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SUBCONVEX BOUNDS FOR HECKE–MAASS FORMS ON COMPACT

ARITHMETIC QUOTIENTS OF SEMISIMPLE LIE GROUPS

PABLO RAMACHER AND SATOSHI WAKATSUKI

Abstract. Let H be a semisimple algebraic group, K a maximal compact subgroup of G := H(R),
and Γ ⊂ H(Q) a congruence arithmetic subgroup. In this paper, we generalize existing subconvex
bounds for Hecke–Maass forms on the locally symmetric space Γ\G/K to corresponding bounds on
the arithmetic quotient Γ\G for cocompact lattices using the spectral function of an elliptic operator.
The bounds obtained extend known subconvex bounds for automorphic forms to non-trivial K-types,
yielding subconvex bounds for new classes of automorphic representations, and constitute subconvex
bounds for eigenfunctions on compact manifolds with both positive and negative sectional curvature.
We also obtain new subconvex bounds for holomorphic modular forms in the weight aspect.

Contents

1. Introduction 1
2. Hecke operators with character on semisimple Lie groups 6
3. The spectral function of an elliptic operator and convex bounds for eigenfunctions 9
4. Spectral asymptotics for kernels of Hecke operators 16
5. Subconvex bounds on Γχ\SL(2,R) for arithmetic congruence lattices 17
6. Subconvex bounds on SO(3) 24
7. Subconvex bounds on Γ\G for semisimple groups and arithmetic congruence subgroups 26
References 33

1. Introduction

Let M be a closed1 Riemannian manifold M of dimension d and P0 : C∞(M) → L2(M) an elliptic
classical pseudodifferential operator on M of degree m, where C∞(M) denotes the space of smooth
functions on M and L2(M) the space of square-integrable functions on M . Assume that P0 is positive
and symmetric. Denote its unique self-adjoint extension by P with the m-th Sobolev space as domain,
and let {φj}j≥0 be an orthonormal basis of L2(M) consisting of eigenfunctions of P with eigenvalues

{λj}j≥0 repeated according to their multiplicity. By a classical result of Avacumovic, Levitan, and

Hörmander [1, 30, 22] one has for any j ∈ N the convex bound2

(1.1) ‖φj‖∞ ≪ λ
d−1
2m

j .

If the φj are eigenfunctions of a larger family of commuting differential operators on M containing
P0, this bound can be improved. Thus, assume that M carries an isometric action of a compact Lie

group K such that all orbits have the same dimension κ ≤ d− 1. Denote by K̂ the set of equivalence
classes of irreducible unitary representations of K, which can be identified with the set of irreducible
characters of K. Suppose further that P commutes with the family of differential operators generated

Date: September 8, 2018.
1 By a closed manifold we shall understand a compact boundaryless manifold.
2Here and in what follows we shall write a ≪γ b for two real numbers a and b and a variable γ, if there exists a

constant Cγ > 0 depending only on γ such that |a| ≤ Cγb. If there are no relevant variables involved, we shall simply

write a ≪ b.

1

http://arxiv.org/abs/1703.06973v3


2 PABLO RAMACHER AND SATOSHI WAKATSUKI

by the action of K, so that the eigenfunctions φj can be chosen to be compatible with the Peter–Weyl

decomposition of L2(M) into σ-isotypic components L2
σ(M), where σ ∈ K̂. It was then shown in

[40, 41] that the equivariant convex bound

(1.2) ‖φj‖∞ ≪
(
dσ sup

u≤⌊κ/2+1⌋
‖Duσ‖∞

)1/2
λ

d−κ−1
2m

j , φj ∈ L2
σ(M),

holds, where dσ denotes the dimension of a representation of class σ, and Du is a differential operator
of order u on K. If K = T is a torus, one actually has the almost sharp estimate

(1.3) ‖φj‖∞ ≪ λ
d−κ−1

2m

j , φj ∈ L2
σ(M), σ ∈ Wλj ,

where Wλ denotes the subset of K-types occuring in the Peter-Weyl decomposition of L2(M) that
grow at most with rate λ1/m/ logλ.3

The bounds (1.1) and (1.2) are known to be sharp in the eigenvalue aspect on the standard d-sphere,
but if the considered eigenfunctions are joint eigenfunctions of an even larger family of commuting op-
erators, they can be improved. Thus, let G be a semisimple real Lie group, K a maximal compact
subgroup of G, Γ ⊂ G a lattice, and Y := Γ\G/K the corresponding locally symmetric space of
dimension d and rank r. If {ψj}j≥0 constitutes an orthonormal basis in L2(Y ) of simultaneous eigen-

functions of the full ring of invariant differential operators on Y , which is isomorphic to a finitely
generated polynomial ring in r variables and contains the Beltrami–Laplace operator ∆, Sarnak [43]
was able to show the spherical convex bound

(1.4) ‖ψj |Ω‖∞ ≪Ω λ
d−r
4

j

for arbitrary compacta Ω ⊂ Y , λj being the Beltrami–Laplace eigenvalue of ψj . From an arithmetic
point of view, there is still an additional family of commuting operators on Y given by the Hecke
operators, and in the case G = SL(2,R) and K = SO(2), Iwaniec and Sarnak [27] were able to
strengthen the bound (1.4) for certain compact locally symmetric spaces Y = Γ\H of rank r = 1,
given as quotients of the complex upper half plane H ≃ G/K by suitable congruence arithmetic
lattices Γ, and proved for any ε > 0 and j ∈ N the substantially stronger spherical subconvex bound

(1.5) ‖ψj‖∞ ≪ε λ
5
24+ε
j ,

provided that the ψj are also eigenfunctions of the ring of Hecke operators on L2(Γ\H). More generally,
if H is a semisimple algebraic group over Q satisfying certain conditions, Γ ⊂ H(Q) an arithmetic
congruence lattice, and G = H(R), Marshall [33] was able to strengthen the bound (1.4) and prove
spherical subconvex bounds of the form

(1.6) ‖ψj |Ω‖∞ ≪Ω λ
d−r
4 −δ

j

for some δ > 0 and arbitrary compacta Ω ⊂ Y , if the ψj are also eigenfunctions of the ring of Hecke
operators on L2(Y ), generalizing previous work of Blomer-Maga [3, 4] and Blomer-Pohl [7], among oth-
ers. In fact, for negatively curved manifolds, much better bounds are expected to hold generically, the
bound (1.5) being the strongest known bound up to now. The estimates (1.4)–(1.6) represent bounds
for automorphic forms on G which are right K-invariant, and for this reason are called spherical.

In this paper, left Γ-invariant functions on G which are simultaneous eigenfunctions of an invariant
elliptic differential operator and some module of Hecke operators will be called Hecke–Maass forms of

rank 1. This class encompasses the usual concept of an automorphic form on G, and coincides with it
in the rank 1 case, compare Section 5.3 and 7.4. Nevertheless, note that a Hecke–Maass form of rank
1 is not necessarily an eigenfunction of the full ring of invariant differential operators, since one can
choose a very small submodule of the ring of Hecke operators, see Remark 7.3 for details. The goal of
this paper is to extend the spherical subconvex bounds (1.5) and (1.6) to non-spherical situations, that

3The estimate is almost sharp in the sense that as a consequence of the equivariant Weyl law T -types in L2(M) can

grow at most with rate λ
1/m
j , see [41].
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is, to non-trivial K-types in the Peter-Weyl decomposition of L2(Γ\G) for a large class of compact
arithmetic quotients Γ\G, sharpening the bounds (1.1) and (1.2) in case that the eigenfunctions φj
are Hecke–Maass forms.

As our first main result, we extend the bound (1.5) to automorphic forms on G of arbitrary K-
type and Nebentypus character. Thus, let R be an Eichler order in an indefinite division quaternion
algebra A over Q. Denote by N(x) the reduced norm of an element x ∈ A, and write R(m) :=
{α ∈ R | N(α) = m} for any m ∈ N∗. Choose an embedding θ : ⊔∞

m=1R(m) → G, and set Γ :=
θ(R(1)). Then Γ constitutes a congruence arithmetic subgroup, and Γ\H ≃ Γ\G/K becomes a compact
hyperbolic surface. Now, let χ be a Nebentypus character on Γ, and denote by L2

χ(Γ\G) the Hilbert
space of measurable functions on G such that

f(γx) = χ(γ) f(x), γ ∈ Γ, x ∈ G, ‖f‖ :=

(
ˆ

Γ\G
|f(x)|2dx

)1/2

<∞.

The space L2
χ(Γ\G) can be regarded as a closed subspace in L2(Γχ\G), where Γχ := kerχ. Identifying

R(n) with its image θ(R(n)) for each n prime to a fixed natural number which depends only on
R, the finite cosets Γ\R(n) give rise to Hecke operators on L2

χ(Γ\G). Now, with the identification

K ≃ S1 ≃ [0, 2π), any K-type σl ∈ K̂ can be realized as the character σl(θ) = eilθ, θ ∈ [0, 2π), l ∈ Z,
and we denote by L2

σl,χ(Γ\G) the σl-isotypic component of L2
χ(Γ\G). It is then shown in Theorem

5.5 that for any orthonormal basis {φj}j≥0 of L2(Γχ\G) consisting of Hecke–Maass forms (of rank

1) with Beltrami–Laplace eigenvalues 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · and compatible with the Peter-Weyl
decomposition one has the hybrid subconvex bound

(1.7) ‖φj‖∞ ≪ε λ
5
24+ε
j , φj ∈ L2

χ(Γ\G),
for arbitrary small ε > 0 in the eigenvalue and isotypic aspect. This bound is the first sharpening the
bound (1.3) for arbitrary K-types. If σl and χ are trivial, one recovers the spherical subconvex bound
(1.5). Note that (1.7) is a subconvex bounds on a manifold which does have both positive and negative
sectional curvature. It is stated from the perspective of elliptic operator theory, which is the natural
one in our approach, while in the theory of automorphic forms it is more common to work within
a representation-theoretic framework, and use the Casimir operator C of G instead of the Beltrami–
Laplace operator ∆, the former being no longer elliptic. But since on L2

σl,χ(Γ\G) the operators in

question are related according to ∆ = −C+ l2

4 id , the bound (1.7) can be rephrased accordingly. Thus,

for any Hecke eigenform φ ∈ L2
σl,χ(Γ\G) satisfying ‖φ‖L2 = 1 and Cφ = s2−1

8 φ one has the hybrid

subconvex bound

‖φ‖∞ ≪ε (1− s2 + 2l2)
5
24+ε,

see Theorem 5.8. In this way, we obtain subconvex bounds for new classes of automorphic representa-
tions, in particular for the discrete seriesDs and their limits D±,0, as well as the principal seriesH(1, s),

compare Section 5.3. Let us note that for fixed s we obtain the bound ‖φj‖∞ ≪ε (1 + |l|) 5
12+ε for any

φj ∈ L2
σl,χ

(Γ\G). This agrees with results of Venkatesh [50, p. 993], though by work of Reznikov [42,

Theorem 1.5] one has in this case the much better bound ‖φj‖∞ ≪ε (1 + |l|) 1
3+ε. Nevertheless, our

results do imply new results for a classical automorphic form f : H → C of weight l ∈ N and arbitrary
Nebentypus character, for which we show in (5.11) the subconvex bound

‖f‖∞ ≪ε l
5
12+ε

in the weight aspect. The best previously known subconvex bound, proved by Das and Sengupta [12],
had the exponent 1

2 − 1
33 = 31

66 .
In an analogous way, we are able to derive equivariant and non-equivariant subconvex bounds for

G = SU(2), K = SO(2), and Γ := {±1} in the setting of [31, 32] by identifying G with the group of
units in the quaternion algebra over R, and defining corresponding Hecke operators Tn on L2(Γ\G).
Thus, we obtain again in Theorem 6.1 the equivariant subconvex bound (1.7) for any simultaneous



4 PABLO RAMACHER AND SATOSHI WAKATSUKI

eigenfunction φj ∈ L2
σl
(Γ\G) of the Beltrami–Laplace operator ∆ on G with eigenvalue λj and the Tn,

where now Γ\G ∼= SO(3). This generalizes a result of VanderKam [49, Theorem 1.1], where the case
l = 0 with L2

σ0
(Γ\G) ∼= L2(Γ\G/K) ∼= L2(S2) is treated, S2 being the 2-sphere.

Our second main result concerns bounds of the form (1.6). As before, let H be a semisimple
algebraic group over Q which is assumed to be connected in the sense of Zariski. Write Afin for the
finite adele ring of Q and A := R × Afin for the adele ring. Choosing an open compact subgroup K0

in H(Afin), we obtain an arithmetic subgroup Γ := H(Q) ∩ (H(R)K0) in the semisimple Lie group
G = H(R). Assume that H(A) = H(Q)(H(R)K0) and that H(Q)\H(A) is compact, so that Γ\G is
also compact.4 From the point of view of automorphic representations, one has a suitable family of
Hecke operators on L2(Γ\G), which is given by unramified Hecke algebras over Qp for infinitely many
primes p [33]. Now, let K be a maximal compact subgroup of G and {φj}j≥0 an orthonormal basis of

L2(Γ\G) consisting of Hecke–Maass forms of rank 1 with respect to an elliptic left-invariant differential
operator P0 on Γ\G of order m which commutes with the right regular representation of K. Assume
that P0 is positive and symmetric, and that the cosphere bundle defined by its principal symbol is
strictly convex. Then, assuming the condition (WS) made in [33], we show in Theorem 7.4 that there
exists a constant δ > 0 independent of σ such that one has the equivariant subconvex bound

(1.8) ‖φj‖∞ ≪
√
dσ sup

u≤
⌊

dim K
2 +1

⌋ ‖Duσ‖∞ λ
dim G/K−1

2m −δ
j , φj ∈ L2

σ(Γ\G),

where λj denotes the spectral eigenvalue of φj with respect to P0; if K = T is a torus, one has the
stronger estimate

‖φj‖∞ ≪ λ
dim G/K−1

2m −δ
j , φj ∈ L2(Γ\G).

The bound (1.8) bound sharpens the bound (1.2) for a large class of examples. If σ is trivial, it is
implied by (1.6). An example would be given by H = SL(1, D), where D is any central division algebra
of index n over Q, and G = SL(n,R). Furthermore, we show in Theorem 7.9 for some δ > 0 the weaker
non-equivariant subconvex bound

(1.9) ‖φj‖∞ ≪ λ
dim G−1

2m −δ
j , φj ∈ L2(Γ\G),

for an orthonormal basis of L2(Γ\G) consisting of suitable Hecke–Maass forms, sharpening the bound
(1.1), but without assuming the condition (WS) of [33]. An example is again H = SL(1, D), where
now D is any central division algebra over Q, except when G = SL(1,H). As before, (1.8) and (1.9)
constitute first arithmetic subconvex bounds on a large class of manifolds which are both positively
and negatively curved, and if P0 is the Beltrami–Laplace operator, the bounds can be rephrased in
terms of the eigenvalues of the Casimir operator of G. Indeed, by Theorem 7.12 we have for each
φj ∈ L2

σ(Γ\G) with Casimir eigenvalue µj the bound

‖φj‖∞ ≪
√
dσ sup

u≤⌊ dim K
2 +1⌋

‖Duσ‖∞ (−µj + 2µσ)
dim G/K−1

4 −δ, φj ∈ L2
σ(Γ\G),

provided that H = ResF/QG and (WS) is fulfilled, while in general

‖φj‖∞ ≪ (−µj + 2µσ)
dim G−1

4 −δ,

µσ being the eigenvalue of the Casimir operator of K on σ. If K = T is a torus,

‖φj‖∞ ≪ (−µj + 2µσ)
dimG/K−1

4 −δ.

Let us briefly say a few words about the methods employed. While in the theory of automorphic
forms representation-theoretic tools prevail, our analysis is mainly based on the spectral theory of

4Note that H(A) = H(Q)(H(R)K0) is satisfied for any K0 if H has the strong approximation property. In this case,
G = H(R) can be any of the groups SL(n;R), SL(n,C), SL(n,H),SU(m,n,R), n ≥ 2, m ≥ 1, and their products, compare
[38, Section 2.3 and Theorem 7.12].
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elliptic operators, and uses Fourier integral operator methods. Thus, let P be an elliptic pseudodiffer-
ential operator on a closed Riemannian manifold M as above. Our main tool is the spectral function

e(x, y, µ) of the m-th root Q := m
√
P of P given by

e(x, y, µ) :=
∑

µj≤µ
φj(x)φj(y) ∈ C∞(M ×M), µ ∈ R, µj :=

m
√
λj .

In the spherical situations [27, 3, 4, 7, 33] examined before, a crucial role is played by asymptotics for
spherical functions, see [27, Eq. (1.3)] and [33, Eq. (8)]. Since we cannot rely on them in our setting5,
we consider instead the spectral expansion of e(x, y, µ) itself and the asymptotic behaviour of

sµ(x, y) := e(x, y, µ+ 1)− e(x, y, µ),

which represents the Schwartz kernel of the spectral projection sµ onto the sum of eigenspaces of Q
with eigenvalues in the interval (µ, µ+1]. More precisely, ifM carries an effective and isometric action

of a compact Lie group K and σ ∈ K̂, denote by Πσ the projector onto the σ-isotypic component
in the Peter-Weyl decomposition of L2(M). In order to show the L∞-bounds (1.2), and analogous
equivariant convex Lp-bounds, an asymptotic formula for the Schwartz kernel of sµ ◦ Πσ, or rather
of s̃µ ◦ Πσ, where s̃µ represents certain smooth approximation to sµ, was derived in [40, Corollary
2.2. and Theorem 3.3] in a neighbourhood of the diagonal relying on the theory of Fourier integral
operators. Now, let G be a semisimple Lie group with finite center, Γ a discrete cocompact subgroup,

and K a maximal compact subgroup of G. Let Γ̂ denote the set consisting of characters of Γ of finite

order. For χ ∈ Γ̂, introduce on L2(Γχ\G) the Hecke operators T χ
ΓβΓ

(T χ
ΓβΓf)(x) := [Γ : Γχ]

−1
∑

α∈Γχ\ΓβΓ
χ(α) f(α · x),

where β belongs to a certain set containing the commensurator C(Γ) of Γ. Based on the asymptotics
for the kernel of s̃µ ◦Πσ mentioned above, we deduce in Proposition 4.1 for any small δ > 0 and some
constant C > 0 the equivariant bound

KT χ
ΓβΓ◦s̃µ◦Πσ

(x, x) ≪ dσ
[Γ : Γχ]

µdimG/K−1 sup
u≤⌊ dim K

2 +1⌋
‖Duσ‖∞M(x, β, δ)

+
dσ

[Γ : Γχ]
µ

dim G/K−1
2 sup

u≤
⌊

dim K
2 +1

⌋ ‖D
uσ‖∞

ˆ C

δ

s−
1
2 dM(s)

uniformly in x ∈ Γχ\G for the Schwartz kernel of T χ
ΓβΓ ◦ s̃µ ◦Πσ, where we introduced the lattice point

counting function

M(δ) :=M(x, β, δ) := #
{
α ∈ Γχ\ΓβΓ | dist (xK,α · xK)dimG/K−1 < δ

}

given in terms of the distance function on the Riemannian symmetric space G/K. In case that K = T
is a torus, a corresponding better estimate holds. From this, we obtain the subconvex bounds (1.7)
and (1.8) by using known uniform upper bounds [27, 33] for M(x, β, δ) combined with arithmetic
amplification. The bound (1.9) is inferred by analogous methods. In both cases, it is crucial to control
the caustic behaviour of the kernels of s̃µ ◦Πσ and s̃µ near the diagonal as µ → +∞, respectively.

Let us close this introduction with some comments. There exist several variants of the bounds (1.5),
beginning with [27, Appendix], where the non compact hyperbolic surface SL(2,Z)\H is considered.
On the other hand, bounds in the level aspect are shown in [47] for compact locally symmetric spaces of
arithmetic type, while bounds in the eigenvalue and level aspect are derived for the modular surfaces
Γ0(N)\H in [2, 48] and other papers. It is likely that our work can be extended to these settings,
and we plan to deal with these questions in a future paper. Also, we intend to widen our results to
Hecke–Maass forms of rank r, that is, simultaneous eigenfunctions of the Hecke operators and the full
ring of invariant differential operators associated to the center of the universal envelopping algebra of

5Compare also [34, Section 4.4].
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the complexification of the Lie algebra of G. For such forms, the exponent −1/2m in (1.8) and (1.9)

should be improvable by a factor r. Finally, we expect the factor
√
dσ sup

u≤
⌊

dim K
2 +1

⌋ ‖Duσ‖∞ in

(1.8) to be improvable to dσ.

This paper is structured as follows. In Section 2, we introduce Hecke operators with character on
semisimple Lie groups with finite center, in Section 3 we give a description of the asymptotic behaviour
of spectral function of an elliptic operator by means of Fourier integral operators, and explain how
convex bounds can be deduced from this in equivariant and non-equivariant situations. Based on
these results, we derive spectral asymptotics for kernels of Hecke operators in Section 4. Relying on
the latter, we finally prove subconvex bounds for arithmetic congruence lattices in SL(2,R), SO(3),
and a large class of semisimple algebraic groups in Sections 5, 6, and 7, respectively. Throughout the
paper, N := {0, 1, 2, 3, . . .} will denote the set of natural numbers, while N∗ := {1, 2, 3, . . .}.

Acknowledgements. We would like to thank Valentin Blomer and Simon Marshall for their
comments on an earlier draft of this paper. Besides, the second author would like to thank Jasmin
Matz for her advice on spherical functions. He is partially supported by the JSPS Grant-in-Aid for
Scientific Research (No. 15K04795, 18K03235).

2. Hecke operators with character on semisimple Lie groups

To introduce our setting, let G be a real semisimple Lie group with finite center and Lie algebra g.
Denote by 〈X,Y 〉 := tr (adX ◦ adY ) the Cartan-Killing form on g and by θ a Cartan involution of g.
Let

g = k⊕ p

be the Cartan decomposition of g into the eigenspaces of θ, corresponding to the eigenvalues +1 and
−1 , respectively, and denote the maximal compact subgroup of G with Lie algebra k by K. Put
〈X,Y 〉θ := −〈X, θY 〉. Then 〈·, ·〉θ defines a left-invariant Riemannian metric on G, which in general
will possess some strictly positive sectional curvature, compare Milnor [35, p. 298 and p. 317]. Dividing
by the K-action, the quotient G/K becomes a Riemannian symmetric space of non-positive sectional
curvature. With respect to the left-invariant metric on G, a distance function dist (g, h) is defined on
each connected component of G as the geodesic distance between two points g, h in that component.
Note that dist (g1g, g1h) = dist (g, h) for all g1 ∈ G. In contrast to the Killing form, 〈·, ·〉θ is no longer
Ad (G)-invariant, but still Ad (K)-invariant, so that dist (gk, hk) = dist (g, h) for all k ∈ K.

Next, let X1, . . . Xdim p be an orthonormal basis of p and Y1, . . . , Ydim k an orthonormal basis for k

with respect to 〈·, ·〉θ. If Ω and ΩK denote the Casimir elements of G and K, one has

(2.1) Ω =

dim p∑

i=1

X2
i −

dim k∑

i=1

Y 2
i , ΩK = −

dim k∑

i=1

Y 2
i ,

and we put Θ := −Ω + 2ΩK . Then dR(Θ) is the Beltrami–Laplace operator ∆ on G with respect to
the left invariant metric defined by 〈·, ·〉θ, while C := dR(Ω) represents the Casimir operator, R being
the right regular representation of G on C∞(G), see [37, Section 3] and [8, Section 2.10]. Thus,

(2.2) ∆ = −C + 2dR(ΩK),

all three operators commuting with each other.

We consider now a discrete cocompact subgroup Γ of G, together with the set Γ̂ of its characters of

finite order, and let χ ∈ Γ̂. Then Γχ := kerχ is a subgroup of finite index in Γ and the quotient Γχ\G
a compact manifold without boundary. By requiring that the projection G → Γχ\G is a Riemannian
submersion, we obtain a Riemannian structure on Γχ\G which locally has the same curvature than G.
Furthermore, the Riemannian structure on G/K induces a Riemannian metric on Γχ\G/K, becoming
a locally symmetric space of negative curvature. In both cases, dist induces corresponding distances
on Γχ\G and Γχ\G/K.
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Before we proceed, note that due to the compactness of Γχ\G, the right regular representation
of G on L2(Γχ\G) decomposes into an orthogonal direct sum of countably many irreducible unitary
representations with finite multiplicities, that is,

(2.3) L2(Γχ\G) ∼=
⊕

π∈Ĝ

m(π,Γχ) · π,

where Ĝ denotes the unitary dual of G and m(π,Γχ) is a non-negative integer, see [18]. Furthermore,
both the spectra of ∆ and C in L2(Γχ\G) are discrete. Note that the eigenvalues of ∆ are positive,
while the ones of C can be both negative and positive.

In what follows, we introduce Hecke operators on Γ\X , where X := G or G/K, following [21,
Section 2], and consider the commensurator

C(Γ) := {g ∈ G | Γ is commensurable with g−1Γg}
of Γ, where we say that two subgroups Γ1 and Γ2 are commensurable iff the indices [Γ1 : Γ1 ∩ Γ2] and
[Γ2 : Γ1 ∩ Γ2] are finite. Let β ∈ C(Γ). Since the mapping

(Γ ∩ β−1Γβ)\Γ ∋ (Γ ∩ β−1Γβ)γ 7→ Γβγ ∈ Γ\ΓβΓ
is bijective, the double coset ΓβΓ is a finite union of right cosets of Γ, that is, there exist representative
elements β1, β2, . . . , βt in ΓβΓ such that

ΓβΓ =

t⊔

j=1

Γβj .

One can then associate to each double coset a linear operator TΓβΓ on L2(Γ\X) by setting

TΓβΓ : L2(Γ\X) −→ L2(Γ\X), (TΓβΓf)(x) :=

t∑

j=1

f(βj · x),

where βj · x ≡ Γβj · Γx := Γβjx depends on the choice of the representative x, but the sum does not
depend on the choice of the representatives x and βj . Summing up, one writes6

(TΓβΓf)(x) =
∑

α∈Γ\ΓβΓ
f(α · x),

and calls TΓβΓ a Hecke operator.
If a subset U of C(Γ) is decomposed into a finite disjoint union of double cosets of Γ, a linear

operator TU can be defined in the same manner according to

(2.4) TU :=

u∑

k=1

TΓβkΓ U =

u⊔

k=1

ΓβkΓ, βk ∈ C(Γ).

More generally, one can introduce Hecke operators as follows. Write H(Γ, C(Γ)) for the space of left
and right Γ-invariant C-valued functions h on C(Γ) such that the support of h is included in a finite
union of double Γ-cosets. Endowed with the convolution product

h1 ∗ h2(x) :=
∑

y∈Γ\C(Γ)

h1(y)h2(xy
−1), h1, h2 ∈ H(Γ, C(Γ)),

H(Γ, C(Γ)) becomes an associative algebra over C with the characteristic function 1Γ of Γ as unit
element. For each h ∈ H(Γ, C(Γ)), a linear operator Th on L2(Γ\X) can then be defined by

(Thf)(x) :=
∑

α∈Γ\C(Γ)

h(α) f(α · x),

and one has Th1∗h2 = Th1 ◦ Th2 . If U is as above and h is the characteristic function of U , then
it is obvious that Th equals TU . We call H(Γ, C(Γ)) the Hecke algebra and refer the reader to [21,

6Here and above α ≡ Γα (resp. βj ≡ Γβj) and x ≡ Γx are considered both as right cosets of Γ and representatives

in G, and the products αx (resp. βjx) are taken in G.
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Section 2] for details. Next, let us introduce Hecke operators with character. Assume that G is a
subgroup of another group G′. Let Ξ be a sub-semigroup of G′ containing Γ. We suppose that χ can
be extended to Ξ, and that there exists a homomorphism ψ : Ξ → C(Γ) such that ψ|Γ is the identity
map, and αxα−1 = ψ(α)xψ(α)−1 holds for any α ∈ Ξ, x ∈ G. In particular, for α, β ∈ Ξ we have
χ(αβ) = χ(α)χ(β), while the inverse element α−1 does not always belong to Ξ.

Example 2.1. One of the main examples we are having in mind is G′ := GL(n,R) with

Ξ := {α = (αij) ∈M(n,Z) | det (α) > 0, (α11, N) = 1, αj1 ≡ 0 mod N (2 ≤ j ≤ n)},

χ((αij)) := ω(α11), G := SL(n,R), Γ := G ∩ Ξ, ψ(α) := det (α)−1/nα,

where ω is a Dirichlet character on (Z/NZ)×.

Let us now define a left action of Ξ on G by setting α · x := ψ(α)x. For a fixed β ∈ Ξ we can then
define the Hecke operator with character

(2.5) T χ
ΓβΓ : L2(Γχ\X) −→ L2(Γχ\X), (T χ

ΓβΓf)(x) := [Γ : Γχ]
−1

∑

α∈Γχ\ΓβΓ
χ(α) f(α · x),

where we took into account that Γχ\ΓβΓ ⊂ Ξ. By definition we have T χ
ΓβΓ = Th for some h ∈

H(Γχ, C(Γ)) satisfying h(γ1xγ2) = χ(γ1γ2)h(x) for any γ1, γ2 ∈ Γ and x ∈ C(Γ). Furthermore, for
given βj ∈ Ξ and hj ∈ H(Γχ, C(Γ)) with Thj = T χ

ΓβjΓ
, the convolution h1 ∗ h2 also satisfies the latter

condition. Thus, there exist elements l ∈ N, au ∈ C, and αu ∈ Ξ such that

(2.6) T χ
Γβ1Γ

◦ T χ
Γβ2Γ

=

l∑

u=1

auT χ
ΓαuΓ

.

Next, denote by L2
χ(Γ\X) the Hilbert space of measurable functions on X such that

(2.7) f(γx) = χ(γ) f(x), γ ∈ Γ, x ∈ X,

and

(2.8) ‖f‖ :=

(
ˆ

Γ\X
|f(x)|2dx

)1/2

<∞,

which is well-defined since |χ(γ)| = 1 for γ ∈ Γ, compare [36, p. 228].7 Notice that f ∈ L2
χ(Γ\X)

implies |f | ∈ L2(Γ\X). If χ is trivial, then L2
χ(Γ\X) = L2(Γ\X). Since Γχ is a normal subset of Γ we

have

(2.9) L2(Γχ\X) ∼=
⊕

χ′∈ Γ̂/Γχ

L2
χ′(Γ\X),

where we regard Γ̂/Γχ as a subset of Γ̂, compare [36, Lemma 4.3.1]. In particular, because χ ∈ Γ̂/Γχ,
L2
χ(Γ\X) is a closed subspace in L2(Γχ\X), and for a fixed β ∈ Ξ, the operator T χ

ΓβΓ restricts to the
linear operator

(2.10) T χΓβΓ : L2
χ(Γ\X) −→ L2

χ(Γ\X), (T χΓβΓf)(x) := (T χ
ΓβΓf)(x) =

∑

α∈Γ\ΓβΓ
χ(α) f(α · x).

Notice that for each χ′ in Γ̂/Γχ with χ′ 6= χ and each function f ∈ L2
χ′(Γ\X) we have

(2.11) T χ
ΓβΓf(x) = [Γ : Γχ]

−1
∑

α1∈Γχ\Γ

∑

α2∈Γ\ΓβΓ
χ(α1α2)χ

′(α1)f(α2 · x) = 0

7Note that for γ ∈ Γχ condition (2.7) reads f(γx) = f(x). Therefore, instead of L2
χ(Γ\X) one could also consider

the closed subspace of L2(Γχ\X) that consists of functions satisfying (2.7).
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by the orthogonality relations for characters. Further, the projection of L2(Γχ\X) onto L2
χ(Γ\X) is

given by the Hecke operator Th(χ), where h(χ) ∈ H(Γχ,Ξ) is the function

(2.12) h(χ) : x 7−→ [Γ : Γχ]
−1

∑

α∈Γχ\Γ
χ(α) 1Γχα(x),

1Γχα being the characteristic function of the coset Γχα. Thus, one obtains the commutative diagram

(2.13)

L2(Γχ\X)
T χ
ΓβΓ−−−−→ L2(Γχ\X)

yTh(χ)

yTh(χ)

L2
χ(Γ\X)

Tχ
ΓβΓ−−−−→ L2

χ(Γ\X)

and in view of (2.11) we have Th(χ) ◦ T χΓβΓ ◦ Th(χ) = T χ
ΓβΓ.

3. The spectral function of an elliptic operator and convex bounds for

eigenfunctions

The main tool underlying our analysis is the spectral function of an elliptic operator on a smooth
manifold, which contains essential information on the spectrum. For large spectral parameters, an
asymptotic description of it can be derived within the theory of Fourier integral operators, yielding in
particular convex bounds for eigenfunctions. In what follows, we shall briefly recall the main arguments
in non-equivariant and equivariant situations, and provide the results that will be needed later.

3.1. The spectral function and convex bounds for eigenfunctions. LetM be a closed Riemann-
ian manifold of dimension d and P0 an elliptic classical pseudodifferential operator on M of degree m,
which is assumed to be positive and symmetric. Denote its unique self-adjoint extension by P , and let
{φj}j≥0 be an orthonormal basis of L2(M) consisting of eigenfunctions of P with eigenvalues {λj}j≥0

repeated according to their multiplicity. Let p(x, ξ) be the principal symbol of P0, which is strictly
positive and homogeneous in ξ of degree m as a function on T ∗M \ {0}, that is, the cotangent bundle
of M without the zero section. Here and in what follows (x, ξ) denotes an element in T ∗Y ≃ Y × Rd

with respect to the canonical trivialization of the cotangent bundle over a chart domain Y ⊂ M .
Consider further the m-th root Q := m

√
P of P given by the spectral theorem. It is well known that

Q is a classical pseudodifferential operator of order 1 with principal symbol q(x, ξ) := m
√
p(x, ξ) and

the first Sobolev space as domain. Again, Q has discrete spectrum, and its eigenvalues are given by
µj := m

√
λj . The spectral function e(x, y, λ) of P can then be described by studying the spectral

function of Q, which in terms of the basis {φj} is given by

(3.1) e(x, y, µ) :=
∑

µj≤µ
φj(x)φj(y),

and belongs to C∞(M ×M) as a function of x and y for any µ ∈ R. Let sµ be the spectral projection
onto the sum of eigenspaces of Q with eigenvalues in the interval (µ, µ + 1], and denote its Schwartz
kernel by

sµ(x, y) := e(x, y, µ+ 1)− e(x, y, µ).

To obtain an asymptotic description of the spectral function of Q, one first derives a description of
sµ(x, y) by approximating sµ by Fourier integral operators. To do so, let ̺ ∈ S(R,R+) be such that
ˆ̺(0) = 1 and supp ˆ̺ ∈ (−δ/2, δ/2) for an arbitrarily small δ > 0, and define the approximate spectral
projection operator

s̃µu :=

∞∑

j=0

̺(µ− µj)Eju, u ∈ L2(M),
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where Ej denotes the orthogonal projection onto the subspace spanned by φj . Clearly,

(3.2) Ks̃µ(x, y) :=
∞∑

j=0

̺(µ− µj)φj(x)φj(y) ∈ C∞(M ×M)

constitutes the kernel of s̃µ. Now, notice that for µ, τ ∈ R one has

̺(µ− τ) =
1

2π

ˆ

R

ˆ̺(t)e−itτeitµ dt,

where ˆ̺(t) denotes the Fourier transform of ̺, so that for u ∈ L2(M) we obtain

s̃µu =
1

2π

∞∑

j=0

ˆ

R

ˆ̺(t)eitµe−itµj dtEju =
1

2π

ˆ

R

ˆ̺(t)eitµU(t)u dt,(3.3)

where U(t) stands for the one-parameter group

U(t) := e−itQ =

ˆ

e−itµdEQµ , t ∈ R,

of unitary operators in L2(M) given by the Fourier transform of the spectral measure, {EQµ } being a

spectral resolution of Q. The central result of Hörmander [22] then says that U(t) : L2(M) → L2(M)
can be approximated by Fourier integral operators.

More precisely, let {(κι, Yι)}ι∈I , κι : Yι
≃→ Ỹι ⊂ Rd, be an atlas for M , {fι} a corresponding

partition of unity and v̂(η) := F(v)(η) :=
´

Rd e
−i〈ỹ,η〉v(ỹ) dỹ the Fourier transform of v ∈ C∞

c (Ỹι).

Write d̄η := dη/(2π)d, and introduce on Ỹι the operator

[Ũι(t)v](x̃) :=

ˆ

Rd

eiψι(t,x̃,η)aι(t, x̃, η)v̂(η)d̄η,

where aι ∈ S0
phg is a classical polyhomogeneous symbol satisfying aι(0, x̃, η) = 1 and ψι the defining

phase function given as the solution of the Hamilton-Jacobi equation

∂ ψι
∂ t

+ q
(
x,
∂ ψι
∂ x̃

)
= 0, ψι(0, x̃, η) = 〈x̃, η〉 ,

see [24, Page 254]. Let us remark that ψι is homogeneous in η of degree 1, so that Taylor expansion
for small t gives

ψι(t, x̃, η) = ψι(0, x̃, η) + t
∂ ψι
∂ t

(0, x̃, η) +O(t2|η|) = 〈x̃, η〉 − tqι(x̃, η) +O(t2|η|),

where we wrote qι(x̃, η) := q(κ−1
ι (x̃), η). In other words, there exists a smooth function ζι which is

homogeneous in η of degree 1 and satisfies

ψι(t, x̃, η) = 〈x̃, η〉 − tζι(t, x̃, η), ζι(0, x̃, η) = qι(x̃, η).

Put now Ūι(t)u := [Ũι(t)(u◦κ−1
ι )]◦κι for any u ∈ C∞

c (Yι). Consider further test functions f̄ι ∈ C∞
c (Yι)

satisfying f̄ι ≡ 1 on supp fι, and define

Ū(t) :=
∑

ι

Fι Ūι(t) F̄ι,

where Fι, F̄ι denote the multiplication operators with fι and f̄ι, respectively. Then Hörmander showed
that for small |t|
(3.4) R(t) := U(t)− Ū(t) is an operator with smooth kernel,

compare [20, Page 134] and [45, Theorem 20.1]; in particular, the kernel Rt(x, y) of R(t) is smooth
as a function of t.
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Approximating in (3.3) the operator U(t) by Ū(t), one obtains a description for the kernel of s̃µ as
the double oscillatory integral

Ks̃µ(x, y) =
µd

(2π)d+1

∑

ι

ˆ

R

ˆ

R

eiµ[t−Rt]Iι(µ,R, t, x, y) dRdt(3.5)

up to terms of order O(µ−∞) which are uniform in x and y, where

Iι(µ,R, t, x, y) :=

ˆ

ΣR,t
ι,x

eiµΦι,x,y(ω) ˆ̺(t)fι(x) aι(t, κι(x), µω)f̄ι(y)b(q(x, ω)) dΣ
R,t
ι,x (ω),

Φι,x,y(ω) := 〈κι(x)− κι(y), ω〉 ,

and

(3.6) ΣR,tι,x :=
{
ω ∈ Rd | ζι(t, κι(x), ω) = R

}
,

while 0 ≤ b ∈ C∞
c (1/2, 3/2) is a test function such that b ≡ 1 in a neighborhood of 1, compare [40, Eq.

(2.8)]. Here dΣR,tι,x (ω) denotes the quotient of Lebesgue measure in Rd by Lebesgue measure in R with
respect to ζι(t, x̃, ω). Furthermore, for sufficiently small δ > 0 one can assume that the R-integration
is over a compact set, and R and t are close to 1 and 0, respectively. From (3.5), an asymptotic
description can be inferred as µ → +∞ by means of the stationary phase principle. In fact, one has
the following

Proposition 3.1. Suppose that the cospheres S∗
xM := {(x, ξ) ∈ T ∗M | p(x, ξ) = 1} are strictly con-

vex.8 Then, for any fixed x, y ∈M , and Ñ = 0, 1, 2, 3, . . . one has the expansion

Ks̃µ(x, y) = µd−1− δx,y
2



Ñ−1∑

r=0

Lr(x, y, µ) +RÑ (x, y, µ)




up to terms of order O(µ−∞) as µ→ +∞, where

δx,y :=

{
0, y = x,

d− 1, y 6= x.

The coefficients in the expansion and the remainder RÑ (x, y, µ) = Ox,y(µ
−Ñ ) term can be computed

explicitly; if y = x, they are uniformly bounded in x and y, while if y 6= x, they satisfy the bounds

Lr(x, y, µ) ≪ dist (x, y)
−(d−1)/2−r

µ−r, RÑ (x, y, µ) ≪ dist (x, y)−(d−1)/2−Ñ µ−Ñ ,(3.7)

where dist (x, y) denotes the geodesic distance between two points belonging to the same connected

component. Otherwise, dist (x, y) := ∞.

Proof. If x = y, one has Iι(µ,R, t, x, y) = O(1) uniformly in all parameters since aι ∈ S0phg is a classical
symbol of order 0, so that

∣∣ ∂αω aι(t, κι(x), µω)
∣∣ = |µ||α|

∣∣(∂αω aι)(t, κι(x), µω)
∣∣ ≤ C|ω|−|α|.

Consequently, the dependence of the amplitude on µ does not interfer with the asymptotics, compare
[14, Proposition 1.2.4]. Applying the stationary phase principle [23, Theorem 7.7.5] to the (R, t)-
integral in (3.5) with t(1−R) as phase function then yields the assertion for x = y, the unique critical
point being (R0, t0) = (1, 0) in this case. Let us now assume that x 6= y. By assumption, the cospheres
S∗
xM are strictly convex, so that for small |t|, the hypersurfaces ΣR,tι,x will be strictly convex, too.

8This condition is required only in the case x 6= y. For example, it holds if P0 = ∆ equals the Beltrami–Laplace
operator, since then p(x, ξ) = ‖ξ‖2x.
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Applying [40, Lemma 3.5] to the integrals Iι(µ,R, t, x, y) with
〈

κι(x)−κι(y)
‖κι(x)−κι(y)‖ , ω

〉
as phase function and

ν := µ ‖κι(x)− κι(y)‖ as asymptotic parameter yields for any Ñ ∈ N the expansion

Iι(µ,R, t, x, y) =
∑

ω0∈CritΦι,x,y

eiµΦι,x,y(ω0)



Ñ−1∑

r=0

Qι,r(R, t, x, y, ω0)µ
−(d−1)/2−r +Rι,Ñ(R, t, x, y, ω0, µ)


 ,

where the coefficients and the remainder are smooth in R and t, and satisfy the bounds

∂αR,tQι,r(R, t, x, y, ω0) ≪ ‖κι(x) − κι(y)‖−(d−1)/2−r ,

∂αR,tRι,Ñ(R, t, x, y, ω0, µ) ≪ (‖κι(x)− κι(y)‖µ)−(d−1)/2−Ñ ,

uniformly in R and t. Regarding the value of Φι,x,y on its critical set, one computes for ω0 ∈ CritΦι,x,y

Φι,x,y(ω0) = ±‖κι(x)− κι(y)‖R/
∥∥gradη ζι(t, κι(x), ω0)

∥∥,
since κι(x)−κι(y) must be colinear to gradη ζ(t, κι(x), ω0). Notice that due to the fact that ζ(t, κι(x), η)
is homogeneous of degree 1 in η, the gradient gradη ζ(t, κι(x), ω0) only depends on the direction of
ω0, and is therefore independent of R. From this and (3.5) we deduce for Ks̃µ(x, y) as µ → +∞ the
expansion

µd

(2π)d+1

∑

ι,ω0

ˆ

R

ˆ

R

eiµ[t−Rt+Φι,x,y(ω0)]



Ñ∑

r=0

Qι,r(R, t, x, y, ω0)µ
−(d−1)/2−r +Rι,Ñ(R, t, x, y, ω0, µ)


 dR dt

up to terms of order O(µ−∞). Again, we apply the stationary phase principle to the (R, t)-integrals,
where now the phase function reads t(1−R)+Φι,x,y(ω0). The determinant of the matrix of its second
derivatives is given by

− (1±O(‖κι(x)− κι(y)‖))2 .
By choosing the charts Yι sufficiently small so that ‖κι(x)−κι(y)‖ ≪ 1, we can therefore achieve that in
a sufficiently small neighborhood of (R, t) = (1, 0), which is where the amplitude of the (R, t)-integral
is supported, the phase function t(1−R)+Φι,x,y(ω0) has, if at all, only non-degenerate, hence isolated,
critical points. If we now apply the stationary phase theorem, the assertion follows in the case x 6= y
as well. �

Remark 3.2. By Cauchy-Schwarz and the positivity of the test function ̺ we infer from the previous
proposition for Ñ = 0 that

|Ks̃µ(x, y)| ≤
√∑

j≥0

̺(µ− µj)|φj(x)|2
√∑

j≥0

̺(µ− µj)|φj(y)|2 =
√
Ks̃µ(x, x)

√
Ks̃µ(y, y) = O

(
µd−1

)

uniformly in x, y ∈ M . Also, note that the asymptotics in the proposition off the diagonal are only
meaningful if dist (x, y)−1 is small with respect to µ.

As the previous proposition shows, the kernel of s̃µ exhibits a caustic behaviour9 in a neighbour-
hood of the diagonal since for x = y the integrals Iι(µ,R, t, x, y) no longer oscillate and are of order
O(µ0). From Proposition 3.1, similar asymptotics for sµ can be deduced. By looking at asymptotics
on the diagonal, one obtains Weyl’s law for the spectral function of Q and convex L∞-bounds for

eigenfunctions, since ‖sµ‖2L2→L∞ ≡ supx∈M sµ(x, x), yielding for any eigenfunction the convex bound

‖φj‖∞ ≪ λ
d−1
2m

j ,

compare [22, Theorem 5.1] and [46, Eq. (3.2.6)]. Nevertheless, in order to prove subconvex bounds,
we shall also need asymptotics off the diagonal, so that the full caustic behaviour of Ks̃µ(x, y) near
the diagonal becomes relevant.

9For the terminology, see Appendix A in [40].
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3.2. The reduced spectral function and equivariant convex bounds for eigenfunctions.
Keeping the notation of Section 3.1, assume now that M carries an effective and isometric action
of a compact Lie group K, and consider the right regular representation π of K on L2(M) with
corresponding Peter-Weyl decomposition

(3.8) L2(M) =
⊕

σ∈K̂

L2
σ(M), L2

σ(M) := ΠσL
2(M),

where K̂ denotes the unitary dual of K and

Πσ := dσ

ˆ

K

σ(k)π(k) dk

the orthogonal projector onto the σ-isotypic component, dk being Haar measure and dσ the dimension

of an irreducible representation of K in the class σ ∈ K̂. Further, suppose that P commutes with π,
and that the orthonormal basis {φj}j≥0 is compatible with the decomposition (3.8) in the sense that

each φj lies in some L2
σ(M). Then every eigenspace of P is invariant under π, and decomposes into

irreducible K-modules spanned by eigenfunctions. In order to study eigenfunctions of P of a certain
K-type, one is interested in the spectral function of the operator Qσ := Πσ ◦Q◦Πσ = Πσ ◦Q = Q◦Πσ,
also called the reduced spectral function, given by

(3.9) eσ(x, y, µ) =
∑

µj≤µ, φj∈L2
σ(M)

φj(x)φj(y).

For this, one considers the composition sµ ◦ Πσ, or rather s̃µ ◦ Πσ, whose kernel has the spectral
expansion

(3.10) Ks̃µ◦Πσ
(x, y) =

∑

j≥0,φj∈L2
σ(M)

̺(µ− µj)φj(x)φj(y).

Similarly to (3.5), it was shown in [40, Eq. (2.8)] that by approximating U(t) in (3.3) by the Fourier
integral operator Ū(t) one obtains a description for the kernel of s̃µ ◦ Πσ as the double oscillatory
integral

Ks̃µ◦Πσ
(x, y) =

µddσ
(2π)d+1

∑

ι

ˆ

R

ˆ

R

eiµ[t−Rt]Iσι (µ,R, t, x, y) dR dt(3.11)

up to terms of order O(µ−∞) which are uniform in x and y, where

Iσι (µ,R, t, x, y) :=

ˆ

K

ˆ

ΣR,t
ι,x

eiµΦι,x,y(ω,k) ˆ̺(t)σ(k)fι(x)

· aι(t, κι(x), µω)f̄ι(y · k−1)b(q(x, ω))Jι(k, y) dΣ
R,t
ι,x (ω) dk,

Φι,x,y(ω, k) :=
〈
κι(x) − κι(y · k−1), ω

〉
,

Jι(k, y) being a Jacobian. Write Ox := x · K for the K-orbit through x ∈ M . We then have the
following

Proposition 3.3. Suppose that K acts on M with orbits of the same dimension κ ≤ d − 1 and that

the cospheres S∗
xM := {(x, ξ) ∈ T ∗M | p(x, ξ) = 1} are strictly convex. Then, for any fixed x, y ∈ M ,

σ ∈ K̂, and Ñ = 0, 1, 2, 3, . . . one has the expansion

Ks̃µ◦Πσ
(x, y) = µd−

εx,y
2 −1dσ



Ñ−1∑

r=0

Lσr (x, y, µ) +Rσ
Ñ
(x, y, µ)




up to terms of order O(µ−∞) as µ→ +∞, where

εx,y :=

{
2κ, y ∈ Ox,

d− 1 + κ, y /∈ Ox.
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The coefficients in the expansion and the remainder term can be computed explicitly; if y ∈ Ox, they

satisfy the bounds

Lσr (x, y, µ) ≪ sup
u≤2r

‖Duσ‖∞ µ−r, Rσ
Ñ
(x, y, µ) ≪ sup

u≤2Ñ+⌊κ
2 +1⌋

‖Duσ‖∞ µ−Ñ ,

uniformly in x and y, where Du denote differential operators on K of order u, and if y /∈ Ox, the

bounds

Lσr (x, y, µ) ≪ sup
u≤2r

‖Duσ‖∞ · dist (x,Oy)
− d−κ−1

2 −r
µ−r,

Rσ
Ñ
(x, y, µ) ≪ sup

u≤2Ñ+⌊κ
2 +1⌋

‖Duσ‖∞ · dist (x,Oy)
− d−κ−1

2 −Ñ µ−Ñ ,

where dist (x,Oy) := min {dist (x, z) | z ∈ Oy}. If K = T is a torus, let T̂ ′ ⊂ T̂ be the subset of

representations occuring in the decomposition (3.8), and identify T̂ with the set of integral linear forms

on t. Then the remainder estimates can be improved to

Rσ
Ñ
(x, y, µ) ≪ sup

u≤2Ñ

‖Duσ‖∞ µ−Ñ , Rσ
Ñ
(x, y, µ) ≪ sup

u≤2Ñ

‖Duσ‖∞ · dist (x,Oy)
− d−κ−1

2 −Ñ µ−Ñ ,

respectively, provided that σ ∈ Vµ := {σ′ ∈ T̂ ′ | |σ′| ≤ Cµ/ logµ} for some constant C > 0.

Remark 3.4.

(1) Proposition 3.3 implies for Ñ = 0 by Cauchy-Schwarz that

|Ks̃µ◦Πσ(x, y)| ≤
√ ∑

j≥0,φj∈L2
σ(M)

̺(µ− µj)|φj(x)|2
√ ∑

j≥0,φj∈L2
σ(M)

̺(µ− µj)|φj(y)|2

=
√
Ks̃µ◦Πσ (x, x)

√
Ks̃µ◦Πσ(y, y) = O

(
dσµ

d−κ−1 sup
u≤⌊κ/2+1⌋

‖Duσ‖∞
)

uniformly in x, y ∈M and σ ∈ K̂, while taking Ñ = 1 would yield an estimate of order

O
(
dσ µ

d−κ−1
(
‖σ‖∞ + sup

u≤⌊κ/2+3⌋
‖Duσ‖∞ µ−1

))
.

If K = T is a torus, better remainder estimates hold.
(2) Note that the asymptotics of Proposition 3.3 in the case y 6∈ Ox are only meaningful if

dist (x,Oy)
−1 is small with respect to µ.

Proof of Proposition 3.3. This proposition is essentially a consequence of [40, Theorem 3.3] and [41,
Theorem 3.2]. In particular, an asymptotic expansion of Ks̃µ◦Πσ

(x, x) was given in [40, Proposition
4.2] and, with an improved remainder estimate in the toric case, in [40, Proposition 4.1]. To obtain an
asymptotic expansion off the diagonal from (3.11), we shall first apply the stationary phase theorem to
the integrals Iσι (µ,R, t, x, y), and then to the (R, t)-integral. If x 6∈ Yι or Oy∩Yι = ∅, Iσι (µ,R, t, x, y) =
0. Otherwise, [40, Theorem 3.3] implies for sufficiently small Yι, fixed R, t ∈ R, and any Ñ ∈ N the
asymptotic expansion

(3.12) Iσι (µ,R, t, x, y) = µ− codim Crit Φι,x,y
2 eiµΦ

0
ι,x,y(R,t)



Ñ−1∑

r=0

Lσι,r(R, t, x, y)µ−r + R̃σ
ι,Ñ

(R, t, x, y, µ)


 ,

where CritΦι,x,y denotes the critical set of Φι,x,y, and

codimCritΦι,x,y =

{
2κ, y ∈ Ox,

d− 1 + κ, y /∈ Ox.
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The coefficients and the remainder term are given by distributions depending smoothly on R, t with
support in CritΦι,x,y and ΣR,tι,x ×K, respectively. Furthermore, they and their derivatives with respect
to R, t satisfy for y 6∈ Ox the bounds

∂αR,t Lσι,r(R, t, x, y) ≪ sup
u≤2r

‖Duσ‖∞ · dist (x,Oy)
− d−κ−1

2 −r
,

∂αR,t R̃σ
ι,Ñ

(R, t, x, y, µ) ≪ sup
u≤2Ñ+⌊ κ

2 +1⌋
‖Duσ‖∞ · dist (x,Oy)

− d−κ−1
2 −Ñ µ−Ñ

while for y ∈ Ox one has

∂αR,t Lσι,r(R, t, x, y) ≪ sup
u≤2r

‖Duσ‖∞ , ∂αR,t R̃σ
ι,Ñ

(R, t, x, y, µ) ≪ sup
u≤2Ñ+⌊ κ

2 +1⌋
‖Duσ‖∞ µ−Ñ

uniformly in x and y. If K = T is a torus and σ ∈ Vµ, the remainder estimates can be improved [41,

Theorem 3.2] to contain only derivatives of σ up to order 2Ñ . Finally,

Φ0
ι,x,y(R, t) = Rcx,y(t), cx,y(t) = ±

∥∥κι(x) − κι(y · k−1
0 )
∥∥

gradη ζι(t, κι(x), ω0)
,

denotes the constant value(s) of Φι,x,y on (the components of) its critical set, where (ω0, k0) is some
point in CritΦι,x,y. If y ∈ Ox one has Φ0

ι,x,y(R, t) = 0. As already noted in the proof of Proposition
3.1, aι is a polyhomogeneous symbol of order 0, so that the dependence of the amplitude on µ does
not interfer with the asymptotics. Putting (3.11) and (3.12) together we obtain

Ks̃µ◦Πσ
(x, y) =µd−

codim Crit Φι,x,y
2 dσ

∑

ι

ˆ

R

ˆ

R

eiµ[t−Rt]eiµΦ
0
ι,x,y(R,t)



Ñ−1∑

r=0

Lσι,r(R, t, x, y)µ−j

+R̃σ
ι,Ñ

(R, t, x, y, µ)
]
dR dt

up to terms of order O(µ−∞) uniform in x and y. We now apply the stationary phase principle
[23, Theorem 7.7.5] to the (R, t)-integral. If y ∈ Ox, the phase function simply reads t(1 − R), and
the only critical point is (R0, t0) = (1, 0), which is non-degenerate, the determinant of the Hessian
being −1. Therefore, the necessary conditions for an application of the principle are fulfilled, yielding
the assertion of the proposition in this case. In case that y 6∈ Ox, the phase function is given by
t(1−R) + Φ0

ι,x,y(R, t), and the determinant of the matrix of its second derivatives is given by

−(1− c′x,y(t))
2 ≈ −

(
1±O(

∥∥κι(x)− κι(y · k−1
0 )
∥∥)
)2
.

By choosing the charts Yι sufficiently small so that ‖κι(x) − κι(y · k−1
0 )‖ ≪ 1, we can achieve that in

a sufficiently small neighborhood of (R, t) = (1, 0) the phase function t(1−R) + Φ0
ι,x,y(R, t) has, if at

all, only non-degenerate, hence isolated, critical points. If we now apply the stationary phase theorem,
the proposition follows. �

From Proposition 3.3 equivariant convex bounds for eigenfunctions can be easily inferred. Indeed,
recall that the test function ̺ ∈ S(R,R+) was chosen such that ˆ̺(0) = 1 and supp ˆ̺ ⊂ (−δ/2, δ/2)
for some arbitrary δ > 0. By choosing δ sufficiently small, one can even achieve that ̺ > 0 on [−1, 1],
compare [15, Proof of Lemma 2.3]. But then

min
ν∈[−1,1]

̺(ν)
∑

µj∈(µ,µ+1], φj∈L2
σ(M)

|φj(x)|2

︸ ︷︷ ︸
=Ksµ◦Πσ (x,x)

≤
∑

j≥0, φj∈L2
σ(M)

̺(µ− µj)|φj(x)|2

︸ ︷︷ ︸
=Ks̃µ◦Πσ (x,x)

= O
(
dσ µ

d−κ−1 sup
u≤⌊κ/2+1⌋

‖Duσ‖∞
)
,
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yielding a corresponding bound for Ksµ◦Πσ (x, x), compare [40, Remark 4.4 (2)]. In view of the equality

‖sµ ◦Πσ‖2L2→L∞ ≡ supx∈M Ksµ◦Πσ (x, x), one finally obtains the equivariant convex bound

‖φj‖∞ ≪ λ
d−κ−1

2m
j

(√
dσ sup

u≤⌊κ/2+1⌋
‖Duσ‖∞

)

for any φj ∈ L2
σ(M) and σ ∈ K̂, see [40, Proposition 5.1 and Eq. (5.4)]. As in the non-equivariant

case, the kernels Ks̃µ◦Πσ(x, y) exhibit a caustic behaviour in their dependence on x, y, which will be
crucial for the derivation of equivariant subconvex bounds. In case that K = T is a torus and σ ∈ Vµ,
the bounds above are independent of σ, see [41, Proposition 5.1].

4. Spectral asymptotics for kernels of Hecke operators

Keep the notation of Sections 2 and 3. The main goal of this paper consists in proving subconvex
bounds for Hecke–Maass forms of rank 1 on the compact d-dimensional Riemannian manifold M =
Γχ\G. To this purpose, we shall first derive asymptotics for kernels of Hecke operators in the eigenvalue
and isotypic aspect. Recall that K acts on G and M from the right in an isometric and effective way,
the isotropy group of a point Γχg ∈ Γχ\G being conjugate to the finite group gKg−1 ∩ Γχ. Hence,
all K-orbits in Γχ\G are either principal or exceptional, and of dimension dimK. Since the maximal
compact subgroups of G are precisely the conjugates of K, exceptional K-orbits arise from elements
in Γχ of finite order. Consider now the right regular representation π of K on L2(Γχ\G) together
with the corresponding Peter-Weyl decomposition (3.8), and suppose that P commutes with π and the
Hecke operators T χ

ΓβΓ, which commute with the right regular K-representation as well. To describe

the growth of simultaneous eigenfunctions of P and T χΓβΓ in the σ-isotypic component

(4.1) L2
σ,χ(Γ\G) := L2

σ(Γχ\G) ∩ L2
χ(Γ\G), χ ∈ Γ̂, σ ∈ K̂,

of L2
χ(Γ\G), we are interested in spectral asymptotics for the Schwartz kernel of the operator

Πσ ◦ Th(χ) ◦ T χΓβΓ ◦Q ◦ Th(χ) ◦Πσ = T χ
ΓβΓ ◦Q ◦Πσ : L2(Γχ\G) −→ L2(Γχ\G).

Let {φj}j≥0 be an orthonormal basis of L2(Γχ\G) consisting of simultaneous eigenfunctions of P and

T χ
ΓβΓ compatible with the decompositions (2.9) and (3.8). Applying the Hecke operators T χ

ΓβΓ to the

spectral expansion (3.9) of the spectral function of Q ◦Πσ yields

(4.2)
∑

µj≤µ, φj∈L2
σ(M)

λj(χ, β)φj(x)φj(y) = [Γ : Γχ]
−1

∑

µj≤µ, φj∈L2
σ(Γχ\G)

α∈Γχ\ΓβΓ

χ(α)φj(α · x)φj(y).

In order to get an asymptotic description of the right-hand side of (4.2), we consider the composition
T χ
ΓβΓ ◦ s̃µ ◦Πσ with the approximate spectral projection s̃µ. Clearly, its Schwartz kernel can be written

as

(4.3) KT χ
ΓβΓ◦s̃µ◦Πσ

(x, y) :=
1

[Γ : Γχ]

∑

α∈Γχ\ΓβΓ
χ(α)Ks̃µ◦Πσ(α · x, y),

Ks̃µ◦Πσ (x, y) being as in (3.10), and by Remark 3.4 (1) one immediately deduces

KT χ
ΓβΓ◦s̃µ◦Πσ

(x, x) ≪ |Γχ\ΓβΓ|
[Γ : Γχ]

dσ µ
d−dimK−1 sup

u≤⌊dimK/2+1⌋
‖Duσ‖∞

uniformly in x, or if K = T is a torus,

KT χ
ΓβΓ◦s̃µ◦Πσ

(x, x) ≪ |Γχ\ΓβΓ|
[Γ : Γχ]

µd−dimK−1, σ ∈ Vµ.

Nevertheless, to obtain subconvex bounds, more subtle estimates are necessary that take into account
the caustic behaviour of the kernels Ks̃µ◦Πσ (x, y) near the diagonal.
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Proposition 4.1. Let χ ∈ Γ̂, σ ∈ K̂, x ∈ Γχ\G, and Ñ ∈ N be arbitrary. Assume that the cospheres

S∗
x(Γχ\G) are strictly convex. Then, for any 0 < δ ≪ 1,

KT χ
ΓβΓ◦s̃µ◦Πσ

(x, x) ≪ dσ
[Γ : Γχ]

sup
u≤⌊ dimK

2 +1⌋
‖Duσ‖∞

{
µd−dimK−1M(x, β, δ) + µ

d−dimK−1
2

ˆ C

δ

s−
1
2 dM(s)

}

uniformly in x ∈ Γχ\G for some sufficiently large10 constant C > 0 up to terms of order O(|Γχ\ΓβΓ| µ−∞),
where we set

M(δ) :=M(x, β, δ) := #
{
α ∈ Γχ\ΓβΓ : dist (xK,α · xK)d−dimK−1 < δ

}
(4.4)

and dist (xK,α · xK) ≡ dist (ΓxK,ΓαxK). If K = T is a torus and σ ∈ Vµ, the better estimate

KT χ
ΓβΓ◦s̃µ◦Πσ

(x, x) ≪ 1

[Γ : Γχ]

{
µd−dimK−1M(x, β, δ) + µ

d−dimK−1
2

ˆ C

δ

s−
1
2 dM(s)

}

holds.

Proof. By Proposition 3.3 one deduces as µ → +∞
∑

α∈Γχ\ΓβΓ,

dist (xK,α·xK)d−dimK−1≥δ

χ(α)Ks̃µ◦Πσ (α · x, x)

≪ dσ µ
(d−dimK−1)/2

∑

α∈Γχ\ΓβΓ,

dist (xK,α·xK)d−dimK−1≥δ

dist (xK,α · xK)−(d−dimK−1)/2 sup
u≤⌊ dimK

2 +1⌋
‖Duσ‖∞ .

Furthermore, by Remark 3.4 (1) one has the uniform bound

Ks̃µ◦Πσ
(x, y) = O

(
dσ µ

d−dimK−1 sup
u≤⌊ dimK

2 +1⌋
‖Duσ‖∞

)
.

In view of (4.3) we therefore obtain

[Γ : Γχ]KT χ
ΓβΓ◦s̃µ◦Πσ

(x, x) =
∑

α∈Γχ\ΓβΓ,

dist (xK,α·xK)d−dimK−1<δ

χ(α)Ks̃µ◦Πσ (α · x, x)

+
∑

α∈Γχ\ΓβΓ,

dist (xK,α·xK)d−dimK−1≥δ

χ(α)Ks̃µ◦Πσ(α · x, x)

≪ dσ µ
d−dimK−1 sup

u≤⌊ dim K
2 +1⌋

‖Duσ‖∞M(x, β, δ)

+ dσ µ
(d−dimK−1)/2 sup

u≤⌊ dimK
2 +1⌋

‖Duσ‖∞
ˆ C

δ

s−1/2dM(s)

by definition of the Stieltjies integral. In case that K = T is a torus, corresponding better estimates
hold, and the assertion follows. �

5. Subconvex bounds on Γχ\SL(2,R) for arithmetic congruence lattices

In this section, we shall use the kernel asymptotics derived in the previous section to prove subconvex
bounds on the quotient Γ\SL(2,R), where Γ is an arithmetic congruence lattice as considered by Iwaniec
and Sarnak [27].

10It suffices to take C larger than the diameter of any component of Γχ\G/K.
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5.1. Arithmetic congruence lattices. To introduce the setting, let A be an indefinite quaternion
division algebra over Q. Hence, there exist two square-free integers a and b such that a > 0 and

A = Q+Qω +QΩ+QωΩ

where ω2 = a, Ω2 = b, and ωΩ = −Ωω. For each element x = x0 + x1ω + x2Ω + x3ωΩ, its conjugate
is defined as x := x0 − x1ω − x2Ω− x3ωΩ, and its trace and norm as tr(x) := x+ x and N(x) := xx,
respectively. Let R be an order of A, that is, R is a finitely generated free Z-module, R is a subring of
A cotaining 1, and R⊗Z Q = A. For each prime number p, set Ap := A⊗Qp and Rp := R⊗ Zp. Let
dA be the product of all primes p such that Ap is a division algebra. Then dA is called the discriminant

of A. dA is greater than 1 and square free, and Ap is isomorphic to M(2,Qp) if p does not divide q.
Throughout this section, we assume that R is an Eichler order of level L, where L is a natural number
such that (dA, L) = 1. Hence, R satisfies

(1) Rp is the maximal order of Ap if p divides dA, or

(2) Rp is conjugate to

(
Zp Zp
LZp Zp

)
.

Note that any Eichler order is included in a maximal order. Particularly, R is maximal when L = 1.
Now, choose an embedding θ : A→M(2,Q(

√
a)) ⊂M(2,R) by setting

θ(x0 + x1ω + x2Ω+ x3ωΩ) =

(
x0 − x1ω x2 + x3ω
b(x2 − x3ω) x0 + x1ω

)
.

For each natural number n ∈ N∗, we set

R(n) := {α ∈ R | N(α) = n}.
Then Γ := θ(R(1)) becomes a cocompact lattice of G := SL(2,R). Note that tr(x) = tr(θ(x)) and
N(x) = det (θ(x)) hold for any x in A. In what follows, we identify A with θ(A). Especially, we will
often use Γ instead of R(1).

Next, let χ be a Dirichlet character on (Z/LZ)×. In view of the product isomorphism (Z/LZ)× ∼=∏
p|L(Zp/LZp)

× given by the diagonal embedding a 7→ (a)p, a character χp can be defined on

(Zp/LZp)× by restriction of χ to each factor. Set

ΞR := {α ∈ R | N(α) > 0, (N(α), L) = 1} and RL := {(xp)p|L | xp ∈ Rp, N(xp) 6∈ pZp},
and define a character χL on the semigroup RL by

RL ∋
((

ap bp
Lcp dp

))

p|L
7→
∏

p|L
χp(ap) ∈ C.

Composing χL and the diagonal embedding ΞR ⊂ RL, we obtain a character χ on the sub-semigroup
ΞR ofA×. By the inclusion Γ ⊂ ΞR, χ becomes a character on Γ which is called aNebentypus character.
Notice that there are only finitely many Nebentypus characters for each fixed Eichler order R. Now,
because Γ and α−1Γα are commensurable [38, Proposition 4.1], an inclusion map ψ : R(n) → C(Γ) is
given by

ψ(α) = n1/2α, α ∈ R(n).

Since the subset R(n) is left and right Γ-invariant, and it is known that Γ\R(n) is finite [36, Section
5.3], we can introduce the Hecke operators

(T χn f)(x) :=
∑

α∈Γ\R(n)

χ(α) f(α · x), f ∈ L2
χ(Γ\G).

Indeed, since ψ(R(n)) is given as a disjoint union of double cosets ⊔jΓαjΓ, the operator T χn coincides
with the sum

∑
j T

χ
ΓαjΓ

of Hecke operators defined in (2.10). In particular, we have also the Hecke
operators

T χ
n : L2(Γχ\G) −→ L2(Γχ\G), (T χ

n f)(x) :=
1

[Γ : Γχ]

∑

α∈Γχ\R(n)

χ(α)f(α · x),
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compare (2.5) and Diagram 2.13. Furthermore, set

q := dAL.

For natural numbers n such that (n, q) = 1, the T χn are self-dual, commute with the Beltrami–Laplace
operator ∆ on G, and satisfy the composition rule [36, Section 5.3]

(5.1) T χn T
χ
m =

∑

d|(m,n)
d · χ(d) T χnm/d2.

Next, recall that the group GL(2,R)+ := {x ∈M(2,R) | det (x) > 0} acts transitively on the upper
half plane H := {z ∈ C | Im z > 0} by fractional transformations11

g · z =
az + b

cz + d
, z ∈ H, g =

(
a b
c d

)
,

by which H becomes isomorphic to the homogeneous space G/K, where K := SO(2), and we define

(5.2) j(g, z) := (cz + d)(det g)1/2.

In what follows, we shall identify Γχ\G/K ≃ Γχ\H with a subset in H, and endow it with the standard
hyperbolic distance on H given by [25, Section 1.1]

dist H(z, w) := arcosh
(
1 + u(z, w)/2

)
= ln

( |z − w|+ |z − w|
|z − w| − |z − w|

)
≈ |z − w|,

where

(5.3) u(z, w) :=
|z − w|2
Im z Imw

, z, w ∈ H.

By this, Γχ\H becomes a compact hyperbolic surface. Note that dist H agrees with the distance
function dist introduced at the beginning of Section 2. Furthermore, one has the following important
result of Iwaniec and Sarnak.

Lemma 5.1. For arbitrary ε > 0 one has

# {α ∈ R(n) : u(z, α · z) < δ} ≪ε (δ + δ1/4)n1+ε + nε

uniformly in z.

Proof. See [27, Lemma 1.3]. �

5.2. Equivariant subconvex bounds. With the notation of the previous section, we shall first derive
subconvex bounds for Hecke–Maass forms in L2

χ(Γ\G) in the eigenvalue and isotypic aspect for the

Beltrami–Laplace operator ∆. For this, let {φj}j≥0 be an orthonormal basis of L2(Γχ\G) consisting
of simultaneous eigenfunctions of P0 = ∆ and T χ

n compatible with the decompositions (2.9) and (3.8),
where X = G and M = Γχ\G, respectively, so that with (n, q) = 1

∆φj = λjφj , T χ
n φj = λj(n)φj .(5.4)

Note that λj(n) = 0 if φj 6∈ L2
χ(Γ\G). Further, let σ ∈ K̂ be a fixed K-type, and L2

σ,χ(Γ\G) be

defined as in (4.1). When σ is trivial, the space L2
σ,χ(Γ\G) can be identified with L2

χ(Γ\G/K). In

what follows, we shall make the identification SO(2) ≃ S1 ⊂ C, so that the characters of K are given
by the exponentials

σl(e
iθ) := eilθ, θ ∈ [0, 2π), l ∈ Z.

Since all irreducible representations of K are one-dimensional, Proposition 4.1 yields for any x ∈ Γχ\G
and σl with |l| ≪ µ/ logµ the estimate

KT χ
n ◦s̃µ◦Πσl

(x, x) ≪ 1

[Γ : Γχ]

[
µM(x, n, δ) + µ

1
2

ˆ C

δ

s−
1
2 dM(s)

]

11 Note that the center

(

a 0
0 a

)

, a ∈ R∗, acts trivially on H.
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up to terms of order O(|Γχ\R(n)| µ−∞), where we set

M(δ) :=M(x, n, δ) := #
{
α ∈ Γχ\R(n) : u(xK,α · xK) < δ2

}
,

regarding xK ∈ Γχ\G/K ≃ Γχ\H as an element in C, and took into account that for suitable constants
c1, c2 > 0

(5.5) c1u(z, w) ≤ dist (z, w)2 ≡ dist H(z, w)
2 ≤ c2u(z, w), z, w ∈ Γχ\H.

In order to derive a uniform bound for KT χ
n ◦s̃µ◦Πσl

(x, x), note that by Lemma 5.1 one has with

N(s) := s−1/2 and δ = µ−1

ˆ C

δ

s−1/2dM(s) = N(C)M(C)︸ ︷︷ ︸
≪εn1+ε

− N(δ)M(δ)︸ ︷︷ ︸
≪εδ−1/2[(δ2+δ1/2)n1+ε+nε]

−
ˆ C

δ

M(s)N ′(s) ds

︸ ︷︷ ︸
≪ε(s3/2+log s)n1+ε+s−1/2nε|Cδ

≪ε n
1+ε + µ1/2nε + n1+ε logµ≪ε (µ

1/2 + n logµ)nε,

Taking everything together we have shown

Theorem 5.2. For any n ∈ N∗, µ > 0, and σl with |l| ≪ µ/ logµ the uniform bound

KT χ
n ◦s̃µ◦Πσl

(x, x) ≪ε (µ+ nµ1/2 logµ)nε

holds up to terms of order O(n1+ε µ−∞), where x ∈ Γχ\G, and χ ∈ Γ̂ is a Nebentypus character.

�

Remark 5.3. The previous theorem is the non-spherical analogon of [27, Lemma 1.2]. Note that the
bounds for the point pair invariants on H used by Iwaniec and Sarnak in order to show [27, Lemma
1.2] are better than ours by a factor (1 + u(α · z, z))−5/4 in the Stieltjes integral, but the lattice point
counting function considered by them is unbounded, while ours is a priori bounded.

Following the original approach of Iwaniec and Sarnak, we shall now make use of arithmetic ampli-
fication to deduce from Theorem 5.2 equivariant subconvex bounds. Since we will later choose n≪ µA

for some A ∈ N, we can neglect the contributions of order O(n1+ε µ−∞) in the following. Thus, let

χ ∈ Γ̂, σl ∈ K̂ be arbitrary, and {φj}j∈N as in (5.4). Writing ηj(n) := λj(n)/
√
n we deduce with

(3.10), (4.3), (5.1), and (5.4) that12

∑

j≥0, φj∈L2
σl

(Γχ\G)

̺(µ− µj)φj(x)φj(y)ηj(m)ηj(n)

=
∑

d|(n,m)

∑

j≥0, φj∈L2
σl

(Γχ\G)

̺(µ− µj)φj(x)φj(y)χ(d)ηj

(nm
d2

)
=

∑

d|(n,m)

dχ(d)√
nm

KT χ

nm/d2
◦s̃µ◦Πσl

(x, y).

If one replaces µ by µ logµ in Theorem 5.2 one obtains for any σl ∈ K̂

KT χ
n ◦s̃µ◦Πσl

(x, x) ≪ε logµ (µ+ nµ1/2 logµ)nε,

yielding for arbitrary N ∈ N∗ and σl
∑

j≥0, φj∈L2
σl

(Γχ\G)

̺(µ− µj)|φj(x)|2
∣∣∣
∑

n≤N
znηj(n)

∣∣∣
2

=
∑

n,m≤N

∑

d|(n,m)

dχ(d)√
nm

znzmKT χ

nm/d2
◦s̃µ◦Πσl

(x, x)

≪ε N
εµε

∑

n,m≤N

∑

d|(n,m)

d√
nm

|znzm|
(
µ+

nm

d2
µ1/2

)
,

12Since the Tχ
n are adjoint operators for all n with (n, q) = 1, one has ηj(n) = ηj(n), compare [36, Theorem 5.3.8].

More generally, (Tχ
ΓαΓ

)∗ = Tχ
Γα′Γ

, where α′ = det (α)α−1 .



SUBCONVEX BOUNDS FOR HECKE–MAASS FORMS ON COMPACT ARITHMETIC QUOTIENTS 21

since |χ(d)| = 1, where zn ∈ C are arbitrary complex numbers. A simple computation then gives

∑

j≥0, φj∈L2
σl

(Γχ\G)

̺(µ− µj)|φj(x)|2
∣∣∣
∑

n≤N
znηj(n)

∣∣∣
2

≪ε N
εµε


µ

∑

n≤N
|zn|2 +Nµ1/2

( ∑

n≤N
|zn|
)2

 .

(5.6)

We thus arrive at

Proposition 5.4. For any µ > 0, σl ∈ K̂, χ ∈ Γ̂, and N ∈ N∗ one has the estimate

∑

µ≤
√

λj≤µ+1,

φj∈L2
σl

(Γχ\G)

|φj(x)|2
∣∣∣
∑

n≤N
znηj(n)

∣∣∣
2

≪ε N
εµε


µ

∑

n≤N
|zn|2 +Nµ1/2

( ∑

n≤N
|zn|
)2



uniformly in x ∈ Γχ\G.
Proof. As explained at the end of Section 3, the test function ̺ ∈ S(R,R+) can be chosen such that
̺ > 0 on [−1, 1]. The proposition now follows from (5.6) and the estimate

∑

µ≤
√

λj≤µ+1,

φj∈L2
σl

(Γχ\G)

|φj(x)|2
∣∣∣
∑

n≤N
znηj(n)

∣∣∣
2

·min {̺(µ) | µ ∈ [−1, 1]}

≤
∑

j≥0, φj∈L2
σl

(Γχ\G)

̺(µ− µj)|φj(x)|2
∣∣∣
∑

n≤N
znηj(n)

∣∣∣
2

.

�

Next, one proceeds as follows. Let j0 ≥ 0 be fixed such that φj0 ∈ L2
σl,χ(Γ\G), and consider the

amplifier

(5.7) zn :=





ηj0 (p), n = p ≤
√
N,

−1 n = p2 ≤ N,

0, otherwise,

where p is a prime not dividing q. Note that (2.13) and (5.1) imply

ηj(p)
2 − ηj(p

2) =

{
1 if φj ∈ L2

χ(Γ\G),
0 otherwise.

Hence, ∣∣∣
∑

n≤N
znηj0 (n)

∣∣∣ =
∑

p≤
√
N,p6 | q

1 = O
(√

N/ logN1/2
)
,

by the Prime Number Theorem. Writing λj = 1/4 + r2j and taking µ = rj0 Proposition 5.4 then gives

|φj0 (x)|2 ≪ε N
ε−1rεj0


rj0

( ∑

p≤
√
N

|ηj0(p)|2 +
√
N
)
+Nr

1/2
j0

( ∑

p≤
√
N

|ηj0(p)|+N1/2
)2

 .(5.8)

As a next step, note that Jacquet-Langlands correspondence [29] and the study of Rankin-Selberg
convolutions ([26, Theorem 8.3] and [16, Proposition 19.6]) imply for any j ∈ N with φj ∈ L2

χ(Γ\G)
the bound

(5.9)
∑

n≤N
|ηj(n)|2 ≪ε N

1+εrεj ,
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where n moves over natural numbers prime to q. Here we used the facts that the Strong Multiplicity
One Theorem holds for GL(2) and each automorphic representation factors as a tensor product of local
representations. Consequently, with (5.9) and Cauchy’s inequality one deduces

|φj0(x)|2 ≪ε N
εrεj0 (rj0N

−1/2 + r
1/2
j0
N).

Choosing N = r
1/3
j0

finally gives

|φj0 (x)|2 ≪ε r
5
6+ε
j0

uniformly in x ∈ Γχ\G. Thus, we have shown our first main result.

Theorem 5.5. Let G = SL(2,R) and Γ be a congruence arithmetic lattice in G. Let further χ ∈ Γ̂
be a Nebentypus character. Then, for any Hecke–Maass form φj ∈ L2

χ(Γ\G) with ∆φj = λjφj and

‖φj‖L2 = 1 one has

‖φj‖∞ ≪ε λ
5
24+ε
j

for any ε > 0.

�

For trivial σl and χ, Theorem 5.5 is due to Iwaniec-Sarnak [27, Theorem 0.1]. In fact, their method
can also be used for non-trivial χ, as was done in [2, Section 10] for non-compact arithmetic surfaces.
Thus, we recover

Corollary 5.6 (Iwaniec-Sarnak). For any Hecke–Maass form φj ∈ L2
χ(Γ\H) with ‖φj‖L2 = 1 and

Beltrami–Laplace eigenvalue λj one has

‖φj‖∞ ≪ε λ
5
24+ε
j

for any ε > 0.

Proof. If σl = id is trivial, L2
σl,χ

(Γ\G) ≃ L2
χ(Γ\H), and the assertion follows form the previous theorem.

Note that since all K-orbits in G have the same volume, each eigenfunction of the Beltrami–Laplace
operator on H ≃ G/K lifts to a unique K-invariant eigenfunction of the Beltrami–Laplace operator
on G. �

5.3. Automorphic forms on SL(2,R) and representation-theoretic interpretation. In what
follows, we would like to discuss our results within the theory of automorphic forms and their representa-
tion-theoretic meaning. For this, let us first recall the concept of an automorphic form on G = SL(2,R)
for a discrete co-compact subgroup Γ, compare [8, Section 5].

Definition 5.7. A smooth function f : G→ C is called an automorphic form on G for Γ iff:

(A1) f(γg) = f(g) for all γ ∈ Γ and g ∈ G,
(A2) f is K-finite on the right, where K = SO(2),
(A3) f is Z-finite, where Z denotes the center of the universal envelopping algebra U(gC) of the

complexification of g.

Note that (A2) means that f is a finite sum of functions fl belonging to a specific K-type σl, while
(A3) is equivalent to the existence of a polynomial p(C) in the Casimir operator C = dR(Ω) that
annihilates f , the notation being as in Section 2. Now, g = {X ∈ M(2,R) | tr(X) = 0}, while a
Cartan involution is given by − tX . With respect to the basis

X ′
1 :=

(
1 0
0 −1

)
, X ′

2 :=

(
0 1
1 0

)
, Y ′

1 :=

(
0 1
−1 0

)

of g = p⊕ k, the modified Killing form 〈·, ·〉θ is represented by the matrix

1

8



1 0 0
0 1 0
0 0 1


 .
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Consequently, a corresponding orthonormal basis of g is given by X1 := X ′
1/2

√
2, X2 := X ′

1/2
√
2,

Y1 := Y ′
1/2

√
2, so that the Casimir element reads

Ω = X2
1 +X2

2 − Y 2
1 ≡ 1

8
id ,

compare (2.1). Note that our normalization of C differs from the one in [8, p. 20], where Ω ≡ 1
2 id .

Writing p(C) =∏i(C − µi) and µσl
= l2/8 for the eigenvalue of dR(ΩK) on the σl-isotypic component

one sees that

p(C)fl =
∏

i

(2dR(ΩK)−∆− µi)fl =
∏

i

(2µσl
−∆− µi)fl =: ql(∆)fl,

where we took into account (2.2). Thus, p(C)f = 0 iff ql(∆)fl = 0 for all l, by orthogonality. Since
ql(∆) is an elliptic differential operator of the same order than p(C), and any subspace defined by a
K-type and a Casimir eigenvalue is finite dimensional by Harish-Chandra’s theorem [9, Theorem 1.7],
we see that f is essentially given by a finite sum of Hecke–Maass forms in the sense of this paper.

To interprete our results in terms of the representation theory of G, let us first notice that, since
−I2 belongs to Γ, one has

L2
σl,χ

(Γ\G) = {0} if σl(−I2) 6= χ(−I2).
Hence, in case that L2

σl,χ
(Γ\G) 6= {0}, l must be even if χ(−I2) = 1, and odd otherwise. Now,

according to the decomposition (2.3) the following irreducible unitary representations of G can appear
in L2

σl,χ
(Γ\G), see [8, Section 15]:

(1) If l = 0,

(a) the trivial representation,

(b) the unitary principal series H(0, s) with s ∈ iR≥0,

(c) the complementary series I(0, s) with s ∈ (0, 1)
can appear.

(2) If l is even and l 6= 0,

(a) the discrete series Ds with s ∈ Z− {0}, |s| < |l|, sgn (s) = sgn (l), s odd,

(b) the unitary principal series H(0, s) with s ∈ iR≥0,

(c) the complementary series I(0, s) with s ∈ (0, 1)
can appear.

(3) If l is odd,

(a) the discrete series Ds with s ∈ Z− {0}, |s| < |l|, sgn (s) = sgn (l), s even,

(b) the unitary principal series H(1, s) with s ∈ iR>0,

(c) the limits of discrete series D+,0 (resp. D−,0) with l > 0 (resp. l < 0)
can appear.

Note that in each of the above unitary representations the σl-isotypic component is 1-dimensional.
By the above list, one sees that representations occuring in L2

σl,χ(Γ\G) are in general different from the

spherical case L2(Γ\H). Hence, Theorem 5.5 implies subconvex bounds for new classes of automorphic
representations, in particular for the discrete series Ds and their limits D±,0, as well as the principal
series H(1, s).

To rephrase our results in terms of the spectrum of the Casimir operator C, note that by (2.2) we
have with µσl

= l2/8

(5.10) ∆φj = λjφj =
(
− µj + l2/4

)
φj , φj ∈ L2

σl,χ(Γ\G),
µj being the Casimir eigenvalue of φj . Now, in the cases relevant to us the Casimir eigenvalues can
take the following values [8, p. 158 and p. 163]:13

13Note that our normalization of the Casimir operator differs from the one in [8] by a factor 1/4.
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(1) On (Ds)
∞, C ≡ (s2 − 1) id /8, where s ∈ Z − {0}. For |s| < |l| and sgn (s) = sgn (l) one has

0 < s2 − 1 < l2 − 1.
(2) On H(0, s)∞ or H(1, s)∞, C ≡ (s2 − 1) id /8. For s ∈ iR≥0 one has s2 − 1 ≤ −1.
(3) On I(0, s)∞, C ≡ (s2 − 1) id /8. For s ∈ (0, 1) one has −1 < s2 − 1 < 0.
(4) On (D+,0)

∞ or (D−,0)∞, C ≡ −id /8.

Here H∞ denotes the subspace of differentiable vectors in a Hilbert representationH . Consequently,
the subconvex bound in Theorem 5.5 can be restated as follows.

Theorem 5.8. Let G = SL(2,R), K = SO(2), and Γ be a congruence arithmetic lattice in G. Let

further σl ∈ K̂ and χ ∈ Γ̂ be a Nebentypus character. Then, for any Hecke eigenform φ ∈ L2
σl,χ(Γ\G)

satisfying ‖φ‖L2 = 1 and Cφ = s2−1
8 φ one has

‖φ‖∞ ≪ε (1− s2 + 2l2)
5
24+ε

for any ε > 0.

�

Classically, an automorphic form of weight l ∈ N and Nebentypus character χ was first introduced
as a holomorphic function f : H → C satisfying

f(γ · z) = χ(γ) j(γ, z)l f(z), γ ∈ Γ, z ∈ H,

where j(g, z) is as in (5.2). Its lift f̃(g) := f(g · i)j(g, i)−l constitutes an automorphic form on G in

the sense of Definition 5.7; it is of K-type σl and satisfies Cf̃ = 1
4 (l

2/2− l)f̃ , see [8, Sections 5.14 and

5.15]. In particular, if l > 1, f̃ belongs to the discrete series representation Dl−1 in L2
σl,χ

(Γ\G). If, in
addition, f̃ is a Hecke eigenform with ‖f̃‖2 = 1, one deduces from Theorem 5.8

(5.11) ‖f‖∞ ≪ε l
5
12

+ε,

since ‖f‖p ≡ ‖f̃‖p for all p, compare [36, p. 219], yielding subconvex bounds for classical automorphic

forms on H in the weight aspect. This is consistent with Godement’s formula [19], by which one

has the convex bound ‖f‖∞ ≪ l
1
2 , see [12, 10]. Furthermore, a corresponding subconvex bound

was proven in [12], the exponent there being 1
2 − 1

33 = 31
66 . Thus, our results do imply new results

about holomorphic modular forms on H. Note that in the case Γ = SL(2,Z) one can even show [52]

that l
1
4−ε ≪ε ‖f‖∞ ≪ε l

1
4+ε by using the Fourier expansion of f and Deligne’s bound [13], though

this method is not available for cocompact arithmetic subgroups. In the non-cocompact case, hybrid
bounds in the eigenvalue and the level aspect were considered in [2].

6. Subconvex bounds on SO(3)

In this section, we shall derive equivariant and non-equivariant subconvex bounds on SO(3) in the
setting of [31, 32]. They are proven in an analogous way than the ones proven in Section 5 using results
of [49]. To begin, consider the quaternion algebra

H(R) := {a0 + a1i+ a2j+ a3k | a0, a1, a2, a3 ∈ R}
over a given commutative ring R, where i2 = j2 = −1, ij = −ji = k, and recall that for an element
a := a0 + a1i+ a2j+ a3k ∈ H(R) its conjugate is given by a := a0 − a1i− a2j− a3k ∈ H(R) while its
norm reads N(a) := aa = a20 + a21 + a22 + a23. Note that H(R) corresponds to the field of Hamilton’s
quaternions and H(Z) to the ring of Lipschitz integers [11]. Write H(R)1 := {a ∈ H(R) | N(a) = 1}
and put G := H(R)1. As a group G, can be identified with SU(2) via the mapping

G ∋ a0 + a1i+ a2j+ a3k 7−→
(
a0 + a1i a2 + a3i
−a2 + a3i a0 − a1i

)
∈ SU(2).

G is compact, while H(Z)1 = {±1, ±i, ±j, ±k} is finite, so that by choosing the lattice Γ := {±1}
in G we have

Γ\G ∼= SO(3)
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via the adjoint action of G on its Lie algebra. Next, we introduce Hecke operators on SO(3) following
[31, 32]. Thus, for each α ∈ H(R) \ {0} and x ∈ G set

α · x := N(α)−1/2αx ∈ G.

As in Section 2, one can associate to each double coset ΓαΓ, α ∈ H(Q), a Hecke operator TΓαΓ. We
then have TΓα1Γ ◦ TΓα2Γ = TΓα2α1Γ. Further, setting

14

R(n) := {a ∈ H(Z) | N(a) = n, a ≡ 1 mod 2},
one can define the Hecke operator

(Tnf)(x) :=
1

2

∑

α∈R(n)

f(α · x), f ∈ L2(Γ\G).

For natural numbers r, s ≡ 1 mod 4, one has TrTs =
∑
d|(r,s) d Trs/d2 , see [32, Remark 1] and [49,

p. 331]. Since Hecke operators commute with the right regular representation of G on L2(Γ\G),
we may replace L2(Γ\G) by L2(Γ\G/K) for any subgroup K of G in the above argument on Hecke
operators. Choose K = SO(2) ≃ C1, and denote the corresponding characters by σl : eiθ 7→ eilθ,
l ∈ Z. Let ∆ denote the Beltrami–Laplace operator on G. Since ∆ and Tn commute, there exists
an orthonormal basis {φj}j≥0 of L2(Γ\G) consisting of simultaneous eigenfunctions compatible with

the decompositions (2.9) and (3.8), where X = G and M = Γ\G, respectively. Further, note that
the action of K on Γ\G is isometric and non-singular. We then can prove the following equivariant
subconvex bounds.

Theorem 6.1. Let G = SU(2), K = SO(2), Γ = {±1}, and σl ∈ K̂ ≃ Z. Then, for any Hecke–Maass

form φj ∈ L2
σl
(Γ\G) with Beltrami–Laplace eigenvalue λj and ‖φj‖L2 = 1 one has

‖φj‖∞ ≪ε λ
5
24+ε
j ,

ε > 0 being arbitrary.

Remark 6.2. This theorem is a generalization of [49, Theorem 1.1], where the case L2
σ0
(Γ\G) ∼=

L2(Γ\G/K) ∼= L2(S2) is treated, S2 being the 2-sphere. In the papers [5, 6], hybrid L∞-norms
for general arithmetic quotients of 2-spheres in the eigenvalue and level aspect are studied. However,
the exponents for the spectral parameter are a little greater than 5/24 there, namely 1

24 − 1
27 = 1

216 .

Proof. By [49, Lemma 2.1] one has

(6.1) ♯{α ∈ R(n) | dist(x, α · x) < δ} ≪ε

{
δ

1
2n1+ε + nε if δ < 1/n,

n
1
2+ε + δ

2
3n1+ε otherwise.

Further, Proposition 4.1 also holds in the present case, since Proposition 3.3 is true for arbitrary
compact manifolds and symmetry groups. By repeating the arguments given in Section 5.2 we therefore
get for any |l| ≪ µ/ logµ, µ > n, and n ≡ 1 mod 4 the uniform bound

KTn◦s̃µ◦Πσl
(x, x) ≪ε (µ+ nµ1/2 logµ)nε

up to neglegible terms. Now, by the Dirichlet prime number theorem on arithmetic progressions it is
well-known that

# {p < x | p is a prime, p ≡ 1 mod 4} ∼ 1

2

x

log x
.

Furthermore, the Ramanujan conjecture proved by Deligne [13] together with the Jacquet-Langlands
correspondence for GL(2) [29] implies that the Hecke eigenvalues λj(p) of Tp are bounded from above

by 2p
1
2+ε for prime levels. Hence, the argument of Iwaniec-Sarnak already used in Section 5.2, but

now applied to L2(SO(3)), yields

‖φj‖2∞ ≪ε µ
εNε(µN−1/2 + µ1/2N).

14a0 + a1i+ a2j+ a3k ≡ 1 (2) means that a0 is odd and a1, a2, a3 are even. Note that R(n) is empty unless n ≡ 1
mod 4.
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The theorem now follows by taking N = µ1/3. �

Note that the right regular representation of Γ\G ∼= SO(3) on L2(Γ\G) decomposes according to

L2(Γ\G) ∼=
⊕

k∈N

Mk, Mk
∼= π⊕2k+1

k ,

where πk denotes the irreducible representation of SO(3) of dimension 2k + 1. In particular, the
Beltrami–Laplace eigenvalue corresponding to πk is k(k+1), and the restriction of πk toK is isomorphic

to
⊕̂k

l=−kσl. Hence, if we choose an orthonormal sequence {ψj}j≥0 in L2(Γ\G) consisting of Hecke–

Maass forms with ψj ∈ (σlj )
⊕2kj+1 ⊂ Mkj , where |lj | ≤ kj , Theorem 6.1 yields

‖ψj‖∞ ≪ε k
5
12+ε
j .

7. Subconvex bounds on Γ\G for semisimple groups and arithmetic congruence

subgroups

7.1. General framework. In what follows, we shall develop a general framework to prove subconvex
bounds of Hecke–Maass forms on semisimple groups. For this, let us return to the general setting of
Sections 2, 3 and 4. Write L2 := L2

χ(Γ\G) or L2
σ,χ(Γ\G), and consider on this space the family of

Hecke operators T χΓβΓ introduced in (2.10), together with the corresponding C-module

Hχ
Ξ := 〈T χ

ΓβΓ | β ∈ Ξ〉

generated by them. In what follows, we assume that there exists a submodule H of Hχ
Ξ such that there

is an orthonormal basis {φj}j∈N of L2(Γχ\G) compatible with the decomposition (2.9), and in case
that P commutes with the right regularK-representation, also with the decomposition (3.8), consisting
of simultaneous eigenfunctions of P and all T ∈ H with Pφj = λjφj . As before, such simultaneous
eigenfunctions will be called Hecke–Maass forms of rank 1. We also suppose that T ∗ belongs to H for
each T ∈ H and that the cospheres S∗

x(Γχ\G) := {(x, ξ) ∈ T ∗(Γχ\G) | p(x, ξ) = 1} are strictly convex
for all x ∈ Γχ\G. Further, consider the lattice point counting functions M(x, β, δ) := M(x, β, δ) or
M(x, β, δ) corresponding to L2, respectively; that is,

M(δ) := M(x, β, δ) := # {α ∈ Γχ\ΓβΓ : dist (x, α · x) < δ} ,
where dist (α · x, x) ≡ dist (Γαx,Γx), and M(x, β, δ) is as in (4.4). We then have the following

Lemma 7.1. Fix a character χ in Γ̂ such that [Γ : Γχ] < ∞. Let φj0 be a Hecke–Maass form in L2

with corresponding spectral eigenvalue λj0 . Let P ′ be an infinite set and N′ : P ′ → N a mapping such

that

(7.1) # {v ∈ P ′ | N/2 < N′(v) < N} ≫ N/ logN.

Assume that for each element v ∈ P ′ there exists a Hecke operator T ′
v ∈ H satisfying T ′

vφj0 = φj0 ,
and that for any N ∈ N and any x ∈ Γχ\G we have a suitable finite subset Q′

N,x ⊂ P ′ such that

#Q′
N,x ≪ logN . Write

T ′
N,x :=

∑

v∈Q′
N,x

T ′
v where Q′

N,x := {v ∈ P ′ | N/2 < N′(v) < N, v 6∈ Q′
N,x}.

As a linear operator on L2, T ′
N,x ◦ (T ′

N,x)
∗ can be represented as

T ′
N,x ◦ (T ′

N,x)
∗ =

l∑

u=1

auT χ
ΓαuΓ
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for certain l ∈ N, au ∈ C, and αu ∈ Ξ depending on x. Further, suppose that there exist numbers

0 < κ≪ 1 and A1, A2 > 2 such that for each N ≫ 1 and each x ∈ Γχ\G one has

(7.2)

l∑

u=1

|au||M(x, αu, N
−A2)| ≪ N2−2κ,

l∑

u=1

|au||Γχ\ΓαuΓ| ≪ NA1 .

Then, if L2 = L2
χ(Γ\G), there exists a constant δ > 0 such that

‖φj0‖∞ ≪ λ
dim G−1

2m −δ
j0

,

while if L2 = L2
σ,χ(Γ\G), there exists a constant δ > 0, which does not depend on σ, such that

‖φj0‖∞ ≪
√
dσ max

u≤⌊ dimK
2 +1⌋

‖Duσ‖∞ λ
dim G/K−1

2m −δ
j0

.

Finally, if K = T is a torus and L2 = L2
χ(Γ\G), there exists a constant δ > 0 such that

‖φj0‖∞ ≪ λ
dim G/K−1

2m −δ
j0

.

Proof. Let us consider first the case L2 = L2
σ,χ(Γ\G). Set µ := m

√
λj0 and denote by λ′j,N the eigenvalue

of T ′
N,x for φj , so that

|T ′
N,xφj(x)|2 = λ′j,Nλ

′
j,Nφj(x)φj(x) = T ′

N,x ◦ (T ′
N,x)

∗φj(x)φj(x).

Taking Ñ = 0 in Proposition 3.3 we deduce that

l∑

u=1

au
∑

α∈Γχ\ΓαuΓ,

dist (xK,α·xK)dimG/K−1≥N−A2

χ(α)Ks̃µ◦Πσ (α · x, x) ≪ dσ max
u≤⌊ dim K

2 +1⌋
‖Duσ‖∞ µ

dim G/K−1
2 NA

up to terms of order O(NA µ−∞), where we set A := 1
2A2 + A1. With the same arguments than at

the end of Section 3 and in the proof of Proposition 4.1 one now deduces with µj := m
√
λj for any

x ∈ Γχ\G

(#Q′
N,x)

2|φj0(x)|2 = |T ′
N,xφj0 (x)|2 ≤

∑

µ≤µj≤µ+1,

φj∈L2
σ(Γχ\G)

|T ′
N,xφj(x)|2

≪
∑

j≥0,

φj∈L2
σ(Γχ\G)

̺(µ− µj)|T ′
N,xφj(x)|2 = KT ′

N,x◦(T ′
N,x)

∗◦s̃µ◦Πσ
(x, x)

≪ dσ max
u≤⌊ dim K

2 +1⌋
‖Duσ‖∞ µdimG/K−1N2−2κ + dσ max

u≤⌊ dim K
2 +1⌋

‖Duσ‖∞ µ
dim G/K−1

2 NA

= dσ max
u≤⌊ dimK

2 +1⌋
‖Duσ‖∞

(
µdimG/K−1N2−2κ + µ

dimG/K−1
2 NA

)

up to terms of order O(NA µ−∞). Hence, the assertion follows from (7.1) by taking N ∼ µB, B :=
dimG/K−1
2(A−2+2κ) . The case L2 = L2

χ(Γ\G) is seen in a similar way taking into account Proposition 3.1 and

the toric case in Proposition 3.3. �

Remark 7.2. The assumptions of the previous lemma are primarily motivated by the work of Marshall
[33] in the case that χ is trivial. One can easily verify that they are fulfilled in the setup of Section
5 when P ′ is the totality of primes and N′ is the inclusion mapping P ′ ⊂ N. Indeed, for each prime
p with (p, q) = 1, there exists an element βp in R(p2) such that T̃ χ

p2 := T χ
ΓβpΓ

= T χ
p2 − T χ

Γ(pI2)Γ
, see

[36, p. 217]. Now, let λ̃j(p
2) be the eigenvalue of T̃ χ

p2 belonging to the eigenfunction φj ∈ L2
σ,χ(Γ\G).
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For each φj in L2
σ,χ(Γ\G) and p as above, |λj(p)| ≤ p1/2/2 implies that |λ̃j(p2)| ≥ p/2 by |λ̃j(p2)| =

|λj(p)2 − (p+ 1)χ(p)|. Therefore, if we choose

T ′
p :=

{
1

λj0 (p)
T χ
p if |p−1/2λj0(p)| > 1/2,

1
λ̃j0 (p

2)
T̃ χ
p2 otherwise,

the mentioned assumptions must hold by Lemma 5.1. This choice is essentially the same as in the
work of Blomer-Maga [5, 6] on SL(n,Z) ⊂ PGL(n,R) in the case n = 2.

Remark 7.3. When using Lemma 7.1, we shall take for P ′ a subset of the totality of primes. Note
that it is unnecessary to suppose that φj is an eigenfunction of the operators Tp for all primes p to
prove the subconvex bound in Section 5, as we did already see in Section 6. In fact, one can make the
conditions on P ′ and H weaker. Namely, we can replace P ′ by a smaller subset satisfying (7.1) and
replace H by the submodule 〈T ′

v | v ∈ P ′〉. This means that our concept of a Hecke-Maass form is
much weaker than the usual one in Section 5. Such forms are not eigenfunctions of the center of the
universal enveloping algebra in general, and can be obtained in abundance by functorial lifts of Hecke
characters.

7.2. Equivariant subconvex bounds. In what follows, we shall derive equivariant subconvex bounds
on arithmetic quotients for a large class of semisimple algebraic groups, extending the work of Marshall
[33] to non-spherical situations. Thus, let G be a connected semisimple algebraic group over a number
field F . We write G(k) for the set of k-rational points in G for a field k ⊃ F and Fv for the completion
of F by a place v of F . Following [33], we assume that there exists a real place v0 of F such that

(WS) The group G(Fv0) is quasi-split, and not isogeneous to a product of odd special unitary groups.

We set H := ResF/QG, where ResF/Q means the restriction of scalars from F to Q. Then H is a
connected semisimple algebraic group over Q and G := H(R) a real semisimple Lie group with finite
center [38, Chapter 3]. Let K be a maximal compact subgroup in G, K0 an open compact subgroup of
H(Afin), and put Γ := H(Q)∩ (H(R)K0). In the following theorem, we will also impose the condition
H(A) = H(Q)(H(R)K0). This condition holds for any K0 if H has the strong approximation property
with respect to ∞, that is, if H is simply connected as an algebraic group, and does not have any
R-simple component H ′ such that H ′(R) is compact, compare [38, Theorem 7.12]. As the second main
result of this paper we obtain

Theorem 7.4. Suppose that H(A) = H(Q)(H(R)K0) and H(Q)\H(A) is compact, so that Γ\G is

compact as well. Further, assume that H satisfies the condition (WS). Now, let P0 be an elliptic left-

invariant differential operator on G of degreem which gives rise to a positive and symmetric operator on

Γ\G that commutes with the right regular K-representation and has strictly convex cospheres S∗
x(Γ\G).

Then, there exist a submodule H of Hχ=1
Ξ=H(Q) and a constant δ > 0 such that

(1) there is an orthonormal basis {φj}j∈N of L2(Γ\G) which consists of simultaneous eigenfunc-

tions for the unique self-adjoint extension P of P0 and all T ∈ H;

(2) for each φj ∈ L2
σ(Γ\G) with spectral eigenvalue λj one has

‖φj‖∞ ≪
√
dσ sup

u≤⌊ dim K
2 +1⌋

‖Duσ‖∞ λ
dim G/K−1

2m −δ
j .

If K = T is a torus, one has the stronger estimate

‖φj‖∞ ≪ λ
dim G/K−1

2m −δ
j .

Remark 7.5. The equivariant subconvex bound of the previous theorem can be rephrased using the
Cartan-Weyl classification of unitary irreducible representations of compact groups. In fact, assume
that K is a compact connected semisimple Lie group, k its Lie algebra, and T ⊂ K a maximal torus
with Lie algebra t. Denote by kC and tC the complexifications of k and t, respectively. Then tC
is a Cartan subalgebra of kC, and we write Σ(kC, tC) for the corresponding system of roots and Σ+
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for a set of positive roots. Now, as a consequence of the Cartan-Weyl classification of irreducible
finite-dimensional representations of reductive Lie algebras over C one has the identification

K̂ ≃ {Λ ∈ t∗C : Λ is dominant integral and T -integral} ,
compare [51], and we write Λσ ∈ t∗C for the highest weight corresponding to σ ∈ K̂ under this isomor-

phism. Weyl’s dimension formula then implies that dσ = O
(
|Λσ||Σ

+|), while from Weyl’s character
formula one infers that if Du is a differential operator on K of order u,

(7.3) ‖Duσ‖∞ = O
(
|Λσ|u+|Σ+|), |Λσ| → ∞,

compare [39, Eq. (3.5)]. Consequently, the bound in Theorem 7.4 can be rewritten as

‖φj‖∞ ≪
√
|Λσ|2|Σ+|+⌊ dim K

2 +1⌋λ
dim G/K−1

2m −δ
j .

Proof of Theorem 7.4. By translating the results in [33, Section 3] to our non-adelic setting, one verifies
that the assumptions of Lemma 7.1 are fulfilled under the hypothesis of the theorem. Note that it is
unnecessary to relate the subgroup K to the specific maximal connected compact subgroup considered
in [33], because the assumptions in question are concerned only with the structure of the Hecke algebra
and the lattice point counting function M(x, α, δ).

Let us explain this in a more detailed way. Since H(A) = H(Q)(H(R)K0) one has

H(Q)\H(A)/K0
∼= Γ\G.

Now, any function ϕ in L2
σ(Γ\G) can be identified with a function ϕA in L2

σ(H(Q)\H(A)/K0) by
setting

(7.4) ϕA(γgk) := ϕ(g), γ ∈ H(Q), g ∈ G, k ∈ K0.

For each double coset K0αK0 with α ∈ H(Afin), a linear operator TK0αK0 on L2
σ(H(Q)\H(A)/K0)

can then be defined by setting

(TK0αK0φA)(x) :=
∑

h∈K0αK0/K0

φA(xh), φA ∈ L2(H(Q)\H(A)/K0).

Moreover, there exist finitely many elements β1, . . . , βm in H(Q) such that

(7.5) H(Q) ∩ (H(R)K0α
−1K0) =

m⊔

i=1

ΓβiΓ,

the intersection being non-empty due to the assumption H(A) = H(Q)(H(R)K0).
15 This implies that

for all ϕ ∈ L2
σ(Γ\G)

(7.6) TK0αK0ϕA =

m∑

i=1

TΓβiΓϕ.

Hence, any adelic Hecke operator TK0αK0 can be regarded as a sum of non-adelic Hecke operators via
the identification ϕ ≡ ϕA.

In order to apply Lemma 7.1 in the present context, we choose χ = 1 and Ξ = H(Q). Let P ′ be
the set denoted by P in [33, Section 2.5], that is, an infinite subset of the totality of finite places of
F . A map N′ : P ′ → N is defined by the order of the residue field of Fv. Then, G(Fv) is split for each
v ∈ P ′ and (7.1) holds by the prime ideal theorem and the Chebotarev density theorem. Now, put

(7.7) H := 〈TK0αK0 | α ∈ G(Fv), v ∈ P ′〉.
Note that G(Fv) ⊂ H(Qp) if v|p, and by [36, Proof of Theorem 2.8.2 (2)] we have (TK0αK0)

∗ =
TK0α−1K0

∈ H. Since P0 commutes with all Hecke operators and each automorphic representation
of H(A) factors as a tensor product of irreducible unitary representations of G(Fv) for all places v
[17], there exists an orthonormal basis {φj}j≥0 of L2(Γ\G) consisting of simultaneous eigenfunctions

15Without this assumption, the intersection in (7.5) might be empty, and the following arguments make no sense.
Along the same lines, recall that Hecke operators on SO(3) are only defined in the case p ≡ 1 mod 4.
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for P and all T ∈ H. Now, let φj0 ∈ L2
σ(Γ\G) be fixed. Applying the results in [33] to the function

ψ := φj0,A, that is also denoted by ψ there, one can verify the assumptions of Lemma 7.1 for φj0 .
Indeed, by [33, Propositions 6.1], for each place v ∈ P ′ there exists a Hecke operator Tv ∈ H such that
Tvψ = ψ holds and Tv is a linear combination of operators TK0αK0 with α ∈ G(Fv). In view of (7.6)
we can identify Tv with a non-adelic Hecke operator T ′

v on L2
σ(Γ\G) such that

T ′
vφj0 = Tvφj0,A = φj0,A = φj0 .

Similarly, set TN,x :=
∑

v∈Q′
N,x

Tv, and denote the corresponding non-adelic Hecke operators by T ′
N,x,

where Q′
N,x is chosen as the set denoted by QN in [33, Section 3.4]. By the convolution on H(Afin),

there exist n ∈ N, bk ∈ C, and ωk ∈ H(Afin) such that

TN,x ◦ (TN,x)∗ =
n∑

k=1

bkTK0ωkK0 .

The corresponding l ∈ N, au ∈ C, and αu ∈ C(Γ) in the decomposition of T ′
N,x ◦ (T ′

N,x)
∗ in Lemma

7.1 are then obtained from this equality via the identification (7.6). Finally, the upper bounds (7.2)
in Lemma 7.1 can be verified using (7.5), (7.6) and the arguments in [33, Section 3], completing the
proof of the theorem. �

Example 7.6 (Equivariant subconvex bounds for SL(n,R)). Choose a central division algebra D
of index n over Q such that D⊗R ∼=M(n,R). It is well known that the equivalence classes of central
division algebras over Q are parameterized by the Brauer group Br(Q), which can be realized as the
set {

(a, x) | a ∈ {0, 1/2}, x = (xp) ∈
⊕

p

Q/Z, a+
∑

p

xp = 0 mod Z
}
,

where p runs over all primes, via the Brauer-Hasse-Noether theorem, compare [38, Theorem 1.12].
If we choose a prime p1 and a parameter (0, x) in Br(Q) such that xp1 = a/n and a is prime to n,
then there is a central division algebra D corresponding to (0, x) and satisfying D ⊗ R ∼=M(n,R). A
semisimple algebraic groupH overQ is then defined byH := SL(1, D). Clearly,G := H(R) ∼= SL(n,R),
K := SO(n), and Γ := H(Q)∩ (H(R)K0) is cocompact for any open compact subgroup K0 of G(Afin),
while H satisfies the condition (WS) and is simply connected. Then, the assumptions of Theorem
7.4 hold, and for any Hecke–Maass form φj in L2

σ(Γ\G) with eigenvalue λj one obtains the subconvex
bound

‖φj‖∞ ≪
√
dσ sup

u≤⌊n2−n+4
4 ⌋

‖Duσ‖∞ λ
n2+n−4

4m −δ
j

for some δ > 0.

Example 7.7 (Equivariant subconvex bounds for SL(n,C)). Let D denote a central division
algebra over a number field F . Then H := ResF/QSL(1, D) is a simply connected semisimple algebraic
group over Q. The Brauer-Hasse-Noether theorem ensures that there exist various division algebras D
such that H satisfies the assumptions of Theorem 7.4. For example, by choosing suitable parameters
in the Brauer group, one gets a central division algebra D of index n over an imaginary quadratic
extension F of Q such that H(R) is isomorphic to SL(n,C). Since SL(n,C) satisfies the condition
(WS), Theorem 7.4 yields subconvex bounds for Γ\SL(n,C), where Γ is defined by an open compact
subgroup K0 in H(Afin).

Example 7.8 (Equivariant subconvex bounds for SU(n, n,R)). There exists a central division
algebra D over an imaginary quadratic extension F of Q with a F/Q-involution such that H :=
SU(1, D) satisfies G := H(R) ∼= SU(n, n,R), see [44, Theorem 8.1]. Since H obviously satisfies the
assumptions of Theorem 7.4, one obtains equivariant subconvex bounds for Γ\G in this case.



SUBCONVEX BOUNDS FOR HECKE–MAASS FORMS ON COMPACT ARITHMETIC QUOTIENTS 31

7.3. Non-equivariant subconvex bounds. We shall now prove non-equivariant subconvex bounds
on arithmetic quotients of semisimple algebraic groups without the condition (WS). Let H be a con-
nected semisimple algebraic group over Q and choose any open compact subgroup K0 of H(Afin). We
then have the following

Theorem 7.9. Put G := H(R) and Γ := H(Q) ∩ (H(R)K0). Assume that H(A) = H(Q)(H(R)K0)
and that Γ\G is compact. Let P0 be an elliptic left-invariant differential operator on G of degree m
that gives rise to a positive and symmetric operator on Γ\G with strictly convex cospheres S∗

x(Γ\G).
Then, there exist a submodule H of Hχ=1

Ξ=H(Q) and a constant δ > 0 such that there is an orthonormal

basis {φj}j∈N of L2(Γ\G) consisting of simultaneous eigenfunctions for P and all T ∈ H, so that for

each φj with spectral eigenvalue λj one has

‖φj‖∞ ≪ λ
dim G−1

2m −δ
j .

Proof. To prove this theorem, we need an explicit distance on G. We may assume that H is a closed
subgroup of SL(m) over Q for some sufficiently large m ∈ N, so that G = H(R) becomes a closed

subgroup of SL(m,R) with respect to the topology induced from the Euclidean topology on Rm
2

,
compare [38, Chapter 3]. Note that H(R) might consist of finitely many connected components with
respect to the usual topology, even if H is connected in the sense of Zariski [38, Corollary 1]. One then
defines on M(m,R) the Euclidean distance

dist1(x, y) := ‖x− y‖, ‖x‖ := Tr(txx), x, y ∈M(m,R),

obtaining a distance on G by the inclusions G ⊂ SL(m,R) ⊂ M(m,R). In fact, the distance dist is
locally equivalent to the distance dist1. Indeed, dist1 is equivalent to dist in a small neighborhood U
of the identity. Furthermore, for fixed g ∈ G one computes

dist1(gx, gy) ≤ ‖g‖ dist1(x, y), dist1(gx, gy) ≥ ‖g−1‖−1 dist1(x, y),

so that dist1(x, y) is equivalent to the distance (x, y) 7→ dist1(gx, gy) on G. The assertion now follows
by covering G by translates of U .

The first assertion follows from the corresponding argument in Theorem 7.4. It remains to show
that the assumptions in Lemma 7.1 are satisfied for the module H given in (7.7), for which we shall
follow the considerations in [33]. Let us choose the same norm ‖ ‖∗ as in [33, Section 2.2] on the
group of cocharacters of a maxial torus over Q, and regard ‖ ‖∗ as a norm on the cocharacters of each
Qp-torus by conjugation. Let P ′ be the set denoted by P in [33, Section 2.5] for F = Q and G = H .
Then P ′ is an infinite set of prime numbers, (7.1) holds, and for each prime p ∈ P ′ the group H(Qp) is

split. Furthermore, a Hecke operator τ(p, µ) is defined by the product of p−‖µ‖∗

with the characteristic
function of H(Zp)µ(p)H(Zp), where µ is a cocharacter on a suitable maximal split torus T p in H(Qp).
In addition, several conditions are imposed on H , P ′, and T p, and we refer the reader to [33, Section
2] for details. By [33, Proposition 6.1], there exists for each p ∈ P ′ a Hecke operator Tp such that

Tpφj,A = φj,A, Tp =
∑

‖µ‖∗≤R
a(p, µ) τ(p, µ), TpT ∗

p =
∑

‖µ‖∗≤R
b(p, µ) τ(p, µ),

a(p, µ) ≪ 1, a(p, 0) = 0, b(p, µ) ≪ 1

for some constant R ∈ N. Now, choose a compact subset Ω of G such that G = ΓΩ, let x be an
element in Ω, and set TN,x :=

∑
p∈P′, p≤N Tp.16 In order to verify the necessary conditions in Lemma

7.1 we proceed as in the proof of Theorem 7.4, and let T ′
p and T ′

N,x be non-adelic Hecke operators

corresponding to Tp and TN,x, respectively. For γ ∈ H(Q) ⊂ SL(m,Q), let ‖γ‖f denote the least

common multiple of denominators of components of γ. By [33, Corollary 3.6], one has ‖γ‖f ≪ NA′
2

for some A′
2 > 0 if γ ∈ H(Q) ∩ supp (TN,x(TN,x)∗), where supp (TN,x(TN,x)∗) means the support of

TN,x(TN,x)∗ in H(Afin), and the second bound in (7.2) follows. Furthermore, for the distance dist 1, one
can show that for some A2 > A′

2 the inequality dist1(γx, x) < c1N
−A2 does not hold for any non-trivial

16Note that TN,x does actually not depend on x, but we preferred to keep the notation of Lemma 7.1.
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element γ ∈ H(Q)∩supp(TN,x(TN,x)∗), where we choose c1 > 0 such that c1dist (y1, y2) < dist1(y1, y2)
for all y1, y2 ∈ Γ\G. Indeed, if γ ∈ H(Q) ∩ supp(TN,x(TN,x)∗) is such that dist(γx, x) < N−A2 , one
necessarily must have γ = 1 together with Tp(x−1γx) = Tp(1) = 0. It follows that

l∑

u=1

|au||M(x, αu, N
−A2)| ≤

∑

p≤N

∑

‖µ‖∗≤R
|b(p, µ)| τ(p, µ)(1) ≪ N

since

TN,x(TN,x)∗ =
∑

p≤N

∑

‖µ‖∗≤R
b(p, µ) τ(p, µ) +

∑

p6=q≤N

∑

‖µ‖∗,‖ν‖∗≤R
a(p, µ) a(q, ν) τ(p, µ) τ(q,−ν),

yielding the first bound in (7.2). Thus, the proof is completed. �

Example 7.10 (Non-equivariant subconvex bounds for division algebras). Let D be a central
division algebra over a number field F and H := ResF/QSL(1, D). If H has no R-simple components
H ′ for which H ′(R) is compact, then Theorem 7.9 yields a subconvex bound for Γ\G with G and Γ
as in the previous theorem. If in particular G = SL(n,R), there exists a constant δ > 0 such that one
has the subconvex bound

‖φj‖∞ ≪ λ
n2−2
2m −δ
j

for any Hecke–Maass form φj in L2(Γ\G) with eigenvalue λj . It is also possible to consider H :=
ResF/QSU(1, D), where D is a central division algebra over a quadratic extension E of F equiped with
a E/F -involution. Under the assumption that G := H(R) has no R-simple components H ′ for which
H ′(R) is compact, Theorem 7.9 then implies subconvex bounds for Γ\G. Regarding the existence of
division algebras with E/F -involutions satisfying our assumptions we refer the reader to [44, Theorem
8.1].

7.4. Automorphic forms and representation theoretic interpretation of the results. To
close, let us indicate how our results fit into the general theory of automorphic forms [9]. With G, K,
and Γ as above let us recall the following

Definition 7.11. A smooth function f : G→ C satisfying

(A1) f(γg) = f(g) for all g ∈ G and γ ∈ Γ,
(A2) f is K-finite on the right,

(A3) f is Z-finite, where Z denotes the center of the universal envelopping algebra U(gC) of the

complexification of the Lie algebra g of G,

is called an automorphic form on G for Γ.

This definition implies that with respect to the decomposition (2.3) each automorphic form f is

contained already in finitely many constituents, so that f ∈⊕l
k=1m(πk,Γ)·πk for suitable πk, compare

[28, Corollaries 8.14 and 10.37]. Hence, p(C) := ∏l
k=1(C − µk), where µk is the Casimir eigenvalue of

πk, represents a polynomial that annihilates f . On the other hand, (A2) implies that f is a finite sum
of functions fσ belonging to a specific K-type σ, and by (2.2) one deduces

p(C)fσ =
l∏

k=1

(2dR(ΩK)−∆− µk)fσ =
l∏

k=1

(2µσ −∆− µk)fσ =: q(∆)fσ

where µσ denotes the eigenvalue of dR(ΩK) on σ, and q is a polynomial. Thus, f is essentially given
by a sum of Hecke–Maass forms in the sense of this paper, because q(∆) is an elliptic differential
operator and any subspace defined by a K-type and a Casimir eigenvalue is finite dimensional by
Harish-Chandra’s theorem [9, Theorem 1.7]. Consequently, Theorems 7.4 and 7.9 can be rephrased as
follows.

Theorem 7.12. Let H be a connected semisimple algebraic group over Q and K0 an open com-

pact subgroup of H(Afin). Set G := H(R) and Γ := H(Q) ∩ (H(R)K0), and suppose that H(A) =
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H(Q)(H(R)K0) and H(Q)\H(A) is compact. Then, there exist a submodule H of Hχ=1
Ξ=H(Q) and a

constant δ > 0, which are independent of σ ∈ K̂, such that

(1) there exists an orthonormal basis {φj}j∈N of L2
σ(Γ\G) which consists of simultaneous eigen-

functions for the Casimir operator C and all Hecke operators T ∈ H;

(2) for each φj with Casimir eigenvalue µj one has

‖φj‖∞ ≪
√
dσ sup

u≤⌊ dim K
2 +1⌋

‖Duσ‖∞ (−µj + 2µσ)
dim G/K−1

4 −δ,

provided that H = ResF/QG and (WS) is fulfilled, while in general

‖φj‖∞ ≪ (−µj + 2µσ)
dimG−1

4 −δ

µσ being the eigenvalue of dR(ΩK) on σ. If K = T is a torus,

‖φj‖∞ ≪ (−µj + 2µσ)
dimG/K−1

4 −δ.

�
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