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Abstract. Let M be a compact boundaryless manifold, carrying an effective and isometric action
of a compact connected Lie group G, and P0 an invariant elliptic classical pseudodifferential operator
on M . Using Fourier integral operator techniques, we prove a local Weyl law with remainder estimate
for the equivariant (or reduced) spectral function of P0 for each isotpyic component in the Peter-
Weyl decomposition of L2(M). From this we deduce a generalized Kuznecov sum formula for periods
of G-orbits, and recover the local Weyl law for orbifolds. Relying on recent results on singular
equivariant asymptotics of oscillatory integrals, we further characterize the caustic behavior of the
reduced spectral function near singular orbits, which allows us to give corresponding point-wise
bounds for clusters of eigenfunctions in specific isotypic components that are sharp. In case that G
acts on M without singular orbits, we are able to deduce refined Lp-bounds for 2 ≤ p ≤ ∞ that
improve on the classical estimates for generic eigenfunctions.
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1. Introduction

In this paper, we derive an asymptotic formula with remainder estimate for the equivariant (or
reduced) spectral function of an invariant elliptic operator on a compact manifold with an effective
and isometric action of a compact connected Lie group, generalizing previous work of Avacumovič
[1], Levitan[19], Hörmander [13], and, more recently, Stanhope and Uribe [29]. If G acts on M with
orbits of the same dimension, we obtain Lp-bounds for eigenfunctions belonging to specific isotypic
components that improve on the classical estimates for generic eigenfunctions proved by Sogge [26],
but cannot hold when singular orbits are present. In the latter case, we are able to describe the
caustic behavior of the reduced spectral function as one approaches orbits of singular type, relying
on recent results on singular equivariant asymptotics of oscillatory integrals obtained in the work [21]
via desingularization techniques. In some sense, the present paper could be seen as culmination of
the investigation initiated in that work. As an application, we are able to prove point-wise bounds
for isotypic clusters of eigenfunctions, showing that they tend to concentrate on singular orbits. In
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2 PABLO RAMACHER

particular, this gives a new interpretation of the classical bounds for spherical harmonics in terms of
caustics of the equivariant spectral function, generalizing them to eigenfunctions on arbitrary compact
manifolds with symmetries. Our results can be viewed as part of the more general problem of studying
eigenfunctions of a commuting family of differential operators on a general compact manifold that are
independent in some sense, compare [20].

To explain our results, consider a closed1 connected Riemannian manifold M of dimension n, to-
gether with an elliptic classical pseudodifferential operator

P0 : C∞(M) −→ L2(M)

of degree m, where C∞(M) denotes the space of smooth functions on M and L2(M) the Hilbert space
of square integrable functions with respect to the Riemannian volume density dM on M . We assume
that P0 is positive and symmetric, so that it has a unique self-adjoint extension P . Furthermore, the
compactness of M implies that P has discrete spectrum. Let {Eλ} be a spectral resolution of P , and
denote by e(x, y,λ) the Schwartz kernel of Eλ, which is called the spectral function of P . Within the
theory of Fourier integral operators one can then show the following local Weyl formula [1, 19, 13]

(1.1)
���e(x, x,λ)− λ

n
m

(2π)n

ˆ
p(x,ξ)<1

dξ
��� ≤ Cλ

n−1
m , x ∈ M, λ → ∞,

for some constant C > 0 independent of x and λ, p being the principal symbol of P0. By integrating over
M one deduces from this for the spectral counting functionN(λ) :=

�
t≤λ dim Et =

´
M e(x, x,λ) dM(x)

the global Weyl formula

N(λ) =
volS∗M

n(2π)n
λ

n
m +O(λ

n−1
m ),

where Et denotes the eigenspace of P belonging to the eigenvalue t and S∗M the co-sphere bundle
{(x, ξ) ∈ T ∗M : p(x, ξ) = 1}. In order to show (1.1) one first proves the estimate

(1.2) |e(x, x,λ+ 1)− e(x, x,λ)| ≤ C · λn−1
m , x ∈ M,

which describes the order of magnitude of the discontinuities of N(λ) or, more generally, the amount of

eigenvalues in the interval (λ,λ+1] as λ → +∞, yielding the asymptotics N(λ+1)−N(λ) = O(λ
n−1
m ).

The bound (1.2) is equivalent to

(1.3)
�

λj∈(λ,λ+1]

|ej(x)|2 ≤ C · λn−1
m , x ∈ M,

where {ej} denotes an arbitrary orthonormal basis of eigenfunctions {ej} of P in L2(M) with eigen-
values {λj}, and actually implies the bound

(1.4) �χλu�L∞(M) ≤ C(1 + λ)
n−1
2m �u�L2(M) , u ∈ L2(M),

where χλ denotes the spectral projection onto the sum of eigenspaces with eigenvalues in the interval
(λ,λ+1] with Schwartz kernel χλ(x, y) = e(x, y,λ+1)−e(x, y,λ), since �χλ�2L2→L∞ ≡ supx∈M χλ(x, x).
From this the estimate for N(λ+1)−N(λ) immediately follows by taking the trace of χλ. In particular,
one deduces from (1.4) the bound for eigenfunctions

(1.5) �u�L∞(M) ≤ C λ
n−1
2m , u ∈ Eλ, �u�L2 = 1.

Under the additional assumption that the co-spheres S∗
xM are strictly convex, Seeger and Sogge

[23] were also able to prove upper bounds for Lp-norms of eigenfunctions via analytic interpolation
techniques, generalizing previous work of Sogge for second order elliptic differential operators [26].
More precisely, let

δn(p) := max

�
n

����
1

2
− 1

p

����−
1

2
, 0

�
.

1By a closed manifold we will understand a compact manifold without boundary.
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Then, for u ∈ Eλ, �u�L2 = 1 one has

(1.6) �u�Lp(M) ≤
�
Cλ

δ(p)
m , 2(n+1)

n−1 ≤ p ≤ ∞,

Cλ
(n−1)(2−p�)

4mp� , 2 ≤ p ≤ 2(n+1)
n−1 ,

where 1
p + 1

p� = 1.

In this paper, we shall prove bounds similar to those of (1.1)-(1.6) in the presence of symmetries.
To explain our results, assume that M carries an effective and isometric action of a compact connected
Lie group G with Lie algebra g, and that P commutes with the left-regular representation (π,L2(M))
of G in L2(M) given by

π(g)u(x) = u(g−1 · x), u ∈ L2(M),

so that each eigenspace of P becomes a unitary G-module. If �G denotes the set of equivalence classes
of irreducible unitary representations of G, which we shall identify with the set of characters of G, the
Peter-Weyl theorem asserts that

(1.7) L2(M) =
�

γ∈ �G

L2
γ(M),

a Hilbert sum decomposition, where L2
γ(M) = ΠγL2(M) denotes the γ-isotypic component, and Πγ the

corresponding projection. Let eγ(x, y,λ) be the spectral function of the operator Pγ := Πγ ◦P ◦Πγ =
P ◦Πγ = Πγ ◦P . Further, let J : T ∗M → g∗ denote the momentum map of the Hamiltonian G-action
on T ∗M , induced by the action of G on M , and write Ω := J−1({0}). As our first result, we show in
Theorem 4.3 the equivariant local Wey law

(1.8)

�����eγ(x, x,λ)− λ
n−κx

m
dγ [πγ|Gx

: 1]

(2π)n−κx

ˆ
(x,ξ)∈Ω, p(x,ξ)<1

dξ

volO(x,ξ)

����� ≤ Cx dγ λ
n−κx−1

m , x ∈ M,

as λ → ∞, where κx := dimOx is the dimension of the orbit through x, dγ denotes the dimension
of an irreducible G-representation πγ belonging to γ and [πγ|Gx

: 1] the multiplicity of the trivial
representation in the restriction of πγ to the isotropy group Gx of x, while Cx > 0 is a constant
depending on x but not on λ. It should be emphasized that κx, and therefore also the leading term
and the constant Cx, which are independent of λ, will in general depend in a highly non-uniform way
on x ∈ M . In fact, the description of eγ(x, y,λ) reduces in essence to the study of oscillatory integrals
of the form

(1.9) Ix,y(µ) :=

ˆ
G

ˆ
S∗
xY

eiµΦx,y(ω,g)aµ(x, y,ω, g) d(S
∗

xY )(ω) dg, µ > 0,

with phase function
Φx,y(ω, g) := �κ(x)− κ(g · y),ω� ,

where (Y,κ) is a local chart on M and aµ ∈ C∞
c an amplitude that might depend on µ and is such that

(x, y,ω, g) ∈ supp aµ implies x, g · y ∈ Y , while d(S∗Y ) and dg denote Liouville and Haar measure,
respectively. Now, when trying to describe the asymptotic behavior of Ix,x(µ) as µ → ∞ uniformly
in x via the stationary phase principle, one encounters the phenomenon that the critical set Cx of
Φx,x changes abruptly its dimension when x passes through points of singular orbits, leading to a
drastic change in the asymptotics of Ix,x(µ). Such points are called caustics [31], and are ultimately
responsible for the qualitatively very different asymptotic behavior of the reduced spectral function as
x approaches such points.

Though the leading coefficient in the asymptotic formula (1.8) for eγ(x, x,λ) is explicit, and has
a clear geometric meaning, it does not unveil the caustic nature of eγ(x, x,λ), and blows up in an
unknown way as x approaches singular orbits. To obtain a precise description of this caustic behavior
it is necessary to examine the integrals (1.9) more carefully. For this, we shall rely on recent results
on singular equivariant asymptotics obtained in [21] via resolution of singularities from which we will
be able to deduce a uniform description of the integrals Ix,x(µ) and the behavior of eγ(x, x,λ) near
singular orbits. More precisely, consider the stratification M = M(H1)∪̇ . . . ∪̇M(HL) of M into orbit
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types, arranged in such a way that (Hi) ≤ (Hj) implies i ≥ j, and let Λ be the maximal length that
a maximal totally ordered subset of isotropy types can have. Write Mprin := M(HL), Mexcept, and
Msing for the union of all orbits of principal, exceptional, and singular type, respectively, so that

M = Mprin ∪̇Mexcept ∪̇Msing,

and denote by κ := dimG/HL the dimension of an orbit of principal type. Then, by Theorem 7.7 one
has for x ∈ Mprin ∪Mexcept and λ → ∞ the singular equivariant local Weyl law

���eγ(x, x,λ)−
dγλ

n−κ
m

(2π)n−κ

Λ−1�

N=1

�

i1<···<iN−1

N−1�

l=1

|τil |dimG−dimHil
−κ

�
L0,0
i1...iN−1

(x)+

�

iN−1<iN

M0,0
i1...iN

(x)|τiN |dimG−dimHiN
−κ

���� ≤ Cdγλ
n−κ−1

m

Λ−1�

N=1

�

i1<···<iN

N�

l=1

|τil |dimG−dimHil
−κ−1,

(1.10)

where the multiple sums run over maximal, totally ordered subsets {(Hi1), . . . , (HiN )} of singular
isotropy types, the coefficients L0,0

i1...iN−1
and M0,0

i1...iN
are explicitly given and bounded functions in

x, and τij ∈ (−1, 1) are exceptional parameters that arise in the resolution process satisfying |τij | ≈
dist (x,M(Hij )), while C > 0 is a constant independent of x. Thus, the combinatorial structure of the
underlying group action is reflected in the shape of the equivariant spectral function. By integrating
the asymptotic formulae (1.8) and (1.10) over x ∈ M , one obtains for the equivariant counting function
Nγ(λ) :=

´
M eγ(x, x,λ) dM(x) the equivariant Weyl law

(1.11) Nγ(λ) =
dγ [πχ|HL

: 1]

(n− κ)(2π)n−κ
vol [(Ω ∩ S∗M)/G]λ

n−κ
m +O

�
λ(n−κ−1)/m(log λ)Λ

�
,

provided that n − κ ≥ 1. This was the main result of [21]. Notice that in spite of the fact that the
desingularization techniques developed in [21] are necessary to establish the remainder estimate in
(1.11), singular and exceptional orbits, being of measure zero, do not contribute to (1.11), and remain
hidden. It is only in the local Weyl laws (1.8) and (1.10) for the reduced spectral function that the
whole orbit structure of the underlying group action becomes manifest.

As a major consequence, Theorems 4.3 and 7.7 lead to refined bounds for eigenfunctions. In the non-
singular case, that is, when only principal and exceptional orbits are present, and consequently all G-
orbits have the same dimension κ, the obtained bounds are still uniform in x ∈ M , while in the singular
case, they show that eigenfunctions tend to concentrate along lower dimensional orbits. Indeed, as in
the non-equivariant case, the crucial bound for obtaining (1.8) is a bound for eγ(x, x,λ+1)−eγ(x, x,λ),
which is equivalent to the non-uniform bound

(1.12)
�

λj∈(λ,λ+1],

ej∈L2
γ(M)

|ej(x)|2 ≤ Cx dγ λ
n−κx−1

m , x ∈ M,

see Corollary 4.5. From this one immediately deduces in the non-singular case by Proposition 5.1 the
L∞-estimate

�(χλ ◦Πγ)u�L∞(M) ≤ C dγ (1 + λ)
n−κ−1

2m �u�L2(M) , u ∈ L2(M),

where C > 0 is a constant independent of λ. In particular, we obtain in this situation for arbitrary
γ ∈ �G and any eigenfunction of P in the isotypic component L2

γ(M) the bound

�u�L∞(M) ≤ C dγ λ
n−κ−1

2m , u ∈ L2
γ(M) ∩ Eλ, �u�L2 = 1.

Note that if n = κ+ 1, this bound reads �u�
∞

≤ C dγ . The proof of Lp-bounds is considerably more
envolved, since it no longer suffices to study the integrals Ix,y(µ) restricted to the diagonal. Instead,
it is necessary to estimate their growth as µ → ∞ in a neighborhood of the latter, for which we have
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to assume that the co-spheres S∗
xM are strictly convex. Using complex interpolation techniques, we

are then able to prove in Theorem 5.3 the bounds

�(χλ ◦Πγ)u�Lq(M) ≤






C dγ λ
δn−κ(q)

m �u�L2(M) ,
2(n−κ+1)
n−κ−1 ≤ q ≤ ∞,

C dγ λ
(n−κ−1)(2−q�)

4mq� �u�L2(M) , 2 ≤ q ≤ 2(n−κ+1)
n−κ−1 ,

where 1
q + 1

q� = 1, C > 0 is a constant independent of λ, and

δn−κ(q) := max

�
(n− κ)

����
1

2
− 1

q

����−
1

2
, 0

�
.

In particular,

�u�Lq(M) ≤





C dγ λ

δn−κ(q)

m , 2(n−κ+1)
n−κ−1 ≤ q ≤ ∞,

C dγ λ
(n−κ−1)(2−q�)

4mq� , 2 ≤ q ≤ 2(n−κ+1)
n−κ−1 ,

for any eigenfunction of P with eigenvalue λ belonging to the isotypic component L2
γ(M), provided

that G acts on M with orbits of the same dimension κ. For a comparison of our results and methods
with the one of Seeger and Sogge [23], see Remark 5.4. Nevertheless, the Lp-bounds above cannot hold
when singular orbits are present, and the situation in this case is described by Corollary 7.8 by which
one has the uniform bound

(1.13)
�

λj∈(λ,λ+1],

ej∈L2
γ(M)

|ej(x)|2 ≤






C dγ λ
n−1
m , x ∈ Msing,

C dγ λ
n−κ−1

m

Λ−1�
N=1

�
i1<···<iN

N�
l=1

|τil |dimG−dimHil
−κ−1, x ∈ M −Msing,

for a constant C > 0 independent of x and λ. In comparison with the bound (1.12), where the
dependency of the constant Cx on x remains unspecified, the bound (1.13) gives a rather precise
description of the growth of eigenfunctions near singular orbits.

To illustrate our results, consider the classical case where M = S2, and G = SO(2) acts on M by
rotations around the symmetry axis through the poles. The eigenfunctions of the Laplace-Beltrami
operator on M = S2 are given by the spherical functions

Yk,m(φ, θ) =

�
2k + 1

4π

(k −m)!

(k +m)!
Pk,m(cos θ)eimφ, 0 ≤ φ < 2π, 0 ≤ θ < π,

with corresponding eigenvalues k(k + 1), where k ∈ N, |m| ≤ k, and Pk,m are the associated Legendre
polynomials. Furthermore, the Legendre polynomials Pk(cos θ) := Pk,0(cos θ) satisfy the classical
asymptotics

Pk(cos θ) =

�
2

πk sin θ
cos

��
k +

1

2

�
θ − π

4

�
+O

�
1

(k sin θ)3/2

�
, θ ∈ (0,π),

where the remainder is uniform in θ on any interval [ε,π− ε] with 0 < ε � 1, see [12, Page 303]. From
this one concludes in the limit k → ∞ that

(1.14) |Yk,0(φ, θ)|2 =
2k + 1

4π
|Pk(cos θ)|2 ≈

�
k, θ = 0,π,
1

sin θ , θ ∈ (0,π).

Thus, as k → ∞ the eigenfuntions Yk,0 concentrate on the poles, which are precisely the fixed points
of the SO(2)-action on S2, and maximize the bound (1.5). The bounds (1.13) are precisely of the
type (1.14), and provide an interpretation of the latter ones in terms of the caustic behavior of the
equivariant spectral function, compare also Example 7.9. On the other hand, as discussed in Section
8, the bounds (1.14) show that the point-wise bounds (1.13) are sharp in the spectral parameter.
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Collecting everything, the main conclusions to be drawn from this work are that

• symmetries lead to refined Lp-estimates for eigenfunctions of invariant elliptic operators, pro-
vided that all orbits of the underlying group action have the same dimension;

• lower dimensional orbits are responsible for concentration of eigenfunctions, and this concen-
tration is due to the caustic behavior of the equivariant spectral function. In other words, the
orbit structure is reflected in the shape of eigenfunctions.

We would like to close this introduction by making some final comments. In the particular case
that γ = γtriv is the trivial representation, (1.8) actually implies in passing a generalized Kuznecov
sum formula for periods of G-orbits, see Corollary 4.6, which generalizes previous results of Zelditch
[32] on periods of closed geodesics. In case that G acts with finite isotropy groups on M , that is, when
�M := M/G is an orbifold, an asymptotic formula for the spectral function of an elliptic operator on
�M was given by Stanhope and Uribe in [29], and we recover their result in Corollary 4.7. Finally, let
us mention that one can deduce also bounds for the spectral function e(x, y,λ) of an elliptic operator
of the form

|e(x, y,λ)| ≤ C · λn/m, x, y ∈ M,

by using heat-equation-methods or, equivalently, zeta-function-methods. Nevertheless, bounds of the
form (1.2), which are necessary for proving the local Weyl law (1.1), are not accessible via these
techniques, and can only be obtained within the theory of Fourier integral operators, see [13] and [24,
Sections 15 and 21, in particular Problem 15.1 and Lemma 21.4]. In the equivariant case, bounds of
the form

|eγ(x, y,λ)| ≤ C · λn−κ
m , x, y ∈ M,

could in principle be deduced from work of Donnelly [7] and Brüning-Heintze [3], at least when G acts
on M with orbits of the same dimension κ. But they would not be sufficient to imply our results, and
the desingularization techniques developed in [21] are necessary in order to describe the precise nature
of the reduced spectral function of an invariant elliptic operator.

Lp-bounds for spectral clusters for elliptic second-order differential operators on 2-dimensional com-
pact manifolds with boundary and either Dirichlet or Neumann conditions were shown in [25], while
manifolds with maximal eigenfunction growth were studied in [28]. For locally symmetric spaces of
higher rank, improved Lp-bounds have been shown by Sarnak and Marshall in [22, 20]. For a general
overview on eigenfunctions on Riemannian manifolds, we refer to the survey articles [34, 33].

Through the whole document, the notation O(µk), k ∈ R ∪ {±∞} , will mean an estimate that is
uniform in all relevant variables, while Oℵ(µk) will denote an upper bound of the form Cℵ µk with a
constant Cℵ > 0 that depends on the indicated variable ℵ.

Acknowledgements. I am grateful to Christopher Sogge and Simon Marshall for illuminating con-
versations about the subject. Also, I would like to thank Benjamin Küster and Panagiotis Konstantis
for helpful discussions concerning the proof of Lemma 3.1.

2. The reduced spectral function of an invariant elliptic operator

Let M be a closed connected Riemannian manifold M of dimension n with Riemannian volume
density dM , and P0 an elliptic classical pseudodifferential operator on M of degree m which is positive
and symmetric. Its principal symbol p(x, ξ) is homogeneous in ξ of degree m, and strictly positive on
T ∗M \{0}. Denote its unique self-adjoint extension by P with domain them-th Sobolev spaceHm(M),
and let {ej}j≥0 be an orthonormal basis of L2(M) consisting of eigenfunctions of P with eigenvalues

{λj}j≥0 repeated according to their multiplicity. Next, consider the m-th root Q := m
√
P of P given

by the spectral theorem. It is well known that Q is a classical pseudodifferential operator of order 1
with principal symbol q(x, ξ) := m

�
p(x, ξ) and domain H1(M). Again, Q has discrete spectrum, and
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its eigenvalues are given by µj := m
�
λj . The spectral function e(x, y,λ) of P can then be described

by studying the spectral function of Q, which in terms of the basis {ej} is given by

e(x, y, µ) :=
�

µj≤µ

ej(x)ej(y),

and belongs to C∞(M ×M) as a function of x and y for any µ ∈ R. Let χµ be the spectral projection
onto the sum of eigenspaces of Q with eigenvalues in the interval (µ, µ + 1], and denote its Schwartz
kernel by χµ(x, y) := e(x, y, µ + 1) − e(x, y, µ). To obtain an asymptotic description of the spectral
function of Q, one first derives a description of χµ(x, y) by approximating χµ by Fourier integral
operators. To do so, let � ∈ S(R,R+) be such that �(0) = 1 and supp �̂ ∈ (−δ/2, δ/2) for a given
δ > 0, and define the approximate spectral projection operator

(2.1) �χµu :=
∞�

j=0

�(µ− µj)Eju, u ∈ L2(M),

where Ej denotes the orthogonal projection onto the subspace spanned by ej . Clearly, K�χµ(x, y) :=�∞

j=0 �(µ − µj)ej(x)ej(y) ∈ C∞(M ×M) constitutes the kernel of �χµ. Now, notice that for µ, τ ∈ R
one has

�(µ− τ) =
1

2π

ˆ

R

�̂(t)e−itτeitµ dt,

where �̂(t) denotes the Fourier transform of �, so that for u ∈ L2(M) we obtain

�χµu =
1

2π

∞�

j=0

ˆ

R

�̂(t)eitµe−itµj dtEju =
1

2π

ˆ

R

�̂(t)eitµU(t)u dt,

where U(t) denotes the one-parameter group of unitary operators in L2(M)

U(t) =

ˆ
e−itµdEQ

µ = e−itQ, t ∈ R,

given by the Fourier transform of the spectral measure, {EQ
µ } being a spectral resolution of Q. The

central result of Hörmander [13] then says that U(t) = e−itQ : L2(M) → L2(M) can be approximated
by Fourier integral operators, yielding an asymptotic formula for the kernels of �χµ and χµ, and finally
for the spectral function of Q.

Let us now come back to our initial problem, and assume that M carries an effective and isometric
action of a compact connected Lie group G. Let P commute with the left-regular representation
(π,L2(M)) of G. Consider the Peter-Weyl decomposition (1.7) of L2(M), and let Πγ be the projection

onto the isotypic component belonging to γ ∈ �G which is given by the Bochner integral

Πγ = dγ

ˆ

G

γ(g)π(g) dG(g),

where dγ is the dimension of an unitary irreducible representation of class γ, and dG(g) ≡ dg Haar
measure on G which we assume to be normalized such that volG = 1. In order to describe the spectral
function of the operator Qγ := Πγ ◦Q ◦Πγ = Q ◦Πγ = Πγ ◦Q given by

(2.2) eγ(x, y, µ) :=
�

µj≤µ, ej∈L2
γ(M)

ej(x)ej(y),

we consider the composition

(χµ ◦Πγ)u =
�

µj∈(µ,µ+1]

(Ej ◦Πγ)u =
�

µj∈(µ,µ+1], ej∈L2
γ(M)

Eju, u ∈ L2(M),



8 PABLO RAMACHER

with kernel Kχµ◦Πγ (x, y) = eγ(x, y,λ + 1) − eγ(x, y,λ), together with the corresponding equivariant
approximate spectral projection

(�χµ ◦Πγ)u =
�

j≥0, ej∈L2
γ(M)

�(µ− µj)Eju =
dγ
2π

ˆ

G

ˆ

R

�̂(t)eitµγ(g)
�
U(t) ◦ π(g)

�
u dt dg.(2.3)

Its kernel can be written as

K�χµ◦Πγ (x, y) :=
�

j≥0,ej∈L2
γ(M)

�(µ− µj)ej(x)ej(y) ∈ C∞(M ×M).

Put mγ(µj) := dγmultγ(µj)/ dim Eµj , where multγ(µj) denotes the multiplicity of an unitary irre-
ducible representation of class γ in the eigenspace Eµj . In [21], an asymptotic formula for

tr (�χµ ◦Πγ) =

ˆ
M

K�χµ◦Πγ (x, x) dM(x) =
∞�

j=0

mγ(µj)�(µ− µj)

was given in order to describe the behavior of the equivariant counting function as the eigenvalues
become large, while now we are interested in the spectral function itself, which makes it necessary to
derive asymptotics for the restriction of K�χµ◦Πγ to the diagonal, or even to a neighborhood of it, and
is more subtle than computing the trace.

As mentioned before, one can make use of the theory of Fourier integral operators to give an approx-
imation of U(t) in terms of oscillatory integrals. More precisely, let {(κι, Yι)}ι∈I , κι : Yι

�→ �Yι ⊂ Rn,

be an atlas for M , {fι} a corresponding partition of unity and v̂(η) := F(v)(η) :=
´
Rn e−i�ỹ,η�v(ỹ) dỹ

the Fourier transform of v ∈ C∞
c (�Yι). Write d̄η := dη/(2π)n, and introduce �Uι(t) the operator

[�Uι(t)v](x̃) :=

ˆ
Rn

eiψι(t,x̃,η)aι(t, x̃, η)v̂(η)d̄η

on �Yι, where aι ∈ S0
phg is a classical polyhomogeneous symbol satisfying aι(0, x̃, η) = 1 and ψι the

defining phase function given as the solution of the Hamilton-Jacobi equation

∂ ψι

∂ t
+ q

�
x,

∂ ψι

∂ x̃

�
= 0, ψι(0, x̃, η) = �x̃, η� ,

see [15, Page 254]. Let us remark that ψι is homogeneous in η of degree 1, so that Taylor expansion
for small t gives

(2.4) ψι(t, x̃, η) = ψι(0, x̃, η) + t
∂ ψι

∂ t
(0, x̃, η) +O(t2|η|) = �x̃, η� − tqι(x̃, η) +O(t2|η|),

where we wrote qι(x̃, η) := q(κ−1
ι (x̃), η). In other words, there exists a smooth function ζι which is

homogeneous in η of degree 1 and satisfies

ψι(t, x̃, η) = �x̃, η� − tζι(t, x̃, η), ζι(0, x̃, η) = qι(x̃, η),

−2 ∂t ζι(0, x̃, η) = �∂η qι(x̃, η), ∂x̃ qι(x̃, η)� .
(2.5)

Let now Ūι(t)u := [�Uι(t)(u ◦ κ−1
ι )] ◦ κι, u ∈ C∞

c (Yι). Consider further test functions f̄ι ∈ C∞
c (Yι)

satisfying f̄ι ≡ 1 on supp fι, and define

Ū(t) :=
�

ι

Fι Ūι(t) F̄ι,

where Fι, F̄ι denote the multiplication operators corresponding to fι and f̄ι, respectively. Then
Hörmander showed that for small |t|
(2.6) R(t) := U(t)− Ū(t) is an operator with smooth kernel,

compare [10, Page 134] and [24, Theorem 20.1]; in particular, the kernel Rt(x, y) of R(t) is smooth in
t. In what follows we shall regard (x, η) as an element in T ∗Y � Y ×Rn with respect to the canonical
trivialization of the co-tangent bundle over the chart domain. We now have the following
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Proposition 2.1. Let δ > 0 be sufficiently small and x, y ∈ M . Then, as µ → +∞,

K�χµ◦Πγ (x, y) =
µndγ

(2π)n+1

�

ι

ˆ +∞

−∞

ˆ
G

ˆ
Rn

eiµt[1−ζι(t,κι(x),η)]eiµ�κι(x)−κι(g·y),η��̂(t)γ(g)fι(x)

·aι(t,κι(x), µη)f̄ι(g · y)α(q(x, η))Jι(g, y)dη dg dt,
up to terms of order O(µ−∞) which are uniform in x and y, where 0 ≤ α ∈ C∞

c (1/2, 3/2) is a test
function such that α ≡ 1 in a neighborhood of 1, Jι(g, y) is a Jacobian, and dη denotes Lebesgue
measure on Rn. On the other hand, K�χµ◦Πγ (x, y) is rapidly decaying as µ → −∞.

Proof. To obtain an explicit espression for the kernel of �χµ ◦Πγ let u ∈ C∞(M), and notice that

FιŪι(t)F̄ιu(x) = fι(x)[�Uι(t)(f̄ιu ◦ κ−1
ι )] ◦ κι(x)

= fι(x)

ˆ
Rn

eiψι(t,κι(x),η)aι(t,κι(x), η)
�(f̄ιu ◦ κ−1

ι )(η)d̄η

=

ˆ
�Yι

ˆ
Rn

fι(x)e
i[ψι(t,κι(x),η)−�ỹ,η�]aι(t,κι(x), η)(f̄ιu)(κ

−1
ι (ỹ))dỹ d̄η

=

ˆ
Yι

� ˆ
Rn

ei[ψι(t,κι(x),η)−�κι(y),η�]aι(t,κι(x), η) d̄η fι(x) f̄ι(y)(β
−1
ι ◦ κι)(y)

�
u(y) dM(y),

where we wrote (κ−1
ι )∗(dM) = βιdỹ. The last two expressions are oscillatory integrals with suitable

regularizations. With (2.3) and (2.6) we therefore obtain for K�χµ◦Πγ (x, y) the expression

dγ
(2π)n+1

�

ι

ˆ +∞

−∞

ˆ
G

ˆ
Rn

�̂(t)eitµγ(g)fι(x)e
i[ψι(t,κι(x),η)−�κι(g·y),η�]aι(t,κι(x), η)

·f̄ι(g · y)Jι(g, y)dη dg dt+O(|µ|−∞),

since

1

2π

ˆ
G

ˆ +∞

−∞

�̂(t)eitµRt(x, g · y) dt γ(g)Jι(g, y) dg =

ˆ
G
F−1

�
�̂(•)R•(x, g · y)

�
(µ) γ(g)Jι(g, y) dg,

F−1
�
�̂(•)R•(x, g · y)

�
being rapidly falling in µ; in particular, O(|µ|−∞) is uniform in x, y. We are

interested in the asymptotic behavior of K�χµ◦Πγ (x, y) as µ → ±∞. In order to study it by means of
the stationary phase theorem, we define

G(τ, x̃, η) :=
ˆ +∞

−∞

eitτ �̂(t)aι(t, x̃, η)e
iO(t2|η|)dt,

where O(t2|η|) denotes the remainder in (2.4). Clearly, G(τ, x̃, η) is rapidly decaying as a function in
τ . On the other hand, there must exist a constant C > 0 such that

C|η| ≥ qι(x̃, η) ≥
1

C
|η| ∀x̃ ∈ �Yι, η ∈ Rn,

which implies that for fixed µ, G(µ−qι(x̃, η), x̃, η) is rapidly decaying in η. This yields a regularization
of the oscillatory integral above, and we obtain

K�χµ◦Πγ (x, y) =
dγ

(2π)n+1

�

ι

ˆ
G

ˆ
Rn

ei�κι(x)−κι(g·y),η�γ(g)fι(x)

· G(µ− q(x, η),κι(x), η)f̄ι(g · y)Jι(g, y)dη dg +O(|µ|−∞).

But even more is true. K�χµ◦Πγ (x, y) is rapidly decreasing as µ → −∞, reflecting the positivity of the
spectrum. Furthermore, assume that |1− qι(x̃, η/µ)| ≥ const > 0. Then

|G(µ− qι(x̃, η), x̃, η)| ≤ CN+M
1

|µ|N
1

|1− qι(x̃, η/µ)|N
1

|µ− qι(x̃, η)|M

≤ C �

N+M
1

|µ|N
1

|µ− qι(x̃, η)|M
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for arbitrary N,M ∈ N and suitable constants. Let therefore α ∈ C∞
c (1/2, 3/2) be as indicated, so

that

1− α(qι(x̃, η/µ)) �= 0 =⇒ |1− qι(x̃, η/µ)| ≥ C > 0

for a constant depending only on α. Substituting η = µη�, we can re-write K�χµ◦Πγ (x, y) as

K�χµ◦Πγ (x, y) =
|µ|ndγ
(2π)n+1

�

ι

ˆ +δ/2

−δ/2

ˆ
G

ˆ
Rn

eiµ
�
ψι(t,κι(x),η)−�κι(g·y),η�+t

�
�̂(t)γ(g)fι(x)

· aι(t,κι(x), µη)f̄ι(g · y)α(q(x, η))Jι(g, y) dη dg dt+O(|µ|−∞),

where all integrals are absolutely convergent, and the remainder is uniform in x, y. The proposition
now follows with (2.5). �

Since ζι(0, x̃,ω) = qι(x̃,ω), there exists a constant C > 0 such that for sufficiently small t ∈
(−δ/2, δ/2)

C|η| ≥ ζι(t, x̃, η) ≥
1

C
|η| ∀x̃ ∈ �Yι, η ∈ Rn.

We can therefore introduce in Rn \ {0} the coordinates

η = Rω1, R > 0, ζι(t,κι(x),ω1) = 1.

Indeed, since ζι(t,κι(x), η) is homogeneous of degree 1 in η, its derivative in radial direction reads

∇ω1ζι(t,κι(x), η) = lim
s→0

s−1(R+ s−R)ζι(t,κι(x),ω1) = 1,

so that for all η = Rω1 we have

(2.7)
�
gradη ζι(t, x̃, η), η

�
= R > 0.

Consequently, the Jacobian of the coordinate change η = Rω1 does not vanish. Re-writing the
expression for the kernel of �χµ ◦Πγ in Proposition 2.1 in terms of the coordinates η = Rω1 we obtain

K�χµ◦Πγ (x, y) =
µndγ

(2π)n+1

�

ι

ˆ
R

ˆ
R
eiµ[t−Rt]

ˆ
G

ˆ
ΣR,t

ι,x

eiµ�κι(x)−κι(g·y),ω��̂(t)γ(g)fι(x)

· aι(t,κι(x), µω)f̄ι(g · y)α(q(x,ω))Jι(g, y) dΣR,t
ι,x (ω) dg dR dt

(2.8)

up to terms of order O(µ−∞) which are uniform in x and y, where we set

(2.9) ΣR,t
ι,x := {ω ∈ Rn : ζι(t,κι(x),ω) = R} .

Here dΣR,t
ι,x (ω) denotes the quotient of Lebesgue measure in Rn by Lebesgue measure in R with respect

to ζι(t, x̃,ω). Note that for sufficiently small δ > 0 we can assume that the R-integration is over a
compact set. Furthermore, R and t are close to 1 and 0, respectively. To describe the asymptotic
behavior of K�χµ◦Πγ (x, y) as µ → +∞, we shall now first apply the stationary phase theorem to the
integral over R and t, and then to the integral over G× ΣR,t

ι,x .

Corollary 2.2. Let µ ≥ 1, x, y ∈ M , and with the notation of Proposition 2.1 put

Iι(µ,R, t, x, y) :=

ˆ
G

ˆ
ΣR,t

ι,x

eiµΦι,x,y(ω,g)�̂(t)γ(g)fι(x)

· aι(t,κι(x), µω)f̄ι(g · y)α(q(x,ω))Jι(g, y) dΣR,t
ι,x (ω) dg,

(2.10)

where Φι,x,y(ω, g) := �κι(x)− κι(g · y),ω�. Then, for each Ñ ∈ N

K�χµ◦Πγ (x, y) =
�

ι

�
(µ/2π)n−1 dγ

2π

Ñ−1�

j=0

D2j
R,tIι(µ,R, t, x, y)|(R,t)=(1,0) µ

−j + dγRι(µ, x, y)
�

(2.11)
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up to terms of order O(µ−∞) which are uniform in x,y, where D2j
R,t are known differential operators

of order 2j in R, t, and

|Rι(µ, x, y)| ≤Cµn−Ñ−1
�

|β|≤2Ñ+3

sup
R,t

�� ∂β
R,t Iι(µ,R, t, x, y)

��

for some constant C > 0.

Proof. Since (R, t) = (1, 0) is the only critical point of t− Rt, the assertion follows immediately from
(2.8) and the classical stationary phase theorem [10, Proposition 2.3]. �

Thus, we are left with the task of describing the asymptotics of the oscillatory integrals Iι(µ,R, t, x, y)
as µ → +∞, which will occupy us in the next sections.

3. Equivariant asymptotics of oscillatory integrals

Let the notation be as in the previous section. As we have seen there, the question of describing
the spectral function in the equivariant setting reduces to the study of oscillatory integrals of the form

(3.1) Ix,y(µ) :=

ˆ
G

ˆ
ΣR,t

x

eiµΦx,y(ω,g)aµ(x, y,ω, g) dΣ
R,t
x (ω) dg, µ → +∞,

with ΣR,t
x as in (2.9) and phase function

Φx,y(ω, g) := �κ(x)− κ(g · y),ω� ,
where we have skipped the index ι for simplicity of notation, and aµ ∈ C∞

c is an amplitude that might
depend on µ such that (x, y, ξ, g) ∈ supp aµ implies x, g · y ∈ Y . The asymptotic behavior of these
integrals is related to that of oscillatory integrals of the form

(3.2) I(µ) =

ˆ

G

ˆ

T∗Y

eiµΦ(x,η,g)aµ(x, η, g) d(T
∗Y )(x, η) dg, µ → +∞,

with phase function

(3.3) Φ(x, η, g) := �κ(x)− κ(g · x), η� .
Asymptotics for the integrals (3.2) were given in [21] using the stationary phase principle in combination
with resolution of singularities, and we will rely on these results in the following to perform a similar
analysis for the integrals Ix,y(µ). Write κ(x) = (x̃1, . . . , x̃n) so that the canonical local trivialization
of T ∗Y reads

Y × Rn � (x, η) ≡
n�

k=1

ηk(dx̃k)x ∈ T ∗

xY.

With respect to this trivialization, we shall identify ΣR,t
x� with a subset in T ∗

xY for eventually different
x and x�, if convenient. Now, one computes for any X ∈ g

d

dt
Φ(x, η, etX )|t=0 =

d

dt

�
κ( e−tX · x), η

�
|t=0

=
�

ηi �Xx(x̃i) =
�

ηi(dx̃i)x( �Xx).

Furthermore, one has

∂x̃ Φ(κ
−1(x̃), η, g) = [1− T (κ ◦ g ◦ κ−1)∗,x̃]η = (1− g∗x̃)η,

so that ∂x Φ(x, η, g) = 0 amounts to the condition g∗η = η. In the same way, ∂η Φ(x, η, g) = 0 if, and
only if, g · x = x. Let Ω := J−1({0}) be the zero level set of the momentum map J : T ∗M → g∗ of the
underlying Hamiltonian G-action on T ∗M . Since

(3.4) (x, η) ∈ Ω ∩ T ∗

xM ⇐⇒ (x, η) ∈ Ann(Tx(G · x)),
where Ann (Vx) ⊂ T ∗

xM denotes the annihilator of a vector subspace Vx ⊂ TxM , the critical set of Φ
is consequently given by

(3.5) CritΦ =
�
(x, η, g) ∈ T ∗Y ×G : (Φ∗)(x,η,g) = 0

�
=

�
(x, η, g) ∈ (Ω ∩ T ∗Y )×G : g ∈ G(x,η)

�
.



12 PABLO RAMACHER

Now, unless the G-action on T ∗M is free, Ω and CritΦ are not smooth manifolds in general. In
particular, the regular part of the critical set of Φ is given by

RegCritΦ =
�
(x, η, g) ∈ (RegΩ ∩ T ∗Y )×G : g ∈ G(x,η)

�
,

where RegΩ =
�
(x, η) ∈ Ω : G(x,η) ∼ HL

�
denotes the regular part of Ω, and RegΩ ≡ RegΩ ∩

T ∗(Mprin) up to a set of measure zero, while Mprin := M(HL) ⊂ M represents the union of orbits of
principal type. Furthermore, RegCritΦ is a manifold of co-dimension 2κ, where κ is the dimension
of an orbit of principal type in M . For details, the reader is referred to [21, Sections 3 and 4]. We
come now to the description of the critical set of the phase function Φx,y. Let Ox := G · x denote the
G-orbit, and Gx := {g ∈ G : g · x = x} the stabilizer or isotropy group of a point x ∈ M . We then
have the following

Lemma 3.1. Let x ∈ Y , Oy ∩ Y �= ∅, and

CritΦx,y :=
�
(ω, g) ∈ ΣR,t

x × {g ∈ G : g · y ∈ Y } : ∂ω,g Φx,y(ω, g) = 0
�

be the critical set of Φx,y.

(a) If y ∈ Ox, CritΦx,y is given by

Cx,y :=
�
(ω, g) : (g · y,ω) ∈ Ω, x = g · y

�

and a smooth sub-manifold of co-dimension 2 dimOx; furthermore, the Hessian HessΦx,y is
non-degenerate on N(ω,g)Cx,y for all (ω, g) ∈ Cx,y. In other words, CritΦx,y is clean.

(b) In case that y �∈ Ox,

CritΦx,y =
�
(ω, g) : (g · y,ω) ∈ Ω, κ(x)− κ(g · y) ∈ NωΣ

R,t
x

�
;

furthermore, assume that G acts on M with orbits of the same dimension κ, that is, M =
Mprin ∪Mexcept, and that the co-spheres S∗

xM are strictly convex. Then, choosing Y sufficiently
small one has that locally

CritΦx,y � Gy,

and CritΦx,y is clean and of co-dimension n− 1 + κ.
(c) In case that x ∈ Y ∩Mprin one has

Cx,x = CritΦ ∩ (ΣR,t
x ×G),

a transversal intersection. In particular Cx,x is a smooth sub-manifold of co-dimension 2κ.

Proof. We shall show (a) first by a transversality argument. Let x ∈ Y and y ∈ Ox be fixed, and
consider for (x, η) ∈ T ∗

xY and g ∈ {g ∈ G : g · y ∈ Y } the function Φ̌x,y(η, g) := �κ(x)− κ(g · y), η�.
The derivatives of Φ̌x,y with respect to g read

�n
k=1 ηk(dx̃k)g·y( �Xj), where {X1, . . . , Xd} denotes a

basis of g, and
� �X1, . . . , �Xd

�
the corresponding fundamental vector fields on M . Setting them equal

zero yields, as in (3.5), (g ·y, η) ∈ Ω. On the other hand, differentiation with respect to η gives g ·y = x,
so that

(3.6) Crit Φ̌x,y = (Ω ∩ T ∗

xY )× {g ∈ G : x = g · y} .
Next, introduce for fixed R and t in T ∗

xY the coordinates η = sω, s > 0, ζ(t,κ(x),ω) = R. Clearly,

(3.7) ∂s,ω[Φ̌x,y(sω, g)] = 0 ⇐⇒ [∂η Φ̌x,y](sω, g) = 0,

so that CritΦx,y ⊃ Cx,y. Further, note that (ω, g) ∈ CritΦx,y iff ∂ω,g[Φ̌x,y(sω, g)] = 0 for arbitrary
s �= 0, since ∂ω,g[Φ̌x,y(sω, g)] = s ∂ω,g[�κ(x)− κ(g · y),ω�]. We now assert that

(3.8) ∂ω,g[Φ̌x,y(sω, g)] = 0 =⇒ ∂s[Φ̌x,y(sω, g)] = 0.

Indeed, by the above ∂s[Φ̌x,y(sω, g)] = �κ(x)− κ(g · y),ω� ≡ Φx,y(ω, g) is constant if ∂ω,g[Φ̌x,y(sω, g)] =
0. But ∂s[Φ̌x,y(sω, g)] = 0 if x = g · y, yielding that ∂s[Φ̌x,y(sω, g)] vanishes for (ω, g) ∈ CritΦx,y since
G is assumed to be connected, and Ω∩ T ∗

xY is connected in view of (3.4). Hence, (3.8) is proven. For
(ω, g) ∈ CritΦx,y the implications (3.7) and (3.8) yield [∂η,g Φ̌x,y](sω, g) = 0 for any s �= 0, and with
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(3.6) we obtain the first part of (a). In particular, Ω ∩ ΣR,t
x ⊂ T ∗

xY is a smooth sub-manifold in view
of (3.4), and {g ∈ G : x = g · y} � Gx, too. To see the second, note that with (3.6) we have

Cx,y = Crit Φ̌x,y ∩ (ΣR,t
x ×G),

a transversal intersection. As in [21, Proof of Lemma 7.3] one easily sees that Φ̌x,y has a non-degenerate
transversal Hessian. But then [21, Lemma 7.1] implies that Φx,y must have a non-degenerate transversal
Hessian as well, and we obtain (a).

Alternatively, one can show (a) explicitly by considering a local parametrization

(3.9) F : Rn−1 ⊃ U −→ ΣR,t
x ⊂ Rn, α �−→ F (α) = ω,

of the hyerpsurface ΣR,t
x , U being an open subset. While differentiating Φx,y with respect to g and

setting the derivatives to zero yields (g · y,ω) ∈ T ∗
g·yY ∩ Ω � Ng·yOy, differentiating Φx,y with respect

to α gives the conditions �κ(x)− κ(g · y), ∂ F/ ∂ αi� = 0 for i = 1, . . . , n−1, implying that κ(x)−κ(g ·y)
must be normal to ΣR,t

x at ω. Consequently,

(3.10) CritΦx,y =
�
(ω, g) : (g · y,ω) ∈ Ω, κ(x)− κ(g · y) ∈ NωΣ

R,t
x

�
.

The second condition means that κ(x)−κ(g ·y) is co-linear to gradη ζ(t,κι(x),ω). But in view of (2.7)
we have the equality

(3.11)
�
gradη ζ(t, x̃,ω),ω

�
= R > 0, ω ∈ ΣR,t

x ,

so that if x �= g · y and κ(x)− κ(g · y) ∈ NωΣR,t
x , we deduce the lower bound

(3.12)

����

�
κ(x)− κ(g · y)
�κ(x)− κ(g · y)� ,ω

� ���� ≥ C > 0

for a uniform constant C > 0. Since the G-action on M is smooth, and hence, locally smooth, there
is a linear tube around each G-orbit in M , and we may assume that the chart (κ, Y ) is given in terms
of such a tube around Ox. Thus, let Ox � G/H, V be an Euclidean vector space with orthogonal
H-action, and

τ : G×H V −→ M

a linear tube around Ox, that is, a G-equivariant embedding onto an open neighborhood of Ox. If
H = Gx, Sx := τ([e, V ]) is a slice at x, and

Sg·x := τ([g, V ]) = τ(g[e, V ]) = g · Sx

a slice at g · x. Let Y ⊂ τ(G ×H V ), and identify κ(Sg·x ∩ Y ) with a subset of a linear subspace in
Rn, which in turn can be identified with Ng·xOx, compare [2, Corollary VI.2.4]. Now, take (ω, g) ∈
CritΦx,y, and assume that y ∈ Ox, which means that the vector κ(x)−κ(g ·y) must be approximately
tangential to κ(Ox ∩ Y ), hence normal to κ(Sg·y ∩ Y ) at κ(g · y) for d(x, g · y) � 1. For sufficiently
small Y , the lower bound (3.12) then implies that x = g · y, since ω is normal to Ox at g · y. Thus, we
conclude that CritΦx,y = Cx,y. In order to see that CritΦx,y is clean, note that with respect to the
parametrization (3.9) of ΣR,t

x and canonical coordinates on G the Hessian of Φx,y at a critical point
(ω, g) ∈ Cx,y is given by the matrix

HessΦx,y(ω, g) ≡




0

�n
k=1

∂ Fk(α
−1(ω))

∂ αi
(dx̃k)x( �Xj)

�n
k=1

∂ Fk(α
−1(ω))

∂ αj
(dx̃k)x( �Xi) −

�
�Xi,x( �Xj(κ)),ω

�



 ,

where {X1, . . . , Xd} denotes a basis of g. The kernel of the corresponding linear transformation is
given by those (α̃, s̃) ∈ Rn−1 × Rd satisfying the conditions

�

k

∂ Fk(α−1(ω))

∂ αi
(dx̃k)x

��

j

s̃j �Xj

�
= 0 for all i = 1, . . . , n− 1,(3.13)

�

j,k

α̃j
∂ Fk(α−1(ω))

∂ αj
(dx̃k)x( �Xi) = 0 for all i = 1, . . . , d.(3.14)



14 PABLO RAMACHER

Indeed, (3.13) implies that
�
(dx̃1)x(

�
j s̃j

�Xj), . . . , (dx̃n)x(
�

j s̃j
�Xj)

�
is co-linear to gradη ζ(t,κι(x),ω).

In view of (3.11) and the fact that ( �Xj)x ∈ TxOx, (x,ω) ∈ NxOx, we conclude that
�

j s̃j(
�Xj)x = 0;

in particular, the terms
�
�Xi,x( �Xj(κ)),ω

�
do not contribute to the equations (3.14). Thus, the kernel

in question is given by



(α̃, s̃) ∈ Rn−1 × Rd :
�

j

s̃j( �Xj)x = 0,
�

j,k

α̃j
∂ Fk(α−1(ω))

∂ αi
(dx̃k)x ∈ Ann (TxOx)




 � T(ω,g)Cx,y,

which means that HessΦx,y is transversally non-degenerate on Cx,y, yielding again (a).
To show (b), assume that y /∈ Ox. Note that without loss of generality we can assume that y ∈ Sx∩Y .

The first part of (b) is clear from (3.10). Now, assume that the co-spheres S∗
xM are strictly convex.

For small |t| � 1, the hypersurfaces ΣR,t
x will be strictly convex, too. In particular, ΣR,t

x is orientable,
and the Gauss map

N : ΣR,t
x � ω �−→ N (ω) ∈ NωΣ

R,t
x ,

which assigns to each point of ΣR,t
x the outer normal unit vector to ΣR,t

x at that point, is a global
diffeomorphism. Therefore, for each x �= ỹ ∈ Y there is a unique ωỹ ∈ ΣR,t

x such that

κ(ỹ)− κ(x)

�κ(ỹ)− κ(x)� = N (ωỹ).

Consequently, if (ω, g) ∈ CritΦx,y, ω is locally uniquely determined by the conditionN (ω) = ±N (ωg·y).

Figure 3.1. Concerning the critical set of Φx,y in case that y �∈ Ox. The black circle
segments represent G-orbits in Y ≡ κ(Y ) ⊂ Rn, the inner one through x and the outer ones
through different points y; the black dotted lines represent normal spaces to the orbits. The
three coloured ellipse segments depict different hypersurfaces ΣR,t

x ⊂ Rn whose normal at
ω ∈ Ng·yOy ∩ ΣR,t

x , depicted by a colored dotted line, is given by the corresponding colored
line segments κ(x)− κ(g · y).

Now, introduce the sets

Un := τ(G×H V1/n), V1/n := {v ∈ V : �v� < 1/n} , n ∈ N,
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and assume that for each n ∈ N there is a yn ∈ Un ∩ Y ∩ Sx such that CritΦx,yn is not empty, but
CritΦx,yn �� Gyn . In other words, assume that for each n ∈ N there is a smooth curve

γn : (−εn, εn) � t �−→ (ωn(t), gn(t)) ∈ CritΦx,yn , εn > 0,

parametrized such that �ω̇n(t)� = 1. In this way, we obtain for each n ∈ N a curve ωn(t) in ΣR,t
x along

which the unit normal vector field to ΣR,t
x is determined by the direction of κ(x) − κ(gn(t) · yn), so

that N (ωn(t)) = ±N (ωgn(t)·yn
). In view of (3.12), the curves

{gn(t) · yn : t ∈ (−εn, εn)} ⊂ Y

converge to x as n → ∞. Similarly, due to the compactness of ΣR,t
x the curves

{ωn(t) : t ∈ (−εn, εn)} ⊂ ΣR,t
x

converge to at least one ω∞ ∈ ΣR,t
x ∩NxOx after passing to a suitable convergent sub-sequence ωnk(t).

Now, assume that G acts on M with orbits of the same dimension κ. If Oprin is a principal orbit
and O a principal or exceptional orbit, there is an equivariant covering map Oprin → O, so that Oprin

and O are locally diffeomorphic, compare [2, Page 181]. Therefore, we can assume that all orbits in
Y are diffeomorphic, which implies that the more yn approaches x, the faster the direction of κ(x)−
κ(gn(t) · yn) changes as t ∈ (−εn, εn) varies, and the faster N (ωn(t)) changes as t ∈ (−εn, εn) varies.
Consequently, the Gaussian curvature of ΣR,t

x at ω∞, which is given by the product of the principal
curvatures, cannot stay bounded, compare Figure 3.1. Thus, we have shown that for sufficiently small
Y we locally have

CritΦx,y � Gy, x, y ∈ Y,

which implies that CritΦx,y is a smooth sub-manifold of co-dimension n − 1 + dimOy. We are left
with the task of showing that HessΦx,y is transversally non-degenerate. For this, we are going to show
that for each fixed (ω, g) ∈ CritΦx,y one has KerHessΦx,y(ω, g) � T(ω,g)CritΦx,y. To do so, note that
with respect to the coordinates introduced in (a), the Hessian of Φx,y at a critical point (ω, g) is given
by the matrix

(3.15) HessΦx,y(ω, g) ≡





�
κ(x)− κ(g · y), ∂2 F

∂ αi ∂ αj
(α−1(ω))

� �n
k=1

∂ Fk(α
−1(ω))

∂ αi
(dx̃k)g·y( �Xj)

�n
k=1

∂ Fk(α
−1(ω))

∂ αj
(dx̃k)g·y( �Xi) −

�
�Xi,g·y( �Xj(κ)),ω

�



 .

Since κ(g · y) − κ(x) ∈ NωΣR,t
x , the sub-matrix in the first quadrant corresponds to a multiple of the

second fundamental of ΣR,t
x

II : TΣR,t
x × TΣR,t

x −→ C∞(ΣR,t
x ), II(X ,Y) := �∇XY,N � = �X , AY� ,

where ∇XY ≡ X (Y) denotes the covariant derivative in Euclidean space Rn, and A : TΣR,t
x →

TΣR,t
x the symmetric endomorphism induced by II [16, Chapter VII, Section 3]. Indeed, assume that

κ(x)− κ(g · y) points in the direction of −N (ω), and let ∂ /∂ αi|ω := ∂ F (α−1(ω))/∂ αi, 1 ≤ i ≤ n− 1,
be the coordinate frame given by the parametrization (3.9). Then, the sub-matrix in the first quadrant
of (3.15) reads

(3.16) − �κ(x)− κ(g · y)� II

�
∂

∂ αi|ω
,

∂

∂ αj|ω

�
= −�κ(x)− κ(g · y)�

�
∂

∂ αi|ω
, A

∂

∂ αj|ω

�
.

To compute the kernel of the matrix (3.15), assume that the X1, . . . , Xd ∈ g are such that the vector
fields �X1, . . . , �Xκ constitute an orthonormal basis of Tg·yOy, and consider for (α̃, s̃) ∈ Rn−1 × Rd the
system of equations

(3.17)
n−1�

j=1

�
κ(x)− κ(g · y), ∂2 F

∂ αi ∂ αj
(α−1(ω))

�
α̃j +

n�

k=1

∂ Fk(α−1(ω))

∂ αi
(dx̃k)g·y

� κ�

j=1

s̃j �Xj

�
= 0
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with i = 1, . . . , n− 1, as well as

(3.18)
n�

k=1

n−1�

j=1

α̃j
∂ Fk(α−1(ω))

∂ αj
(dx̃k)g·y( �Xi)−

�
�Xi,g·y

� κ�

j=1

s̃j �Xj(κ)
�
,ω

�
= 0

with i = 1, . . . ,κ. We have to show that the equations (3.17)–(3.18) only admit the solution α̃ = 0,
s̃1 = · · · = s̃κ = 0. Writing Wω(α̃) :=

�n−1
j=1 α̃j ∂ /∂ αj |ω and identifying Y with κ(Y ), the system of

equations (3.17) reads

−�κ(x)− κ(g · y)�
�

∂

∂ αi|ω
, AWω(α̃)

�
+

�
∂

∂ αi|ω
, �X(s̃)g·y

�
= 0, i = 1, . . . , n− 1,

and implies

(3.19) Wω(α̃) = �x− g · y�−1 A−1
�
proj

|TωΣR,t
x

( �X(s̃)g·y)
�
,

where we wrote X(s̃) :=
�κ

j=1 s̃jXj for short. Note that A is invertible, since the Gaussian curvature

of ΣR,t
x does not vanish. Furthermore, the projection from Tg·yOy to TωΣR,t

x has a trivial kernel, since
ω is normal to Oy at g · y, and cannot be tangential to ΣR,t

x in view of (3.11). On the other hand,
(3.18) amounts to the equations

(3.20) �Wω(α̃), �Xi,g·y� = �Xi,g·y

�
� �X(s̃),ω�

�
, i = 1, . . . ,κ.

Figure 3.2. Concerning the cleanness of the critical set of Φx,y in case that y �∈ Ox.
Black circles represent G-orbits in Y ≡ κ(Y ) ⊂ Rn through x and y, respectively; the black
dotted lines represent normal spaces to the orbits and tangent spaces to the hypersurface
ΣR,t

x , respectively, the latter being depicted by an ellipse. The red arrows represent different
points ω ∈ ΣR,t

x , the green arrows different segments κ(g · y) − κ(x). The magenta arrows

depict different vectors �X(s̃)g·y and the blue arrows the corresponding vectors Wω(α̃).

Since ΣR,t
x is strictly convex, the eigenvalues of A, which are given by the principal curvatures of ΣR,t

x

with respect to the outer unit normal vector field, are strictly negative2. Hence A defines a non-positive
operator on TωΣR,t

x . In addition, the G-orbit through g · y must be convex with respect to x due to

2Note that the sign convention used here is such that if ΣR,t

x equals the standard (n− 1)-sphere Sn−1(R) of radius
R, then A = −1/R, where 1 represents the identity transformation on TωSn−1(R), see [16, Chapter VII, Example 4.2].
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the condition x − g · y ∈ NωΣR,t
x and the convexity of ΣR,t

x . Consequently, if we assume as we may
that the {X1, . . . , Xκ} are such that

�
∂

∂ αi |ω
, �Xj,g·y

�
≥ 0, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ κ,

�Wω(α̃), �Xi,g·y� and �Xi,g·y(�X(s̃),ω�) must have opposite sign for all i = 1, . . . ,κ, so that Equations
(3.19) –(3.20) only admit the solution s̃1 = · · · = s̃κ = 0 and α̃1 = · · · = α̃n−1 = 0. If, on the contrary,
κ(x)−κ(g ·y) pointed in the direction of +N (ω), Wω(α̃) would have opposite sign, which nevertheless
would be compensated by a sign change of ω, the origin of Rn being contained in the interior of ΣR,t

x , so
that, again, Equations (3.19) –(3.20) would have only the trivial solution, compare Figure 3.2. Thus,
we have shown

KerHessΦx,y(ω, g) � {0}× Rd−κ � T(ω,g)CritΦx,y,

and we obtain (b).
In order to show (c), let x ∈ Y ∩ Mprin and (ω, g) ∈ Cx,x. If x is of principal isotropy type, Gx

acts trivially on Nx(G · x) [2, pp. 308 and 181] and, via the identification T ∗M � TM , also on
Ann(Tx(G ·x)). But in view of (3.4) and Assertion (a) we have ω ∈ Ann(Tx(G ·x)), so that g ·ω = ω in
this case, and with (3.5) we obtain the desired inclusion and therefore (c). In particular, since CritΦ
has co-dimension 2κ, Cx,x has co-dimension 2κ as well. �

Remark 3.2.

(1) Let y /∈ Ox. As an example where CritΦx,y is not isomorphic to Gy, and does not have
co-dimension n − 1 + κ, consider the singular action of G = SO(2) on the standard 2-sphere
M = S2 ⊂ R3 by rotations around the poles xN , xS , and assume that ΣR,t

x = S1. Let (Y,κ)
be an invariant tubular neighborhood around the fixed point xN . Then, for any y ∈ Y − {xN}
one has

CritΦxN ,y = {(ω, g) : (g · y,ω) ∈ Ng·y(G · y), κ(xN )− κ(g · y) � ω} � SO(2)× Z2 �� Gy = {e} ,

which has co-dimension κ = 1 instead of 2.
(2) Note that Assertion (c) of Lemma 3.1 cannot hold in general for arbitrary x ∈ Y ∩ (Mexcept ∪

Msing). In particular, if x were a fixed point we would have Φx,x ≡ 0, so that CritΦx,x =
ΣR,t

x × G in this case. Furthermore, Assertion (c) means that Φx,x does not have secondary
critical points for x ∈ Y ∩Mprin, that is, critical points which do not arise from critical points
of Φ.

From the previous lemma one immediately deduces

Theorem 3.3. For an arbitrary chart (κ, Y ), consider the oscillatory integrals Ix,y(µ) defined in (3.1),
and for fixed x ∈ Y write

Ix(µ) := Ix,x(µ), Φx := Φx,x, Cx := Cx,x.

(1) For every Ñ one has the asymptotic formula

Ix(µ) = (2π/µ)dimOx

Ñ−1�

k=0

Qk(x)µ
−k +RÑ (x, µ), µ → +∞,

with explicitly known coefficients and remainder. In particular,

Q0(x) =

ˆ
Cx

aµ(x, x,ω, g)

|det Φ��
x(ω, g)N(ω,g)Cx |1/2

dCx(ω, g),
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where dCx denotes the induced volume density. Furthermore, Qk(x) and RÑ (x, µ) depend
smoothly on R and t, and satisfy the bounds

|Qk(x)| ≤ �Ck,Φxvol (supp aµ ∩ Cx)max
l≤2k

��Dlaµ
��
∞,Cx

,

|RÑ (x, µ)| ≤ CÑ,Φx
vol (supp aµ) max

l≤2 dimOx+2Ñ+1

��Dlaµ
��
∞,ΣR,t

x Y×G
µ− dimOx−Ñ ,

for suitable constants �Ck,Φx > 0 and CÑ,Φx
> 0, where Dl denote differential operators of order

l on G × ΣR,t
x . Moreover, as functions in x, Qk(x) and RÑ (x, µ) are smooth on Y ∩ Mprin,

and the constants �Ck,Φx and CÑ,Φx
are uniformly bounded in x if M = Mprin ∪Mexcept.

(2) Assume that M = Mprin ∪ Mexcept, and that the co-spheres S∗
xM are strictly convex. Then,

for sufficiently small Y and every Ñ one has the asymptotic formula

Ix,y(µ) = (2π/µ)
codimCritΦx,y

2 eiµΦ
0
x,y

Ñ−1�

k=0

Qk(x, y)µ
−k +RÑ (x, y, µ), µ → +∞,

with explicitly known coefficients and remainder of order O
�
µ

codimCritΦx,y
2 −Ñ

�
, where

codimCritΦx,y =

�
2κ, y ∈ Ox,

n− 1 + κ, y /∈ Ox,

and κ = dimM/G. The coefficients Qk(x, y) and the remainder term RÑ (x, y, µ) are uniformly
bounded in x and y, and given by distributions depending smoothly on R, t with support in
CritΦx,y and ΣR,t

x ×G, respectively. Φ0
x,y stands for the constant values of Φx,y on the connected

components of its critical set, and is given by

Φ0
x,y(R, t) = Rcx,g·y(t), cx,g·y(t) := ± �κ(x)− κ(g · y)���gradη ζ(t,κ(x),ω)

�� .

If y ∈ Ox one has Φ0
x,y = 0.

Proof. By Lemma 3.1 (a), Φx has a clean critical set, so that the asymptotic formula for Ix(µ) follows
directly from Theorem A.1. In particular, the smooth dependence of the coefficients Qk(x) and the
remainder RÑ (x, µ) on the parameters R, t, and x ∈ Y ∩Mprin is seen by using a local trivialization
T ∗Y � Y × Rn and taking into account [14, Theorem 7.7.6]. Similarly, the asymptotic expansion for
Ix,y(µ), together with the smoothness of the coefficients Qk(x, y) and the remainder RÑ (x, y, µ) in the
parameters R, t is a direct consequence of Lemma 3.1 (b) together with [14, Theorem 7.7.6].

On the other hand, principal and exceptional orbits are locally diffeomorphic, and principal and
exceptional isotropy groups are infinitesimally isomorphic. Therefore, if M = Mprin ∪ Mexcept the
inverse of the transversal Hessian of Φx,y depends smoothly on x, y, as can be seen when computing
it from (3.15). From the explicit form of the coefficients and the remainder in the proof of Theorem
A.1 in [21, Theorem 4.1], which involves the inverse of the transversal Hessian, it then follows that the
constants �Ck,Φx , CÑ,Φx

, together with the coefficients Qk(x, y) and the remainder term RÑ (x, y, µ)
are uniformly bounded in x and y if no singular orbits are present. Regarding the values of Φx,y on
its critical set, note that for (ω, g) ∈ CritΦx,y one computes with (2.7)

Φ0
x,y(R, t) = �κ(x)− κ(g · y),ω� = ±cx,g·y(t)

�
gradη ζ(t,κ(x),ω),ω

�
� �� �

=R

= Rcx,g·y(t),

since κ(x)−κ(g ·y) must be co-linear to gradη ζ(t,κ(x),ω). In particular notice that cx,g·y(t) is indepen-
dent of R due to the fact that ζ(t,κ(x), η) is homogeneous of degree 1 in η, so that gradη ζ(t,κ(x),ω)
only depends on the direction of ω. �
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4. The equivariant local Weyl law

Let us now come back to our initial question of finding an asymptotic description of the equivariant
spectral function. From the results in the previous section we deduce

Proposition 4.1. Let the notation be as in Corollary 2.2, and R, t ∈ R, x ∈ Yι be fixed. Then, for
any Ñ ∈ N one has

∂β
R,t Iι(µ,R, t, x, x) = (2π/µ)dimOx

Ñ−1�

k=0

Lk
ι,β(R, t, x)µ−k +OR,t,x(µ

− dimOx−Ñ ),

where the coefficients Lk
ι,β(R, t, x) and the remainder term are given by distributions depending smoothly

on R, t, and x ∈ Y ∩Mprin with support in

CritR,t Φι,x := (Ω ∩ ΣR,t
ι,x )×Gx

and ΣR,t
ι,x ×G, respectively. Furthermore, both the coefficients and the remainder are uniformly bounded

in x if M = Mprin ∪Mexcept.

Proof. This is a direct consequence of Theorem 3.3 (1). Note that Φι,x vanishes on its critical set
CritR,t Φι,x no matter what values R and t take. Otherwise differentiation with respect to R and
t of the factor eiµψ0 in (A.2) with ψ0 ≡ Φι,x|CritR,t Φι,x

would yield additional positive powers of µ.
Furthermore, aι ∈ S0phg is a classical symbol of order 0, so that

�� ∂α
ω aι(t,κι(x), µω)

�� = |µ||α|
��(∂α

ω aι)(t,κι(x), µω)
�� ≤ C|ω|−|α|.

Consequently, the dependence of the amplitude on µ in (2.10) does not interfer with the asymptotics,
compare [8, Proposition 1.2.4]. �

We now arrive at

Proposition 4.2 (Point-wise asymptotics for the kernel of the equivariant approximate
projection). For any fixed x ∈ M , γ ∈ �G, and Ñ ∈ N one has for µ → +∞

K�χµ◦Πγ (x, x) =
�

j≥0, ej∈L2
γ(M)

�(µ− µj)|ej(x)|2

= (µ/2π)n−dimOx−1
Ñ−1�

k=0

Lk(x)µ
−k +Ox(dγ µ

n−dimOx−1−Ñ )

(4.1)

with known coefficients Lk(x) and a remainder estimate that depend smoothly on x ∈ Mprin; further-
more, they are uniformly bounded in x if M = Mprin ∪Mexcept. In particular,

L0(x) =
dγ
2π

�̂(0)[πγ |Gx
: 1] vol [(Ω ∩ S∗

xM)/G],

where S∗M := {(x, ξ) ∈ T ∗M : p(x, ξ) = 1}. For µ → −∞, the function K�χµ◦Πγ (x, x) is rapidly
decreasing in µ.

Proof. Corollary 2.2 and Proposition 4.1 immediately imply the asymptotic expansion (4.1) with

L0(x) =
�

ι

fι(x)�̂(0) dγ
2π

ˆ
Crit1,0 Φι,x

γ(g)

|det Φ��
ι,x(ω, g)N(ω,g)Crit1,0 Φι,x |1/2

d(Crit1,0 Φι,x)(ω, g),

since α(q(x,ω)) = 1 on Σ1,0
ι,x and Jι(g, x) = 1 for g ∈ Gx. In order to compute L0(x), let us note that

for any x ∈ Yι and smooth, compactly supported function f on Ω ∩ ΣR,t
ι,x one has the formula

ˆ
CritR,t Φι,x

γ(g)f(x,ω)

|det Φ��
ι,x(ω, g)|N(ω,g)CritR,t Φι,x

|1/2 d(CritR,t Φι,x)(ω, g)

= [πγ |Gx
: 1]

ˆ
Ω∩ΣR,t

ι,x

f(x,ω)
d(Ω ∩ ΣR,t

ι,x )(ω)

vol O(x,ω)
,
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where we took into account that
´
Gx

γ(g)dGx(g) = [πγ |Gx
: 1], compare [5, Lemma 7], [21, Proof of

Theorem 9.5], and [4, Section 3.3.2],

CritR,t Φι,x → Ω ∩ ΣR,t
ι,x

being a submersion. As a consequence of this, we obtain for L0(x) the expression

L0(x) =
dγ
2π

�̂(0)[πγ |Gx
: 1]

�

ι

fι(x)

ˆ
Ω∩Σ1,0

ι,x

d(Ω ∩ Σ1,0
ι,x)(ω)

vol O(x,ω)
=

dγ
2π

�̂(0)[πγ |Gx
: 1] vol [(Ω ∩ S∗

xM)/G].

�
Using a standard Tauberian argument, we can now deduce from Proposition 4.2 our first main

result.

Theorem 4.3 (Equivariant local Weyl law). Let M be a closed connected Riemannian manifold
M of dimension n carrying an isometric and effective action of a compact connected Lie group G,
and P0 a G-invariant elliptic classical pseudodifferential operator on M of degree m. Let p(x, ξ) be
its principal symbol, and assume that P0 is positive and symmetric. Denote its unique self-adjoint
extension by P , and for a given γ ∈ �G let eγ(x, y,λ) be its reduced spectral counting function. Further,
let J : T ∗M → g∗ be the momentum map of the G-action on M , and put Ω := J−1({0}). Then, for
fixed x ∈ M one has

(4.2)

�����eγ(x, x,λ)−
dγ [πγ|Gx

: 1]

(2π)n−κx
λ

n−κx
m

ˆ
{ξ: (x,ξ)∈Ω, p(x,ξ)<1}

dξ

volO(x,ξ)

����� ≤ Cx dγ λ
n−κx−1

m

as λ → +∞, where κx := dimOx, dγ denotes the dimension of an irreducible G-representation πγ

belonging to γ and [πγ|Gx
: 1] the multiplicity of the trivial representation in the restriction of πγ to

the isotropy group Gx of x, while Cx > 0 is a constant that depends smoothly on x ∈ Mprin, and is
uniformly bounded if M = Mprin ∪Mexcept.

Proof. This follows directly by integrating (4.1) with respect to µ from −∞ to m
√
λ with the arguments

given in [9, Proof of Corollary 2.5 and the following Remarks]. �
Remark 4.4.

(1) Note that in view of (3.4) the integral in the leading term can be written as

λn−κx

ˆ
{ξ: (x,ξ)∈Ω, p(x,ξ)<1}

dξ

volO(x,ξ)
=

ˆ
{ξ: (x,ξ)∈Ω, p(x,ξ)<λ}

dξ

volO(x,ξ)
.

(2) The equivariant local Weyl law (4.2) implies the estimate

(4.3) |eγ(x, x,λ+ 1)− eγ(x, x,λ)| ≤ Cx dγ λ
n−κx−1

m , x ∈ M.

But since eγ(x, y,λ+1)−eγ(x, y,λ) is the kernel of a positive operator, one immediately infers
from this with the Cauchy-Schwarz inequality the bound

|eγ(x, y,λ+ 1)− eγ(x, y,λ)| ≤ dγ

�
Cxλ

n−κx−1
m

�
Cyλ

n−κy−1
m , x, y ∈ M.

From this, it is not difficult to deduce a corresponding equivariant local Weyl law for eγ(x, y,λ)
in a neighborhood of the diagonal, see [13, pp. 68] or [24, Section 21].

As a first consequence of Theorem 4.3, let us note that the estimate (4.3) is equivalent to the
following bound for spectral clusters.

Corollary 4.5 (Point-wise bounds for isotypic spectral clusters). In the situation of Theorem
4.3 we have �

λj∈(λ,λ+1],

ej∈L2
γ(M)

|ej(x)|2 ≤ Cx dγ λ
n−κx−1

m , x ∈ M,

where {ej} denotes an orthonormal basis of eigenfunctions of P with eigenvalues {λj}.
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�
A further implication of Theorem 4.3 is the following Kuznecov sum formula for periods of G-orbits,

which generalizes the classical Kuznecov formula for periods of closed geodesics [32].

Corollary 4.6 (Generalized Kuznecov sum formula for periods of G-orbits). In the setting
of Theorem 4.3 we have

������

�

λj≤λ

����
ˆ
G
ej(g

−1 · x) dg
����
2

− volGx

(2π)n−κx
λ

n−κx
m

ˆ
{ξ: (x,ξ)∈Ω, p(x,ξ)<1}

dξ

volO(x,ξ)

������
≤ Cx dγ λ

n−κx−1
m .

Proof. Let γ = γtriv correspond to the trivial representation. Then

eγtriv(x, x,λ) =
�

λj≤λ, ej∈L2
γtriv

(M)

|ej(x)|2 =
�

λj≤λ

����
ˆ
G
ej(g

−1 · x) dg
����
2

,

and the assertion follows from the previous theorem with

[πγtriv|Gx
: 1] =

ˆ
Gx

γtriv(g) dGx(g) = volGx.

�

In case that �M := M/G is an orbifold we essentially recover the description of the spectral function
of a Riemannian orbifold given by Stanhope and Uribe in [29]. More precisely, we immediately infer

Corollary 4.7 (Local Weyl law for Riemannian orbifolds). In the situation of Theorem 4.3,
assume that G acts on M with finite isotropy groups. Then, for fixed x ∈ M and γ ∈ �G the asymptotic
formula (4.2) holds with n − κx = n − κ being equal to the dimension of �M . Moreover, let γtriv be

the trivial representation. Then eγtriv(x, x,λ) is G-invariant, and descends to a function on �M × �M
satisfying

�����eγtriv(x̃, x̃,λ)−
|Gx̃|

(2π)dim �M
λ

dim �M
m vol (S∗

�p,x̃(�M))

����� ≤ Cx̃λ
dim �M−1

m , x̃ ∈ �M,

where (Gx̃) denotes the isotropy type of x̃ := G · x, |Gx̃| its cardinality, while S∗

�p,x̃(
�M) equals the

fiber over x̃ of the orbifold bundle S∗

�p(
�M) :=

�
(x̃, ξ) ∈ T ∗�M : �p(x̃, ξ) = 1

�
, �p being the function on �M

induced by p.

Proof. The first assertion is clear, since all G-orbits on M have the same dimension κ = dim �M , so
that no singular orbits are present. To see the second note that since Gx is finite, dγtriv = 1, and
γtriv(g) = 1 for all g ∈ G one computes

[πγ |Gx
: 1] =

ˆ
Gx

γ(g)dGx(g) =

|Gx|�

l=1

1 = |Gx|,

dGx being the counting measure. For the volume factor, see [17, Remark 4.2]. �

Example 4.8. Let us consider the case whereM = T 2 ⊂ R3 is the standard 2-torus on which G = SO(2)
acts by rotations. Then all orbits are 1-dimensional and of principal type, and Theorem 4.3 yields for
the reduced spectral function of the Laplace-Beltrami operator

�����eγ(x, x,λ)−
1

2π

√
λ

ˆ
{ξ: (x,ξ)∈Ω, p(x,ξ)<1}

dξ

volO(x,ξ)

����� ≤ Cx, x ∈ T 2, γ ∈ �SO(2).
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Example 4.9. Consider a connected semisimple Lie group G with finite center and Lie algebra g,
together with a discrete co-compact subgroup Γ. In particular, Γ might have torsion, meaning that
there are non-trivial elements of Γ conjugate in G to an element of K. Let K be a maximal compact
subgroup of G, and choose a left-invariant metric on G given by an Ad (K)-invariant bilinear form on
g. The quotient M := Γ\G is a compact manifold without boundary, and has a Riemannian structure
induced by the one of G. Furthermore, K acts on Γ\G from the right in an isometric and effective way,
and the isotropy group of a point Γg is conjugate to the finite group gKg−1 ∩ Γ. Hence, all K-orbits
in Γ\G are either principal or exceptional, Γ\G/K is an orbifold, and Corollary 4.7 applies.

Example 4.10. Let us now consider a case where singular orbits are present, and M = S2 ⊂ R3 be
the standard 2-sphere and G = SO(2) ⊂ SO(3) the group of rotations around the x3-axis with fixed
points xN = (0, 0, 1) and xS = (0, 0,−1). In this case the phase function of Ix(µ) reads Φx(ω, g) =
�x− g · x,ω�. with respect to standard coordinates in R3. For x = xN , xS it simply vanishes, so that
Ix(µ) is independent of µ in this case, which is consistent with the asymptotics

Ix(µ) =

�
O(µ0), x = xN , xS ,

O(µ−1), otherwise,

implied by Theorem 3.3. Let us now apply Theorem 4.3 to the Laplace-Beltrami operator −∆ on S2,
and notice for this that the orbit volume volO(x,ξ) is of order

�
ξ21 + ξ22 +

�
x2
1 + x2

2 for arbitrary x

and ξ. By Theorem 4.3 and with the identification �SO(2) � Z the reduced spectral function satisfies
on S2

prin = S2 − {xN , xS} the estimate

(4.4)

�����em(x, x,λ)−
√
λ

2π

ˆ
{ξ: (x,ξ)∈Ω, �ξ�x<1}

dξ

volO(x,ξ)

����� ≤ Cx, x ∈ S2
prin, m ∈ Z.

In this case, Ω ∩ T ∗
x (S

2) is 1-dimensional; the integral in (4.4) is finite, but as S2
prin � x → xN or xS

the orbit volume becomes of order
�
ξ21 + ξ22 , so that the mentioned integral goes to infinity. On the

other hand, for the fixed points x = xN , xS the space Ω∩T ∗
xS

2 = T ∗
xS

2 is 2-dimensional and Theorem
4.3 yields

(4.5)

�����em(x, x,λ)−
[πm|G : 1]

(2π)2
λ

ˆ
{ξ: �ξ�x<1}

dξ

volO(x,ξ)

����� ≤ Cx

√
λ, x = xN , xS , m ∈ Z,

where

[πm|G : 1] =

�
1, m = 0,

0, otherwise.

Thus, at the fixed points only the trivial representation contributes to the main term in the asymptotic
formula for the spectral function given by the local Weyl law (1.1). Further note that, though for
x = xN , xS the orbit volume is proportional to

�
ξ21 + ξ22 , its inverse is still locally integrable on T ∗

xS
2,

and the integral in (4.5) certainly exists. Ultimately, the leading coefficient in (4.4) must blow up
as x approaches the fixed points in order to compensate for the fact that the leading power changes
abruptly from

√
λ to λ at the fixed points. Note that the remainder estimates in (4.4) and (4.5) are

consistent with the asymptotics (1.14) for the spherical function Yk,0.

5. Equivariant Lp-bounds of eigenfunctions for non-singular group actions

Let the notation be as in the previous sections. From the asymptotic formula for the equivariant
spectral function proven Theorem 4.3 we already deduced in Corollary 4.5 point-wise bounds for
isotypic spectral clusters. Similarly, one immediately shows in the non-singular case the following
equivariant L∞-bounds for eigenfunctions.
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Proposition 5.1 (L∞-bounds for isotypic spectral clusters). Assume that G acts on M with
orbits of the same dimension κ, and denote by χλ the spectral projection onto the sum of eigenspaces
of P with eigenvalues in the interval (λ,λ+ 1]. Then,

(5.1) �(χλ ◦Πγ)u�L∞(M) ≤ C(1 + λ)
n−κ−1

2m �u�L2(M) , u ∈ L2(M), γ ∈ �G,

where C > 0 is a constant independent of λ proportional to dγ . In particular,

�u�L∞(M) ≤ C λ
n−κ−1

2m , u ∈ L2
γ(M), �u�L2 = 1,

for any eigenfunction of P with eigenvalue λ in the isotypic component L2
γ(M).

Proof. The assertion is a direct consequence of Theorem 4.3. In fact, standard arguments [27, Eq.
(3.2.6)] imply that

�χλ ◦Πγ�2L2→L∞ =
�
sup
x

� ˆ

M

|Kχλ◦Πγ (x, y)|2dM(y)
�1/2�2

= sup
x

Kχλ◦Πγ (x, x) = sup
x

�
eγ(x, x,λ+ 1)− eγ(x, x,λ)

�
.

Since M = Mprin ∪Mexcept, the assertion follows from (4.2). �

It is instructive to see how Proposition 5.1 can be deduced directly from Proposition 4.2 by trans-
fering the arguments given in [27, Page 50] to the equivariant setting. By duality, the estimate (5.1)
is equivalent to

(5.2) �(χλ ◦Πγ)u�L2(M) ≤ C(1 + λ)
n−κ−1

2m �u�L1(M) .

In order to show the latter estimate, one considers again a Schwartz function � ∈ S(R,R+) satisfying
�(0) = 1 and supp �̂ ∈ (−δ/2, δ/2) for a given δ > 0. If �χλ denotes the corresponding approximate
spectral projection, one then shows that (5.2) is implied by

(5.3) �(�χλ ◦Πγ)u�L2(M) ≤ C(1 + λ)
n−κ−1

2m �u�L1(M) .

Thus, one is left with the task of proving (5.3). Now, the L1 → L2 operator norm can be estimated
according to

��χλ ◦Πγ�2L1→L2 = sup
y∈M

ˆ
M

|K�χλ◦Πγ (x, y)|2 dM(x)

= sup
y∈M

�

j≥0,ej∈L2
γ(M)

[�(λ− λj)]
2|ej(y)|2 ≤ ���L∞(R) sup

y∈M
K�χλ◦Πγ (y, y).

(5.4)

Hence, everything is shown, since by Proposition 4.2 we have the uniform bound

(5.5) |K�χλ◦Πγ (y, y)| ≤ C(1 + λ)
n−κ−1

m , y ∈ M = Mprin ∪Mexcept,

and we obtain again (5.1).

Example 5.2. In the situation of Example 4.8, where M = T 2 ⊂ R3 is the standard 2-torus on which
G = SO(2) acts by rotations, Proposition 5.1 implies the bounds

�u�L∞(T 2) ≤ C, u ∈ L2
γ(T

2), �u�L2 = 1,

for any eigenfunction of P in a specific isotypic component, which in case of the Laplace-Beltrami
operator ∆ are well-known. Indeed, via the identification

R2/Z2 �−→ T 2 � S1 × S1, (x1, x2) �−→ (e2πix1 , e2πix2),

the standard orthonormal basis of ∆ is given by
�
e2πik1x1e2πik2x1 : (k1, k2) ∈ Z2

�
.



24 PABLO RAMACHER

In what follows, we shall derive refined Lp-bounds for isotypic spectral clusters using complex
interpolation techniques. For this, we shall need the additional assumption that the co-spheres S∗

xM
are strictly convex. In essence, the proof is an elaboration of arguments from [23] applied to the
equivariant setting. Nevertheless, while for the proof of the L∞-bounds in the previous proposition it
was sufficient to consider the asymptotic behavior of the integrals Ix,y(µ) in case that x = y, the proof
of Lp-estimates actually requires estimates for the integrals Ix,y(µ) in a neighborhood of the diagonal,
making things significantly more involved. This leads us to our second main result.

Theorem 5.3 (Lp-bounds for isotypic spectral clusters). Let M be a closed connected Riemann-
ian manifold M of dimension n on which a compact connected Lie group G acts effectively and iso-
metrically with orbits of the same dimension κ. Further, let P be the unique self-adjoint extension of a
G-invariant elliptic positive symmetric classical pseudodifferential operator on M of degree m, and as-
sume that its principal symbol p(x, ξ) is such that the co-spheres S∗

xM := {(x, ξ) ∈ T ∗M : p(x, ξ) = 1}
are strictly convex. Denote by χλ the spectral projection onto the sum of eigenspaces of P with eigen-
values in the interval (λ,λ+ 1], and by Πγ the projection onto the isotypic component L2

γ(M), where

γ ∈ �G. Then, for u ∈ L2(M)

(5.6) �(χλ ◦Πγ)u�Lq(M) ≤






C λ
δn−κ(q)

m �u�L2(M) ,
2(n−κ+1)
n−κ−1 ≤ q ≤ ∞,

C λ
(n−κ−1)(2−q�)

4mq� �u�L2(M) , 2 ≤ q ≤ 2(n−κ+1)
n−κ−1 ,

where 1
q + 1

q� = 1,

δn−κ(q) := max

�
(n− κ)

����
1

2
− 1

q

����−
1

2
, 0

�
,

and C > 0 is a constant independent of λ proportional to dγ . In particular,

�u�Lq(M) ≤





C λ

δn−κ(q)

m , 2(n−κ+1)
n−κ−1 ≤ q ≤ ∞,

C λ
(n−κ−1)(2−q�)

4mq� , 2 ≤ q ≤ 2(n−κ+1)
n−κ−1 ,

for any eigenfunction of P with eigenvalue λ and L2-norm 1 in the isotypic component L2
γ(M).

Proof. By duality, (5.6) is equivalent to

(5.7) �(χµ ◦Πγ)u�L2(M) ≤






C µδn−κ(p) �u�Lp(M) , 1 ≤ p ≤ 2(n−κ+1)
n−κ+3 ,

C µ
(n−κ−1)(2−p)

4p �u�Lp(M) ,
2(n−κ+1)
n−κ+3 ≤ p ≤ 2,

where χµ denotes the spectral projection onto the sum of eigenspaces of Q := m
√
P with eigenvalues

in the interval (µ, µ+ 1]. The case p = 1 follows from the equivariant local Weyl law, and has already
been dealt with in (5.2). On the other hand, orthogonality arguments immediately imply

�(χµ ◦Πγ)u�L2(M) ≤ �u�L2(M) .

By the Riesz interpolation theorem [30, Chapter V, Theorem 1.3] it therefore suffices to prove (5.7) in

case that p = 2(n−κ+1)
n−κ+3 , which can be inferred from the corresponding bound

(5.8) �(�χµ ◦Πγ)u�L2(M) ≤ Cµδn−κ(p) �u�Lp(M) , p =
2(n− κ+ 1)

n− κ+ 3
,

for the approximate spectral projection �χµ defined in (2.1). Now, by Hölder’s inequality one computes

�(�χµ ◦Πγ)u�2L2(M) =

ˆ
M

������

�

j≥0, ej∈L2
γ(M)

�(µ− µj)Eju(x)

������

2

dM(x)

=

ˆ
M

�

j≥0, ej∈L2
γ(M)

�2(µ− µj)Eju(x)u(x) dM(x) ≤ �(χ̌µ ◦Πγ)u�Lp� (M) �u�Lp(M) ,



THE EQUIVARIANT SPECTRAL FUNCTION OF AN INVARIANT ELLIPTIC OPERATOR 25

where 1
p + 1

p� = 1, and we put χ̌µu :=
�∞

j=0 �
2(µ − µj)Eju for u ∈ L2(M). In order to see (5.8) it is

therefore sufficient to prove

(5.9) �(χ̌µ ◦Πγ)u�Lp� (M) ≤ Cµ2δn−κ(p) �u�Lp(M) , p =
2(n− κ+ 1)

n− κ+ 3
.

In order to show the latter, we shall use analytic interpolation [30, Chapter V, Theorem 4.1], and
consider the analytic family of operators

χ̌z
µ :=

ez
2

2π

ˆ
R
��2(t) eitµ (t− i 0)z U(t) dt, z ∈ C,

where (t − i0)z denotes the distribution limε→0+(t − iε)z. Clearly, χ̌z
µ = χ̌µ if z = 0, and since

2δn−κ(2(n− κ+ 1)/(n− κ+ 3)) = (n− κ− 1)/(n− κ+ 1), analytic interpolation theory implies that
(5.9) would follow if we were able to show that

��(χ̌z
µ ◦Πγ)u

��
L2(M)

≤ C �u�L2(M) , Re z = −1,(5.10)

��(χ̌z
µ ◦Πγ)u

��
L∞(M)

≤ C µ
n−κ−1

2 �u�L1(M) , Re z =
n− κ− 1

2
.(5.11)

The crucial observation for the following estimates is that the Fourier transform of the distribution
τz+/Γ(z + 1) is given by the formula

(5.12)

ˆ
R
e−itτ τz+

Γ(z + 1)
dτ = e−iπ(z+1)/2(t− i 0)−z−1, z ∈ C,

where Γ denotes the Gamma function, see [14, Example 7.1.17]; in particular, the singularity of
τz+/Γ(z + 1) at τ = 0 determines the asymptotic behavior of (t − i0)−z−1 as t → ∞, and viceversa.
From this (5.10) immediately follows. The non-trivial bound to be proven is (5.11), which would follow
if we were able to show that the Schwartz kernel of χ̌z

µ ◦Πγ satisfies

|Kχ̌z
µ◦Πγ (x, y)| ≤ Cµ

n−κ−1
2 , Re z =

n− κ− 1

2
,(5.13)

uniformly in x, y ∈ M . Note that, in contrast, |Kχ̌µ◦Πγ (x, x)| ≤ Cµn−κ−1, compare Proposition 4.2.
Now, it is clear from (2.8) that

Kχ̌z
µ◦Πγ (x, y) =

µndγ ez
2

(2π)n+1

�

ι

ˆ
R

ˆ
R
eiµ[t−Rt](t− i 0)z Iι(µ,R, t, x, y) dt dR

where Iι(µ,R, t, x, y) is as in (2.10) with � replaced by �2. Due to the presence of the distribution
(t− i 0)z we cannot apply the stationary phase theorem to the (R, t)-integral. Instead, we shall apply
the stationary phase principle to the integrals Iι(µ,R, t, x, y) first, and then use (5.12) to deal with the
(R, t)-integral. If x �∈ Yι or Oy ∩ Yι = ∅, Iι(µ,R, t, x, y) = 0. Otherwise, one deduces from Theorem
3.3 (2) for fixed R, t ∈ R, and any Ñ ∈ N the asymptotic expansion

Iι(µ,R, t, x, y) = (2π/µ)
codimCritΦι,x,y

2 eiµΦ
0
ι,x,y

Ñ−1�

k=0

Lk
ι (R, t, x, y)µ−k +OR,t,x,y(µ

− dimCritΦι,x,y
2 −Ñ ),

where

codimCritΦι,x,y =

�
2κ, y ∈ Ox,

n− 1 + κ, y /∈ Ox.

The coefficients Lk
ι (R, t, x, y) and the remainder term are given by distributions depending smoothly

on R, t with support in CritΦι,x,y and ΣR,t
ι,x ×G, respectively. Furthermore, they and their derivatives

with respect to R, t are uniformly bounded in x and y, while Φ0
ι,x,y(R, t) = Rcx,g·y(t) denotes the
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constant value of Φι,x,y on its critical set. If y ∈ Ox one has Φ0
ι,x,y = 0, so that up to terms of order

OR,t,x,y(µ−κ−Ñ ) the kernel Kχ̌z
µ◦Πγ (x, y) is given by a sum of terms of the form

(5.14)
µn−κ−kdγ ez

2

(2π)n−κ+1

ˆ
R

ˆ
R
eiµ(t−Rt)(t− i 0)z Lk

ι (R, t, x, y) dt dR,

and if y /∈ Ox, by a sum of terms of the form

(5.15)
µn−(n−1+κ)/2−kdγ ez

2

(2π)n−(n−1+κ)/2+1

ˆ
R

ˆ
R
eiµ(t−Rt)(t− i 0)z eiµΦ

0
ι,x,y(R,t)Lk

ι (R, t, x, y) dt dR,

where k = 0, . . . , Ñ − 1. Now, as a consequence of (5.12), one has for any f ∈ C∞
c (R×R), that might

depend on µ as a parameter, and z ∈ C
�
(t− i0)z, eiµ(1−R)tf(R, t)

�
=

e−iπz/2

Γ(−z)

�
τ−z−1
+ , �f(R, ·)(τ − µ(1−R))

�
.

Let us consider first the case when z = 0, 1, 2, 3, . . . , and write −l := −z − 1. Since τ−l
+ /Γ(−l + 1) =

δ(l−1)
0 , compare [14, (3.2.17)’], partial integration yieldsˆ

R

ˆ
R
eiµ(1−R)t(t− i0)zf(R, t) dt dR = e−iπz/2(−1)l−1

ˆ
R

ˆ
R
(−it)l−1eitµ(1−R)f(R, t) dt dR

= e−iπz/2µ−l+1

ˆ
R

ˆ
R
eitµ(1−R)(∂l−1

R f)(R, t) dt dR.

The relevant integrals in (5.14) and (5.15) therefore read

(5.16) e−iπz/2µ−l+1

ˆ
R

ˆ
R
eitµ(1−R) ∂l−1

R [eiµΦ
0
ι,x,y(R,t)Lk

ι (R, t, x, y)] dt dR,

and an application of the stationary phase theorem [10, Proposition 2.3] to the (R, t)-integral allows
us to deduce for z = 0, 1, 2, 3, . . . the bounds

(5.17) Kχ̌z
µ◦Πγ (x, y) =

�
O(µn−κ−z−1), y ∈ Ox,

O(µn−(n−1+κ)/2−1), y /∈ Ox,

yielding (5.13) in this case. Indeed, if y ∈ Ox the phase function in (5.16) simply reads t(1−R), and
the only critical point is (R0, t0) = (1, 0), which is non-degenerate, the determinant of the Hessian
being −1. If y �∈ Ox, the phase function is given by t(1− R) + Φ0

ι,x,y(R, t), and a computation shows
that the determinant of the matrix of its second derivatives is given by

(5.18) −
�
1− c�x,g·y(t)

�2 ≈ −(1±O(�κι(x)− κι(g · y)�))2

since cx,g·y(t) = ±�κι(x)− κι(g · y)�/
��gradη ζι(t,κ(x),ω)

��. By choosing the charts Yι sufficiently
small so that |κι(x)−κι(g · y)| � 1, we can therefore achieve that in a sufficiently small neighborhood
of (R, t) = (1, 0), which is where Lk

ι (R, t, x, y) is supported, the phase function t(1−R) + Φ0
ι,x,y(R, t)

has, if at all, only non-degenerate, hence isolated, critical points. If we now apply the stationary phase
theorem to the integral (5.16) with respect to the phase function t(1−R) and t(1−R) +Φ0

ι,x,y(R, t),
respectively, we obtain (5.17) for z = 0, 1, 2, 3, . . . . Next, let us turn to the case where z �= 0, 1, 2, 3, . . . ,
and note that by homogeneity of τz+ one has

�
(t− i0)z, eiµ(1−R)tf(R, t)

�
=

e−iπz/2

Γ(−z)

�
τ−z−1
+ , µ−1 �f(R, ·/µ)

�
τ/µ− 1 +R

��

=
e−iπz/2

Γ(−z)
µ−z−1

�
τ−z−1
+ , �f(R, ·/µ)(τ − 1 +R)

�
,
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compare [14, (3.2.7)]. By definition of τ−z−1
+ and partial integration one computes

−z(−z + 1) . . . (−z − 1 + l)(−1)l
ˆ
R

ˆ
R
τ−z−1
+

�f(R, ·/µ)(τ − 1 +R) dτ dR

=

ˆ
R

ˆ
R
τ−z−1+l
+ ∂l

τ

�
�f(R, ·/µ)(τ − 1 +R)

�
dτ dR

= (−1)lµ

ˆ
R
τ−z−1+l
+

�ˆ
R

ˆ
R
e−itµ(τ−1+R)(∂l

R f)(R, t) dt dR

�
dτ,

where l > Re z is any sufficiently large positive integer, so that τ−z−1+l
+ becomes locally integrable.

Note that we have, as we may, interchanged the integrals over τ and R, while the integrals over τ and
t cannot be interchanged. As a consequence, the relevant integrals in (5.14) and (5.15) are given by
linear combinations of terms of the form

(5.19) µ−z

ˆ
R
τ−z−1+l
+

�ˆ
R

ˆ
R
e−itµ(τ−1+R) ∂l

R[e
iµΦ0

ι,x,y(R,t)Lk
ι (R, t, x, y)] dt dR

�
dτ.

Again, let us examine the (R, t)-integral by means of the stationary phase. If y ∈ Ox, the phase
function is given by t(τ −1+R), the only critical point is (R0, t0) = (1− τ, 0), and we obtain for (5.19)
the estimate

2πµ−z−1

ˆ
R
τ−z−1+l
+

�
(∂l

R Lk
ι )(1− τ, 0, x, y) +Oτ (µ

−1)
�
dτ = O(µ−z−1),

the remainder Oτ (µ−1) being rapidly falling in τ , since Lk
ι has compact (R, t)-support. Now, if y �∈ Ox,

the phase function reads t(1−R) + Φ0
ι,x,y(R, t)− tτ , and the determinant of the matrix of its second

derivatives is again given by (5.18). By the arguments above, we can therefore assume that in a
sufficiently small neighborhood of (R, t) = (1, 0) the phase function t(1 − R) + Φ0

ι,x,y(R, t) − tτ has
only one non-degnerate critical point (R0, t0). It satisfies the relations

t0 = cx,g·y(t0) ≈ 0, R0 =
1− τ

1− c�x,g·y(t)
≈ 1− τ,

and at this point, the phase function takes the value t0(1−R0)+Φ0
ι,x,y(R0, t0)− t0τ = t0(1−τ). Thus,

we obtain for (5.19) the bound

2πµ−z−1

ˆ
R
τ−z−1+l
+



eiµt0(1−τ)
N−1�

j=0

�

l�1+l�2+l��=l

cl�1,l�2,l��µ
−j

D2j
R,t

�
∂
l�2
R [(iµΦ

0
ι,x,y(R, t))l

�
1 ] ∂l��

R [Lk
ι (R, t, x, y)]

�

(R,t)=(R0,t0)
+Oτ (µ

−N+l)

�
dτ = O(µ−1),

where N ∈ N is sufficiently large, the D2j
R,t are differential operators of order 2j in the variables R, t,

the cl�1,l�2,l�� certain coefficients, and the remainder is rapidly falling in τ . Here we took into account
that for any w ∈ C with Rew > −1 and g ∈ S(R) one has

(5.20)

ˆ
R
e−iµτ τw+ g(τ) dτ ≈ Γ(w + 1)

(−iµ)w+1
= O(µ−Rew−1),

compare (5.12). Consequently, we have shown (5.17) for z �= 0, 1, 2, 3, . . . as well, and we obtain (5.13),
all estimates being uniform in x and y. This completes the proof of Theorem 5.3. �
Remark 5.4. It might be instructive to illustrate our arguments by showing how they imply the Lp-
bounds (1.6) proved by Seeger and Sogge. Assume that the co-spheres S∗

xM are strictly convex. In
their notation, the crucial bound to be shown is3

Izx,y(λ) :=

ˆ
Rn

ei�x−y,η�β

�
p̃(η)

λ

�
qz(λ− p̃(η), η) dη = O(λ

n−1
2 ), x, y ∈ Rn, λ → +∞,

3Note that in [23, Eq. (2.24)] the factor β
�
1− p̃(η)

λ

�
should read β

�
p̃(η)
λ

�
.
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compare [23, Eq. (2.24)], where p̃(η) ≡ p̃x,y(η) is a symbol homogeneus of degree 1 in η, β ∈ C∞
c (R)

a test function satisfying β(s) = 1 when s ∈ [1/2, 1] and β(s) = 0 if s �∈ [1/4, 2], and

qz(·, η) = ez
2
ˆ
R
(t− i0)zχ̂(t)q(t, x, y, η)e−it· dt, Re (z) =

n− 1

2
,

q being a classical symbol in S0
1,0 and χ ∈ S(R) a Schwartz function with supp χ̂ ⊂ (−ε, ε). Now,

introducing the coordinates η = Rω1, R > 0 with ω1 ∈ �Σ := {η ∈ Rn : p̃(η) = 1} we obtain with (5.12)
for arbitrary z ∈ C

Izx,y(λ) = λnez
2
ˆ
R

ˆ
R
e−itλ(1−R)(t− i0)zχ̂(t)β(R)JR,t

x,y (λ) dR dt

= λnez
2

e−iπz/2

ˆ
R

τ−z−1
+

Γ(−z)

�ˆ
R

ˆ
R
e−it[λ(1−R)+τ ]χ̂(t)β(R)JR,t

x,y (λ) dR dt

�
dτ,

where we wrote

JR,t
x,y (λ) :=

ˆ
�ΣR

eiλ�x−y,ω�q(t, x, y,λω) dω, �ΣR := {η : p̃(η) = R} .

Note that the λ-dependence of the integrand is unproblematic, since q ∈ S0
1,0. Clearly, J

R,t
x,y (λ) = O(1)

if x = y. Let us therefore assume that x �= y. The critical set of the phase function �x− y,ω�
as a function in ω is clean due to the strict convexity assumption, and given by the isolated points
C := {ω ∈ �ΣR : x− y ∈ Nω

�ΣR}, so the stationary phase theorem yields for any N ∈ N the asymptotic
expansion

JR,t
x,y (λ) = (2π/λ)

n−1
2

�

ω∈C

eiλ�x−y,ω�eiπσω/4
N−1�

k=0

D2k
ω [q(t, x, y,λω)](ω)λ−k +OR,t,x,y(λ

n−1
2 −N ),

compare [14, Theorem 7.7.14], with certain differential operators D2k
ω and σω ∈ Z being given by the

principal curvatures at ω, and an explicit remainder depending smoothly on R, t, x, and y. Let us

first consider the case when z = 0, 1, 2, 3, . . . , and write −l := −z − 1. Then τ−l
+ /Γ(−l + 1) = δ(l−1)

0 ,
compare [14, (3.2.17)’], and finding an upper bound for Izx,y(λ) reduces to the question of examining
the asymptotic behavior of

�
δ(l−1)
τ=0 ,

ˆ
R

ˆ
R
e−it[λ(1−R)+τ ]eiλR�x−y,ω1�f(R, t) dR dt

�

= λ−l+1(−1)l−1

ˆ
R

ˆ
R
eitλ(R−1) ∂l−1

R

�
eiλR�x−y,ω1�f(R, t)

�
dt dR,

where f ∈ C∞
c (R × R) has support near (R, t) = (1, 0), and ω ≡ Rω1. To do so, we proceed as in

(5.16), and note that the phase function t(R− 1) +R �x− y,ω1� has the only critical point

(R0, t0) = (1,−�x− y,ω1�).

Applying the stationary phase principle to the last (R, t)-integral we obtain Izx,y(λ) = O(λ
n−1
2 ) in

case that z = (n − 1)/2 = 0, 1, 2, 3, . . . . On the other hand, if z �= 0, 1, 2, 3, . . . , things reduce to a
description of oscillatory integrals of the form

−z(−z + 1) . . . (−z − 1 + l)(−1)l
�
τ−z−1
+ ,

ˆ
R

ˆ
R
e−it[λ(1−R)+τ ]eiλR�x−y,ω1�f(R, t) dR dt

�

= λ−l

ˆ
R
τ−z−1+l
+

�ˆ
R

ˆ
R
e−it[λ(1−R)+τ ] ∂l

R

�
eiλR�x−y,ω1�f(R, t)

�
dt dR

�
dτ

= λ−z

ˆ
R
τ−z−1+l
+

�ˆ
R

ˆ
R
e−iλt[(1−R)+τ ] ∂l

R

�
eiλR�x−y,ω1�f(R, t)

�
dt dR

�
dτ,
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where l ∈ N is such that Re − z− 1+ l > −1. The only critical point of the phase function t[(R− 1)−
τ ] +R �x− y,ω1� as a function of R and t is

(R0, t0) = (1 + τ, �x− y,ω1�),
and its value at this point is R0t0. By applying the stationary phase theorem to the last (R, t)-integral,

the uniform bound Izx,y(λ) = O(λ
n−1
2 ) would follow for z �= 0, 1, 2, 3, . . . and Re z = (n− 1)/2, ifˆ

τ−z−1+l
+ eiλ(1+τ)�x−y,ω1�g(τ) dτ = O(λRe z−l)

for any g ∈ S(R), which nevertheless is implied by (5.20).

Example 5.5. Let us resume Example 4.9 of a connected semisimple Lie group G with finite center,
discrete co-compact subgroup Γ, and maximal compact subgroup K. The group K acts on Γ\G with
orbits of principal and exceptional type, all orbits having the dimension dimK, and we deduce from
Proposition 5.1 for each γ ∈ �K the estimate

�u�L∞(Γ\G) ≤ C λ
dimG/K−1

2m , u ∈ L2
γ(Γ\G), �u�L2 = 1,

for any eigenfunction u of a K-invariant elliptic positive symmetric classical pseudodifferential operator
P on Γ\G of degree m with eigenvalue λ. More generally, with 1

q + 1
q� = 1 and

δ(q) := max

�
dimG/K

����
1

2
− 1

q

����−
1

2
, 0

�

we have by Theorem 5.3 the bound

�u�Lq(Γ\G) ≤






C λ
δ(q)
m , 2(dimG/K+1)

dimG/K−1 ≤ q ≤ ∞,

C λ
(dimG/K−1)(2−q�)

4mq� , 2 ≤ q ≤ 2(dimG/K+1)
dimG/K−1 ,

provided that P satisfies the strict convexity assumption in Theorem 5.3. In case that Γ has no torsion
and p = ∞, we recover for any eigenfunction of the Beltrami-Laplace operator on Γ\G/K the classical
bound

�u�L∞(Γ\G/K) ≤ C λ
dimΓ\G/K−1

4 , u ∈ L2(Γ\G/K), �u�L2 = 1,

L2(Γ\G/K) � L2(Γ\G)K corresponding to the trivial isotypic component in the Peter-Weyl decom-
position of L2(Γ\G). Thus, our results generalize the classical bounds for Maass forms on Γ\G to
arbitrary K-types.

6. The desingularization process

As already noted, the asymptotic formula for the reduced spectral function eγ(x, x,λ) given in
Theorem 4.3 depends in a highly non-smooth way on x ∈ M if exceptional or even singular orbits are
present, and does not give a precise description of the caustic behavior of eγ(x, x,λ). In particular,
it remains unclear if the coefficients in the expansion of eγ(x, x,λ) are integrable in x, and how one
could deduce from Theorem 4.3 asympotics for the equivariant spectral counting function Nγ(λ) :=´
M eγ(x, x,λ) dM(x). In what follows, we would like to give a description of eγ(x, x,λ) that interpolates
between the asymptotics for different values of x, and in particular to characterize the behavior of the
leading coefficient and the remainder term in Theorem 4.3 as x ∈ Mprin approaches singular orbits.
For this, we shall make use of resolution of singularities. As we shall see, the major difficulty resides
in the fact that, unless the G-action on T ∗M is free, so that the considered momentum map becomes
a submersion, Ω and CritΦ are not smooth manifolds. Nevertheless, it was shown in [21] that by
constructing a strong resolution of the set

(6.1) N := {(p, g) ∈ M ×G : g · p = p}
a partial desingularization

(6.2) Z : �X → X := T ∗M ×G
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of the critical sets CritΦ can be achieved, and after applying the stationary phase theorem in the res-
olution space �X, an asymptotic description of the integrals I(µ) defined in (3.2) was obtained, leading
to an asymptotic formula for Nγ(λ). In the ensuing sections, we shall use the partial desingularization
(6.2) to obtain an asymptotic formula for the integrals Ix(µ) := Ix,x(µ) defined in (3.1) that describes
the caustic behavior of the coefficients Qk(x) in Theorem 3.3 (1) as one approaches singular orbits. One
can deduce from this the asymptotic description of the integrals I(µ) given in [21], but the converse
implication is more subtle and not straight-forward. For this reason, a careful re-examination of the
results of [21] is needed in order to obtain a precise description of the coefficients in the asymptotic
formula for the integrals Ix(µ) and, ultimately, of the leading coefficient in the asymptotic formula for
the equivariant spectral function.

Let M be a closed connected Riemannian manifold and G a connected, compact Lie group acting
on M by isometries. In what follows, we shall recall the construction of the partial desingularization
(6.2) of the critical set C :=

�
(x, η, g) ∈ (Ω ∩ T ∗M)×G : g ∈ G(x,η)

�
performed in [21]. The desingu-

larization process presented here is exactly the same, only that we apply it now to the study of the
integrals (3.1) instead of the integrals (3.2). For details, the reader is referred to [21]. Consider the
decomposition of M into orbit types

(6.3) M = M(H1) ∪̇ · · · ∪̇M(HL),

where we suppose that the isotropy types are numbered in such a way that (Hi) ≥ (Hj) implies i ≤ j,
(HL) being the principal isotropy type, see Figure 6.1.

HL

HL−4 HL−3 HL−2 HL−1

Hm−1 Hm Hm+1

Hi+2 Hi+3 · · · Hl Hl+1

H1 H2 H3 · · · Hi−1 Hi Hi+1

Figure 6.1. An isotropy tree corresponding to the decomposition (6.3). A line between
two subgroups indicates partial ordering.

To construct (6.2), an iterative process along the strata of the G-action on M is set up, where
the centers of the blow-ups are successively chosen as isotropy bundles over unions of maximally
singular orbits. For simplicity, one assumes that at each step the union of maximally singular orbits
is connected.

Beginning of iteration. Let fk : νk → Mk be an invariant tubular neighborhood of Mk(Hk) in

Mk := M −
k−1�

i=1

fi(
◦

D1/2 (νi)), k = 1, . . . , L,

a manifold with corners on which G acts with the isotropy types (Hk), (Hk+1), . . . , (HL). Here νk

denotes the normal G-vector bundle of Mk(Hk),
◦

D1/2 (νi) := {v ∈ νi : �v� < 1/2},
fk(p

(k), v(k)) := (expp(k) ◦ γ(k))(v(k)), p(k) ∈ Mk(Hk), v
(k) ∈ (νk)p(k) ,

is an equivariant diffeomorphism given in terms of the exponential map, and

γ(k)(v(k)) :=
Fk(p(k))

(1 + �v(k)�2)1/2 v
(k),



THE EQUIVARIANT SPECTRAL FUNCTION OF AN INVARIANT ELLIPTIC OPERATOR 31

where Fk : Mk(Hk) → R is a smooth, G-invariant, positive function, see [2, Page 306]. Let Sk be the

unit sphere bundle over Mk(Hk), and put Wk := fk(
◦

D1 (νk)), WL :=
◦

ML, so that we obtain the open
covering

(6.4) M = W1 ∪ · · · ∪WL.

Fix an inner product on g, which induces a Riemannian structure on G, and consider for each k and
p(k) ∈ Mk(Hk) the decomposition

TeG � g = gp(k) ⊕ g⊥p(k) ,

where gp(k) � TeGp(k) denotes the Lie algebra of the stabilizer Gp(k) of p(k), and g⊥
p(k) its orthogonal

complement with respect to the above Riemannian structure. Now, introduce a partition of unity
{χk}k=1,...,L subordinated to the covering (6.4), and define

Ik(x, µ) := χk(x)Ix(µ)

with Ix(µ) = Ix,x(µ) as in (3.1). By Theorem 3.3 (1) the asymptotic expansion for IL(x, µ) depends
smoothly on x ∈ WL ∩ Y . Let us therefore turn to the case when 1 ≤ k ≤ L− 1 and Wk ∩ Y �= ∅. For
fixed k and x = fk(p(k), v(k)) ∈ Wk ∩ Y Lemma 3.1 (a) implies that

CritΦx =
�
(ω, g) ∈ ΣR,t

x ×G : (x,ω) ∈ Ω, g · x = x
�
⊂ ΣR,t

x ×Gp(k) ,

where Φx := Φx,x. Up to non-stationary contributions, it will therefore suffice to evaluate the integrals
Ik(x, µ) in a neighborhood of Gp(k) . To this end, consider the isotropy bundle IsoMk(Hk) → Mk(Hk)
over Mk(Hk), as well as the canonical projection

πk : Wk → Mk(Hk), fk(p
(k), v(k)) �→ p(k), p(k) ∈ Mk(Hk), v

(k) ∈ (νk)p(k) .

Further, let

π∗

k IsoMk(Hk) =
�
(fk(p

(k), v(k)), h(k)) ∈ Wk ×G : h(k) ∈ Gp(k)

�

be the induced bundle. Let Uk be a tubular neighborhood of π∗

kIsoMk(Hk) in Wk × G, and note
that the fiber of the normal bundle N π∗

kIsoMk(Hk) at a point (fk(p(k), v(k)), h(k)) may be identified
with the fiber of the normal bundle to Gp(k) at the point h(k). Consider further an orthonormal basis

{A1(p(k)), . . . , Ad(k)(p(k))} of g⊥p(k) , and introduce canonical coordinates of the second kind

(6.5) Rd(k) ×Gp(k) � (α(k)
1 , . . . ,α(k)

d(k) , h
(k)) �−→ e

�
i α

(k)
i Ai(p

(k)) h(k)

in a neighborhood of Gp(k) , see [11, Page 146]. Denote by bµ the amplitude aµ multiplied by a smooth
cut-off-function with support in Uk which is equal to 1 in a small neighborhood of π∗

kIsoMk(Hk).
Taking into account the non-stationary phase theorem [14, Theorem 7.7.1] one computes

Ik(x, µ) = χk(x)

ˆ
G

p(k)×g⊥
p(k)

×ΣR,t
x

eiµΦxbµ d(ΣR,t
x )(ω) dA(k) dh(k) +O(µ−∞),(6.6)

where dh(k), dA(k) are suitable volume densities on the sets Gp(k) and g⊥
p(k) � Nh(k)Gp(k) , respectively,

such that dg ≡ dA(k) dh(k), compare [21, (5.4)], and the remainder estimate is uniform in x.
We shall now sucessively resolve the singularities of (6.1) in order to obtain a factorization of Φx.

Note that by [21, Eq. (5.1)]

N = NL ∪
L−1�

k=1

Nk,

where Nk := N ∩Uk, NL := IsoWL, IsoWL → WL being the isotropy bundle over WL. While NL is a
smooth submanifold, Nk is in general singular. In particular, if dimHk �= dimHL, Nk has a maximal
singular locus given by IsoMk(Hk). One then performs for each k ∈ {1, . . . , L− 1} a blow-up

ζk : BZk(Uk) −→ Uk
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with center Zk := IsoMk(Hk) ⊂ Nk, and by piecing these transformations together one obtains the
global blow-up

ζ(1) : BZ(1)M −→ M, Z(1) :=

L−1
•�

k=1

Zk,

where we put M := M×G. To get a local description, fix k, and let {v(k)1 , . . . , v(k)
c(k)} be an orthonormal

frame in νk, and (θ(k)1 , . . . , θ(k)
c(k)) coordinates in γ(k)((νk)p(k)). Similarly, let (α(k)

1 , . . . ,α(k)
d(k)) be the

coordinates introduced in (6.5). If one now covers BZk(Uk) with standard projective charts {(φ�
k,O

�
k)}

one obtains in the so-called θ(k)-charts {O�
k}1≤�≤c(k) , in which the θ(k)� -coordinate is non-zero, for ζk

the local expressions

ζ�k = ζk ◦ (φ�
k)

−1 : (p(k), τk, ṽ
(k), A(k), h(k)) �→

�
expp(k) τkṽ

(k), eτkA
(k)

h(k)
�
= (x, g),(6.7)

where

p(k) ∈ Mk(Hk), A(k) ∈ g⊥p(k) , h(k) ∈ Gp(k) , ṽ(k) ∈ γ(k)
�
(S+

k )p(k)

�
,

and S+
k :=

�
v ∈ νk : v :=

�
siv

(k)
i , s� > 0, �v� = 1

�
, while τk ∈ (−1, 1), see [21, Eq. (5.6)]. A sim-

ilar description of ζk is given in the so-called α(k)-charts {O�
k}c(k)+1≤�≤c(k)+d(k) , in which the α(k)

� -
coordinate does not vanish. By performing Taylor expansion at τk = 0 one can then show that the
phase function (3.3) factorizes according to

(6.8) Φ ◦ (id η ⊗ ζ�k) =
(k)�Φtot = τk · (k)�Φwk,

(k)�Φtot and (k)�Φwk being the total and weak transform of the phase function Φ, respectively, see [21,
Eqs. (5.8) and (5.9)]. Since ζk is a real-analytic surjective proper map, which is a diffeomorphism on
the complement of ζ−1

k (Zk), we can lift the integral Ik(x, µ) along the restriction of ζk to the fiber over
{x}×G to the resolution space BZk(Uk). To obtain local expressions, introduce a compactly supported
partition {u�

k} of unity subordinate to the covering {O�
k}, set a

�
k := (u�

k ◦ (φ
�
k)

−1) · [(bµχk)◦ (id ω ⊗ ζ�k)],
and define for x = expp(k) τkṽ(k) ∈ Wk ∩ Y and 1 ≤ � ≤ c(k) the integrals

I�k (x, µ) := |τk|d
(k)
ˆ
G

p(k)×g⊥
p(k)

×ΣR,t
x

e
iµτk

(k)�Φwk

τk,p(k),ṽ(k)a�k d(ΣR,t
x )(ω) dA(k) dh(k),

and for c(k) + 1 ≤ � ≤ c(k) + d(k) corresponding integrals �I�k (x, µ). Here �Φwk
τk,p(k),ṽ(k) denotes the weak

transform regarded as a function of the variables ω, A(k), h(k), while τk, p(k), ṽ(k) are considered as
parameters. Let us emphasize that the amplitudes a�k are compactly supported. In view of (6.6) we
arrive for x ∈ Wk at the decomposition

Ik(x, µ) =
c(k)�

�=1

I�k (x, µ) +
d(k)�

�=c(k)+1

�I�k (x, µ)

up to terms of order O(µ−∞). As we shall see in Corollary 7.2, the weak transforms �Φwk
τk,p(k),ṽ(k) have

no critical points in the α(k)-charts, which will imply that the integrals �I�k (x, µ) contribute to I(x, µ)
with terms of order O(µ−∞). If G acts on Sk only with isotropy type (HL), we shall see in the next
section that in each of the θ(k)-charts the critical sets of the weak transforms (k)�Φwk are clean, so that
one can apply the stationary phase theorem in order to obtain asymptotics for each of the I�k (x, µ).
But in general, G will act on Sk with singular orbit types, so that neither Nk is resolved, nor do the
weak transforms (k)�Φwk have clean critical sets, and we are forced to continue with the iteration.
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Iteration step from N − 1 to N . Denote by Λ ≤ L the maximal number of elements that a
totally ordered subset of the set of isotropy types can have. Assume that 2 ≤ N < Λ, and let
{(Hi1), . . . , (HiN )} be a totally ordered subset of the set of isotropy types such that i1 < · · · < iN <
L. Let fi1 , Si1 , as well as p(i1) ∈ Mi1(Hi1) be defined as at the beginning of the iteration, and
assume that fi1...ij , Si1...ij , p

(ij), . . . have already been defined for j < N . For every fixed p(iN−1),

denote by γ(iN−1)((Si1...iN−1)p(iN−1))iN the sub-manifold with corners of the closed Gp(iN−1) -manifold

γ(iN−1)((Si1...iN−1)p(iN−1)) from which all orbit types less than G/HiN have been removed. Consider
the invariant tubular neighborhood

fi1...iN := exp ◦γ(iN ) : νi1...iN → γ(iN−1)((Si1...iN−1)p(iN−1))iN

of the set γ(iN−1)((Si1...iN−1)p(iN−1))iN (HiN ), where νi1...iN denotes its normal Gp(iN−1) -vector bundle,

and exp ◦γ(iN ) the corresponding equvariant diffeomorphism, and define Si1...iN as the sphere sub-
bundle in νi1...iN , while

S+
i1...iN

:=
�
v ∈ Si1...iN : v =

�
siv

(i1...iN )
i , s�iN

> 0
�

for some �iN . Put Wi1...iN := fi1...iN (
◦

D1 (νi1...iN )), and denote the corresponding integral in the

decomposition of I
�i1 ...�iN−1

i1...iN−1
(x, µ) by I

�i1 ...�iN−1

i1...iN
(x, µ). Here we can assume that, modulo terms of order

O(µ−∞), the Wi1...iN ×Gp(iN−1) -support of the integrand in I
�i1 ...�iN−1

i1...iN
(µ) is contained in a compactum

of a tubular neighborhood of the induced bundle π∗
i1...iN Iso γ(iN−1)((Si1...iN−1)p(iN−1))iN (HiN ), where

πi1...iN : Wi1...iN → γ(iN−1)((Si1...iN−1)p(iN−1))iN (HiN ) denotes the canonical projection. For a given

point p(iN ) ∈ γ(iN−1)((S+
i1...iN−1

)p(iN−1))iN (HiN ), consider further the decomposition

gp(iN−1) = gp(iN ) ⊕ g⊥p(iN ) ,

and set d(iN ) := dim g⊥p(iN ), e
(iN ) := dim gp(iN ). This yields the decomposition

g = gp(i1) ⊕ g⊥p(i1) = (gp(i2) ⊕ g⊥p(i2))⊕ g⊥p(i1) = · · · = gp(iN ) ⊕ g⊥p(iN ) ⊕ · · ·⊕ g⊥p(i1) .(6.9)

Denote by
�
A(iN )

r (p(i1), . . . , p(iN ))
�
a basis of g⊥

p(iN )
, and let

�
α(iN )
1 , . . . ,α(iN )

d(iN )

�
be corresponding coor-

dinates. Further, let
�
v(i1...iN )
1 , . . . , v(i1...iN )

c(iN )

�
be an orthonormal frame in νi1...iN , and (θ(iN )

1 , . . . , θ(iN )

c(iN ))

corresponding coordinates. Now, let the blow-up ζ(1) be defined as in the beginning of the iteration,
and assume that the blow-ups ζ(j) have already been defined for j < N . Put �M(j) := BZ(j)(�M(j−1)),
�M(0) := M = M ×G, and consider the blow-up

(6.10) ζ(N) : BZ(N)(�M(N−1)) → �M(N−1), Z(N) :=
•�

i1<···<iN<L

Zi1...iN ,

where the union is over all totally ordered subsets {(Hi1), . . . , (HiN )} of N elements with i1 < · · · <
iN < L, and

Zi1...iN �
�

p(i1),...,p(iN−1)

(−1, 1)N−1 × Iso γ(iN−1)((Si1...iN−1)p(iN−1))iN (HiN )

are the possible maximal singular loci of (ζ(1) ◦ · · · ◦ ζ(N−1))−1(N ). Denote by ζ
�i1
i1

◦ · · · ◦ ζ�i1 ...�iN
i1...iN

a

local realization of the sequence of blow-ups ζ(1) ◦ · · ·◦ζ(N) corresponding to the totally ordered subset
{(Hi1), . . . , (HiN )} in a set of charts labeled by the indices �i1 , . . . , �iN . As a consequence, we obtain
local factorizations of the phase function according to

Φ ◦ ((ζ�i1
i1

◦ · · · ◦ ζ�i1 ...�iN
i1...iN

)⊗ id η) =
(i1...iN )�Φtot = τi1 · · · τiN (i1...iN )�Φwk,
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see [21, Page 39]. Assume now that the indices �i1 , . . . , �iN correspond to a set of (θ(i1), . . . , θ(iN ))-
charts. Then ζ

�i1
i1

◦ · · · ◦ ζ�i1 ...�iN
i1...iN

is explicitly given by

(τi1 , . . . , τiN , p(i1), . . . , p(iN ), ṽ(iN ), A(i1), . . . , A(iN ), h(iN )) �−→ (x
�i1 ...�iN
i1...iN

, g
�i1 ...�iN
i1...iN

) = (x, g),

where we set

x
�ij ...�iN

ij ...iN
:= expp(ij) [τij expp(ij+1)[τij+1 expp(ij+2)[. . . [τiN−2 expp(iN−1)[τiN−1 expp(iN ) [τiN ṽ(iN )]]] . . . ]]],

g
�ij ...�iN

ij ...iN
:= eτij ···τiN A(ij)

eτij+1 ···τiN A(ij+1)

· · · eτiN−1
τiN A(iN−1)

eτiN A(iN )

h(iN ).

In this situation we define

I
�i1 ...�iN
i1...iN

(x, µ) :=
N�

j=1

|τij |
�j

r=1 d(ir)
ˆ
�X

�i1
...�iN

i1...iN
×ΣR,t

x

· e
iµτ1...τN

(i1...iN )�Φwk

τij
,p

(ij),ṽ(iN )

a
�i1 ...�iN
i1...iN

dω dA(i1) . . . dA(iN ) dh(iN ),

(6.11)

where

• �X�i1 ...�iN
i1...iN

:= Gp(iN ) × g⊥
p(iN ) × · · ·× g⊥

p(i1) ,

• �Φwk
τij ,p

(ij),ṽ(iN ) denotes the weak transform regarded as a function on �X�i1 ...�iN
i1...iN

× ΣR,t
x , while

the τij , p
(ij), ṽ(iN ) are regarded as parameters,

• the a
�i1 ...�iN
i1...iN

are amplitudes with compact support in a system of (θ(i1), . . . , θ(iN ))-charts la-
beled by the indices �i1 , . . . , �iN ,

• dA(i1), . . . , dA(iN ), dh(iN ) are suitable measures on g⊥
p(i1) , . . . , g

⊥

p(iN ) , and Gp(iN ) , respectively.

Similarly, one defines analogous integrals �I�i1 ...�iN
i1...iN

(x, µ) in the (θ(i1), . . . , θ(iN−1),α(iN ))-charts. As we

shall see in Section 7, Ix(µ) will be given by a sum involving both the integrals I
�i1 ...�iN
i1...iN

(x, µ) and
�I�i1 ...�iN
i1...iN

(x, µ).

Now, for each p(iN−1), the isotropy group Gp(iN−1) acts on γ(iN−1)((Si1...iN−1)p(iN−1))iN by the

isotropy types (HiN ), . . . , (HL). The types occuring in Wi1...iN constitute a subset of these, and
Gp(iN−1) acts on the sphere bundle Si1...iN over the submanifold γ(iN−1)((Si1...iN−1)p(iN−1))iN (HiN ) ⊂
Wi1...iN with one type less.

End of iteration. After N = Λ − 1 steps, the end of the iteration is reached, yielding a strong
desingularization of N , see [21, Theorem 5.1], and a factorization of the phase function Φx that will
allow us to interpolate between the different asymptotics for the integrals Ix(µ) described in Theorem
3.3.

7. Asymptotics in the resolution space. Caustics and concentration of
eigenfunctions

We are now ready to give an asymptotic formula for the integrals (6.11) that will result in a
corresponding description of the integrals (3.1) on the diagonal. With the notation as before, con-
sider for fixed 1 ≤ N ≤ Λ − 1 a maximal, totally ordered subset {(Hi1), . . . , (HiN )} of non-principal
isoptropy types in the sense that if there is an isotropy type (HiN+1) with iN < iN+1 such that�
(Hi1), . . . , (HiN+1)

�
is a totally ordered subset, then (HiN+1) = (HL). Assign to each such subset the

sequence of consecutive local blow-ups

Z�i1 ...�iN
i1...iN

:= (ζ
�i1
i1

◦ · · · ◦ ζ�i1 ...�iN
i1...iN

◦ (δi1...iN ⊗ id ))⊗ id η

where δi1...iN denotes the sequence of local quadratic transformations

δi1...iN : (σi1 , . . .σiN ) �→ σi1(1,σi2 , . . . ,σiN ) = (σ�

i1 , . . . ,σ
�

iN ) �→ σ�

i2(σ
�

i1 , 1, . . . ,σ
�

iN ) = (σ��

i1 , . . . ,σ
��

iN )

�→ σ��

i3(σ
��

i1 ,σ
��

i2 , 1, . . . ,σ
��

iN ) = · · · �→ · · · = (τi1 , . . . , τiN ).
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The global morphism induced by the local transformations Z�i1 ...�iN
i1...iN

is then denoted by

Z : �X → X := T ∗M ×G,

and constitutes a partial desingularization of the critical set C, see [21, Section 9]. Pulling the phase
function Φ back along the maps Z�i1 ...�iN

i1...iN
then yields the local factorization

Φ ◦ Z�i1 ...�iN
i1...iN

= (i1...iN )�Φtot = τi1(σ) . . . τiN (σ) (i1...iN )�Φwk,

where the τij are monomials in the exceptional parameters σi1 , . . . ,σiN . The principal result in [21] is

Theorem 7.1. In any of the (θ(i1), . . . , θ(iN ))-charts, the critical sets of the weak transforms (i1...iN )�Φwk

are smooth sub-manifolds in the resolution space of co-dimension 2κ, and the Hessians Hess (i1...iN )�Φwk

are transversally non-degenerate. In other words, the weak transforms (i1...iN )�Φwk have clean critical
sets in the mentioned charts. On the other hand, the weak transforms (i1...iN )�Φwk have no critical
points in any of the (θ(i1), . . . , θ(iN−1),α(iN ))-charts.

Proof. See [21, Theorems 6.1 and 7.2, as well as pp. 61-62]. �
In order to prove Theorem 7.1 for the (θ(i1), . . . , θ(iN ))-charts one first shows that

∂η,α(i1),...,α(iN ),h(iN )
(i1...iN )�Φwk = 0 =⇒ ∂σi1 ,...,σiN

,p(i1),...,p(iN ),ṽ(iN )
(i1...iN )�Φwk = 0,

see[21, Eq. (6.17)]. If therefore

(i1...iN )�Φwk
σij ,p

(ij),ṽ(iN )(α
(ij), h(iN ), η)

denotes the weak transform of Φ regarded as a function of the variables (α(i1), . . . ,α(iN ), h(iN ), η) alone,
while the variables (σi1 , . . . ,σiN , p(i1), . . . , p(iN ), ṽ(iN )) are kept fixed at constant values, its critical set
is given by the transversal intersection

Crit
�
(i1...iN )�Φwk

σij ,p
(ij),ṽ(iN )

�
= Crit

�
(i1...iN )�Φwk

�
∩
�
σij , p

(ij), ṽ(iN ) = constant
�
.

In fact, Crit
�
(i1...iN )�Φwk

�
turns out to be a fibre bundle, and the critical set of (i1...iN )�Φwk

σij ,p
(ij),ṽ(iN )

is equal to the fiber over (σij , p
(ij), ṽ(iN )) of this bundle, in particular being a smooth sub-manifold.

Furthermore, [21, Lemma 7.1] implies that the transversal Hessian of (i1...iN )�Φwk is non-degenerate iff
the transversal Hessian of (i1...iN )�Φwk

σij ,p
(ij),ṽ(iN ) is non-degenerate, the latter fact being proven in [21,

Proposition 7.4]. Thus, we arrive at

Corollary 7.2. In any of the (θ(i1), . . . , θ(iN ))-charts, the weak transforms (i1...iN )�Φwk
σij ,p

(ij),ṽ(iN ) have

clean critical sets of co-dimension 2κ as functions on �X�i1 ...�iN
i1...iN

×ΣR,t
x . They do not have critical points

in the (θ(i1), . . . , θ(iN−1),α(iN ))-charts.

Proof. The assertion is a direct consequence of the foregoing explanations and transversality arguments
like those given in the proof of Lemma 3.1 (a). �

From this we immediately deduce

Proposition 7.3. For every Ñ ∈ N, ε > 0, any (θ(i1), . . . , θ(iN ))-chart labeled by the indices �i1 , . . . , �iN ,
and x = x

�i1 ...�iN
i1...iN

(or x ∈ Y ∩Mprin and ε ≥ 0) one has the asymptotic formula

I
�i1 ...�iN
i1...iN

(x, µ) = (2π)κ
N�

j=1

|τij |
dimG−dimH(ij)




Ñ−1�

k=0

kQ�i1 ...�iN
i1...iN

(x)

(µ|τi1 · · · τiN |+ ε)κ+k
+RÑ (x, µ)



 ,

where the kQ�i1 ...�iN
i1...iN

(x) are explicitly known coefficients that are uniformly bounded in x, and

RÑ (x, µ) = O
�
(µ|τi1 · · · τiN |+ ε)−κ−Ñ

�
.
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In particular, with �Φwk := (i1...iN )�Φwk
σij ,p

(ij),ṽ(iN ) we have

0Q�i1 ...�iN
i1...iN

(x) =

ˆ
Crit �Φwk

a
�i1 ...�iN
i1...iN��detHess �Φwk

|NCrit �Φwk

��1/2
.

Proof. By definition we have d(ir) = dimHir−1 − dimHir with Hi0 := G. Consequently,
�j

r=1 d
(ir) =

dimG−dimHij . By Corollary 7.2 we can apply Theorem A.1 and the remarks following it to the inte-

gral (6.11) with asymptotic parameter µ|τi1(σ) · · · τiN (σ)|+ε, yielding the assertion, since e−iε �Φwk
= 1

on Crit �Φwk. Regarding the uniform boundedness of the coefficients and the remainder, see [21, Proof
of Theorem 8.2 and Remark 8.3]. �

Proposition 7.4. In any (θ(i1), . . . , θ(iN−1),α(iN ))-chart labeled by the indices �i1 , . . . , �iN one has

�I�i1 ...�iN
i1...iN

(x, µ) = O(µ−∞).

Proof. This is an immediate consequence of the previous corollary and the non-stationary phase prin-
ciple [14, Theorem 7.7.1]. �

Now, if we transform the oscillatory integral Ix(µ) = Ix,x(µ) defined in (3.1) under the global
morphism Z we obtain with our previous notation the decomposition

Ix(µ) =
Λ−1�

N=1

�

i1<···<iN−1<L
�i1 ,...,�iN−1

�
I
�i1 ...�iN−1

i1...iN−1L
(x, µ) +

�

iN−1<iN
�iN

I
�i1 ...�iN
i1...iN

(x, µ)
�
+R(x, µ),(7.1)

where the first multiple sum is given by a sum over arbitrary, totally ordered subsets of non-principal
isotropy types and corresponding charts, while the second multiple sum is a sum over non-principal
isotropy types (HiN ) and corresponding charts such that {(Hi1), . . . , (HiN )} forms a maximal, totally
ordered subset, and R(µ, x) denotes the non-stationary contributions of order O(µ−∞) that arise by
localizing the relevant integrals to tubular neighborhoods of the relevant critical sets, or correspond
to integrals over charts of the resolution spaces where the weak transforms of the phase functions do
not have critical points, compare [21, Eq. (9.1)]. Here I

�i1 ...�iN
i1...iN

(x, µ) = 0 unless x = x
�i1 ...�iN
i1...iN

lies in

the corresponding chart, and similarly for I
�i1 ...�iN−1

i1...iN−1L
(x, µ) and the coefficients in the corresponding

asymptotic expansions. Since the latter integrals have the same asymptotic description than the
integrals I

�i1 ...�iN
i1...iN

(x, µ) we arrive at

Theorem 7.5. For every Ñ , x ∈ Y and ε > 0 (or x ∈ Y ∩Mprin and ε ≥ 0) one has

Ix(µ) = (2π)κ
Λ−1�

N=1

�

i1<···<iN−1<L
�i1 ,...,�iN−1

N−1�

l=1

|τil |dimG−dimHil

·




Ñ−1�

k=0

kP�i1 ...�iN−1

i1...iN−1L
(x)

(µ|τi1 · · · τiN−1 |+ ε)κ+k
+O

�
(µ|τi1 · · · τiN−1 |+ ε)−κ−Ñ

�

+
�

iN−1<iN
�iN

|τiN |dimG−dimHiN




Ñ−1�

k=0

kQ�i1 ...�iN
i1...iN

(x)

(µ|τi1 · · · τiN |+ ε)κ+k
+O

�
(µ|τi1 · · · τiN |+ ε)−κ−Ñ

�








up to terms of order O(µ−∞), where the multiple sums run over maximal, totally ordered subsets
{(Hi1), . . . , (HiN )} of non-principal isotropy types. Furthermore, all coefficients are given explicitly in
terms of distributions on the resolution space, and are uniformly bounded in x.
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�
Theorem 7.5 gives a simultaneous description of the competing asymptotics λ → ∞ and τij → 0,

and for ε > 0 interpolates between the different asymptotics in Theorem 3.3. For ε = 0, it yields a
description of the singular behavior of the coefficients in the expansion of Ix(µ) in Theorem 3.3 (1)
as x ∈ Mprin approaches singular orbits. Note that the factors |τil |dimG−dimHil in the expansion of
Theorem 7.5 reflect the fact that the coefficients become more singular as the dimension of the stabilizer
groups Hil become large, that is, as one approaches more and more singular orbits, answering for the
different asymptotics in Theorem 3.3 (1) given by the exponents κx = dimOx.

4 For an exceptional
orbit of type (Hil) one has dimG − dimHil = κ, so that the corresponding factors |τil |κ cancel each
other, in concordance with Theorem 3.3 (1), by which the summands in the expansion of Ix(µ) in
Theorem 7.5 must stay bounded as one approaches exceptional orbits. Besides, note that the terms
with k ≥ 1 involve derivatives with respect to g that give rise to additional positive powers in the
exceptional parameters. In the same way that Theorem 4.3 was deduced from Theorem 3.3 (1), the
previous theorem allows us to derive the asymptotic formula for the reduced spectral function we were
looking for. First, one deduces

Proposition 7.6 (Singular point-wise asymptotics for the kernel of the equivariant approx-
imate projection). For arbitrary Ñ1, Ñ2 = 1, 2, 3, . . . , fixed x ∈ M and ε > 0 (or x ∈ Mprin∪Mexcept

and ε ≥ 0) one has for µ → ∞ the asymptotic expansion

K�χµ◦Πγ (x, x) =
µn−1dγ
(2π)n−κ

Ñ1−1�

j=0

µ−j
Λ−1�

N=1

�

i1<···<iN−1<L

N−1�

l=1

|τil |dimG−dimHil

·




Ñ2−1�

k=0

Lj,k
i1...iN−1L

(x)

(µ|τi1 · · · τiN−1 |+ ε)κ+k
+O

�
(µ|τi1 · · · τiN−1 |+ ε)−κ−Ñ2

�

+
�

iN−1<iN

|τiN |dimG−dimHiN




Ñ2−1�

k=0

Mj,k
i1...iN

(x)

(µ|τi1 · · · τiN |+ ε)κ+k
+O

�
(µ|τi1 · · · τiN |+ ε)−κ−Ñ2

�








up to terms of order O(µn−Ñ1−1), where the multiple sums run over maximal, totally ordered subsets
{(Hi1), . . . , (HiN )} of singular isotropy types, and all coefficients are explicitly given by distributions
on the resolution space bounded uniformly in x. For µ → −∞, the function K�χµ◦Πγ (x, x) is rapidly
decreasing in µ.

Proof. According to Theorem 3.3 (1), the summands in the expansion of Ix(µ) in Theorem 7.5 must
stay bounded as one approaches exceptional orbits. By gathering the contributions from exceptional
and principal isotropy types, and collecting the terms from different charts corresponding to the same
subset of isotropy types, the assertion follows from Corollary 2.2 by applying Theorem 7.5 to the
integrals (2.10). �

Using standard Tauberian arguments we obtain as our third main result

Theorem 7.7 (Singular equivariant local Weyl law). Let M be a closed connected Riemannian
manifold M of dimension n with an isometric and effective action of a compact connected Lie group
G, and P0 a G-invariant elliptic classical pseudodifferential operator on M of degree m. Let p(x, ξ)
be its principal symbol, and assume that P0 is positive and symmetric. Denote its unique self-adjoint
extension by P , and for a given γ ∈ �G let eγ(x, y,λ) be its reduced spectral counting function. Denote

4Indeed, assume that Mprin � x
�i1

...�iN
i1...iN

→ y ∈ M(Hiq ) in such a way that among the indices i1 < · · · < iN the

index τiq goes to zero with rate τiq ≈ µ−1 → 0. Then, if κ = dimG,

N�

l=1

|τil |
dimG−dimHil

(µ|τi1 · · · τiN |)κ
=

N�

l=1

|τil |
− dimHil

µκ
≈ O(µ− dimG+dimHiq ) = O(µ− dimOy ).
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by κ the dimension of an G-orbit in M of principal type and by dγ the dimension of an irreducible
G-representation πγ of class γ. Then, for x ∈ Mprin ∪Mexcept one has the asymptotic formula

������
eγ(x, x,λ)−

dγλ
n−κ
m

(2π)n−κ

Λ−1�

N=1

�

i1<···<iN−1<L

N−1�

l=1

|τil |dimG−dimHil
−κ

�
L0,0
i1...iN−1L

(x)

+
�

iN−1<iN

M0,0
i1...iN

(x)|τiN |dimG−dimHiN
−κ

�
������
≤ C dγ λ

n−κ−1
m

Λ−1�

N=1

�

i1<···<iN

N�

l=1

|τil |dimG−dimHil
−κ−1

as λ → +∞, where the multiple sums run over maximal, totally ordered subsets {(Hi1), . . . , (HiN )} of
singular isotropy types, and all coefficients are bounded in x, while C > 0 is a constant independent of
x, and the τij are parameters satisfying |τij | ≈ dist (x,M(Hij )).

Proof. The assertion follows by integrating the expression for KΠγ◦�χµ(x, x) in Proposition 7.6 from

−∞ to ν for the values ε = 0, Ñ1 = κ+ 1, Ñ2 = 1 with the arguments given in the proof of Theorem
4.3. �

As an immediate consequence this yields

Corollary 7.8 (Singular point-wise bounds for isotypic spectral clusters). In the setting of
Theorem 7.7 we have

�

λj∈(λ,λ+1],

ej∈L2
γ(M)

|ej(x)|2 ≤






Cλ
n−1
m , x ∈ Msing,

Cλ
n−κ−1

m

Λ−1�
N=1

�
i1<···<iN

N�
l=1

|τil |dimG−dimHil
−κ−1, x ∈ M −Msing,

for a constant C > 0 independent of x and λ proportional to dγ . In particular, the bound holds for
each individual ej ∈ L2

γ(M) with λj ∈ (λ,λ+ 1].

�
We would like to remark that the expansion in Theorem 7.7 is only meaningful if µ is sufficiently

large compared to the exceptional parameters τij , more precisely, if

λ1/m
�

l

|τil | > 1

for all possible combinations of exceptional parameters, since− dimHil ≤ dimG−dimHil−κ ≤ 0 for all
il. While (4.2) describes the asymptotics of the equivariant spectral function for arbitrary, but fixed x ∈
M , Theorem 7.7 gives a uniform description of the behavior of the coefficients as x ∈ Mprin approaches
singular orbits. Nevertheless, an asymptotic formula for eγ(x, x,λ) that interpolates between the
various asymptotic behaviors in Theorem 4.3, in the same way than Theorem 7.5 interpolates between
the different asymptotics in Theorem 3.3 (1), seems not accessible via Tauberian techniques. Indeed,
while (µ|τi1 · · · τiN |+ ε)−1 depends continuously on the parameters τij for ε > 0, its anti-derivative

ˆ
1

µ|τi1 · · · τiN |+ ε
dµ =

�
log(µ|τi1 ···τiN |+ε)

|τi1 ···τiN |
+ C, τi1 · · · τiN �= 0,

µ/ε+ C, otherwise,

no longer does.

Example 7.9. To illustrate the desingularization process and our results, let us resume Example 4.10,
where we considered the action of G = SO(2) on the standard 2-sphere M = S2 ⊂ R3 by rotations
around the x3-axis. The isotropy types are H1 = SO(2) and H2 = {e}, and the set of maximally
singular orbits M1(H1) = {xN , xS} is disconnected in this case. Instead of working with the covering
(6.4), we can cover S2 with the two charts Y1 := S2−{xN} and Y2 := S2−{xS} by introducing geodesic
polar coordinates x = expxS

(τ1ṽ) and x = expxN
(τ2ṽ) around the poles, respectively, where ṽ ∈ S1,

and τi ≥ 0 equals the Riemannian distance of x to the corresponding pole. Note that g⊥xN
= g⊥xS

= {0},
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so that it is not necessary to perform a blow-up in the group variables, and no additional O(µ−∞)-terms
arise. After one iteration, the action is desingularized, and one obtains in agreement with Theorem
7.5 for arbitrary Ñ ∈ N and ε ≥ 0 the asymptotic formula

Ix(µ) = 2π
�

i=1,2




Ñ−1�

k=0

kQi(x) (µτi + ε)−1−k +O((µτi + ε)−1−Ñ )



 ,

all coefficients being bounded in x. In particular, setting ε = 0 one sees that the leading coefficient in
Theorem 3.3 (1) is given by

Q0(x) =
1

τ1
0Q1(x) +

1

τ2
0Q2(x), x �= xN , xS ,

which describes its singular behavior as one approaches the fixed points. This implies for the reduced
spectral counting function of the Laplace-Beltrami operator −∆ on S2 the asymptotics

�����em(x, x,λ)−
√
λ

2π

L(x)
dist(x, {xN , xS})

����� ≤
C

dist2(x, {xN , xS})
, m ∈ Z, x �= xN , xS ,

provided that
√
λ dist(x, {xN , xS}) > 1, all coefficients being bounded in x, in agreement with Theorem

7.7. From this, we immediately deduce the following pointwise bounds for spherical harmonics. Let

Yk,m be the classical spherical functions with k ∈ N,m ∈ Z � �SO(2), |m| ≤ l satisfying

−∆Yk,m = λk Yk,m, λk = k(k + 1).

Then, from

em(x, x,λ+ 1)− em(x, x,λ) =
�

λk∈(λ,λ+1]

��Yk,m(x)
��2

one directly infers for fixed m the point-wise bounds

|Yk,m(x)|2 =

�
O(

√
λk), x = xN , xS ,

O
�
[dist(x, {xN , xS})]−2

�
, x �= xN , xS ,

as k → ∞, where we took into account the bound (4.5). In particular, this is consistent with (1.14).
Thus, spherical harmonics with fixed m concentrate on the poles as k becomes large. This fact is in
accordance with the probability of finding a classical particle of zero angular momentum near singular
orbits and the corresponding equivariant quantum limits, see [18, Section 6.2]. Furthermore, if c
denotes a closed geodesic on S2 we obtain for the restriction of Yk,m to c the L∞-bounds

��Yk,m|c

��
∞

=

�
Om(λ1/4

k ), if xN , xS ∈ c,

Om,c(1), otherwise,

as k → ∞. The foregoing considerations can be immediately generalized to surfaces of revolution
diffeomorphic to the 2-sphere.

8. Sharpness

To conclude, we show that the obtained bounds are sharp and that, as in the classical case, they
are already attained on the 2-dimensional sphere. Let us begin by reviewing the non-equivariant case
[27, Section 3.4]. Thus, denote by M = Sn the standard sphere in Rn+1 endowed with the induced
metric, and let ∆ be the Laplace-Beltrami operator on Sn. The eigenvalues of −∆ are given by the
numbers λk = k(k+ n− 1), where k = 0, 1, 2, 3, . . . and the corresponding dk-dimensional eigenspaces
Hk are spanned by the classical spherical functions Ykl, 1 ≤ l ≤ dk, so that

−∆Ykl = λk Ykl.

The Ykl are orthonormal to each other, and by the spectral theorem we have the decomposition
L2(M) =

�∞

k=0 Hk. Furthermore, in accordance with Weyl’s law one computes dk = dimHk =
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2kn−1

(n−1)! + O(kn−2). Now, let µ := µk − 1 =
√
λk − 1. In this case, χµ corresponds to the orthogonal

projection L2(M) → Hk so that its kernel reads

χµ(x, y) :=
dk�

l=1

Ykl(x)Ykl(y).

Since χµ(x, y) is invariant under the group of rotations SO(n+1), which acts transitively on Sn, the ker-
nel χµ(x, y) must be constant on the diagonal. More precisely, χµ(x, x) ≡ 1

volSn

´
Sn χµ(x, x)dSn(x) =

dk
volSn for all x ∈ Sn, from which one concludes that

�χµ�2L2→L∞ = sup
x

χµ(x, x) ≈ µk
n−1, µ =

�
λk − 1.

Consequently, the bound (1.4) for the norm �χλ�2L2→L∞ is sharp. Next, for fixed x ∈ Sn and k ∈ N0

consider the zonal eigenfunction

eµk : Sn � y �−→
dk�

l=1

Ykl(x)Ykl(y) ∈ C.

By the previous considerations, eµk is an eigenfunction of
√
−∆ with eigenvalue µk, and with µ =√

λk − 1 we have

|eµk(x)| = χµ(x, x) ≈ µn−1
k , �eµk�

2
L2 =

� dk�

l=1

|Ykl(x)|2
�1/2

= (χµ(x, x))
1/2 ≈ µ

n−1
2

k .

From this one concludes that for a general eigenfunction f of −∆ with �f�L2 = 1 and eigenvalue λ

even the estimate (1.5), which in this case reads �f�L∞(M) ≤ C λ
n−1
4 for some C > 0, cannot be

improved.
Now, let G ⊂ SO(n) be a subgroup of the isotropy group of a point in Sn � SO(n+ 1)/SO(n), and

Hk =
�

γ∈ �G

Hγ
k

be the decomposition of the eigenspace Hk into its isotypic components. Clearly, dk =
�

γ∈ �G mγ(k)dγ ,

where mγ(k) denotes the multiplicity of πγ in Hk. Let {Zγ
kj} ⊂ {Ykl}dk

l=1 be an orthonormal basis of
Hγ

k so that with µ = µk − 1

Kχµ◦Πγ (x, y) =

mγ(k)dγ�

j=1

Zγ
kj(x)Z

γ
kj(y),

χµ ◦ Πγ being the projection onto Hγ
k . In contrast to the situation encountered before, Kχµ◦Πγ (x, y)

is no longer constant on the diagonal, but instead we have by Theorem 4.3 the bound

|Kχµ◦Πγ (x, x)| = |eγ(x, x, µk)− eγ(x, x, µk − 1)| ≤ Cx µ
n−κx−1
k , Cx > 0, x ∈ Sn,

while the behavior near singular orbits is described in Theorem 7.7. Following our previous consider-
ations we now define for fixed x ∈ Sn the isotypic zonal eigenfunction

eγµk
: Sn � y �−→

mγ(k)dγ�

j=1

Zγ
kj(x)Z

γ
kj(y) ∈ C,

which is again an eigenfunction of
√
−∆ for the eigenvalue µk and satisfies

��eγµk

��2
L2 =




mγ(k)dγ�

j=0

|Zγ
kj(x)|2




1/2

= (Kχµ◦Πγ (x, x))
1/2.
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In order to examine the sharpness of the bounds obtained, we specialize to the case where n = 2
and G = SO(2) acts by rotations around the symmetry axis through the poles. In this case, Hγ

k ,
γ ≡ m ∈ Z, |m| ≤ k is spanned by the spherical function

Yk,m(φ, θ) =

�
2k + 1

4π

(k −m)!

(k +m)!
Pk,m(cos θ)eimφ, 0 ≤ φ < 2π, 0 ≤ θ < π,

where Pk,m is the associated Legendre polynomial

Pk,m(α) := (−1)m
�
1− α2

�m
2

dm

dαm
Pk(α) :=

(−1)m

2kk!

�
1− α2

�m
2

dk+m

dαk+m

�
α2 − 1

�k
.

Furthermore, for the Legendre polynomials Pk(cos θ) one has the asymptotics

(8.1) Pk(cos θ) =

�
2

πk sin θ
cos

��
k +

1

2

�
θ − π

4

�
+O

�
1

(k sin θ)3/2

�
,

where the remainder is uniform in θ on any interval [ε,π − ε] with 0 < ε � 1, see e.g. [12, Page 303].
Thus, in the special case where m = 0 we see that with µ = µk − 1 one has in the limit k → ∞

Kχµ◦Πγ (x, x) = |Yk,0(x)|2 =
2k + 1

4π
|Pk,0(cos θ)|2 ≈

�√
λk, x = xN , xS ,
1

sin θ ≈ 1
dist(x,{xN ,xS}) , x ∈ S2 − {xN , xS} ,

where xN and xS denote the poles. Consequently, we conclude that the remainder estimates in
Theorems 4.3 and 7.7 are sharp in the spectral parameter λ, but not optimal in the exceptional
parameters τij , since in the present case we have λ ≈ k2, sin θ ≈ θ ≈ τij , compare also Example 7.9.
Nevertheless, the estimate given in Theorem 7.7 qualitatively reflects the singular behavior of Yk,0(x)
as x approaches the poles, and suggests that the asymptotic formula (8.1) should have a structural
explanation in terms of caustics of oscillatory integrals. On the other hand, the bound for |Yk,0(x)|
implies similar bounds for eγµk

(y) = Yk,0(x)Yk,0(y), and that for a general eigenfunction f ∈ L2(S2) of
−∆ belonging to a specific isotypic component with �f�L2 = 1 and eigenvalue λ the estimate

|f(x)| ≤ Cx λ
n−κx−1

4 , x ∈ S2,

in Corollary 4.5 cannot be improved.

To close, let us mention that in the considered case M = S2 and G = SO(2) the previous considera-
tions imply for the equivariant counting function Nγ(λ) of the Beltrami-Laplace operator with γ ≡ m
the estimate

Nγ(λ) = dγ
�

λk≤λ

multγ(λk) =
�

k(k+1)≤λ, |m|≤k

1 ≈
�

|m|≤k≤
√
λ

1 ≈
√
λ− |m|,

as λ → ∞, where multγ(λk) denotes the multiplicity of an unitary irreducible representation of class
γ in the eigenspace Eλk , showing that the equivariant Weyl law proved in [21, Theorem 9.5] is sharp
up to a logarithmic factor in the remainder estimate. From this one recovers the classical Weyl law

N(λ) =
�

k(k+1)≤λ

dim Eλk =
�

m∈Z
Nm(λ) ≈

�

|m|≤
√
λ

(
√
λ− |m|) ≈ (2

√
λ+ 1)

√
λ− 2

√
λ(
√
λ+ 1)

2
= λ.

Appendix A. Stationary phase asymptotics and caustics

Our analysis relies on the generalized stationary phase principle, which we state below. Sketches of
proofs can be found in [6, Theorem 3.3] and [31, Theorem 2.12]. For a detailed proof, which includes
explicit expressions for the coefficients in the stationary phase expansion, see [21, Theorem 4.1].
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Theorem A.1. Consider an n-dimensional Riemannian manifold M with volume density dM, ψ ∈
C∞(M,R), and set

(A.1) I(µ) =
ˆ
M

eiµψ(m)a(m) dM(m), µ > 0,

where a(m) ∈ C∞
c (M). In addition, assume that the critical set

C := Crit(ψ) =
�
m ∈ M : ψ∗ : TmM → Tψ(m)R is zero

�

of the phase function ψ is clean. Then, for all Ñ ∈ N,

(A.2) I(µ) := eiµψ0(2π/µ)
n−p

2

Ñ−1�

r=0

µ−rQr(ψ, a) +RÑ (ψ, a;µ),

where p denotes the dimension of C, ψ0 is the constant value of ψ on C, and the expressions Qr(ψ, a)
and RÑ (ψ, a;µ) can be computed explicitly. Furthermore, there exist constants �Cr,ψ > 0 and CÑ,ψ > 0
such that

|Qr(ψ; a)| ≤ �Cr,ψvol (supp a ∩ C) sup
l≤2r

��Dla
��
∞,C

,

|RÑ (µ)| ≤ CÑ,ψvol (supp a) sup
l≤n−p+2Ñ+1

��Dla
��
∞,M

µ−(n−p)/2−Ñ ,

where Dl is a differential operator on M of order l. In particular,

Q0(ψ, a) =

ˆ
C

a(m)

|detψ��(m)|NmC |1/2
dσC(m)ei

π
4 σψ�� ,

where dσC stands for the induced volume density on C and σψ�� for the constant value of the signature
of the transversal Hessian ψ��(m)|NmC on C.

�
Remark A.2. As stated, the expansion (A.2) is valid for arbitrary µ > 0, though the case of interest is
when µ → ∞, since then the error becomes smaller than the other terms. In essence, the point is that
by Taylor’s formula one has

�����e
it −

N−1�

k=0

(it)k

k!

����� = O(|t|N ) for arbitrary t ∈ R,

no matter how large |t| is, though the estimate is only meaningful for |t| < 1.

Our main concern in this paper consists in extrapolating between asymptotic expansions of different
orders. More precisely, consider an integral of the form (A.1) with a clean critical set, let τ ≥ 0 be an
additional parameter, and define the integral

I(µ, τ) :=
ˆ
M

eiµτψ(m)a(m) dM(m).

Depending on the value of τ , it will exhibit different asymptotic behaviors in µ. Indeed, for τ > 0 the
integral I(µ, τ) decreases with order O(µ−

n−p
2 ), while for τ = 0 it is actually independent of µ. This

behavior is reflected in the fact that if we apply the previous theorem to the integral I(µ, τ), either
with µτ as asymptotic parameter, or with τψ as phase function, we would arrive at an expansion of the
form (A.2) in which the coefficients in the expansion blow up as τ → 0 due to the abrupt change of the
critical set of the phase function τψ(m) when τ becomes zero. In general, if ψℵ ∈ C∞(M,R) denotes
a family of functions depending on a parameter ℵ such that Crit(ψℵ) is clean for generic values of ℵ,
one understands by a caustic point for this family a parameter value ℵ such that Crit(ψℵ) is not clean
[31]. With this terminology, in the situation above τ = 0 constitutes a caustic point. Nevertheless, it
is possible to derive an adequate asymptotic expansion for I(µ, τ) that smoothly interpolates between
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the different asymptotics, and takes into account the competing asymptotics µ → ∞ and τ → 0, based
on the following simple idea. Let ε ≥ 0 be a fixed positive real number, and consider the integral

Iε(µ) :=
ˆ
M

eiµψ(m)e−iεψ(m)a(m) dM(m).

Clearly, I(µ) = Iε(µ + ε). Since e−iεψ is independent of µ, we can apply the previous theorem with
µ+ ε as parameter, obtaining for each Ñ ∈ N and each ε ≥ 0 the asymptotic formula

(A.3) I(µ) = ei(µ+ε)ψ0

� 2π

µ+ ε

�n−p
2

Ñ−1�

r=0

(µ+ ε)−rQr(ψ, e
−iεψa) +RÑ (ψ, e−iεψa;µ+ ε).

Because
1

µ+ ε
=

1

µ
· 1

1 + ε
µ

=
1

µ

∞�

k=0

�−ε

µ

�k
=

1

µ
− ε

µ2
+

ε2

µ3
− · · · , ε/µ < 1,

the expansion (A.2) is consistent with the expansion (A.3), the corrections being of lower order. Now,
if we apply the previous argument to I(µ, τ) = I(µτ) we obtain

I(µ, τ) = ei(µτ+ε)ψ0

� 2π

µτ + ε

�n−p
2

Ñ−1�

r=0

(µτ + ε)−rQr(ψ, e
−iεψa) +RÑ (ψ, e−iεψa;µτ + ε)

as µ → ∞. The formula is only meaningful for τµ+ε > 1, and simultaneously describes the asymptotic
behavior of I(µ, τ) in the competing parameters τ and µ. For ε > 0, it interpolates between the

asymptotics O(µ−
n−p

2 ) and O(µ0) in a smooth way; in fact, for τ = 0 it simply collapses to
´
M

a dM.
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