary principle, we can choose the support of a close to €)c. Identify a tubular
neighborhood of Q. with a neighborhood of the zero section in N).. Integrating along the fibers
of v: NC. ~ NQ¢ x g — C. then yields

/U ew‘/sa}HcﬁdX: ew‘/sﬁgéadX:/ V*(eiw‘/‘EHcﬁadX).
g X NCq Ce

Assume now that with respect to the trivialization of v given by the frame {By, B]} we have
adX = fv*(B) ANds Ands, B e A(Q0),

for some smooth function f. Applying ([62) we obtain for arbitrary large N € N an expansion of
the form

Vs (ei¢</59¢adX)

(19) B eP—4
= - — A:‘;.USD7D P 9927qu 7770 +RN,
T a1 027 2 2 gy Auans D D) (00 £H7)0,0)

where 7 € Q¢, D = —i(0s,,...,0s,,04,.-.,0s.), (00)(n,5,8) = (09)(X(s)), and

HG5.5) = 0s0055) = (Awne (5 ) (5)) /2 0508 = I 8) = (X,

is a smooth function vanishing at (1,0) of order 3. The inner sum with p — ¢ = j therefore
corresponds to a differential operator of order 25 acting on 6 ¢ f, since in this case 2p —3q¢ = 2j —gq,
the maximal order being attained for p = j and ¢ = 0. Now, since ¢.(n, X) depends linearly on
X, derivatives at s’ = 0 of ¥c(n, s, s’), and consequently of H(n,s,s’), of order greater or equal
3 vanish, unless exactly one s’-derivative occurs. On the other hand, 6 vanishes at X (s’) = 0 of
order r. Furthermore, due to the particular form of Agans in ([IJ]),

<At;£11nsDa D> = Z Ckl 8sk 852

is a differential operator of first order in the s’-variables. Consequently, the inner sums in (I9) with
p < r + ¢ must vanish, and for N = p — ¢ = r, only terms proportional to ¢(0) occur. Summing
up we have shown that

S
s

Qr; =0, forall j=0,...,7r—1,

d+r

the leading term being of order e*™", and we obtain

1 _
im i(J=6)(X)/e 5
ig% g /g [/x e a} 0(X)p(X)dX

_ (27T)d¢7(0)/ Z:(F) _ (27T)d¢7(0) VOIG/ Z:(F)
I-1(<) |det E|1/2 |Hg| I-1(c) vol O¢g’
where F' € A (X) is explicitly given in terms of «, J and 6. Here we took into account that

|det Zjg.|*/2 = vol (G - ) |Gy|/vol G for n € Q, [I2, Lemma 3.6]. Since $(0) = 1, the assertion
follows. g
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Let T' C G be a maximal torus, and consider next the composition J7 : X — t* of the momentum

map J with the restriction map from g* to t*, which yields a momentum map for the T-action on
X. Then J;'(s)/T. ~ J;'(s)/T. Also, define

* L:wT * (T— (Tr:vT)71 * (T
’C? P Hp(X) = HT(JTI(C)) — H (JT1(§)/T)=

ter : J71(s) = X being the inclusion, and 7 7 : J7'(s) — J7'(s)/T the canonical projection. In
what follows, we shall also write Q7 = J7.' (). We then have the following

Proposition 4. Consider the segment {tc:0 <t < 1, ¢ € t*}, and assume that it consists of reg-
ular values of J7 : X — t* and that all U1?2 are smooth on the segment. Then, if p € HE(X) is an
equivariantly closed form of compact support,

2m)4Tvol T
¥ rest et = B [ )
FerF | T| Reg Q1 /T

where KI = (7T87T)_1 oig o is defined over Reg QF )T, and F is explicitly given in terms of e,
®, and J. In particular, the sum of the residues is independent of ¢ and A, and will be denoted by

Res (@2 Z uF)

FeF
Proof. By ([I0) and the previous proposition,
2m)4Tvol T
(20) 3" Rest(upd?) = @m) ol T KL (F),
Fer [Hr| 50 Jor /7

where d = dimg = dim t+ |A| = dp + 2|A4|. We now assert that for sufficiently small ¢ > 0 there
exists a birational map

B QLT — QYT
which is a diffeomorphism over RegQl /T. To see this, consider an embedded resolution II :
X — X of QF [5). By the functoriality of the resolution, the strict transform (NZ(:JF is a T-invariant
submanifold of the resolution space )NC, and there exists an invariant tubular neighborhood W of
?ZOT. Let p : W — ﬁg be the canonical projection. For sufficiently small ¢ > 0, II"*(Q}) is
contained in W. Since QtTg is diffeomorphic to Hfl(QtTg), which by Lemma [ is diffeomorphic to
SNQOT, we obtain the birational map

—1 ~ ~
of Lyl L ol 5L ol

Dividing by T then yields the desired map Z;.. As a consequence, we obtain with Lebesgue’s
theorem as ¢t — 0

[, xim= | KEE = [ @) - KE(P)
QL /T =} (Reg QT /T) Reg QT /T Reg QT /T
and the assertion follows with (20I). O

Corollary 2. Let the notation be as in Section[d, and ¢ € HE(X) an equivariantly closed differ-
ential form. Then

lim <fg (Lewm»)(')) ) %> = W;'O% Res (<I>2 ;up)
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Proof. Since ng is a piecewise polynomial measure, and F; *(¢.) € S(t*),
2 _ N 2 —1 A~
(U8 7)) = [ UF 90 b
.

Furthermore, for 0 < ¢ < 1 and almost every ¢ € t* we have the estimate |U1?2 (e)(Fo)(6)] <
C( + |shN|(F o) (s)| for some C,N > 0. Taking into account Remark [ and the previous
proposition, an application of Lebesgue’s theorem on bounded convergence then yields

lim > (UR', F(¢.)) = limy / > UR E)F )6 ds = p(0) Res (02 3 up),
Y rer

e—0 e—0
Fe FeF

and the assertion follows with Proposition [l O

Thus, in order to derive the residue formula mentioned in the introduction, we are left with the
task of evaluating the limit lim._,q <FgLe—in(_)('), gps> in terms of the reduced space X,¢q. This
amounts to an examination of the asymptotic behavior of the integrals (II)) in case that ¢ € g*,
and in particular ¢ = 0, is a singular value of the momentum map, in which case Crit(¢.) is a
singular variety. From now on, we will only be considering the case ¢ = 0, and simply write ¢ for
o, I(p) for In(u), and so on. As explained in the previous section, we shall partially resolve the
singularities of the critical set Crit(¢)) first, and then make use of the stationary phase principle
in a suitable resolution space. Partial desingularizations of the zero level set © = J~1(0) of
the momentum map and the symplectic quotient {2/G have been obtained by Meinrenken-Sjamaar
[32] for compact symplectic manifolds with a Hamiltonian compact Lie group action by performing
blowing-ups along minimal symplectic suborbifolds containing the strata of maximal depth in €.
In the context of geometric invariant-theoretic quotients, partial desingularizations were studied
in [29] and [25].

From now on, we will restrict ourselves to the case where X is given by the cotangent bundle of
a Riemannian manifold. For a general symplectic manifold, the desingularization process should
be similar, but more involved, and we intend to deal with this case at some other occasion. Thus,
let M be a Riemannian manifold of dimension n, v : T*M — M its cotangent bundle, and
7:T(T*M) — T*M the tangent bundle, endowed with corresponding Riemannian structures [33].
Define on T*M the Liouville form

On(X) =7(X)X)],  XeT,(T"M).

We then regard T*M as a symplectic manifold with symplectic form w = d© and Riemannian
metric g. Assume now that M carries an isometric action of a compact, connected Lie group G
with Lie algebra g, and define for every X € g the function

Jx :T*M — R, 1~ 0(X)(n).

Note that ©(X)(n) = 77()2'7,(,7)). The function Jx is linear in X, and due to the invariance of the
Liouville form [I0] one has

E)}GZdjx—i-L)}w:O, VX €g,

where £ denotes the Lie derivative. Hence, the infinitesimal action of X € g on T*M is given by
the Hamiltonian vector field defined by Jx, which means that G acts on T*M in a Hamiltonian
way. The corresponding symplectic momentum map is then given by

I:T"°M —g*, Jn)(X) = Jx(n).
Note that
(21) neQN <= ny€Ann(T,(G-m)) Yme M,
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where Ann (V;,,) C T, M denotes the annihilator of a vector subspace V,,, C Tp,, M.

Example 1. In case that M = R", let (q1,...,¢n,P1,-.-Pn) denote the canonical coordinates on
T*R™ ~ R?". Let further G C GL(n,R) be a closed subgroup acting on T*R"™ by g - (¢,p) =
(9q, g~ p). The symplectic form reads w = df = Y"1 | dp; A dg;, where 6 = Y p; dg; is the
Liouville form, and the corresponding momentum map is given by

J:T'R" ~R" x R" = g%, J(q,p)(X) = 0(X)(¢,p) = (Xq,p),
where (-, -) denotes the Euclidean inner product in R™. In this case, for ¢ € g*,

Crit(ve) = {(¢.p, X) € A x g: X € g4 ) } »

where Q¢ = {(¢,p) € T*R" : (Aq,p) — c(A) =0 for all A € g} and g(,,,) is given by the set of all
X € g such that Xq¢=0, Xp=0.

By Lemma [I], 2 has a principal stratum Reg 2, which is an open and dense subset of €, and
a smooth submanifold in T*M of codimension equal to the dimension x of a principal G-orbit in
T*M. Furthermore, T, (Reg Q) = [T,,(G-n)|* = (g-1)¥, n € Reg Q. We describe next the smooth
part of the critical set (4] for the phase function ¢ (n)(X) = J(n)(X).

Lemma 3. The smooth part of Crit(¢) corresponds to
(22) Reg Crit(¢0) = {(n, X) € RegQ x g: X € g,},

and constitutes a submanifold of codimension 2k. Furthermore,
d
(23) Ty, x)Reg Crit(y) = {(35, w) € (g-m)* xR Y wi(Xi)y = [X,%]n} :
i=1

where X denotes an extension of X to a vector ﬁeldﬂ.

Proof. Since the Lie algebra of G, is given by g, = {X € g : X,, = 0}, the first assertion

is clear from (I4). To see the second, let (n(¢), X (t)) be a smooth curve in Reg §2 x g. Writing

X(t) = s;j(t)X,; with respect to a basis { X1, ..., X4} of g, one computes for any f € C*°(Reg Q)
d

d d _
EX(t)n(t)f\t:to = J; T (Sj(t)(Xj)n(t)f) —
d
= 85(t0) (X F)(nto) + 3 5(00) 2 (%, 108t

Writing X = 1(t) € Ty (10 Reg €, one has L (X £)(1(t))i=t, = Xy(to) (X;f), s0 that if ((t), X (t))
is a curve in Reg Crit(¢) one obtains

55 (t0) (X ey f + Y 55(t0)[X, Xj]yeo) f = 0,

d d
=1 Jj=1

J

since )N((to)n(to)(if) =0, and the assertion follows with (I3]). O

Before we start with the actual desingularization process of the phase function 1, let us mention
the following

Proposition 5. The mapping P : Reg Crit(v)) — Reg Q, (n, X) — n is a submersion.

1n the proposition below, we shall actually see that [X, %}n €g-nfor X € g,and X € (g-n)~.
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Proof. Letn € Reg Q and X € g,,. We show that [%, )N(]n € g-n for all X € T} Reg 2. To begin, note
that ¢ : Reg 2 — Reg Q/G is a submersion and a principal fiber bundle with ker(mg).«., =g 7
[34, Theorem 8.1.1]. If therefore n(t) € Reg € denotes a curve with n(0) = n, 7(0) = X, and g € G,,
differentiation of 7 (g - n(t)) = ma(n(t)) yields X — g. ,(X) € ker(ng)«,, = g - 1. Consequently,

d. _ix I, —tX
E(e XY, X o = lim ¢ (e )X —X] €g-n,
where we made the identification T (T,,Reg Q) ~ T,,Reg Q. Now, for arbitrary Y € g [34, Propo-
sition 4.2.2],

(24)

wﬁ([iv )/Z],i}) = _wﬁ([)zai;]ai) - wn([f/,ﬁ%],f() = 0,

since )?77 = 0, and f%,, = X € (g-n)“. Hence, [X, )N(],, € (g-n)“. Furthermore, for arbitrary
feC>®(T*M),

o ~ - d ~ d (d . _ d i Xy
(X, X]nf = Xg(XF) = - (XF)(0(5))1s=0 = (d_sf(e e 77(8))|s_o>t_0 = E((e X)enXji=o),, S,
so that with (24

o~ d
(25) 1%, Xy = 2 (7 )unXpi=o € 91
The previous lemma then implies that Py (, xy : T(, x)Reg Crit(¢)) — T;Reg Q, (X,w) — X is a
surjection, and the assertion follows. O

Remark 3. Note that for n € Reg 2, and X € g,,, the previous proposition implies that the Lie
derivative defines a homomorphism

(26) Lx:g-n3%X— LX), =[X,X], €97

5. THE DESINGULARIZATION PROCESS IN THE CASE X =T*M, ¢=0

We shall now proceed to a partial desingularization of the critical set of the phase function (I2))
for X = T*M, ¢ = 0, and derive an asymptotic description of the integral (II]) in this case. An
analogous desingularization process was already implemented in [36] to describe the asymptotic
distribution of eigenvalues of an invariant elliptic operator. The desingularization employed here
constitutes a local version of the latter, and for this reason is slightly simpler. Indeed, the phase
function considered in [36] is a global analogue of ¥(n, X) = J(n)(X). It should be noticed,
however, that these phase functions are not equivalent in the sense of Duistermaat [I6], so that
the corresponding desingularization processes can not be reduced to each other B To begin, we
shall need a suitable G-invariant covering of M. In its construction, we shall follow Kawakubo [27],
Theorem 4.20. For a more detailed survey on compact group actions, we refer the reader to [36],
Section 3. Thus, let (Hy),...,(Hy) denote the isotropy types of M, and arrange them in such a
way that

Hj is conjugate to a subgroup of H; = ¢ <j.

Let H C G be a closed subgroup, and M (H) the union of all orbits of type G/H. Then M has a
stratification into orbit types according to

M =M(H))U---UM(Hy).

2Observe that a similar phenomenon occurs in [19].
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By the principal orbit theorem, the set M(H}) is open and dense in M, while M (H;) is a G-
invariant submanifold. Denote by v1 the normal G-vector bundle of M (H;), and by f1 : 17 — M
a G-invariant tubular neighbourhood of M (H;) in M. Take a G-invariant metric on v4, and put

D) ={v e :|v]| <t}, t>0.
We then define the G-invariant submanifold with boundary

My =M — fi(D1j2 (1)),

on which the isotropy type (H1) no longer occurs, and endow it with a G-invariant Riemannian
metric with product form in a G-invariant collar neighborhood of 9 M in M. Consider now the
union Ms(Ho) of orbits in My of type G/ Ha, a G-invariant submanifold of My with boundary, and
let fo : vo — My be a G-invariant tubular neighborhood of Ms(Hz) in My, which exists due to the
particular form of the metric on M;. Taking a G-invariant metric on 5, we define

M3z = M, — f2(lo71/2 (v2)),

which constitutes a G-invariant submanifold with corners and isotropy types (H3),...(Hr). Con-
tinuing this way, one finally obtains for M the decomposition

M = fi(D12(11))U---U frL(Dq/2(ve)),
where we identified f(D;/2(vr)) with Mp. This leads to the covering

M= fi(D1 () U---U fo(D1 (1)), fu(Dr (vi)) =M -

Let us now start resolving the singularities of the critical set Crit(y). For this, we will set up
an iterative desingularization process along the strata of the underlying G-action, where each step
in our iteration will consist of a decomposition, a monoidal transformation, and a reduction. For
simplicity, we shall assume that at each iteration step the set of maximally singular orbits is con-
nected. Otherwise each of the connected components, which might even have different dimensions,
has to be treated separately.

First decomposition. Take 1 < k < L — 1. As before, let fi : vy — M} be an invariant tubular

neighborhood of My (Hy) in
k—1

My =M = | fi(D1j2 (),
i=1
a manifold with corners on which G acts with the isotropy types (Hy), (Hg+1),--.,(Hr), and put
Wi, = fi(D1 (vk)), W =M, so that M = Wy U---UWy. Write further S, = {v € vy : |Jv| = 1}.
Introduce a partion of unity {xx},_, _ subordinate to the covering {W}}, and with the notation
of (1) define

L(y) = /T . / ) 1 () (1, X) dX. d,
*Wi Jg

so that I'(p) = Ii(p) + -+ -+ Ir(p). As will be explained in Lemma [6] the critical set of ¢ is clean
on the support of axr, so that we can apply directly the stationary phase theorem to compute the
integral Iy (n). But if k € {1,..., L — 1}, the sets

Q. =0nN T*Wk,
Criti (1) = { (1, X) € % x g5 X, =0}

are no longer smooth manifolds, so that the stationary phase theorem can not a priori be applied
in this situation. Instead, we shall resolve the singularities of Critg(¢)), and after this apply
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the principle of the stationary phase in a suitable resolution space. For this, introduce for each
x®) € My, (Hy,) the decomposition
1
9= 000 DI ),

where g, denotes the Lie algebra of the stabilizer G, of z(*), and gi-(k) its orthogonal comple-
ment with respect to some Ad (G)-invariant inner product in g. Let further Ay (™)), ..., Ay (z))
be an orthonormal basis of gi-(,c), and By (x(k)), cooy Bow (:v(k)) an orthonormal basis of g_x). Con-
sider the isotropy algebra bundle over Mj,(Hy,)

iso My (Hy) — M (Hy),
as well as the canonical projection
i 2 Wi = Mp(Hy), m = fr(x®, 0o®)) = ) =) e My(Hy), v'® € (v) om0,
where f, (2, v*)) = (exp, ) oy®)(v®), and

Fy.(x®) (k)

(k) ((k)y —
(W) (1+||,U(k)||)1/2v

is an equivariant diffeomorphism from (vg), ) onto its image, Fy : My (Hy) — R being a smooth,
G-invariant positive function, see Bredon [9, pages 306-307]. We consider then the induced bundle

WZiﬁO Mk(Hk) = {(fk(x(k),v(k)),X) S Wk Xg: X e gm(k)} N
and denote by
Hk : Wk X g— WZiﬁU Mk(Hk)

the canonical projection which is obtained by considering geodesic normal coordinates around
m isoMy(Hy), and identifying Wy x g with a neighborhood of the zero section in the normal
bundle N 7} iso My(H). Note that the fiber of the normal bundle to m*iso My (Hj) at a point
(fx(z®, (), X) can be identified with gj(,c). Integrating along the fibers of the normal bundle
to ) iso M, (H),) we therefore obtain for Iy (1) the expression

(27)

dB®) dm

/ / eiw/“an Dy d(T7 W) dA®)
wiso My (Hy) | JII Y (m, B®) x T W,

:/ [/ [/ e Mayy @y d(T7, oy 008 Wk)} dA® dB® dp®) | dz*)|
My (Hy) gxw;1(1<k)) * Wi .

exp (k) v
where
YD1 (k) aw) X 850 X gp0 2 (09, AW BE) s (exp i v®, AW + BW) = (m, X)

are coordinates on g X w,g_l(a:(k)), while dm, dz®), dA®) dB®) dv®  and d(T}W}) are suitable
measures on Wi, My(Hr), g2, 8200, (k) (10)1 (V) g ), and T% Wy, respectively, such that

dX dn = Dy (TS, o0 Wi)()dA® dBW do® dz®),

where @, is a Jacobian.
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First monoidal transformation. Let now k € {1,...,L — 1} be fixed. For the further analysis
of the integral Ij(u), we shall sucessively resolve the singularities of Crity (1)), until we are in
position to apply the principle of the stationary phase in a suitable resolution space. To begin
with, we perform a monoidal transformation

Ck:sz(Wng)%Wng

in Wy x g with center Zj, = iso My (Hy). For this, let us write A®) (z(F) o)) = 37 agk)Al(»k) () €
000> BO @, 50) = £ 5B (2®) € g0, and

RO)
”Y(k)(v(k)) = Zez(k)vgk) (I(k)) € W(k) ( D1 (Vk)m)),
i=1
where {vgk), e ,viiﬂk))} denotes an orthonormal frame in v. With respect to these coordinates we

have Z = {T(k) = (a® o)) = 0}, so that

Bz, (Wi x g) = { (m, X, [t]) € Wi x g x RP =00 m®y; g,
Ck : (m, X, [t]) — (m, X).
Let us now cover By, (W}, x g) with charts {(¢f,U)}, where U = Bz, (Wy, x g) N (Wj, x g x V),
Vv, = {[t] e Rpe" 4 -1 it # O}, and ¢} is given by the canonical coordinates on V,. As a

consequence, we obtain for (; in each of the §*)-charts {Uf & the expressions

}1§Q§c

2 =Cropl: (x(k)ﬂ-k’ Q{)(k),A(k),B(k)) ,IC_’§> (x(k)ﬂ-k Qﬁ(k),TkA(k),B(k))

(28)
— (exp,m 7k 20, 7, AR + BW) = (m, X),

where 7, € (—1,1),

o)
400,000 = O (a0 + 50 0) [ [ S0P R) 4008,
i#0 i#o

and
°St = {v Evg:iv= Zsivi,sg > 0,|v]| = 1}.
Note that for each 1 < o < (¥,
Wi 2 fu(2SF x (=1,1))
up to a set of measure zero. Now, for given m € M, let Z,, C T,,M be a neighborhood of zero
such that exp,, : Z,, — M is a diffeomorphism onto its image. Then
(exp)s,o i ToZm — Texp,, oM, v € Zpm,

and g - exp,, v = Lg(exp,, v) = expr,_(mm)(Lg)s,m(v). As a consequence, since B® ¢ g.u), we
obtain
d

exp_ (k) Tk op(k) = a €XPy (k) (L e—tB(F) )*@(k) (Tk Q’D(k))\t:() = (expm(k) )*,Tk e (k) ()‘(B(k))(ﬂf Q’D(k)))

=Tk (expm(k) )*,Tk eg(k) ()‘(B(k))( Qﬁ(k)))u

where we denoted by

B

d
A Gote) — g[(yk,w(k))v B(k) = E(LC—UB(’C) )*,w(k)|t:O
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the linear representation of g,u) in vy ., and made the canonical identification T, (v ,)) =

Vg 0 for any v € () o0, With 7(n) = exp,w) 7% 23(F) we therefore obtain for the phase function
the factorization

—_~

1/}(7% X) = n(XTr(n)) = U((TkA(k) + B(k)>expw(k) Th 917("))

= Tk [n(mexpz(m Tk 917(")) + n((eszUc))*,Tk eg(k) [)‘(B(k))gﬁ(k)])} .

Similar considerations hold for ¢j, in the a(*)-charts {U¢}
resolution space

(B 4 1< g<et) (e SO that we get on the

¥ o (id fiver ® () = Fptot = 7, . Rk,
(B)qptot and (®))wk being the total and weak transform of the phase function ¥, respectively.

Example 2. In the case M = T*R™ and G C GL(n,R) a closed subgroup, the phase function
factorizes with respect to the canonical coordinates n = (¢, p) according to

bla,p, X) = (Xg.p) = ((mA® + BY) exp, 7. 25, p)
=T [<A(k)x(k) + BW Qﬁ(k)7p> . <A(k) Qﬁ(k)7p>} 7
where we took into account that in R™ the exponential map is given by exp, ) v*) = z(k) 4 (k).

Introducing a partition {u{} of unity subordinated to the covering {U;} now yields

(B o)
L(p) =Y _Ifw + > Ifw),
o=1 o=c(F) +1

where the integrals I}/ (1) and I (1) are given by the expressions
/ uf (id piver @ Gi)* (" Faxrd X dn).
sz (Wk xg)

As we shall see in Section [0 the weak transform (k)g/?w’“ has no critical points in the a(*)-charts,
which implies that the integrals It (u)2 contribute to I(x) only with higher order terms. In what
follows, we shall therefore restrict ourselves to the examination of the integrals I2(x). Setting

ai = (uf o )[(axw) o (id fiver ® (7)) we obtain with ([27) and ([28)

LT ( ) T ~
o [
My (Hy) % (=1,1) =Sy ((Sk) (1)) X8, () X024y~ /T Wi

exp_ (k) ka,(k)
d(T:xpz(k) 73,0 (K) Wk)} dA(k) dB(k) d'f}(k)} dr, d,T(k)a
where do(®) is a suitable measure on the set ”y(k)((Sk)m(k)) such that

€

dX dn = &F AT}, 00 Wie) dA® dB® a6 dr dae®),

= : : . < ®) 4 g(B) _
®¢ being a Jacobian. Furthermore, a computation shows that ®¢ = |7 |¢ T4 =1 §) o /(.
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First reduction. Let us now assume that there exists a m € W}, with orbit type G/H;, and let
x®) € My, (Hy),v™® € (vg),0 be such that m = fi,(z(®) v*)). Since we can assume that m lies in
a slice at %) around the G-orbit of z(¥), we have G,, C G, , see Kawakubo [27, pages 184-185],
and Bredon [9, page 86]. Hence, H; ~ G,, must be conjugate to a subgroup of Hy ~ G, . Now,
G acts on My, with the isotropy types (Hy), (Hg+1),- .., (Hy). The isotropy types occuring in Wy,
are therefore those for which the corresponding isotropy groups Hy, Hiy1, ..., Hr are conjugate
to a subgroup of Hy, and we shall denote them by

(Hk) = (Hi1)7 (Hiz)v R (HL)

Now, for every z(F) ¢ My (Hy), (Vk)gm is an orthogonal G -space; therefore G u acts on
(Sk)z with isotropy types (Hi,),...,(Hr), cp. Donnelly [I5, pp. 34]. Furthermore, by the
invariant tubular neighborhood theorem, one has the isomorphism

Wi/G >~ (V) p0 /G s

so that G acts on Sy, = {v € v : ||v|| = 1} with isotropy types (Hi,),...,(Hy) as well. As will
turn out, if G acted on Sy only with type (Hp), the critical set of (®)pwk would be clean in the
sense of Bott, and we could proceed to apply the stationary phase theorem to compute I (u). But
in general this will not be the case, and we are forced to continue with the iteration.

Second decomposition. Let now zF) e M, (Hy) be fixed. Since 7(’“) 1 Vi, — Vg 1S an equivariant
diffeomorphism onto its image, v ((Sk),w) is a compact G, -manifold, and we consider the
covering

YE((Sk)pw) = Whiy U+ U Wir, Wii, = fri; (D1 (ki;))s Wir = Int(*) ((Sk) )1),
where fri; @ vgi; — 'Y(k)((Sk)w(k))ij is an invariant tubular neighborhood of "Y(k;)((Sk)w(k))ij (H;;) in

Jj—1
YE((Sk)wm)i; = Y E ((Sk)pwr) — U frio (D12 (Vkiy))s 522,
r=2

and [, (29, 0()) = (exp, ;) oy (@) (v(4)), 2() € ”Y(k)((Sk)m<k>)ij (Hi,), v € (Vki; ) 4605 v )
Vki; — Vgi; being an equivariant diffeomorphism onto its image. Let further {inj} denote a
partition of unity subordinated to the covering {Wkij }, and define

The (k) Jwk
1,00 = [ |/ Ji g
! My (Hy) % (=1,1) =Sy ((Sk) (1)) X 8,,(6) X8y * Wi

exp_ (1) r5(F)

Xii, ®F d(T:

expz(k) Tkﬁ(k)

Wk)} dA® ¢B*) da“ﬂ dry dz®,

so that I7(u) = Ig;, (1) + -+ + I} (1). Tt is important to note that the partition functions xi;
depend smoothly on z*) as a consequence of the tubular neighborhood theorem, by which in
particular v (S;)/G ~ y*)((Sk),a))/G e, and the smooth dependence in z(*) of the induced
Riemannian metric on 7*)((Sy),x), and the metrics on the normal bundles vy;,. Since G,
acts on Wy, only with type (Hy), the iteration process for I7; (u) ends here. For the remaining

integrals I,fij () with k < i; < L, let us denote by

i50 7 *) ((Sk)00)i, (Hiy) = Y ¥ ((Sk)po0 )i, (Hi))

), and by 7Tkij . Wkij — 'Y(k)((Sk)I(k))ij (HZ])
the canonical projection. For 2(7) € v ((Sy) )i, (H;,), consider the decomposition

the isotropy algebra bundle over 'Y(k)((Sk>w(k))ij (H;

J

g9=0, D E!i(k) = (gmﬂj) @ gi(@)) D ggﬁk)-
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Let further Agij AS{Z be an orthonormal basis in g > as well as B( ) B(ff ) be an
orthonormal basis in g_;), and {v(k” ), v i) s )} an orthonormal frame in v;;. Integrating along

the fibers in a neighborhood of 7}, 1507 ((Sk)w(k)) (Hi;) € Whi; X g, then yields for I,gij( )
the expression

T (k) Jwk
My, (Hi)x (=1,1) =Sy (Sk) x) )i (Hiy) ﬂkfé_ (z(lj))xgz(k)xgi(k) T* W

eXP_ (k) Tk expz(ij) u(lj)

xagxi, f, d(T" . .)Wk)} dA®) dA©) dBD) dyin)] dx@'ﬂ} drpdz®

cxpz(k) Tk cxpw(i].) v

where ®7, is a Jacobian, and
J

7(ij)( D1 (Wi, )xg i) X8, 2 (v (ij),A(ij)vB(ij)) = (exp, ) v(ij),A(ij)+B(ij)) - (5(16)73(16))
are coordinates on ;- Y(2)) x g 00, while dz(%) | and dA%), dB), dv(%) are suitable measures

in the spaces ~( ((Sk;)m(k)) (H;;), and gi-(ij), 8,6, 7(1’;‘)( 10)1 (Vki, )z“ﬂ)’ respectively, such that
we have the equality ®f dB® do®) = &, dA0) dBUs) dv(is) dxs).

Second monoidal transformation. Let us fix an [ such that k < [ < L, (H;) < (Hy), and
consider in Bz, (W X g) a monoidal transformation

Crl BZkL(BZk (Wk X g)) — BZk (Wk X g)

with center
L =~ U (-1,1) x 150’}/ ((Sk)m(x@)) (H)).
(k) e My, (Hg)
Let AD ¢ g7 and BW € g, be arbitrary and write A® (z(F) 20 o)) = Za(l A(l () 2®) €
gmm, BW(z(®) 2O p0) = Zﬁil)Bil) (z®) € g0, as well as
®

O (D) (28 2O gDy = Z ggl)vgkl) (z®, z0),

i=1

Then Zy; ~ {a(k) =0, a®) = 0, o) = 0} locally, which in particular shows that Zy; is a manifold.
If we now cover Bgz,,(Bz, (W x g)) with the standard charts, we shall see again in Section
that modulo higher order terms the main contributions to I, (1) come from the (6%, 9())-charts.
Therefore it suffices to examine (x; in one of these charts, in which it reads

2 s (2® 1, 2O 7, 50, AW AO, BOY S (0 1 b @ 150 1 A®) 4G BO)

— (I(k),Tk,esz(z) Tlﬁ(l),nA ,TlA(l) +B(l)) (x (k) s Th k) A(k) B(k))
where
rf}(l)(x(k),x(l)7 g(l)) c W(Z)((Sljl)x“))-

Note that Zj; has normal crossings with the exceptional divisor Ej = Ck_l(Zk) = {r; =0}, and
that

Wit ~ fru(Si; x (=1,1))
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up to a set of measure zero, where Si; denotes the sphere subbundle in vy, and we set S,:rl =
{v ESp:v=>Y vivgkl), Vg > O} for some 0. Consequently, the phase function factorizes accord-
ing to

1/) o (id Fiber ® (C}f ° ]glo)) — (kl)J)tot =TT (k:l)J)wk7

which in the given charts reads
Y(n, X) = {n(mexpz(m T exp_ (1 T,am)
+77((expz<k>)*,7k exp, @y o0 AmAY + BY) exp Tlf)(”])]
= TkTL {n(@cxpgg(k) T eXp_(1) nﬁ(l)) + W((GXPmW)*,m exp_ 1y o™ AAD) exp, ) 7'117([)])

+77((GXP1<’€> )*,‘rk exp_ (1) 700 [(expm(l) )*,TVD(U [()‘(B(l))ﬁ(l)]] >:|

where we took into account that

- d - -
)‘(B(l)) CXPr) Tlv(l) = E €XPg) (Le*tB(l) )*,m(k)nvftl):O = (expw(l))*,ﬂf}(” ()\(B(l))nv(l))

Since the weak transforms ¥¢)* have no critical points in the (0%), a)-charts, modulo lower
order terms, I/ () is given by a sum of integrals of the form

15w = [ |/ |/ /
Mk(Hk)X(_lvl) 'Y(k)((sk)m(k))l(Hl)X(_lvl) 'Y(L)((Skl)m(l))ng(l)Xg:-(l)Xgi_(k) T;(M)Wk

,L-"';L"'l (kl)wwk

x e afy Y7 AT} Wi) | dA® dA® dBO 46D | dry dx] dr dx®,

where we wrote m*) = €XDy(k) Tk €XPy (1) oM, ay] are smooth amplitudes with compact support

in a (0%),01)-chart labeled by the indices o, o, and do(") is a suitable measure in v ((Sk),w)
such that we have the equality

dX dn = L7 (T oy Wi) dA® dAD aBW ap D dry daV) dry, dx™.

520 _ | [cD4+dP 4aD 150 100
Furthermore, ®7] = |7 P2, 0"

Second reduction. Now, the group G, acts on v ((Sy),m ); with the isotropy types (H;) =
(Hi,),(Hi,,,),...,(Hr). By the same arguments given in the first reduction, the isotropy types
occuring in Wy; constitute a subset of these types, and we shall denote them by

(Hl) = (Him )7 (Hir2)7 EEE) (HL)

Consequently, G, acts on S, with the isotropy types (H;,, )y, (Hr). Again, if G acted on Si;

only with type (Hp), we shall see later that the critical set of (kl)@[;w’“ would be clean. However, in
general this will not be the case, and we have to continue with the iteration.

N-th decomposition. Denote by A < L the maximal number of elements that a totally ordered
subset of the set of isotropy types can have. Assume that 3 < N < A, and let {(H;,),...,(Hiy)}
be a totally ordered subset of the set of isotropy types with i1 < --- < iy < L. Let fi,, fi is,
Si,, Siiy, as well as (1) € My (H;,), z(2) € 'y(il)((S;)w(m) (H;,) be defined as in the first

i2
two iteration steps. Let now j < N, and assume that f;,. ;;, Si,..i;,... have already been defined.
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For each 2(*¥=1) let (¥~ ((S;, ix_,) iy_1) )in De the submanifold with corners of the G_¢iy_,)-
manifold *y(iNfl)((Sl-lmiNfl)m(iN,l)) from which all the isotropy types less than (H;, ) have been
removed. Consider the invariant tubular neighborhood

fir.iy = €Xp oy (N Viy.iny = ”Y(iN’l)((Sil...iN,l)m(iN,ﬂ)z‘N
of the set of maximal singular orbits y~=1((S;, iy ,) x_1 )iy (Hiy), and define S, ;. as

the sphere subbundle in v;,  ;, over ”Y(iN’l)((Sil___iN,l)zuN,l))iN (H;y ). Put further W;, ., =

Jir.in (D1 (Vi .in)) and denote the corresponding integral in the decomposition of Iigli1 SN ()

AN—1
by Iiif:li;fm’l(u). For a point (%) € yO~-1((S;, i ) ix_1)iy (Hiy) We then consider the
decomposition
gm(iN—l) = g,GnN) 2] gi_(iN)a
and set d*~) = dim g;m)’ elin) = dim 0.0 y), yielding the decomposition
(29) g=0,6» D gi'm) = (9,62 @ gj{(ig)) S2) Eli'(il) = =060 D giuN) D---D gi‘(m-
Denote by {AY) () . 23} a basis of g;m)’ and by {B") (200, . 2(~)} a basis of
04(iy)- For arbitrary elements AlN) ¢ gi(im and BU~) ¢ 9,Gn) Write
dn) e(iN)
AlN) — Z alin) AGN) () g (in)y), BUN) — Z BUNI BN (1) | g (in)y,
r=1 r=1
and put
clin)
'LN)(lN)(.I(lN),o(lN)) — ,Y(lN) (vgﬁ...i]v)(x(izv)) _|_ Z 9£ZN)U§111N)($(1N)))/ 1 +Z(9£1N))2
r#o r#o

for some p, where {vﬁ“'”m )} is an orthonormal frame in v;, _;, . Finally, we shall use the notations

m(ijmiN) = &XP,6p [Tij eXpI(ijﬂ)[Tin eXpﬂC(ij+2)[' .- [TiNfz expm(izvfﬂ[TiNfl CXPyin) [TiN{)(iN)]]] v ]]]7
X (5in) — Tiy iy Al 4 Tijpr Tin AW po o AGN-D) o AGN) 4 BN
where j=1,...,N.

N-th monoidal transformation. Let the monoidal transformations (;, and (;,;, be defined as in

the first two iteration steps, and assume that ¢;, . ;; have already been defined for j < N. Consider
the monoidal transformation

Ci1~~~iN : BZil,.,iN (BZil,.,iN,I ( : 'BZil (Wk X g) s )) — BZil.,.iN,1 ( e BZ'LI (Wk X g) .- )
with center

Liy iy = U (_17 1)N71 X i507(iN71)((ShmiNfl)m(iN—l))iN (Hl )

.....

i Qiq+--0i . . . .
Denote by Cﬁ” o---0¢ "N a local realization of the sequence of monoidal transformations

Ciy 0+ 0(i,. iy in a set of (9(“), e H(iN))—charts labeled by the indices gy, , ..., 0iy- Now, for an
arbitrary element B(1) € g;, one computes

i d _+RGi1) Q1.0 d
(30) (B 1))m(i1,“iN) = ae tB 'm\(tI:O ~) = Eexpm(il) [(e

= (expm(il))*)Tilm(ig,“iN) [/\(B(il))Tilm(h”'iN)].

—¢Bi1) i
tB1 )*@(il)[Tilm(w”lN)H‘tZO
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By iteration we obtain for arbitrary A() € gl-lj, 2<j <N,

i 1 AG4)
(31) (A J))m(il.,.iN) = % €XPg (1) [Til €XP,(i2) [ .. [Tijfl(e LA™ )

= (esz(il))*7nlm(z‘2,.,z‘N) [7’1'1 (expz(iz))*yTiQm(is,.,iN) [ .. [7’1'];1)\(A(ij))m(ij...izv)] . ”7

*,z<i1>m(ij"'m)] -] |t=0

and similarly
(32)
(BiN))m(il,“iN) = (expw(il))*7Ti1m(i2,“iN) [Til (expm(iz))*7Ti2m(i3,“iN) [ .. [TiN)\(B(iN))’fJ(iN)] .. ]]
As a consequence, the phase function factorizes locally according to
(Bt = 4po(id piner @ (G 01+ 0G0 )) = T(0hor.in) (X)) =y ey (g,

where in the given charts (71~ )JJ“”“ is given by

N
Ny (i1 --in) (A(il)m(il,“iN)) + Z N1 i) ((expm(il))*7Ti1m(i2,“iN)
=2
(33) [(expiﬂ(i2))*7T1'2m(i3“‘iN) [ cee (expz(ijfﬂ)*)Tijilm(ijA,AiN) [)\(A(lj))m(Z]lN)] .. H)
+ N Grvind ((expz(il))*yﬂ_lm(iz,.,w) [(expz(iz))*7Ti2m(¢3,.,¢N) [ ..
(expm(iN))*)TiN,&(iN) [)\(B(ZN))’[)(”V)] “ee ”)
Modulo lower order terms, I(u) is then given by a sum of integrals of the form
(34)

Qiq---0i
Iil.l..iN M)

/Mq(Hil)x(Ll) {/wl)((sil)ggul)>i2<Hi2>x<1,1> o {/V“Nﬂ«silmw1>z<iN1>>iN<HiN>x<m)

|:/ €l¥ (i1 i) fwk a"_—’il"_'giN (i)eil....giN
) B1...0 Q1.0
'Y(IN)((Sil*“iN)z(iN))ng(iN)Xgi(iN)X'“Xgi(il)XT;(il,.,iN)Wi 1---IN 1-4N

AT i) W) AT L dAGD) dBON) o) ] gy da @) | dri, da®) | dr, da™).
Here afl”wfw are amplitudes with compact support in a system of (§(1), ... #(~))-charts labelled

by the indices g;, ... 0y, while

N
F0iy Qi ] c(ij)+21'7 dCr) 1 £ 0iy---0ip
Qi in —H|sz| r=t Qi
j=1

Qiy ---Qip

where @,
1...1N

are smooth functions which do not depend on the variables 7;;.

N-th reduction. For each z(*N-1), the isotropy group G iy actson ylin-1) ((Siy.in s )mﬁN—l) Vin
by the types (H;y),...,(Hr). The types occuring in W;, ;. constitute a subset of these, and
G in_y acts on the sphere bundle S, . i, over the submanifold AN (S5, in s ) Gin—)in (Hiy) C
Wi, .. .in with one type less.

End of iteration. As before, let A < L be the maximal number of elements of a totally ordered
subset of the set of isotropy types. After maximally N = A — 1 steps, the end of the iteration is
reached.
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6. PHASE ANALYSIS OF THE WEAK TRANSFORMS. SMOOTHNESS OF THE CRITICAL SETS

We shall now prove the smoothness of the critical sets of the weak transforms. We continue with
the notation of the previous sections, and consider a sequence of local monoidal transformations
(fl” 0---0 CQ” ”f N corresponding to a totally ordered subset {(Hj,),...,(H;iy)} of non-principal
isotropy types that are maximal in the sense that, if there is an isotropy type (H;, ,) with
in < ing1 such that {(H;,),...,(Hiy,,)} is a totally ordered subset, then (H;y,,) = (Hg). For
later purposes, let us define certain geometric distributions E() and F(”\’ ) on M by setting

E(“») in) — Span{f/m@l,.,w) 1Y € gi(il)}’

i1
El) — , o , I (at (i.-in)
(35) i) (expzul))*)Tilmuz,.,”\,) .. (expmuj,l))*mjilm(lj,.,lm[ (9,0,))m 1,

2&) i) = (expm(il))*)Tilm(ig,.,iN) - (expw(iN))*)TiNﬂ(iN)[A(gw(lN)) (ZN)]

where 2 < j < N. Note that by (29), (3I)) and (BEI) we have

(36) Tm(ll ZN)(GV m )) Efﬁl)l N S @7—11 s Ty 7(:(21,.,1'1\,) STy - -'TZNF,(,Zgl) iN)
By construction, for 7;; # 0, 1 < j < N, the G-orbit through m{1-in) s of principal type G/Hyp,
which amounts to the fact that G_«y_,) acts on S;,. i\ only with the isotropy type (H), where
we understand that G o) = G. We then have the following

Theorem 2. Let {( in)s -, (Hiy)} be a mazimal, totally ordered subset of non-principal isotropy

0; 9 0i . . ) ,
types, and ;' o (™ a corresponding sequence of local monoidal transformations in a set

of (901 ,...,9(”\’ )-charts labeled by the indices 04y, ..., 0in- Letn, . ix) € 7 H(m18)) and
consider the factorization

J(nm(lllN))(X(“ZN)) _ (il...iN),JJtot =Ty - Tin (il...iN),Jjwk,pre
of the phase function ¢ after N iteration steps, where (11--iN)ywk:pre s given by (BEI)E Let further

denote the pullback of (“'”iN)dN)“’k*pTe along the substitution T = ;. iy (o) given by the sequence
of monoidal transformations

Oiy.in 2 (O coiy) o5 (1,04, .. oiN):(Ugl,...,ogN)>—>UZ/-2(UZ/-1,1,...,0'» Y= (o ,...;00)

IN 117 TN
e nmo_n "oy _ o )
= o (op o, 1ol ) = e = (Tiy e Tiy )

Then the critical set Crit( (“”'iN)d)“’k) of (i) gk g gwen by all points
(Uil, ceey UiN,x(il), “ee ,,T(iN),f)(iN), A(il), ey A(iN), B(iN)777m(i1,“iN))
satisfying the conditions
M) AW =0 forallj=1,...,N, and A\(B"))3(n) = 0;
() s € Ann(EYS) ) forall j=1,...,N;
(D) 7pcirin € Anm(EUN) Y,

(i1

Furthermore, Crit( (-iN)wk) is o C°_submanifold of codimension 2, where . = dim G/H, is
the dimension of a principal orbit.

SNote that (i1---iN)ywkPre wag denoted in (B3) by (f1-in)gwk,
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Proof. To begin with, let oy, --- 0y, # 0, so that all 7;, are non-zero. In this case, the sequence of

. . 0i Qiq ---0i . . .
monoidal transformations ¢; ™" o---o ;1Y 06;, iy constitutes a diffeomorphism, so that

Crit( (il'“iN)J)tOt)gil...giN;go = {(oiy,--- ,JiN,aj(il), o, al) gl A6 4G B(iN)777m(il,“iN)) :
(M iz-iny, X G1in)) € Crit(y), oy, --- 04y # 0}
Now,
(M irinr, X)) € Crit(v) & 160000 € X,Sli(lw)m =0.
Furthermore, X,, = 0 clearly implies )N(,r(n) = 7m.(X,) = 0. Since the point m(1-~) lies in a slice
at (") the condition Xfﬁle)v) = 0 means that the vector field X (1-¥) must vanish at (i) as
well. Hence, X (i1-in) ¢ g,.¢1), since

gm:Lie(Gm):{XEQ:f(m:O}, m € M.
Now
9.6 C @Gy Cr Cggin
and gi_(ij+l) C g,6; imply
X0 =y > al(AM) ) =0.

Thus we conclude a®) = 0, which gives X (2-inv) = X (1in) ¢ 9,,G1--in), and consequently
X (2ein) ¢ O,nG2.in) by B0). A repetition of the above argument yields that the condition

Xfﬁle)v) = 0 is equivalent to (I) in the case that all o;; are different from zero. Actually, the

same argument shows that for o;; # 0
(37) OnGi1in) = 8565
since gz6n) C G,6n)- Next, 1,6, € ) means that
J(nm(il,.,iN))(X) = nm(il.,.iN)(Xm(il,.,iN)) =0 VX €g,
which by 2I) is equivalent to 7,,¢,..ix) € ANN(T),61.in) (G - mE=iV))). If o, # 0 for all
j=1,...,N, (II) and (III) imply that
min) [A(gwuN,l))m(iN)] . D =0,

since g, in_1) = Gun) B gi-(iN). By repeatedly using this argument, we conclude with (B8] that
for oy, #0

(38) (A1), (D) <= 7,61 € AND(T, i) (G -1V,
Taking everything together therefore gives
Crit( (ilmiN)wtOt)Uil o #0
(39) = {(Uil, Ceey UiN,JJ(il), e ,l'(iN),’f)(iN),A(il), ey A(iN), B(iN)777m(i1,“iN)) :
iy - 05y # 0, (-(IIT) are fulfilled and BG~)Y =0},

M)

N Grein) ((expm(il))*7Ti1m(i2miN) [ .. (expm(ijfl))*mNil

Here X} denotes the vertical component of a vector field X € T'(T*M) with respect to the decom-
position T,(T*M) =TV & T", TV being the tangent space to the fiber, and T" the tangent space
to the zero section at 7. We now assert that

Crit( (il'”iN)JJWk) = Crit( (il”'iN)q/;tOt)ml 0 70
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To show this, let (k, O) be a chart on M with coordinates x(m) = (g1, ..., ¢n), and introduce on
T*O the coordinates

nmzzpl(dql)ma "%(77): (q177qn7p177pn)7 nET*O

Write 7,,,¢1..ix) = D Pi( i) 6ir...in), and still assume that all o;; are different from zero. Then
all 7;; are different from zero, too, and 9, (11~ vk = 0 is equivalent to

Op T,y ine ) (X 18Dy = (dgy (X Y dig (X01) )y =0,

m(i1--iN) mG1--iN)

which gives us the condition X (ZL - ”f])v) = 0. By (37) we therefore obtain condition I) in the case
that all o;, are different from zero. Let next N,y (G-x(il)) be the normal space in T),:;;) M to the
orbit G - :C(il), on which G ;) acts, and define NI@HN (Gm“ﬂ . :v(if“)) successively as the normal
space to the orbit quj) - z(+1) in the Gm(ij)-space Nm(ij)(quj,l) . x(if)), where we understand
that G o) = G. By Bredon [9] page 308], these actions can be assumed to be orthogonal. Set

j

(40) Vi) ﬂ Noin (G iir—1) .x(ir)) =N, i) (G 60 .x(ij)),
r=1

With the identification Ty (T, M) ~ T, M one has

(41) (exp )0 : To(TM) — T, M, (expy,)«,0 = id,

and similarly (exp_ ;) )«0 = id for all j = 2,..., N. Therefore, if 7;, = 0 for all j, then Eg(;(lz) =

Ty (G- 2(1)); and
gl T (G 6;-0 L)) ¢ ylineiion), 5<j <N,

(1) —

(1) —
obtain the direct sum of vector spaces

(42) EW eB® @ . .0 B & F(Y) c T,u) M.

i1) i1) z(i1)

while FUN) ~ Tyin) (G oy - 90)) € V0in) - Therefore E:éz) N V0i) = {0}, so that we

Let now one of the o;; be equal to zero, so that all 7;; are zero. With the identification (@I]) one
has

(43) (i) ok — szdqz( D o +ZA A)z) 4 \(BN)g <w>)

Jj=2

and 0, (il"'iN)@[;w’“ = 0 is equivalent to
N
A )+ Z)\(A(ij))x(ij) + A(BON)5n) = 0,

Since #(17) € y=1)(S;, 4. ,), 6, 0) C V=) we see that for every j =2,...,N
(Za(lj ])) (i5) cT ) (Gx(ij—l) . I('LJ)) C V('L.lwijfl)_

In addition, (Ai“’)m(m € T, (G -2()), and )\(Z Bl glin) ) (in) ¢ V0-in) "go that taking
everything together we obtain with (@2) for arbitrary o,
9y gk =0 = (1),
In particular, one concludes that (1-i¥)®* must vanish on its critical set. Since
d( (i1...iN)1/~}tot) _ d(Til o TiN) . (i1...iN)1/~}wk + T ﬂ_Nd((1'1...1’1\7)12)11119)7
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one sees that
Crit( (1) pwk) C Crig( ()4t
In turn, the vanishing of ¥ on its critical set implies
Crit( (il'”iN)?/ZWk)Uil“'UiN #0 = Crit( (ilmiN)&tOt)Uil»»»UiN #0-
Therefore, by continuity,
(44) Crit( (i1~~~iN)g[~1t0t)gil,..giN +0 C Crit( (il'“iNW“’k).
In order to see the converse inclusion, let us consider next the a-derivatives. Clearly,

6a(i1) (il"'iN)iﬁwk =0 <<= nm(il,“iN)(? (il,“iN)) =0 VY e gi‘(il).

m

For the remaining derivatives one computes

9 6y (i1in) gk
= s (XD izt [+ (OB 0)e i WA 0] LT )
from which one deduces that for j =2,..., N
0, TN =0 = VY egly,
Ny Cin-in) ((expzul))*77i1m<¢2.,.¢N) [... (expwuj,l))*mjilm@j,.,im[)\(Y)m(ij"'iN)] . D =0.
In a similar way,

35(¢j) (il”'iN)UN)wk =0 <= VZecg,um

Ny Gi1-in) ((expm(il))*7Ti1m(i2.,.iN) [ .. (expw(iN))*)TiNﬁ(iN) [)\(Z)f;(iN)] .. ]) =0.

by which the necessity of the conditions (I)—(III) is established. In order to see their sufficiency,
let them be fulfilled, and assume again that o;; # 0 for all j = 1,..., N. Then (38)) implies that
Nynir iy € ANN(T 6y iny (G -mN))) Now, if oy, # 0, G-m(1-V) is of principal type G/H/,
in M, so that the isotropy group of m (%) must act trivially on N, ¢, .in) (G-m{+8)) compare
Bredon [9, page 181]. If therefore X = X7 + Xy denotes an arbitrary element in T, ¢, ..ixy M =
T, iy (G- mE N O Ny (G- mU8))) rand g € G, ¢y..in), ONE computes

m m(il,

G Ntin i) (X) = [(Lgfl);m(n»«»iN)nm(il«»«iN)](%) = nm(il«»«iN)((Lgfl)*,m(il»«»iN)(%N))
= M Gir--in) (%N) = 'r]m(il,.,iN)(:{)-

In view of A\(BU~)3(x) = 0 and (B7) we therefore get the condition B,(I”\’()V .vy = 0. Let us now
L Gi1ein
assume that one of the o;; equals zero. Then

Nptin) € Ann(Tz(ij) (Gm(ijil) . x(ij))) Vi=1,...,N,

45 11), (III & (i
( ) ( ) ( ) { 7’]1(1’1) S AHH(T,D(I'N)(GI(I'N) "U(ZN))).

Lemma 4. The orbit of the point 7'~) in the G n) -Space V0iin) s of principal type.

Proof of the lemma. By assumption, for o;; # 0, 1 < j < N, the G-orbit of m(#1-+1¥) is of principal
type G/Hp in M. The theory of compact group actions then implies that this is equivalent to
the fact that m(2in) € V(1) is of principal type in the G )-space V), see Bredon [9, page
181], which in turn is equivalent to the fact that mlis-in) e Y(i2) jg of principal type in the
G (is)-space V(11%2) and so forth. Thus, m(%-i~) € V{i1-%-1) must be of principal type in the
Gm(ij,ﬂ—space Y lia-ij-1) for all j =1,... N, and the assertion follows. O
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As a consequence of the previous lemma, the stabilizer of #(*~) must act trivially on Nin) (Gpiiny -
olin )). If therefore X = X1 + X denotes an arbitrary element in

N
Ty M = DT, (G s - #1)) @ Ty (Griny - 5)) @ Ny (G gy - 80)),
j=1
we obtain with (5]
9 Netin (X) = [(Lg=1) 7,60 a0 ] (X) = My60 (Lg=1), 460 (XN))
= N6 (XN) = 160 (%), 9 € Gyiin-

Collecting everything together we have shown for arbitrary o;; that

(46) ) ato. atm gen PR =0 = (1), (1), (1) = B{MY =0

M Gi1--in)

By B9) and (#4]) we therefore conclude

(47) Crit( (il...iN)d;tot)ailmaiN 20 = Crit( (i1...iN),lek)-

Thus we have computed the critical set of (1-+i)¢ywk and it remains to show that it is a C>-
submanifold of codimension 2k. By our previous considerations, we have the characterization

Crit( (1) hy

(48) ) A i
= {4 =0, ABETN =0, w00 € Am( @B, L, @ FLY L)

j=1
Note that the condition B#N(zl"l = 0 is already implied by the others. Now, dim B (21 i) =
dim Gz@j,l) - z') . Since for 0iy - 0in 7 0 the G-orbit of mit-in) g of principal type G/Hy, in
M, one computes in this case with Ba)

R = dlmG : m(ilmiN) = dlmT mi1--iN) (G . m(ilmiN))

_ (45) (in)
dlm (11 N @ @Tll s T 1E J(n i) D 7y "'TiNFm(il.,.iN)]

—ZdlmE( Gor o in) + dim FY)

mi1-inN)”

But since the dimension of the spaces B (3 Ly and F (Zf\f 1) iy does not depend on the variables
0;,, we obtain the equality
(49) K= Z dim E(”“1 iy T dim F(lf\fl) i)

for arbitrary m(-~). Note that, in contrast, the dimension of T, ¢, ...ix) (G - m(1-)) collapses,
as soon as one of the 7;; becomes zero. Since the annihilator of a subspace of T, M is itself a linear
subspace of T M, we arrive at a vector bundle with (n — x)-dimensional fiber that is locally given
by the trivialization

((Ui, @) 50n)) Ann @E(“ ) @ FUN)

(i .- m(i1--inN)

) o 000,500

j=1
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Consequently, by equation ([@B) we see that Crit( (i1-¥)wk) is equal to the total space of the
fiber product of the mentioned vector bundle with the isotropy algebra bundle given by the local
trivialization

(Uij ) x(ij)a 6(iN)7 gf;(iN)) = (Uij ; I(ij)v ’D(lN))
Lastly, since by equation (37)) we have g;y) = @p,6i1.....in) i case that all oy, are different from
zero, we necessarily have dim g;.y) = d — k, which concludes the proof of the theorem. ]

7. PHASE ANALYSIS OF THE WEAK TRANSFORMS. NON-DEGENERACY OF THE TRANSVERSAL
HESSIANS

In this section, we prove the non-degeneracy of the transversal Hessians of the weak transforms.
To begin with, let M be a n-dimensional Riemannian manifold, and C' the critical set of a function
1 € C>°(M), which is assumed to be a smooth submanifold in a chart O C M. Let further

a:(x,y)—m, B:(qr, -, qn) — m, m € Q,

be two systems of local coordinates on O, such that a(z,y) € C if and only if y = 0. As one
computes, the transversal Hessian is given by

(50) Oy, Oy, (¥ 0 ) (2, 0) = Hess Y (z,0) (Vs (2,0) (D) s Qe (,0) (O )
Let us now write z = (2/,2”), and consider the restriction of ¢ onto the C*°-submanifold
Mo ={meO :m=a(d,2"y)}.
We write 1. = 15, , and denote the critical set of ¢ by Ce, which contains C'N M. as a subset.
Introducing on M the local coordinates o’ : (z”,y) — a(c¢, 2", y), we obtain

Dy, Oy, (ther o O/)(I//v 0) = Hess ¢c’\a(m”,0) (o‘;,(m”,o) (8yk ) O‘;,(z“,o) (8741 ))-
Let us now assume C.r = C'N M., a transversal intersection. Then C. is a submanifold of M.,
and the normal space to C as a submanifold of M. at a point o/ (2", 0) is spanned by the vector
fields O‘;,(z“,o)(ayk)' Since clearly
Dy, Oy, (Yer 0 ') (2",0) = 8y, Oy, (Y 0 ) (x,0), x=(d,2"),
we thus have proven the following

Lemma 5. Assume that C.o = C N M. Then the restriction

Hess w(a(clu ‘T”? 0))|N04(C,1-'17,,70)C

of the Hessian of 1 to the normal space Ny (o ,0)C defines a non-degenerate quadratic form if,
and only if the restriction

HeSS wd (Of/ (‘Tllu O))|Na/(zn,0)cc/
of the Hessian of Y to the normal space Ny (g 0)Cer defines a non-degenerate quadratic form.
(|

We can now state the main result of this section, the notation being the same as in the previous
ones.

Theorem 3. Let {(H;,),...,(H;y)} be a mazimal, totally ordered subset of non-principal isotropy
types of the G-action on M, and g‘f:l 0---0 fllqu a corresponding sequence of local monoidal
transformations labeled by the indices i, ..., 0iy. Consider the corresponding factorization

(il...iN)J)tot =Ti, .. Tin (il...iN)J}wk,pre =75 (O') e Tin (0,) (il...iN)J)wk
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of the phase function (). Then, for each point of the critical manifold Crit( (1-ix)pwk)  the
restriction of

Hess (123w
to the normal space to Crit((il“'iN)d}”k) at the given point defines a non-degenerate symmetric
bilinear form.

Note that by construction, for 7;, # 0, 1 < j < N, the G-orbit through m(1-~) is of principal
type G/H,. For the proof of Theorem Bl we need the following

Lemma 6. Let (n,X) € Crit(v), and w(n) € M(Hy). Then (n,X) € RegCrit(y). Furthermore,
the restriction of the Hessian of ¢ at the point (n, X) to the normal space N, x)Reg Crit(+) defines
a non-degenerate quadratic form.

Proof. The first assertion is clear from (I3 and (22, since
n € €, Gw(n) ~Hp, = G,= Gw(n)-

To see the second, note that by the last implication

(51) neNN T*M(HL), Xﬂ.(n) =0 = Xﬂ =0.

Let now {qi,...,qn} be local coordinates on M, 7(n) = m = m(q), and write 7,, = >_ pi(dg;)m,
X =5 s;X;, where {X1,..., X4} denotes a basis of g. Then

$(n, X) = pildg)m(Xm),
and )
Hhv(n,X)=0 <<= X, =0, 0sY(n,X)=0 <= nel.
As a consequence of (EIl), on T*M (Hy) x g we get
Ops¥(n, X)=0 = 0q¢v(n,X)=0.

Let 14(p, s) denote the phase function regarded as a function of the coordinates p, s alone, while
q is regarded as a parameter. Lemma [l then implies that on T*M(Hp) x g the study of the
transversal Hessian of 1 can be reduced to the study of the transversal Hessian of v,. Now, with
respect to the coordinates s, p, the Hessian of 1), is given by

< 0 (in)m((Xj)m) ) '
(dg;)m((Xi)m) 0
A computation shows that the kernel of the corresponding linear transformation is isomorphic to

Tp,s(Crit ) ~ {(f), ) ER" xR > pi(dg;)m(q) € A (T () (G- m(q))), Y 5;X; € gm(q)} :

The lemma then follows with the following general observation. Let B be a symmetric bilinear
form on an n-dimensional K-vector space V', and B = (B;;);,; the corresponding Gramsian matrix
with respect to a basis {v1,...,v,} of V such that

B(u,w)zg u;w; Bij, u:E Uiv;, wzg wW;v;.
]

We denote the linear operator given by B with the same letter, and write
V=kerB@W.

Consider the restriction Bjy xw of B to W x W, and assume that Bjy . w (u,w) = 0 for all u € W,
but w # 0. Since the Euclidean scalar product in V' is non-degenerate, we necessarily must have
Bw = 0, and consequently w € ker BN W = {0}, which is a contradiction. Therefore By «w
defines a non-degenerate symmetric bilinear form. ([
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Proof of Theorem[3d As before, let m = m(qu, ..., ¢n) be local coordinates on M, and write n,, =
> 0i(dg;)m- For oy, -+ 0;y # 0, the sequence of monoidal transformations Ci” 0.0 ilzNgN o
0iy...in constitutes a diffeomorphism, so that by the previous lemma the restriction of

HeSS (il.“iN)d;tOt(Uij7x(ij) (’LN Z]) /3(1N )
to the normal space of

Crit( (ilmiN)d)tOt)Uil o #0
defines a non-degenerate quadratic form. Next, one computes for the Hessian of the total transform

62 (i1~~~iN),lLtOt ( ) ( ) 62 (i1~~~iN)rJJWk
owom ), T TR TNe Owon ),

(M) o\ . .-
+ 004,04, rs (hmzN)wwk +R,

s

0 0

where R is a matrix whose entries contain first order derivatives of (1--iN)¢wk ag factors. But
since (11--N)q)wk vanishes along its critical set, and

Crit( (ilmiN)J)tOt)Uil O A0 T Crit((ilmm)i)wk)lan oy 70

we conclude that the transversal Hessian of (i-in)wk does not degenerate along the manifold
Crit((il“'iN)z/JWk)‘ail,,,aiN 0. Therefore, it remains to study the transversal Hessian of (1--iv)ywk
in the case that any of the o;; vanishes. Now, the proof of Theorem [ in particular (46]), showed
that

i1...9 Twk i1...9 Twk
Opain),atin gy TG =0 = 0, e g CUTVGPE =0

O Oip >
If therefore
(Zl.“lN)Z/};i]j’z(ij)j(iN)(a(”)vB(ZN)ap)

denotes the weak transform of the phase function 1 regarded as a function of the variables
(™). alix) B6N) p) alone, while the variables (oy,,..., 04,2z, ..., 20~ 50~5)) are kept
fixed,

CI‘lt( (ilmiN)J)i]?,m(ij))f;(izv)) = Crlt( (i1~~~iN)1/;’wk7) n {Uij ) I(ij)v’a(iN) = constant} s

Twk

a transversal intersection. Thus, the critical set of (#1-N)q) () ~Gin)
Tij ,0

is equal to the fiber over

(04,217, 5N)) of the vector bundle

N
((Uij ) x(ij)u ’D(iN))7 Gp6n) X Ann( @ E(Z](w)l Vi) @ F,(:gl) wN))) = (Uij ) x(ij)u ’D(iN))7
j=1
and in particular a smooth submanifold. Lemma [l then implies that the study of the transversal

Hessian of (1-%)¢%¥ can be reduced to the study of the transversal Hessian of (i1 ZN)ngk 20 5N

The crucial fact is now contained in the following

Proposition 6. Assume that oy, ---0;y =0. Then
i1 in) T wk . k
ker Hess (1 ZN)i/JZ ) ~(W)( ,0 B , D) =~ T(Oﬁ___ﬂoﬁuN)’p)Crlt(( Z/Ji ¢ v@m)

Jor all (0.0, 8, p) € Crit((r-gut,

205 ‘(w)) and arbitrary ()| 50),
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Proof. Let 0y, -+ -0, = 0. With (33), or directly from ([@3)) one computes or the second derivatives
of the weak transform at a critical point (0, ...,0, 30~) p)

aa(sil) a - ZN)1/)“’k v(zN) - qu((A.(sil))m(il))a

0 00 By CIOTE 1 = dg (AL,

) 5lin) T

dqr(/\(BgiN))f)(iN)),

»U(ZN)

aﬁ(ima (.. W)w,:]km

while all other second derivatives vanish. Thus, for o;, ---0;; = 0, the Hessian of the function

(ir.in 1/1“”“ 2 ) with respect to the coordinates p, a%), (%) is given on its critical set by the

matrix
0 dgr (A5 ,00))  or dgr(MASN)26)) dg, (AN(BEY))50m))
dgs((A")) o)) 0 . 0 0
dga(M(AFY))a(00)) 0 0 0
dgs(A(BEN))5(in)) 0 0 0

Let us now compute the kernel of the linear transformation corresponding to this matrix. Cleary,
the vector (p, @), ... a0~ B0~)) lies in the kernel if and only if

(a) Z&(sil)( ~(i1))w(i1) +o+ > as A5 ) A(A ”\’))x(w +5°88 ”\’))\( ) (ix) = ;
(b) X Bsdas((Y)),00) = 0 for all Y € g ), 3 psdgs(Mak,))20) = 0,2 < j < N;
(€) 3 Bsdds(A(g e )0N)) = 0.
Let E), FO~x) and V(@in) be defined as in ([B5) and (@Q). Then
S G Ay 44 TGN + 37 FABE )0 ¢ @E% o £,

x

so that for condition (a) to hold, it is necessary and sufficient that
al) =0, 1<j<N, Y BIMIABIM)TEN) =0,

Condition (b) is equivalent to Y ps(dgs) 1) € Ann(E (13 y) foral j =1,..., N. Similarly, condition
(c) is equivalent to Y ps(dgs) ¢y € Ann(F ?Aiz) On the other hand, by (IB),

T( VVVVV Oﬁ(lN)p)Crlt((“ ZN)quk S U(IN)) {( (i) ...,d(iN),B(iN),ﬁ) - qlia) =0,
D BIINBIN) € ggans Y Ps(das)gn € Ann(@E(l 5 @F(W))}
j=1
and the proposition follows. ([l

The previous proposition implies that for o;, ---0;, =0

Hess (1 iv)pwk 0 (0,...,0,80N),
1/)(,”@( J)ﬁv(lN)( B p)‘N(o ,,,,, 050N, )Crlt(“l IN)w:;k ) (IN))
defines a non-degenerate symmetric bilinear form for all points (0,...,0,30~%) p) lying in the
critical set of (“"'iN)w::k i) gein» and Theorem [3] follows with Lemma [ O
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8. ASYMPTOTICS IN THE RESOLUTION SPACE

We are now in position to give an asymptotic description of the integrals I i Q”\’ () defined
in (34). Since the considered integrals are absolutely convergent, we can interchange the order of
integration by Fubini, and write

N
Oiy---Oiy _ iy - Qip M RS o A (G R ]
IO () = gl (7 - )H|le| I driy ... dr,,
(=1,1)N Tiy Tin

j=1

where we set

Jizlzjle(V):/ |:/ |:/
My (Hiy) Iy ((Sig) iy) )ig (Hig) AN -1 ((8;

el(l %N)wkme/yaml iy (1)911 iy

1oin—1) Gino1))in (Hiy)

|:[Y(iN)((Sil“‘iN)x(iN))ng(iN) Xgi(izv) X

.ng(il) XT;ul,.,iN)Wn N iN
AT i) W) AT L dACG) ABO) o] gy d®) | drs, da®)] d, da™),
and introduced the new parameter
yo b
Til .. TlN

Now, for an arbitrary 0 < € < T to be chosen later we define

N
1 70Qiy---0i 2041 Qi H
= | Jevs ([T
w (LN ey TN ATy ey
@ N
2 70Qiq Qi 30iq -+ 0i
T O () = jen- N(i)H N
i1..4N (:u) /(5,5)1\7 14N Ti, i o |7'z]

(i5) J (ir) _
UL T L dr

G5~ glin)
VAL AT gy,

IN

Lemma 7. One has (%) + Zf;:l dr) —1> g for arbitrary j =1,...,N.
Proof. We first note that for j=1,...,N —1
C(ij) = dim(Vilmij)m(ij) > dim Gm(ij) -m(ij+1"'iN) + 1.
Indeed, (v4...i;),6;) is an orthogonal G ;) -space, so that the dimension of the G ;) -orbit of
mGi+1in) ¢ 'y(ij)((Sil___ij ),G;)) can be at most (%) —1. Now, under the assumption a;, - - - 05, # 0,
29), 1) and (B2) imply
T, i1 (G i) .m(immm)) ~ T irin) (Goap .m(n..,m))

m

1J+1 ] (ir) ) ) (in)
GiN) 3 @ Tijpr -+ - Tzk—lE i1 iN) 2] Tijpr -+ - TZNFm(il.

m(ll m(i1
k=j+2

where the distributions F(%), F(~) where defined in ([B5). On then computes
dim Gm(ij) . m(if+1"'iN) =dim Tm(ij+1m7;N) (Gz(ij) . m(ij“"'iN))

LN

N
— Z dimEf:(Zl i) 4+ dim F© (11) i)
I=j+1
which implies
‘ N
i) > dlmEf:(zl o T dim F" (11) i T 1

I=j+1
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for arbitrary o;;. On the other hand, one has

d%) = dim gjij) = dim[)\(gjij)) ()] = dim[)\(gjij)) i) — dlmE(”(fl N
For j =1,...,N — 1, the assertion of the lemma now follows with ([@9]). Since
C(iN) = dim(l/il. AN ) (in) > dim Gm(lN) (lN) + 1,
a similar argument yields the assertion for j = N. O

As a consequence of the lemma, we obtain for 2I; " 22 (1) the estimate

iN
2 rQiy ---0i
Il N <C/ |
. H

e
<C/E€ H|7'z] deN...dTh:—ﬁ_’_lsN( +D)

(i) J (ir) _
21 d L driy ... dTiy

(52)

for some C' > 0. Let us now turn to the integral 119” QIN(

variables §;, .., one obtains

N
1 7Qiy---0Qi Qiq -+ Qi
I 10iy _ Joi N( )
in () / N Tiy (0) Tiy (0 U
e<|ri; (o)|<1 -

w). After performing the change of

<ij>+Zf~:1 dr) -1 |det D&;, . ix (o) do,

where JQI1 ZNQ”V (v) is defined like jflIZNQN (v), but with (18 wkpre heing replaced by (18 hwk,
which denotes the weak transform of the phase function 1 as a function of the variables x(%),
o0n) (i) BN) b alone, while the variables o = (0y,,...04, ) are regarded as parameters. The
idea is now to make use of the principle of the stationary phase to give an asymptotic expansion

of JE TN (1)),

Theorem 4. Let 0 = (0y,,...,0iy) be a fived set of parameters. Then, for every N € N there
exists a constant C'g (i) k> 0 such that

21

Qiy - 0i Z k N
|J 1 N( 27T|I/| y|-7 (11 N) W 3 Q. ~iNq)i1~~~iN)| S CN,(il"‘iN)lzguk|V| N
j=0
with explicit expressions and estimates for the coefficients Q). Moreover, the constants C]\Nf,(il"'iN)’ng’k
and the coefficients Q; have uniform bounds in o.

Proof. As a consequence of Theorems [2 and [l together with Lemma [5 the phase function
(il"'iN)g[J},“k has a clean critical set, meaning that

e the critical set Crit((1 i~ )1/32;”“) is a C°°-submanifold of codimension 2k for arbitrary o;
o the transversal Hessian

Twk i i)
HGSS 1/) ( ’U(N),OA(J),ﬂ( N),p)N C't((ilwiN)M’k)
IN LG3) 50N 0li) plin) O oy

defines a non-degenerate symmetric bilinear form for arbitrary o at every point of the
critical set of (i1+in)qgywk,

Thus, the necessary conditions for applying the principle of the stationary phase to the integral
Joiy iy (v) are fulfilled, and we obtain the desired asymptotic expansion by Theorem [Cl To see
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the existence of the uniform bounds, note that as an examination of the proof of Theorem [A] shows,
the constants Cl, in Theorem [Cl are bounded from above by

(%/J/l(m)wmc)il

sup
meCNsupp a

see also [30, Remark 1]. We therefore have

—1
CN’(il,“iN),lZ,;uk < CJ/\-[ sup (Hesg ZN)w |Ncrit((i1“‘iN)1,ZJg’k))

203 5Gn) o) BUN) p

But since by Lemma [Al the transversal Hessian

Hess (11...1N)1/}(1Tuk‘N (
k2

; ; (i1 in) Jywk
(@ j)Yﬁ(iN)Ya(lj)YB(iN)Yp)Crlt((1 N)Jwk)

is given by

Hess (11+++i~) w’“ it (1N Gk
1/) (g-ij,z(ij),f/(iN),a(ij),ﬂ(iN),p)crlt( 1IN ) gpwk) s

we finally obtain the estimate

7
Cx irimgur < C sup

o1, 28 50N alid) BGN) p

< CN,il.

AN

. . ~ 71
(Hess (““'W)ww,’cwcm((n .,.iN),lek))

by a constant independent of ¢. Similarly, one can show the existence of bounds of the form
|QJ( N }J’Uk7a/1 ~iN(I)i1~~~iN)| S éj,i1...iN7

with constants C’j,il,,,iN independent of o. O

Remark 4. Before going on, let us remark that for the computation of the integrals 1I 2 ”5”\’ ()
it is only necessary to have an asymptotic expansion for the integrals J 917.1 2inv (v) in the case that
04y -0y # 0, which can also be obtained without Theorems 2l and Bl using only the factorization
of the phase function 1 given by the resolution process, together with Lemma[Gl Nevertheless, the
main consequence to be drawn from Theorems 2 and [l is that the constants Cg ¢y..iy )k and

the coeflicients @); in Theorem [] have uniform bounds in o.
As a consequence of Theorem H] we obtain for arbitrary N € N

[Tt ™ ) = Crl ) Qo(" %" as,. z-N%..wl

o

MZ’

<

JETTEN (1) — (2"

1---tN

|V| Q ((“ zN)wwk 1. (1)1111\1)}
l

Il
o

N-1

N-1
+ 27 Y QYRR @iy By )| < eV + eofy ]t AL
=1

=1
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with constants ¢; > 0 independent of both ¢ and v. From this we deduce

N
i 00 . GO s gl g
1]1'911 ]\';-’N( ) — (27TM) / o Qo H |Tij (U)| +30-.d 1 |d€t D6, in (U)| do
<|7s <1

j=1
< 03#N/ H |73, (

<|n (U)|<1j 1

N-—
+C4,u Z / H Tl]
B

) S d =N et DS, (0)] do

“J‘>+Zi:1 dt) —1—k—1 |det D6, . in (0)|do

<|n (U)|<1j 1

<c¢ H loge) ’J max{l,

Jj=1

RLEIED > d“H—N}

e

-1

Z rot H log €)' max {1

=1 J

3

—

Ec(ij)-i-ZZ:l dtir) —n—l}

1

where the exponents i; and i;; can take the values 0 or 1. We now set ¢ = p'/N . Taking into
account Lemma [T one infers that the right hand side of the last inequality can be estimated by

pEH (log )™

so that for sufficiently large N € N we finally obtain an asymptotic expansion for I s QZN (1) by
taking into account (52)), and the fact that

(ij) J (ir) 1
A A1 KdTiN d7'1'1 = O(ILLKJFI).

N
2y | o [,
0<| 7y, |[<pt/N 31;[1
Theorem 5. Let the assumptions of Theorem [ be fulfilled. Then

L™ () = @mp) Ly 3 + 0w (log ™),

AN

where the leading coefficient LQ v 51N s given by

Qig Qi 0i ,91 -
(53) LQI1 Oin / anl AN N(I) LN dCI’lt( N)¢Wk)
v Crit((1in) k) |HeSS((“"'1N djwk)NCrit((ilmiN)’L/;wk)|1/2

where dCrit((1-iN) Wk denotes the induced measure.

9. STATEMENT OF THE MAIN RESULT

Let us now return to our departing point, that is, the asymptotic behavior of the integral (I
in case that ¢ = 0 is a singular value of the momentum map. For this, we still have to examine the
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contributions to I(u) coming from integrals of the form

1911 Qig (1) =
/Mi

e

L (Hi )X (—1,1) {/wv«sinxw>i2<Hi2>x<1,1> o {/v%ﬂ((silmi@l) o 1))ie (Hig)x(~11)

|:/ elT TO (i1.. w@)d)wk aflll 510 (1)97'1 ljlo
YOI (Siy.i ie)4(ie)) X0, (o) Xgi_(i@) X”'Xg:-(z‘l) XT;(il,.,i@)Wil
AT oy ooy Wiy ) () dAG) . dAl®) gBUe) df;(i@)} dri, datie) . } dri, da:@ﬂ dry, da(i)

where {(H;,),...,(H;)} is an arbitrary totally ordered subset of non-principal isotropy types,
while ag” Z(fi@ is a smooth amplitude which is supposed to have compact support in a system of
(0@, ..., 00~n-1) o(in))_charts labeled by the indices gy, - .. 0ig, and

911 H| -
J

®;, i being a smooth function which does not depend on the variables 7;,. Now, a computation
of the p-derivatives of (i1--i©)¢wk in any of the al*®)-charts shows that (©1--7€)¢wk hag no critical
points there. By the non-stationary phase theorem, see Hormander [24, Theorem 7.7.1], one then
computes for arbitrary N € N

el < en® [

(ij)_;’_zi d(ir)_l(l)?il
%

Qig
1...1@

o) 4 5d glinm) _ J
] [| 7, +327. 40 —1— NdT+C8EO(n+1) < cgmax{uN7MI€+l}7
<l 1< 555

where we took ¢ = ;i!/®. Choosing N large enough, we conclude that
1155870 ()] = O ™).

As a consequence of this we see that, up to terms of order O(u"*1), I(1) can be written as a sum

A-1 A-1
(54) I =Y > vovw+ > Y ),

N=1 i1<---<ipn N=1 i1<---<iny_1<L
Qiy s+ Qipy Qiy Qi _q

where the first term is a sum over maximal, totally ordered subsets of non-principal isotropy types,
while the second term is a sum over totally ordered subsets of non-principal isotropy types. The
asymptotic behavior of the integrals I, i QIN (1) has been determined in the previous section, and
using Lemma[@ it is not difficult to see that the integrals Il e
descriptions. We can now state the main result of this paper.

in 1z () have analogous asymptotic

Theorem 6. Let M be a connected Riemannian manifold, and G a compact, connected Lie group
G with Lie algebra g acting isometrically and effectively on M. Consider the oscillatory integral

= / /ew(”’x)/“a(n,X) dXdn,  p>0,

where the phase function

b(n, X) = I(n)(X)
is given by the momentum map J : T*M — g* corresponding to the Hamiltonian action on T* M,
dn is the Liouville measure on T*M , and dX an Euclidean measure given by an Ad (G)-invariant
inner product on g, while a € C(T*M x g). Then I(p) has the asymptotic expansion

I(p) = (2mp)" Lo + O(u (log )™ 1), p— 0%,



42 PABLO RAMACHER

Here k is the dimension of an orbit of principal type in M, A the mazimal number of elements of
a totally ordered subset of the set of isotropy types, and the leading coefficient is given by

L :/ a(n, X)
RegC |Hessw(nvX)IN(,,’X)RegC|1/2

where Reg C denotes the reqular part of the critical set C = Crit(¢) of ¢, and d(RegC) the measure
induced by dndX. In particular, the integral over RegC exists.

(55) d(Reg C)(n, X),

Remark 5. Note that equation (B8] in particular means that the obtained asymptotic expansion
for I(u) is independent of the explicit partial resolution we used.

Proof. By (B4) and Theorem [H] one has
I(p) = (2mp)" Lo + O(u (log ) 1), p— 07,

where Lg is given by a sum of integrals of the form (G3]). It therefore remains to show the equality
(E5). For this, we shall introduce certain cut-off functions for the singular part Sing Q of Q. Choose
a Riemmanian metric on T* M, and denote the corresponding distance on T*M by d. Let K be a
compact subset in T*M, § > 0, and consider the set

(SingQNK)s ={neT*M :d(n,n') <6 for some ' € SingQNK}.

By using a partition of unity, one can show the existence of a test function us € C2°((Sing QN K)3s)
satisfying us = 1 on (Sing QN K);, see Hormander [24], Theorem 1.4.1]. Now, let K be such that
supp, a C K. We then assert that the limit

i | [a(1 — ug)](n. X)

-0 JRege [det (1, X)|n, s RegcC

(56) dRes ). X)

exists and is equal to Lo, where d(RegC) is the measure on RegC induced by dndX. Indeed, define

/* /*Wﬂ (1 - us))(n, X) dX dn.

Since (n, X) € SingC implies n € Sing 2, a direct application of Theorem [C] for fixed § > 0 gives
(57) 15 (1) = (2mp)" Lo (8)] < Csp+?

where Cs > 0 is a constant depending only on §, and

[a(1 — us)(n, X)
LO(é) - ~/chC |det w”(nv X)TN(n,X)RCgC|1/2 d(RegC)(,'%X)

On the other hand, applying our previous considerations to I5(u) instead of I(u), we obtain again
an asymptotic expansion of the form (&) for I5(p), where now the first coefficient is given by
a sum of integrals of the form (B3)) with a replaced by a(l — us). Since the first term in the
asymptotic expansion (57)) is uniquely determined, the two expressions for Ly(d) must be identical.
The existence of the limit (56]) now follows by the Lebesgue theorem on bounded convergence, the
corresponding limit being given by Lg. Let now a™ € C(T*M x g,R*). Since one can assume
that |us| < 1, the lemma of Fatou implies that

/ , [ (1 — us)](n, X)

lim
egc 0—0 |det 1/)”(77,X)|N(77,X>Reg6|1/2

d(RegC)(n, X)

4A more explicit expression for Lo will be given in Proposition [7}
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is mayorized by the limit (58], with a replaced by a™*, and we obtain

/ a*(n, X)
Rrege |det V7 (0, X) (N,  Regc]'/?

|d(RegC)(n, X)| < co.

Choosing a™ to be equal 1 on a neighborhood of the support of a, and applying the theorem of
Lebesgue on bounded convergence to the limit (B, we obtain equation (GI)). O

In what follows, we shall compute the leading term (B3 in a more explicit way, and begin by
computing the determinant of the transversal Hessian of the phase function ¥ (n, X), the notation
being as in Theorem

Lemma 8. Let (n,X) € RegC be fized. Then

det Hess 1(, X)|n(, x Regc = det (2 — Lx 0 Lix)|g.p;

where Lx : g-n — g-n denotes the linear mapping @28) given by the Lie derivative, and Z the
linear transformation on g -n defined in (IT).

Proof. Let (n,X) € RegC be fixed and {44, ..., Aq} an orthonormal basis of g such that {A4,..., A}
is a basis of g,J; and {A;41,...,Aq} a basis of g - 7. With respect to the basis

((%X4)n30), (0;¢5), t1=1,...,2n, j=1,...,d,
of Ty, x)(T*M x g) = T,,(T*M) x R* introduced in the proof of Proposition 2, the Hessian
Hess ) : T, x)(T" M x g) x T(y x)(T*M x g) — C, (v1,v2) = D1(T2(1))(n, X)

is given by the matrix

_ (wn([X, X, X)) —wy(Ay, %)
A= ( —wp (A, X)) 0 ) '

Indeed, X;(Jx) = dJx (X;) = —5w(X;), and by @) we have (X;),(w(X,%;)) = —w,([X, Xi], &),
since X,, = 0. If therefore J : T(T*M) — T(T* M) denotes the bundle homomorphism introduced
in Section [2] we obtain

A— JLx —gn(T A, %)
—gn(J Ai, X5) 0 ’

where Lx : T,(T*M) — T,,(T*M), X — (X, %]n denotes the linear transformation induced by the
Lie derivative, and restricts to a map on g-n by Remark[B Let {Bi,..., B.} be another basis of
g such that {(El)n, ce (Eﬁ)n} is an orthonormal basis of g - 1, and recall that by (&) we have
T,Reg Q = (g -n)“. Taking into account ([23) and g-n C (g-n)“ one sees that

Bk:(j(ék)n70)a B;c:(LX(Ek)n;gn(Alaék)v"'7977(;[&5516)507"'70)5 kzlv"'aliv
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constitutes a basis of N, xyRegC with (By,Bi) = w1, Br. L B}, and (B, B;) = (£ + LxLx)w,
where = was defined in (7). One now computes

A(B) = (jLXjBk ZgnJAl, Van(T B, X ),...)

( LX(Bk) gﬁ(jAlvak) _gn(jgﬁajék) 70):_325

A(B) = (I LxLx(Be), (Zgn T A5, %0)g,(A5, Bo). ... );

—Zgnm, )95 (Lx (B)as X)), ) = (TLxLx(Bi)y + (94(2(Br)y TX0), .. )

— ga(T A1, Lx(Bi)y), - ).

Since Lx defines an endomorphism of g-n and g-n C (g-n)¥ we have gn(jgl,LX(f}k)n) =
wn(A1,Lx(Bg),) = 0. Furthermore, the {J(B1)y,...,J(Bx)y} form an orthonormal basis of
J(g-n), and we obtain

A(B},) = (T (LxLx = E)(By)y; 0 Zgn (LxLx = Z)(By)y, T (B;)n) B;.
Taking all together, one sees that the transversal Hessian Hess ¢(7, X)|N(,,,X)Regc is given by the

matrix
(2100 o)
(LxLx — E)|g.77 0 ’

and the assertion follows. O

Proposition 7. The leading term in (B3) is given by

vol G /
Lo = a(n, X)dX
0 vol H Reg [ g ( )

n

d(Reg Q)(n)
vol O

where H denotes a principal isotropy group, and vol O, the volume of the G-orbit through n, while
dX is the measure on g, induced by the invariant inner product on g.

Proof. The proof is based on the following integration formula, compare [I2, Lemma 3.4]. Let
(X, hx) and (Y, hy) be two Riemannian manifolds and F': X — Y a smooth submersion. Then,
for b € C2°(X) one has

d(F~(y)(2)
(58) /X b(z) dX (z) = /Y l / » b(z)|detszo?jsz)|l .

where d(F~!(y)) denotes the Riemannian measure induced by the one of X on F~*(y), and the
transposed operator of the differential d,F' : T X — Tp;)Y is given by the operator td,F
Tp)Y — T, X which is uniquely determined by the condition

hx(X, ', F(D)) = hy(d,F(X),), XeT.X, € TpnmY.

dY (y),

Consider now the map P : Reg C — Reg Q,(n,X) — n, which is a submersion by Proposition
In order to apply the previous integration formula, we have to compute the determinant of
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din,x)P o *dg, x)P at a point (1, X) € Reg C. For this, let G denote the orthogonal complement
of g -nin T, Reg €. We then assert that

(59) d(n,X)P o td(n,X)P)\g = ld

Indeed, let ) € G. As was shown in the proof of Proposition [ [Qj) X ln € g-n. On the other
hand, the fact that g-»n and G are invariant under G,,, together with (25]), imply that ), X I, €6.
Hence [9), X]77 = 0. Taking into account (23) we infer from this that (9),0) € T, x)RegC, and
consequently *dP, x)(2) = (2,0). Thus, d¢, x)P o ‘dy, x)P(Y) = 2, and B9 follows For the
computation of the determinant of d, x)Po td(m x) P it therefore suffices to consider its restriction
to g-n, and with the notation as in Lemma [§ we shall show that

(60) din.x)P o 'dyx)Plgy = (E— Lx o Lx) " o0&,

Consider thus an element X € g -7, and write *d(, x)P(X) = (), w). Denote the Ad (G)-invariant
inner product in g by (-, ), and let again {A;, ..., A4} be an orthonormal basis of g such that g#
is spanned by the elements {A,,..., A}, and g, by {Ax41,...,Aq}. From (23) it is clear that for
each j =1,...,x we have ((gj)n; (X, Aj], Av) .. ([X, Ay, Ag)) € Ty, x)Reg C. By definition of
the transposed we therefore have

d
g(%v (Aj)ﬂ) = g(@u (Avj)n) + Zwk <[X= Aj]vAk> :

Consequently, g(X — 2, (Aj)n) = Zizl wi ([X, 4;], Ax). If E denotes the linear transformation
introduced in (7)), we obtain

K d

=X -9) Zzwk (X, Aj], Ar) ( Z

j=1k=1 j=1

M&

d
’LUk Jv Aka ]> (Aj)nzzwk[AkaX]ﬁ'
k=1

b
Il

1

—_~—

Let f € C=(I"M). Due to X = 0 we have [Ay, X],f = (gk)n(f(f) Combined with the fact that
2221 wi(Ag)y = [2) X] this implies

d —_ ~ ~ ~ ~ ~ ~
=D wilA, X]of = 0, X]y(X[) = [, X], X1, f = [X, [X, Do,
k=1

and consequently
2D - %) = [X, [X, D), = Lx ([X,D],) = Lx o Lx (D).

Thus, Y = (E— Lx o Lx) ! 0 Z(X), and (60) follows. Taking all together we have shown that
det d i, x)P o "d(y x)P =det "' (E— Lx o Lx) - detE,

and with Lemma [8 and the integration formula (B8] we obtain

a(n, X) d(Reg C)(n, X
PR YIRS R A
RegC |Hessw(777X)\N(mX)chC| Reg g

where d(Reg ) denotes the volume form induced by dndX. The assertion of the proposition now
follows by noting that |det Z)4.,[*/? = vol O, - vol G, /vol G, compare [12, Lemma 3.6].

d(Reg ©2)(n)
[det 2., [1/2]

O
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10. RESIDUE FORMULAE FOR X = T*M

We are now in position to derive residue formulae for the cotangent bundle of a G-manifold.
Thus, let M be an n-dimensional, connected Riemannian manifold, and G a d-dimensional, com-
pact, connected Lie group with maximal torus 7' C G acting on M by isometries. Let © be
the Liouville form on T*M, w = dO the symplectic form, denote the corresponding momentum
map by J : T*M — g*, J(n)(X) = Jx(n) = O(X)(n), and write Q = J~1(0). Let further
7 : Reg ! — Reg X,.q = Reg /G be the canonical projection, and consider the map

- wy—1

K+ HES(T* M)~ Hpy(Reg Q) ™5 H* (Reg X,eq),
where 7 : A*(T*M) — A**(Reg Q) denotes the natural restriction map described in ([©4) and & is
the dimension of a principal G-orbit. As an application of Theorem [6] we are able to compute the
limit @) in case that x equals d = dim g. It corresponds to the leading term in the expansion.

Corollary 3. Assume that the dimension k of a principal G-orbit in M equals d = dimg. Let
a € A (T*M) and ¢ € CZ(g*) have total integral one. Then

d d
lim (Fy Lo, g.) = 2H LG / o) AReED () _ (2! vol G / (o)
e—0 |H| Reg Q2 vol O»,] |H| Reg Q vol 077

where H denotes a principal isotropy group of the G-action, and we wrote ) = a(n)dn, dn being
Liouville measure.

Proof. By (2)), Theorem [6] and Proposition [ one deduces
(27)%vol G /
g

vol H Reg O

Since £ = dim g, we have g, = {0} for all n € Reg(; in particular, H ~ G, is a finite group.
Hence, volH = |H| and fgn P(X)dX = $(0) = 1, and we obtain the first equality. To see the
second, assume that « is supported in a neighborhood of C. Let K C T*M be a compact subset
such that suppa C K, and us € C°(Sing 2N K )35 a family of cut-off functions as in the proof of
Theorem [6l Denote the normal bundle to RegC = RegQ x {0} = RegQ by v: NReg(C — C, and
identify a tubular neighborhood of RegC with a neighborhood of the zero section in NV RegC. A
direct application of Theorem [A] then yields with Lemma [§

. iJx /e . dX 2m)4vol G r((1 —us)
Lo(&):g%//xe‘lx/ (1—u5)a<p(X)g=( )|H| /R a ((vom) .
g ° !

d(Reg ) (n)

Ly = ;g}% <]:gLou(p€> = vol 077

P(X) dX] a(n)

n

where only the leading term (G3) is relevant. Repeating the arguments in the proof of Theorem [

then shows that J
2 1G
Lo = lim Lo(8) = (”)7“’/ LO‘)'
5—0 |H| Reg Q VOl 077

With the notation as in Sections 2l and d] we finally arrive at the following

Theorem 7. Let o € H5(T*M) be of the form o(X) = o + Dv(X), where a is a closed, basic
differential form on T*M of compact support, and v an equivariant differential form of compact
support. Assume that the dimension k of a principal G-orbit equals d = dimg. Then

d o —iw o |H| 2
(2m) /Rengd Kl ™a) = ool T Res (CI) Z uF).

FeF
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Proof. Let o be a basic differential form on 7M. By definition, « is G-invariant and satisfies
tga = 0 for all X € g. It is therefore a constant map from g to A(T*M), and belongs to
(S(g*) @ A(T*M))C. Furthermore, Do = 0 iff daw = 0, so that a € H(T*M). The assertion is
now a consequence of Corollaries 2] and Bl together with Lemma 2] by which

vol G 9 . _ ~ (2m)%vol G / rle”™“a)
|W|volT Res ((I) F%;UF) =l <]:g (Leﬂwg(')( )) ’ s05> - |H] Reg VOl Oy

(2m)4vol G = i
= T / K(e™™a).
RCg Xred

Remark 6. In order to fully describe the cohomology of the quotient Reg X4, it would still
be necessary to consider more general forms o € HE(T*M) than the ones examined in Theorem
[[l For this, one would need a full asymptotic expansion for the integrals studied in Theorem [6]
and we intend to tackle this problem in a future paper. Nevertheless, the considered forms g are
already quite general in the following sense. Let G act locally freely on a symplectic manifold X,
which means that all stabilizer groups are finite, and assume that the action is Hamiltonian. As
a consequence, 0 is a regular value of the momentum map and X/G is an orbifold. Furthermore,
one has the isomorphism

O

Hg(X) ~ HY(X/G),
which implies that any equivariantly closed differential form g can be written in the form
o(X) =a+ Dr(X),

where « is a closed, basic differential form on T*M of compact support, and v is an equivariant
differential form of compact support [20].

Let X be a 2n-dimensional symplectic manifold with a Hamiltonian G-action. For general, not
necessarily equivariantly closed o € A.(X), no similar formulae can be expected, and non-local
remainder terms will occur. To see this, let us first deduce an expansion for L,(X) using the
stationary phase principle. For this, recall that for fixed X € g the critical set of Jx is clean in
the sense of Bott, and equal to FT in case that X € t’ is a regular element.

Lemma 9. Let X € g, and suppose that supp a N Crit Jx = 0. Then L, € S(g).

Proof. Let (v, 0) be a Darboux chart on X, so that the symplectic form w and the corresponding
Liouville form read

n n
w

wEE dp; N dg;, depl/\dql/\---/\dpn/\dqn.
i=1 :

Assume that oz, = f - “’H—T € A.(X) is supported in O, so that
/ X a :/ e X @R (f 0471 (g,p) dg dp,
X 7(0)

where Jyx oy~ 1(q,p) depends linearly on X. Let now supp a N Crit Jx = (. Writing

iJxoyTl 1 S < 0 -1 0 9 -1 9 iJxoy ™!
€ = o 12 S—(Uxor )=+ 7—-(Uxor )5 —)e )
il(Jx oy~ 1)? ; 54, 90, o, o
and integrating by parts we obtain L, (X) = O(|X|~°°) on g. Similarly, if {X7,..., X4} denotes a
basis of g, and X = > s;X;, the same arguments yield for arbitrary multi-indices 7 the estimate
07 Lo(X) = O(JX|~°) on g, and the assertion follows. O
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Next, let Y € ¢’ be a regular element, so that CritJy = FT, F € F a connected component of
FT, and v : NF — F the normal bundle of F. As usual, we identify a neighborhood of the zero
section of N F with a tubular neighborhood of F', and assume in the following that the support of
« is contained in that neighborhood. Integration along the fiber yields

La(Y)z/FV*(e“Ya).

To obtain a localization formula for L, (Y") via the stationary phase principle, consider an oriented
trivialization {(Uj, ¢;)};c; of v+ NF — F. Let {s1,..., s} be the fiber coordinates on N Fjy,

given by ¢, and Assume that « is given on v~1(U;) by
a; = fi(z,s) (W B;) Nds1 A--- Ndsy, B; € AN U;), xe€Uy,

where f; is compactly supported. The cleanness of Crit.JJy implies that the function s — Jy (z,s) =
Jy o cpj_l(x, s) has a non-degenerate critical point at s = 0 for each z € Uj, so that by choosing
the support of f; sufficiently small we can assume that there are no other critical points. Define
now the function Hy (z,s) = Jy (z,s) — (Jy-(x,0)s, s) /2, which depends linearly on Y. As in the
proof of Theorem [A] one computes for any N € N

1
det (2 (x, 0)/2mi)1/2

" T —1 T
S Y i (e G0 0 500) 00+ Rivia 1)) 55

r—k<N 3k<2r

vi(e UYO‘J)

where R;j y41 is an explicitly given smooth function on t' of order O(|Y|~V~1) given by

Bi
det (J3 (z,0)/2mi)1/2

Z / Z 27rllk'r|<<JY(x(2)> £5>> (o) 5y ) €) de.

r=3N+1

Rjnt1(Y) =

As a consequence, we obtain the desired localization formula.

Proposition 8. Let a € A(T*M), and Y € t'. Then, for arbitrary N € N,

Z ;/ det (J§ (z,0 /27m)1/2

FeF

"(.0)1 r
Z Z % <<DS,%DS> (iHY(I">)kfj(xv')) (ZE,O) 'ﬂj +RN+1(Y)7

r—k<N 3k<2r

where Ry 11 is an explicitely given, smooth function on t' of order O(|Y|~N=1).
(I

The limit (3]) can now be studied taking into account ([7]) and Cauchy’s integral theorem, together
with the theorems of Paley-Wiener-Schwartz, leading to corresponding residue formulae with non-
local terms.
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APPENDIX A. THE GENERALIZED STATIONARY PHASE THEOREM

In this appendix, we include a proof of the generalized stationary phase theorem in the set-
ting of vector bundles. It is a direct consequence of the projection formula and the stationary
phase approximation, and implies the classical generalized stationary phase theorem for manifolds.
Sketches of proofs for the latter can also be found in Combescure-Ralston-Robert [14, Theorem
3.3], as well as Varadarajan [39, pp. 199].

Theorem A (Stationary phase theorem for vector bundles). Let M be an n-dimensional, oriented
manifold, and m : E — M an oriented vector bundle of rang l. Let further o € AL (E) be a
differential form on E with compact support along the fibers, T € AT'=9(M) a differential form
on M of compact support, v € C*°(E), and consider the integral

I(u) = / eWV/H (T ) A e > 0.
E

Let v : M — E denote the zero section. Assume that the critical set of 1 coincides with (M),
and that the transversal Hessian Hessyrans 0 of ¥ is non-degenerate along o(M). Then, for each
N e N, I(u) possesses an asymptotic expansion of the form

N—-1
(61) 1) = /e Fo (2mp) s 37 Q5 7) + Rov ),
j=0
where Yo and oy denote the value of ¥ and the signature of the transversal Hessian along v(M),

respectively. The coefficients Q; are given by measures supported on M, and can be computed

explicitly, as well as the remainder term Ry (p) which is of order O(ut/>+N).

Proof. Let 7, : A%, (E) — A*~!(M) denote integration along the fiber in E, which lowers the degree
by the fiber dimension. By the projection formula [8, Proposition 6.15] one has

/ eV () Nev = / TA ﬂ'*(ew/“a).

E M

Let {U;};.; be an open covering of M and {(Uj, ¥;j)};cr @5 7~ YU;) = U; x R, an oriented
trivialization of 7 : ' — M. Write s1,...,s; for the fiber coordinates on E|y; given by ¢;. Since
I(u) vanishes if ¢ < I, we assume in the following that ¢ > [ and that « is given on #~!(U;) by

aj:fj(a:,s) (w*ﬂj)/\dsl/\-~-/\dsl, ﬂjGAq_l(Uj), {EEUj,

where the function f; € C(U; x R!) is compactly supported along the fibers. By assumption,
s P(x,s) =9po <pj_1(:1:, s) has a non-degenerate critical point at s = 0 for each x € Uj, so that
in view of the non-stationary phase theorem [24) Theorem 7.7.1] we can assume that there are no
other critical points by choosing the support of f; sufficiently small. Then, letting ¢ (z,0) = 0 and
setting H(x,s) = ¢(z,s) — (¢"(z,0)s, s) /2, one computes on 7 (U;)

W*(eﬂl’/#aj) - / eiw(z’s)/#fj(.f,s)dS B = / ei<w//(m,O)s,s>/2,ueiH(z,s)/,ufj(I, s)ds - B;
R! R!
— i* i<w”(z 0)s s>/2,u k
=Y [ O () £y () ds - 8.
k=0 " JR!

Note that it is permissible to interchange the order of summation and integration, since H(x, s) =
O(|s]®), so that under the hypothesis supp, fj(z,-) C B(0,1) one has for suitable C' > 0 the
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estimate
N H(z 5 )
Y R ? < Clfi(a )1 )2 k—k, <Celv|fiw, ),  NeN,
k=0 0

yielding an integrable majorand. Put Dy = —i dy. Taking into account

[ 6w @0 1) (@, 2,9) (€ d€ = ) (Dt (2,0) D) Hla, (o)) 0

we obtain with Parseval’s formula for arbitrary NeN

m(€Vh0y) = G 1/22 e [ O S R ey ) € de

N—1

_“;,)T ((Des 0" (@,0)71Ds) H(w, ) f5(x.)) (0)

_ B; o~ i
~ det (¢ (,0) /2 pui) /2 kzzo k! |

/Rl Z (0w 0) e ) F (e o) €) d

Note that interchanging integration and summation in the last term is in general not possible due
to the lack of an integrable majorand. Since H(x,s) vanishes of third order at s = 0, the local
terms are zero unless 3k < 2r. Consequently, for general ¥ and arbitrary N € N we arrive at

RSOV

i/, ) —
() = S W w 0) 2

(62)
S Y e (D, 0) D) H ) F5(,)) (0) 4 Ry |

r—k<N 3k<2r
where R; n41 is explicitly given by
P(x,0)/p . Bj
det (7 (z,0) [ 2myad) /2
" -1 r k
Z R /Rl Z 27T zQTT; ((0"(2,0)7€,€)) F(H(w, )" fi(=.)) (&) dE.

3+1

RjNy1 =

Moreover, by [24, Theorem 7.7.5] one has Rjni1 = O(u™*1). The assertion now follows by
integrating over M, and by taking det (¢ (x,0)/2mui)"/? = (27p) =2 |det ¥ (x,0)|"/2e =3 7% into
account. In particular, the leading coefficient is given by

' B 7T A7()
(63) Qo(Y;a,7) = /M |det Hesstrans 2/’|1/27

where the restriction map r : AY(E) — A97{(M) is locally given by

(=0 (hy)v,  p=1,

(64) hj (T773) Ndsgy A== Ndsg)  — { 0, p<l,

vj € A7P(U;), hy € C(U; x RY), o being a permutation in p variables.



SINGULAR EQUIVARIANT ASYMPTOTICS AND THE MOMENTUM MAP 51

Remark B. (1) In the proof of the last theorem, one can also use the lemma of Morse. This
simplifies the proof, but gives less explicit expressions for the coefficients @);, since the Morse
diffeomorphism is not given explicitly. Indeed, by Morse’s Lemma, we can choose the trivialization
of m: E— M in such a way that

Y(z,s) = % (s, Szs), Sz € Sym(l,R), det S, # 0,

where the symmetric matrix S; depends smoothly on 2 € U;. Parseval’s formula then yields

(e ay) :/ Vi f (2, s)ds - B
R

eimsgn Sm/4ul/2

= oo O P E ()@ de 5,

eifrsgnSm/4Ml/2 lN_l MT Sm_l r
= e s |2 2 T (<DS’7DS> fj@v')) (2,0)

r=0
+/Rl i %(%)TI(L(%))(Q d§‘| - B;.
r=N

By integrating over M, the assertion of Theorem [A] follows.

(2) In general, it is not possible to say anything about the convergence of the sum in (GI) as
N — oo, and consequently, about the limit limy_,oc Ry (), due to the lack of control of the growth
of the derivatives 95 f;(z,0) as |a| — .

From Theorem [Al we can now infer the classical generalized stationary phase theorem.

Theorem C (Generalized stationary phase theorem for manifolds). Let M be a n-dimensional,
orientable Riemannian manifold with volume form dM, 1 € C*°(M) a real valued phase function,
w >0, and set

1) = [ e k() a m),
M
where a(m) € C° (M) denotes a compactly supported function on M. Let
C= {m EM Y : TyyM — Tym)R is zem}

be the critical set of the phase function v, and assume that C is clean in the sense that

(1) C is a smooth submanifold of M of dimension p in a neighborhood of the support of a;
(2) for all m € C, the restriction "' (m)|n,.c of the Hessian of ¢ at the point m to the normal
space Ny C is a non-degenerate quadratic form.

Then, for all N € N, there exists a constant Cn . > 0 such that
_ N-1
; in n—p i
(1) = e"volre o mn) 2" 3 1w Qi(w5a)] < Cnn™ sup [[D'all

Jj=0

where D' is a differential operator on M of order | and vy the constant value of v on C, while oy,
denotes the constant value of the signature of the transversal Hessian Hessvy(m)|n,.c on C. The

coefficients Q; can be computed explicitly, and for each j there exists a constant C; . > 0 such that

Qs(w30)] < Gy sup [ Dall



52

PABLO RAMACHER

In particular,

doc(m),

Qo(;a) = / a(m)

¢ |det Hess ¢(m)w,,.c|'/?

where doc is the induced volume form on C.

Proof. Due to the non-stationary phase principle, we can assume that a dM is supported in a
tubular neighborhood of C. Identifying the latter with the total space NC of the normal bundle of
C, the assertion follows with Theorem [Al O
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