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WONDERFUL VARIETIES.

REGULARIZED TRACES AND CHARACTERS

STEPHANIE CUPIT-FOUTOU, APRAMEYAN PARTHASARATHY, PABLO RAMACHER

Abstract. Let G be a connected reductive complex algebraic group with split real form
G. In this paper, we introduce a distribution character for the regular representation of
G on the real locus X of a strict wonderful G-variety X, showing that on a certain open
subset of G of transversal elements it is locally integrable, and given by a sum over fixed
points.
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1. Introduction

Let G be a real reductive group. In classical harmonic analysis a crucial role is played
by the global character of an admissible representation (σ,H) of G on a Hilbert space
H. It is a distribution Θσ : f → trσ(f) on the group given in terms of the trace of the
convolution operators

σ(f) =

∫

G
f(g)σ(g) dG(g),

where f is a rapidly falling function on G, and dG a Haar measure on G. By Harish-
Chandra’s regularity theorem, Θσ is known to be locally integrable, and is the natural gen-
eralization of the character of a finite-dimensional representation. The regularity theorem
allowed Harish-Chandra to characterize tempered representations in terms of the growth
properties of their global characters, and fully determine the irreducible L2-integrable
representations of G.

Let G be a connected reductive complex algebraic group with split real form G. In
this paper, we introduce a similar character Θπ for the regular representation (π, C(X))
of G on the Banach space C(X) of continuous functions on the real locus X of a strict
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wonderful G-variety X. Since the G-action on X is no longer transitive, the corresponding
convolution operators will no longer be smooth, and a regularized trace Trreg π(f) has to
be considered. We then show that on a certain open set of transversal elements G(X) the
distribution Θπ is locally integrable, and given by

Trreg π(f) =

∫

G(X)
f(g)Tr# π(g)dG(g), f ∈ C∞

c (G(X)),

where the flat trace of π(g)

Tr# π(g) =
∑

x∈Fix(X,g)

1

|det (1− dΦg(x))|

is given by a sum over the fixed points of an element g ∈ G.
This paper is based on the local structure theorem for strict wonderful G-varieties

recently proved by Akhiezer and Cupit-Foutou [ACF12], and generalizes results already
obtained by Parthasarathy and Ramacher [PR12] for the Oshima compactification of a
Riemannian symmetric space.

2. Wonderful varieties

Throughout this article we shall adopt the convention of writing complex objects with
boldface letters and the corresponding real objects with the ordinary ones. Let G be
the split real form of a connected reductive complex algebraic group G of rank n, and
let σ : G → G be the involution defining the split real form G, so that G = Gσ =
{g ∈ G : σ(g) = g}. In particular, G is a real reductive group. Since G is not necessarily
connected, denote by G0 the identity component of G. Fix a maximal algebraic torus T
of G and a Borel subgroup B of G containing it. Denote the corresponding set of positive
and negative roots by Σ+ and Σ−, respectively. We recall the definition of a wonderful
variety.

Definition 1. ([Lun96]) An algebraic G-variety X is called wonderful of rank r if

(1) X is projective and smooth;
(2) X admits an open G-orbit whose complement consists of a finite union of smooth

prime divisors X1 . . . ,Xr with normal crossings;
(3) the G-orbit closures of X are given by the partial intersections of the Xi.

In particular notice that X has a unique closed, hence projective G-orbit. Further,
recall that a real structure on X is an involutive anti-holomorphic map µ : X → X; it
is said to be σ-equivariant if µ(g · x) = σ(g) · µ(x) for all (g, x) ∈ G × X. Crucial for
the ensuing analysis is the existence of a unique σ-equivariant real structure on wonderful
varieties. More precisely, one has the following

Theorem 1. [ACF12, Theorem 4.13] Let X be a wonderful G-variety of rank r whose
points have a self-normalizing stabilizer. Then

(1) there exists a unique σ-equivariant real structure µ on X;
(2) the real locus X of (X, µ) is not empty, and constitutes a smooth, compact, analytic

G-space with finitely many G-orbits and a unique projective G-orbit.
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!

Wonderful varieties whose points have self-normalizing stabilizers are called strict. In
what follows, let X be a strict, wonderful G-variety or rank r. From the classification
results of [BCF10] and [Res10] one immediately infers

Proposition 1. Let X be a wonderful G-variety such that its T-fixed-points are located
on its closed G-orbit. Then every point of X has a self-normalizing stabilizer.

!

Examples of real loci of strict wonderful G-varieties include the Oshima-Sekiguchi com-
pactification of a Riemannian symmetric space, which is the real locus of the De-Concini-
Procesi wonderful compactification of its complexification X up to a finite quotient, see
[BJ06, Chapter 8, Section II.14].

Let Y be the unique closed G-orbit in X, and consider a parabolic subgroup B ⊂ Q of
G such that Y & G/Q. Let Q = QuL be its Levi decomposition with T ⊂ L, and denote
the parabolic subgroup of G opposite to Q relative to L by P, so that P ∩Q = L, and
let P = PuL be its Levi decomposition. Notice that both Pu and (Pu)σ are connected,
and following our convention, write P u for (Pu)σ and L for Lσ.

The following local structure theorem describes the local structure of the real locus X,
and will be essential for everything that follows.

Theorem 2. [ACF12, Theorem 1.22] There exists a real algebraic L-subvariety Z of X
such that

(1) The natural mapping
P u × Z → P u · Z

is a P u-equivariant isomorphism;
(2) each G0-orbit in X contains points of the slice Z;
(3) the commutator (L,L) acts trivially on Z and the T -variety Z is isomorphic to Rr

acted upon linearly by linearly independent characters of T.

!

Note that P u · Z & P u × Z is invariant under P , since L normalizes Pu, so that

l · (p, z) = (lpl−1, lz) ∈ P u × Z for (p, z) ∈ P u × Z, l ∈ L.

By the first statement of Theorem 2, P u ·Z is an open subset of X isomorphic to P u×Rr,
and by the second, G · P u · Z = X. We can therefore cover X by the G-translates

Ug := g · Ue, Ue := P u · Z, g ∈ G.

Consequently, there exists a real-analytic diffeomorphism

ϕ : R
d ⊃ Ũe −→ P u × Z & P u · Z

and real-analytic diffeomorphisms ϕg

ϕg : R
d ⊃ Ũg

ϕ
−→ P u · Z

g
−→ g P u · Z, g ∈ G,

such that
{
(Ug,ϕ−1

g )
}
g∈G

constitutes an atlas of X. More explicitly, if zj denotes the j-th

coordinate function on Z & Rr, and p1, . . . , pk are coordinate functions on P u, we write

ϕ−1
g : Ug ) x *−→ (p1, . . . , pk, z1, . . . , zr) = m ∈ Ũg := ϕ−1

g (Ug).
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Note that Ug is invariant under the subgroups gTg−1 and gP ug−1. Next, denote by

W = W (T ) = NG(T )/ZG(T )

the Weyl group of G with respect to T , and write (Uw,ϕ−1
w ) := (Unw ,ϕ

−1
nw

) for any element
w ∈ W , nw ∈ NG(T ) being a representative of w. Note by definition of the Weyl group
Uw is independent of nw. Since nwTn−1

w = T , Uw carries a natural T -action. We shall
now construct a more refined atlas for the class of wonderful G-varieties introduced in
Proposition 1. This atlas will be of crucial importance later.

Proposition 2. Suppose that X is a wonderful G-variety such that its T-fixed-points are
located on its closed G-orbit. Then

{
(Uw,ϕ

−1
w )

}
w∈W

constitutes a finite atlas of X.

Proof. Let B− denote the Borel subgroup of G such that B ∩B− = T . The variety X has
a unique projective G-orbit and, hence, a unique point fixed by B− [ACF12]. This fixed
point, denoted in the following by y0, lies in the closed G-orbit by assumption. Next, let
η : s *→ (sa1 , ..., san), ai > 0, be a morphism from C∗ to the algebraic torus T & (C∗)r,
such that the set of T-fixed-points in X coincides with the set of fixed points of {η(s)}s∈C∗

in X. By [Bia73], there is a cell decomposition of X and, consequently, of X in terms of
the sets

{x ∈ X : lim
R∗%s→0

η(s) · x = y},

where y runs over the set of T -fixed-points of X. Furthermore, the open subset P u ·Z ⊂ X
is given by the cell

P u · Z = {x ∈ X : lim
R∗%s→0

η(s) · x = y0},

see [ACF12] for details. By assumption, all T -fixed-points belong to the closed G-orbit of
X. On the other side, it is well-known that the T -fixed-points of a projective G-orbit are
indexed by the Weyl group W . More specifically, for each such y there exists a w ∈ W such
that y = nwy0 for any representative nw ∈ NG(T ) of w. Noticing that the aforementioned
cells are just contained in the W -translates of P u · Z, one finally obtains the lemma. !

In what follows, we will always assume that the T-fixed-points of X are located on
its closed G-orbit. Next, let w ∈ W and x ∈ Uw, and denote by Vw,x ⊂ G the set of
g ∈ G that leave Uw invariant. From the orbit structure and the analyticity of X one
immediately deduces for g ∈ Vw,x

(1) zj(g · x) = χj(g, x)zj(x),

where χj(g, x) is a function that is real-analytic in g and in x. Furthermore, one computes
1 = χj(g−1, g · x) · χj(g, x), where g−1 ∈ Vw,gx. This implies

(2) χj(g, x) += 0 ∀x ∈ Uw, g ∈ Vw,x,

since χj(g−1, g ·x) is a finite complex number. We are interested in a more explicit descrip-
tion of the functions χj(g, x). For this, let γ1, . . . , γr be the characters of T mentioned in
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Theorem 2. These weights are usually called the spherical roots of X. The T -action on
Z & Rr is given explicitly by

(3) t · z = (γ1(t)z1, . . . , γr(t)zr) for all z = (z1, . . . , zr) ∈ Z and t ∈ T.

Corollary 1. For t ∈ T , j = 1, . . . , r, and x ∈ Uw we have

zj(t · x) = χj(t, x)zj(x) = γj(n
−1
w tnw)zj(x)

where nw ∈ NG(T ) is a representative of w. Furthermore,

zj(nwun
−1
w · x) = zj(x)

for any element u ∈ P u.

Proof. The first assertion follows readily from (1) and the definition of the open sets Uw.
Indeed, let x = nwp · z ∈ Uw and t ∈ T . Then t = nwt1n−1

w for some t1 ∈ T and

ϕ−1
nw

(t · x) = ϕ−1(t1p · z) = ϕ−1(t1pt
−1
1 , t1 · z),

so that the zj-coordinate of t · x reads γj(t1)zj(x). The second assertion follows directly
from Theorem 2 -(1). !

For later reference, we still mention the following

Corollary 2. Let I ⊂ {1, . . . , r}, and put

zI = (z1, . . . , zr) ∈ Z ⇐⇒ zi += 0 iff i ∈ I.

Then, for all x ∈ X there exists a zI such that

(1) G · x = G · zI ;
(2) P u × (T/ ∩i∈I ker γi) acts locally transitively on G · zI .

Proof. This is a direct consequence of Theorem 2. !

3. Microlocal analysis of integral operators on wonderful varieties

As in Section 2, let G be a connected reductive algebraic group over C and (G,σ) a
split real form of G. Let X be a strict wonderful G-variety of rank r, and X the real
locus of X with respect to the canonical real structure on it. As before, let Y = G/Q
be the unique closed G-orbit of X, and P the parabolic subgroup opposite to Q. Let
P = PuL be its Levi decomposition, where Pu is the unipotent radical of P and L its Levi
component. Furthermore, fix some maximal torus T of G contained in Q, and assume
that the T-fixed-points of X are located on its closed G-orbit. Consider now the Banach
space C(X) of continuous, complex valued functions on X, equipped with the supremum
norm, and let (π,C(X)) be the corresponding continuous regular representation of G0

given by
π(g)ϕ(x) = ϕ(g−1 · x), ϕ ∈ C(X).

The representation of the universal enveloping algebra U of the Lie algebra g of G on
the space of smooth vectors C(X)∞ will be denoted by dπ. Also, we will consider the
regular representation of G0 on C∞(X) which, equipped with the topology of uniform
convergence, becomes a Fréchet space. We will denote this representation by π as well.
Let (L,C∞(G0)) be the left regular representation of G0. Let θ be a Cartan involution
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on g. With respect to the left-invariant Riemannian metric on G0 given by the modified
Cartan-Killing form

〈A,B〉θ = −〈A, θB〉 , A,B ∈ g,

we denote by d(g, h) the distance between two points g, h ∈ G0, and set |g| = d(g, e),
where e is the identity element of G. A function f on G0 is said to be of at most of
exponential growth, if there exists a κ > 0 such that |f(g)| ≤ Ceκ|g| for some constant
C > 0. Let further dG0 be a Haar measure on G0. We introduce now a certain class of
rapidly decreasing functions on G0.

Definition 2. A function f ∈ C∞(G0) is called rapidly decreasing if it satisfies the
following condition: For every κ ≥ 0 and H ∈ U there exists a constant C > 0 such that

|dL(H)f(g)| ≤ Ce−κ|g|.

The space of rapidly decreasing functions on G0 will be denoted by S(G0).

Remark 1. 1) Note that f ∈ S(G0) implies that for every κ ≥ 0 and H ∈ U one has

dL(H)f ∈ L1(G0, e
κ|g|dG0).

Indeed, let c > 0 be such that e−c|g| ∈ L1(G0, dG0), and κ ≥ 0 and X ∈ U be given. Then
|e(κ+c)|g|dL(X)f(g)| ≤ C for all g ∈ G0 and a suitable constant C > 0, so that

∥∥dL(X)feκ|·|
∥∥
L1(G0,dG0 )

≤ C
∥∥e−c|·|

∥∥
L1(G0,dG0 )

< ∞.

2) If f ∈ S(G0), dR(X)f ∈ S(G0). Furthermore, if one compares the space S(G) with
the Fréchet spaces Sa,b(G) defined in [Wal88, Section 7.7.1], where a and b are smooth,
positive, K-bi-invariant functions on G satisfying certain properties, one easily sees that
a(g) = e|g| and b(g) = 1 satisfy the selfsame properties, except for the smoothness at g = e
and the K-bi-invariance of a. The introduction of the space S(G) was motivated by the
study of strongly elliptic operators and the decay properties of the semigroups generated
by them [Ram06].

Consider next on C(X) for each f ∈ S(G0) the continuous linear operator

π(f) =

∫

G0

π(g)f(g)dG0 .

Its restriction to C∞(X) induces a continuous linear operator

π(f) : C∞(X) −→ C∞(X) ⊂ D′(X),

with Schwartz kernel given by the distribution section Kf ∈ D′(X ×X,1"ΩX). Observe
that the restriction of π(f)ϕ to any of the G0-orbits depends only on the restriction of
ϕ ∈ C(X) to that orbit. Let X0 be an open orbit in X. The main goal of this section is to
disclose the microlocal structure of the operators π(f), and characterize them as totally
characteristic pseudodifferential operators on the manifold with corners X0. Recall that
according to Melrose [Mel82] a continuous linear map

A : C∞
c (M) −→ C∞(M)
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on a smooth manifold with corners M is called a totally characteristic pseudodifferential
operator or order l ∈ R if it can be written locally as an oscillatory integral

Au(m) =

∫
eim·ξa(m, ξ)û(ξ) d̄ξ, u ∈ C∞

c (Rn,k),

where û denotes the Fourier transform of u and Rn,k = [0,∞)k × Rn−k the standard
manifold with corners with 0 ≤ k ≤ n and coordinates m = (m1, . . . ,mk,m′), while d̄ξ =
(2π)−n dξ. The amplitude a is supposed to be of the form a(m, ξ) = ã(m,m1ξ1, . . . ,mkξk, ξ′),
where ã(m, ξ) is a symbol of order l satisfying the lacunary condition

∫
ei(1−t)ξja(m, ξ) dξj = 0 for t < 0 and 1 ≤ j ≤ k.

For a more detailed exposition on totally characteristic pseudodifferential operators, the
reader is referred to [PR12].

To begin with our analysis, choose for each x ∈ X open neighbourhoods Ux ⊂ U ′
x of x

contained in Uw for some w ∈ W depending on x. Since X is compact, we can take a finite
sub-cover of the open cover {Ux}x∈X to obtain a finite atlas

{
(U(,ϕ−1

( )
}
(∈R

on X, where

ϕ( = ϕw(() for a suitable w(*) ∈ W . Let {α(}(∈R be a partition of unity subordinate

to this atlas, and let {ᾱ(}(∈R be another set of functions satisfying ᾱ( ∈ C∞
c (U ′

() and

ᾱ(|U!
≡ 1. Write Ũ( := ϕ−1

( (U() ⊂ Rk+r, and consider the localization of π(f) with
respect to the atlas above given by

A(
fu = [π(f)|U!

(u ◦ ϕ−1
( )] ◦ ϕ(, u ∈ C∞

c (Ũ().

Writing m = (m1, . . . ,mk+r) = (p, z) ∈ Ũ( we obtain

A(
fu(m) =

∫

G0

f(g)[(u◦ϕ−1
( )ᾱ(](g

−1·ϕ((m)) dG0(g) =

∫

G0

f(g)c((m, g)(u◦ϕg
w(())(m)dG0(g),

where we put c((m, g) = ᾱ((g−1 · ϕ((m)) and ϕg
w = ϕ−1

w ◦ g−1 ◦ ϕw. Note that with the
notation of (1) we have

ϕg
w(m) = (p1(g

−1 · x), . . . , pk(g
−1 · x), z1(x)χ1(g

−1, x), . . . , zr(x)χr(g
−1, x))

for x = ϕw(p, z) ∈ Uw, g−1 ∈ Vw,x. Next, define the functions

f̂((m, ξ) =

∫

G0

eiϕ
g
w(!)(m)·ξc((m, g)f(g)dG0(g), a(f (m, ξ) = e−ix·ξ f̂((m, ξ),

which are seen to belong to C∞(U( × Rk+r) by differentiating under the integral. Let
now Tm be the diagonal (r × r)-matrix with entries mk+1, . . . ,mk+r, and introduce the
auxiliary symbol

ã(f (m, ξ) = a(f (m, (1k ⊗ T−1
m )ξ) = e−i(m1,...,mk,1,...,1)·ξ

∫

G0

ψw(()
ξ,m (g−1)c((m, g)f(g)dG0(g)

(4)

where we put

ψw
ξ,m(g) = ei(p1(g·x),...,pk(g·x),χ1(g,x),...,χr(g,x))·ξ.
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Clearly, ã(f (m, ξ) ∈ C∞(U( × Rk+r). Our next goal is to show that ã(f (m, ξ) is a lacunary

symbol of order −∞. To key argument is contained in the following

Proposition 3. Let w ∈ W and (Uw,ϕw) be an arbitrary chart of X. Let further
{P1, . . . ,Pk} and {T1, . . . ,Tr} be bases for Lie (nwP un−1

w ) and Lie (T ), respectively, nw

being a representative of w. With m = (p, z) ∈ Ũw, x = ϕw(m) ∈ Uw, and g ∈ Vw,x one
has

(5)




dL(P1)ψw

ξ,m(g)
...

dL(Tr)ψw
ξ,m(g)



 = iψw
ξ,m(g)Γ(m, g)ξ,

where

(6) Γ(m, g) =

(
Γ1 Γ2

Γ3 Γ4

)
=





dL(Pi)pj,x(g) dL(Pi)χj(g, x)

dL(Ti)pj,x(g) dL(Ti)χj(g, x)





belongs to GL(r + k,R), and pj,x(g) = pj(g · x).

Proof. Let m, x, g be as above. For G ∈ g, one computes

dL(G)ψw
ξ,m(g) =

d

ds
ei(1k⊗T−1

x )ϕ e−sG g
w (m)·ξ |s=0 = iψw

ξ,m(g)
[ k∑

i=1

ξidL(G)pi,x(g)

+
l∑

j=1

ξk+jdL(G)χj(g, x)
]
,

showing the first equality. To see the invertibility of the matrix Γ(m, g), note that for
small s ∈ R

χj( e
−sG g, x) = χj(g, x)χj( e

−sG , g · x).

Corollary 1 then yields that Γ4 is non-singular. In the same way, the matrix Γ1 is non-
singular. Its (ij)th entry reads

dL(Pi)pj,x(g) =
d

ds
pj,x( e

−sPi · g)|s=0 = (−Pi|X)g·x(pj),

and the assertion follows from Corollary 2. On the other hand, Corollary 1 implies

dL(Pi)χj(g, x) = χj(g, x)
d

ds

(
χj(e

−sPi , g · x)
)

|s=0
= 0,

showing that Γ2 is identically zero. Geometrically, this amounts to the fact that the
fundamental vector field corresponding to Tj is transversal to the hypersurface defined by
zj = const ∈ R \ {0}, while the vector fields corresponding to the Lie algebra elements
Pr,Ti, i += j, are tangential. We therefore conclude that Γ(m, g) is non-singular.

!

We can now state the main result of this section.
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Theorem 3. Let X be the real locus of a strict wonderful variety X. For f ∈ S(G0), the
operators π(f) are locally of the form

A(
fu(m) =

∫
eim·ξa(f (m, ξ)û(ξ)d̄ξ, u ∈ C∞

c (Ũ(),(7)

where a(f (m, ξ) = ã(f (m, ξ1, . . . , ξk,mk+1ξk+1, . . . , ξk+rmk+r), and ã(f (m, ξ) ∈ S−∞
la (Ũ( ×

R
k+r
ξ ) is given by (4). In particular, the kernel of the operator A(

f is determined by its

restrictions to Ũ∗
( × Ũ∗

( , where Ũ∗
( = {m = (p, t) ∈ Ũ( : t1 · · · tr += 0}, and given by the

oscillatory integral

(8) KA!
f
(m, y) =

∫
ei(m−y)·ξa(f (m, ξ)d̄ξ.

Proof. The proof follows essentially the proof of [PR12, Theorem 2]. Indeed, as a conse-
quence of Proposition 3 one computes that ψw

ξ,m(g) can be written for arbitrary N ∈ N

as

ψw
ξ,m(g) = (1 + |ξ|2)−N

2N∑

j=0

∑

|α|=j

bNα (m, g)dL(Gα)ψw
ξ,m(g)

with suitable Gα ∈ U and coefficients bNα (m, g) that are at most of exponential growth in
g. Since (∂αξ ∂

β
m ã(f )(m, ξ) is given by a finite sum of terms of the form

ξβ
′

e−i(m1,...,mk,1,...,1)·ξ
∫

G
f(g)dαβ′β′′(m, g)ψw

ξ,m(g−1)(∂β
′′

m c()(m, g)dG0(g),

the functions dαβ′β′′(m, g) being at most of exponential growth in g, we finally obtain for
arbitrary α,β, and N ∈ N the estimate

|(∂αξ ∂
β
m ã(f )(m, ξ)| ≤

1

(1 + ξ2)N
Cα,β,K m ∈ K,

where K denotes an arbitrary compact set in U(. This proves that ã(f (m, ξ) is a symbol
of order −∞. Since equation (7) follows immediately from the Fourier inversion formula,
and the lacunarity of ã(f (m, ξ) is a direct consequence of the orbit structure of X, the
assertion of Theorem 3 follows. For further details we refer the reader to the proof of
[PR12, Theorem 2]. !

As a consequence of the above theorem, one obtains the following

Corollary 3. Let X0 be an open G0-orbit in X. Then the continuous linear operators

π(f)|X0
: C∞

c (X0) −→ C∞(X0),

are totally characteristic pseudodifferential operators of class L−∞
b on the manifold with

corner X0.

!

Remark 2. Note that if in the previous corollary X0 is a Riemannian symmetric space,
then its closureX0 inX is the maximal Satake compactification ofX0, see Remark II.14.10,
[BJ06].
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As the most important consequence, Theorem 3 enables us to write the kernel of π(f)
locally in the form

KA!
f
(m,m′) =

∫
ei(m−m′)·ξa(f (m, ξ)d̄ξ =

∫
ei(m−m′)·(1k⊗T−1

m )ξ ã(f (m, ξ)

· |det (1k ⊗ T−1
m )′(ξ)|d̄ξ

=
1

|mk+1 · · ·mk+r|
Ã(

f (m,m1 −m′
1, . . . , 1−

m′
k+1

mk+1
, . . . ),

(9)

where Ã(
f (m, y) denotes the inverse Fourier transform of the lacunary symbol ã(f (m, ξ),

and mk+1 · · ·mk+r += 0. The restriction of the kernel of A(
f to the diagonal is given by

KA!
f
(m,m) =

1

|mk+1 · · ·mk+r|
Ã(

f (m, 0), mk+1 · · ·mk+r += 0.

These restrictions yield a family of smooth functions k(f (x) = KA!
f
(ϕ−1

( (x),ϕ−1
( (x)), which

define a density kf on the union of the open G0-orbits on X. Nevertheless, the functions
k(f (x) are not locally integrable on all of X, so that we cannot define a trace of π(f) by
integrating the density kf over the diagonal ∆X×X & X. Instead, the explicit form of the
local kernels (9) suggests a natural regularization of the integral operators π(f), based
on a classical result of Bernstein-Gelfand on the meromorphic continuation of complex
powers.

Proposition 4. Let {α(} be the partition of unity subordinate to the atlas {(U(,ϕ−1
( )}(∈R.

Let f ∈ S(G0), s ∈ C, and define for Re s > 0

Trs π(f) =
∑

(

∫

Ũ!

(α( ◦ ϕ()(m)|mk+1 · · ·mk+r|
sÂ(

f (m, 0)dm

=

〈

|mk+1 · · ·mk+r|
s,
∑

(

(α( ◦ ϕ()Â
(
f (·, 0)

〉

.

Then Trs π(f) can be continued analytically to a meromorphic function in s with at most
poles at −1,−3, . . . . Furthermore, for s ∈ C− {−1,−3, . . .},

Θs
π : C∞

c (G) ) f *→ Trs π(f) ∈ C

defines a distribution density on G.

Proof. The proof is analogous to the proof of [PR12, Proposition 4]. In particular, the
fact that Trs π(f) can be continued meromorphically is a consequence of the analytic
continuation of |mk+1 · · ·mk+r|s as a distribution in Rk+r. !

Consider next the Laurent expansion of Θs
π(f) at s = −1. For this, let u ∈ C∞

c (Rk+r)
be a test function, and consider the expansion

〈|mk+1 · · ·mk+r|
s, u〉 =

∞∑

j=−l

Sj(u)(s + 1)j ,
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where Sk ∈ D′(Rk+r). Since |mk+1 · · ·mk+r|s+1 has no pole at s = −1, we necessarily
must have

|mk+1 · · ·mk+r| · Sj = 0 for j < 0, |mk+1 · · ·mk+r| · S0 = 1

as distributions. Thus S0 ∈ D′(Rk+r) represents a distributional inverse of |mk+1 · · ·mk+r|.
By the same arguments that led to Proposition 4 we arrive at the following

Proposition 5. For f ∈ S(G), let the regularized trace of the operator π(f) be defined by

Trreg π(f) =

〈

S0,
∑

(

(α( ◦ ϕ()Ã
(
f (·, 0)

〉

.

Then Θπ : C∞
c (G) ) f *→ Trreg π(f) ∈ C constitutes a distribution density on G, which is

called the character of the representation π.

!

Remark 3. Alternatively, a similar regularized trace can be defined using the calculus
of b-pseudodifferential operators developed by Melrose. For a detailed description, the
reader is referred to [Loy98], Section 6.

In what follows, we shall identify distributions with distribution densities on G via the
Haar measure dG. Our next aim is to understand the distributions Θs

π and Θπ in terms
of the G-action on X. We shall actually show that on a certain open set of transversal
elements, they are represented by locally integrable functions given in terms of fixed points.
Similar expressions where derived by Atiyah and Bott [AB68] for the global character of
an induced representation of G.

4. Character formulae

In what follows, we shall prove similar formulae for the distributions Θπ and Θs
π defined

in the previous section. Let the notation be as before, and denote by Φg(x) = g−1 · x the
action of an element g ∈ G on X. Recall that Φg is called transversal, if all its fixed points
are simple, meaning that det (1 − (dΦg)x0) += 0 for a fixed point x0 ∈ X. Further note
that the set G(X) ⊂ G of elements acting transversally on X is open. We then have the
following

Theorem 4. Let f ∈ C∞
c (G) have support in G(X), and s ∈ C be such that Re s > −1.

Let further Fix(X, g) denote the set of fixed points of an element g ∈ G on X. Then
(10)

Trs π(f) =

∫

G(X)
f(g)




∑

x∈Fix(X,g)

∑

(

α((x)|mk+1(κ−1
( (x)) · · ·mk+r(κ−1

( (x))|s+1

|det (1− dΦg(x))|



 dG(g).

In particular, Θs
π : C∞

c (G) ) f → Trs π(f) ∈ C is regular on G(X).

Proof. The proof is analogous to the proof of Theorem 7 in [PR12]. By Proposition 3,

Trs π(f) =
∑

(

∫

Ũ!

(α( ◦ ϕ()(m)|mk+1 · · ·mk+r|
sÃ(

f (m, 0)dm
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is a meromorphic function in s with possible poles at −1,−3, . . . , and we assume that
Re s > −1. Since Ã(

f (m, 0) =
∫
ã(f (m, ξ)d̄ξ, where ã(f (m, ξ) ∈ S−∞

la (Ũ( × Rk+r) is rapidly
decaying in ξ by Theorem 3, the order of integration can be interchanged, yielding

Trs π(f) =
∑

(

∫ ∫

Ũ!

(α( ◦ ϕ()(m)|mk+1 · · ·mk+r|
sã(f (m, ξ)dm d̄ξ.

Let χ ∈ C∞
c (Rk+r,R+) be equal 1 in a neighborhood of 0, and ε > 0. Then, by Lebesgue’s

theorem on bounded convergence,

Trs π(f) = lim
ε→0

Iε,

where we set

Iε =
∑

(

∫ ∫

Ũ!

(α( ◦ ϕ()(m)|mk+1 · · ·mk+r|
sã(f (m, ξ)χ(εξ) dm d̄ξ.

Interchanging the order of integration once more, one obtains with (4)

Iε =

∫

G
f(g)

∑

(

∫ ∫

Ũ!

eiΨw(!)(g
−1,m)·ξc((m, g)(α( ◦ ϕ()(m)|mk+1 · · ·mk+r|

sχ(εξ)dm d̄ξ dG(g),

everything being absolutely convergent, where we wrote

Ψw(g,m) = [(1k ⊗ T−1
m )(ϕg

w(m)−m)]

= (m1(g · x)−m1(x), . . . ,mk(g · x)−mk(x),χ1(g, x) − 1, . . . ,χr(g, x) − 1).

Let us now define

Iε(g) = f(g)
∑

(

∫ ∫

Ũ!

eiΨw(!)(g
−1,m)·ξc((m, g)(α( ◦ ϕ()(m)|mk+1 · · ·mk+r|

sχ(εξ)dm d̄ξ,

so that Iε =
∫
G Iε(g) dG(g). In order to pass to the limit under the integral, we shall show

that limε→0 Iε(g) is an integrable function on G. Now, it is not difficult to see that, as
ε → 0, the main contributions to Iε(g) originate from the fixed points of g, which are also
the fixed points of g−1. To examine these contributions, note that due to the fact that all
fixed points are simple, m *→ ϕg

((m) −m defines a diffeomorphism near the fixed points.
Performing the change of variables y = m− ϕg

((m) one obtains

lim
ε→0

Iε(g) = f(g)
∑

x∈Fix(X,g)

∑

(

α((x)|mk+1(κ−1
( (x)) · · ·mk+r(κ−1

( (x))|s+1

|det (1− dΦg(x))|
.

The limit function limε→0 Iε(g) is therefore clearly integrable on G for Re s > −1. Passing
to the limit under the integral then yields

Trs π(f) = lim
ε→0

Iε = lim
ε→0

∫

G
Iε(g) dG(g) =

∫

G
lim
ε→0

(
I(1)ε + I(2)ε

)
(g)dG(g)

=

∫

G
f(g)

∑

x∈Fix(X,g)

∑

(

α((x)|mk+1(κ−1
( (x)) · · ·mk+r(κ−1

( (x))|s+1

|det (1− dΦg(x))|
dG(g).

The assertion of the theorem now follows. !
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From the previous theorem it is now clear that if f ∈ C∞
c (G(X)), Trs π(f) is not singular

at s = −1. Consequently, we obtain

Corollary 4. Let f ∈ C∞
c (G) have support in G(X). Then

Trreg π(f) = Tr−1 π(f) =

∫

G(X)
f(g)

∑

x∈Fix(X,g)

1

|det (1− dΦg(x))|
dG(g).

In particular, the distribution Θπ : f → Trreg(f) is regular on G(X).

Proof. By (10), Trs π(f) has no pole at s = −1. Therefore, the Laurent expansion of
Θs
π(f) at s = −1 must read

Trs π(f) =

〈

|mk+1 · · ·mk+r|
s,
∑

(

(α( ◦ ϕ()Â
(
f (·, 0)

〉

=
∞∑

j=0

Sj

(∑

(

(α(◦ϕ()Â
(
f (·, 0)

)
(s+1)j ,

where Sk ∈ D′(Rk+r). Thus,

Tr−1 π(f) =

〈

S0,
∑

(

(α( ◦ ϕ()Â
(
f (·, 0)

〉

= Trreg π(f),

and the assertion follows with the previous theorem. !

Corollary 4 implies that Trreg π(f) is invariantly defined. Furthermore, interpreting
π(g) as a geometric endomorphism on the trivial bundle E = X × C over X, a flat trace
Tr# π(g) of π(g) can be defined. As it turns out [AB67],

Tr# π(g) =
∑

x∈Fix(X,g)

1

|det (1− dΦg(x))|
,

so that we finally obtain

Trreg π(f) =

∫

G(X)
f(g)Tr# π(g)dG(g), f ∈ C∞

c (G(X)).
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