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ADDENDUM TO ?THE EQUIVARIANT SPECTRAL FUNCTION OF AN
INVARIANT ELLIPTIC OPERATOR”

PABLO RAMACHER

ABSTRACT. Let M be a compact boundaryless Riemannian manifold, carrying an effective and iso-
metric action of a torus T, and Py an invariant elliptic classical pseudodifferential operator on M.
In this note, we strengthen the asymptotics for the equivariant (or reduced) spectral function of
Py derived in [5], which are already sharp in the eigenvalue aspect, to become almost sharp in the
isotypic aspect. In particular, this leads to hybrid equivariant LP-bounds for eigenfunctions that are
almost sharp in the eigenvalue and isotypic aspect.
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1. INTRODUCTION

Let M be a closed n-dimensional Riemannian manifold with an effective and isometric action of a
compact Lie group G. In this paper, we strenghten the asymptotics derived in [5] for the equivariant
(or reduced) spectral function of an invariant elliptic operator on M, which are already sharp in the
eigenvalue aspect, to become also almost sharp in the isotypic aspect in case that G = T is a torus,
that is, a compact connected Abelian Lie group. In particular, if T acts on M with orbits of the same
dimension, we obtain hybrid equivariant LP-bounds for eigenfunctions that are almost sharp up to a
logarithmic factor.

To explain our results, consider an elliptic classical pseudodifferential operator

Py: C®(M) — L*(M)

of degree m on M acting on the Hilbert space of square integrable functions on M with the space
of smooth functions on M as domain. We assume that Py is positive and symmetric, so that it has
a unique self-adjoint extension P, which has discrete spectrum. Let {E)} be a spectral resolution
of P, and denote by e(x,y,A) the spectral function of P which is given by the Schwartz kernel of
E)\. Further, assume that M carries an effective and isometric action of a compact Lie group G with
Lie algebra g and orbits of dimension less or equal n — 1. Suppose that P commutes with the left-
regular representation (7, L2(M)) of G so that each eigenspace of P becomes a unitary G-module. If
G denotes the set of equivalence classes of irreducible unitary representations of G, the Peter-Weyl
1
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theorem asserts that

(1.1) L2(M) = P L2(Mm)

'VECAT‘

a Hilbert sum decomposition, where L?Y(M ) := II,L?(M) denotes the y-isotypic component, and II,
the corresponding projection. Let e, (z,y, A) be the spectral function of the operator P, := I, 0 Poll,,
which is also called the reduced spectral function of P. Further, let J : T*M — g* denote the momentum
map of the Hamiltonian G-action on T* M, induced by the action of G on M, and write Q := J~({0}).
In [5 Theorem 4.3], the equivariant local Wey law

e (2,2, ) — | B dy[myc, 1] / d¢ <o )\n ol A,
@2m) = Ji@e)en, pag<1y VOl Owe)

was shown as A — 400, where , := dim O, is the dimension of the G-orbit through x, d, denotes
the dimension of an irreducible G-representation ., belonging to v and [7,¢, : 1] the multiplicity of
the trivial representation in the restriction of 7, to the isotropy group G of x, while C,, > 0 is a
constant satisfying

(1.2) Copy=0:(dy  sup [|DYy]| ),
I<][Ka/2+3]

and D! are differential operators on G of order . Both the leading term and the constant C,, , in general
depend in a highly non-uniform way on x € M, exhibiting a caustic behaviour in the neighborhood of
singular orbits. A precise description of this caustic behaviour was achieved in [5] by relying on the
results [4] on singular equivariant asymptotics obtained via resolution of singularities. More precisely,
consider the stratification M = M(H;)U...UM(H) of M into orbit types, arranged in such a way
that (H;) < (H;) implies ¢ > j, and let A be the maximal length that a maximal totally ordered subset
of isotropy types can have. Write Mpuin := M(HL), Mexcept, and Mging for the union of all orbits of
principal, exceptional, and singular type, respectively, so that

M = Mprin U Mexcept U Msing7

and denote by x := dim G/H, the dimension of an orbit of principal type. Then, by [5 Theorem 7.7]
one has for x € Mpin U Mexceps and A — +oo the singular equivariant local Weyl law

n—r A—1

o dyAT dim G—dim H; —r 0,0
67(11 L )\ 271' n—k Z Z H |T”| . e KE'LI)'LN (‘T’W)
N=1 i1 <---<in l=1

~ kel N— . o o
SOV)\T § : § H|Til|dlmG dim H;, —k 17

N=1 i1 <--<iy =1

where the multiple sums run over all possible maximal totally ordered subsets {(H;,),. .., (H;y)} of
singular isotropy types, the coefficients E?f..iw are explicitly given and bounded functions in z, and

7;; = Ti;(x) € (—1,1) are desingularization parameters that arise in the resolution process satisfying
|75, | ~ dist (x, M (Hj;,)), while Cy > 0 is a constant independent of 2 and A that fulfills

(1.3) C,=0(d, sup Dly .
Y ( 7l§LI€/2+3J || ||oo)

As a major consequence, the above expansions lead to equivariant bounds for eigenfunctions. In the
non-singular case, that is, when only principal and exceptional orbits are present, and consequently
all G-orbits have the same dimension «, the hybrid L%-estimates

Sn— K(Q) _
Cy AT lullge Ml < g < oo,
(1.4) =S
e e 2(n—k+1)
Cyx ol 2<q< =5

n—k—1 7
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were shown in [5, Theorem 5.4] for any eigenfunction u € L2(M) of P with eigenvalue X, where
% + % =1, 6,(p) :=max(n|l/2 —1/p| — 1/2,0), and C, > 0 is a constant independent of X satisfying
the estimate

(15) @<<Wv sup [ D1,

I<|r/2+41]

provided that the co-spheres S} M are strictly convex. Note that for the proof of LP-bounds it is neces-
sary to describe the caustic behaviour of the relevant spectral kernels as ;4 — 400 in a neighborhood of
the diagonal, which makes things considerably more envolved. In case that singular orbits are present,
one has the pointwise bound

C/\%, HARS Msing7
(1.6) > le@)P <

NjE A+, év A
ey €L2 (M)

A-1 N
X X |l w e M Mg,
N=1 i1 <-<iy I=1
for a constant C' > 0 independent of v, where {e;}, is an orthonormal basis of L2(M) compatible
with the decomposition ([LI)), showing that eigenfunctions tend to concentrate along lower dimensional
orbits.

The aim of this note is to sharpen the above results in the isotypic aspect in case that G =T is a
torus, and show that instead of the bounds ([2)) and (L3]) one has the better estimates

Co = Ou(sup|[Dy], ), Cy=0(sup|DM]. ). vewn
<1 <1

where W, denotes the set of representations

Wy = T Y
= < .
A {76 = log)\}

Here 7' C stands for the subset of representations occuring in the Peter-Weyl decomposition (LTI),
and we denoted the differential of a character v € f, which corresponds to an integral linear form
v : t = iR, by the same letter. Similarly, it will be shown that the constant C, in (L5 actually
satisfies the bound
C, <1, v € Wh.

By the equivariant Weyl law [4] and Gauss’ law, |y| can grow at most of rate A'/™. Thus, the bounds
() hold for almost any eigenfunction u € L?(M) with C,, independent of +, which is consistent with
recent results of Tacy [7]. As will be discussed, the improved bounds are almost sharp in this sense,
being already attained for SO(2)-actions on the 2-sphere and the 2-torus. For their proof, a careful
examination of the remainder in the stationary phase expansion of the relevant spectral kernels is
necessary. These bounds are crucial for deriving hybrid subconvex bounds for Hecke-Maass forms on
compact arithimetic quotients of semisimple Lie groups in the eigenvalue and isotypic aspect [6].

Through the whole document, the notation O(u*),k € R U {400}, will mean an upper bound of
the form Cp* with a constant C' > 0 that is uniform in all relevant variables, while Ox (*) will denote
an upper bound of the form Cy p* with a constant Cyx > 0 that depends on the indicated variable X.
In the same way, we shall write a <y b for two real numbers a and b, if there exists a constant Cx > 0
depending only on X such that |a| < Cyb, and similarly a < b, if the bound is uniform in all relevant
variables. Finally, N will denote the set of natural numbers 0,1,2,3,....

2. THE REDUCED SPECTRAL FUNCTION OF AN INVARIANT ELLIPTIC OPERATOR

Let M be a closed connected Riemannian manifold of dimension n with Riemannian volume density
dM, and P, an elliptic classical pseudodifferential operator on M of degree m which is positive and
symmetric. The principal symbol p(z, ) of Py constitutes a strictly positive function on T*M \ {0},
where T* M denotes the cotangent bundle of M. The operator Py has a unique self-adjoint extension
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P, its domain being the m-th Sobolev space H™(M). It is well known that there exists an orthonormal
basis {e;}, of L2(M) consisting of eigenfunctions of P with eigenvalues {)\; } ;0 repeated according

to their multiplicity, and that Q := %/P constitutes a classical pseudodifferential operator of order 1
with principal symbol g(z,€) := /p(z,€) and domain H!(M). Again, Q has discrete spectrum, and
its eigenvalues are given by p; := W The spectral function e(z,y,\) of P can then be described
by studying the spectral function of @, which in terms of the basis {e;} is given by

e(x,y,u) = Z ej(x)ma pER,

i <p

and belongs to C*°(M x M) as a function of z and y. Let x, be the spectral projection onto the
sum of eigenspaces of @ with eigenvalues in the interval (u, 1 + 1], and denote its Schwartz kernel by
Xu(z,y) :=e(z,y,u+ 1) — e(z,y, ). To obtain an asymptotic description of the spectral function of
Q let o € S(R,R) be such that ¢(0) = 1 and supp ¢ € (—§/2,6/2) for a given § > 0, and define the
approximate spectral projection operator

o0

(2.1) Xut =Y olp—p)Eu,  uel?(M),

Jj=0

where E; denotes the orthogonal projection onto the subspace spanned by e;. Clearly, Kx, (z,y) :=
> i ol — pjlej(x)ej(y) € C¥(M x M) constitutes the kernel of X,,. As Hormander [2] showed, X,
can be approximated by Fourier integral operators yielding an asymptotic formula for the kernels of
X and X, and finally for the spectral function of @) and P.

Now, assume that M carries an effective and isometric action of a compact Lie group G. Let P
commute with the left-regular representation (7, L?(M)) of G. Consider the Peter-Weyl decomposition
of L2(M), and let IL, be the projection onto the isotypic component belonging to v € G, which is
given by the Bochner integral

I, = dw/v(g)ﬂ(g) da(g),
G

where d, is the dimension of an unitary irreducible representation of class v, and dg(g) = dg Haar
measure on G, which we assume to be normalized such that vol G = 1. If G is finite, dg is simply the
counting measure. In addition, let us suppose that the orthonormal basis {e; }j>0 is compatible with
the Peter-Weyl decomposition in the sense that each vector e; is contained in some isotypic component
L%(M) In order to describe the spectral function of the operator Q- :=Il,0Qoll, = Qoll, =1I,0Q
given by

(2.2) ey (2,9, 1) = Yo e@)ey),

15 <, e; €L2 (M)

we consider the composition x,, o I, with kernel K om (2,y) = e (z,y, A + 1) — e, (z,y, A), together
with the corresponding equivariant approximate spectral projection

(2.3) (Xp o Iy Ju = Z o(p — py) Eju.
320, e;€L2 (M)

Its kernel can be written as

Kgom,(@,y) = Y olp— py)ej(@)e;(y) € C(M x M).
§>0,e;€L2 (M)

By using Fourier integral operator methods, it was shown in [5] that the kernel of X, o IL, can be
expressed as follows. Let {(x,,Y,)},c . k. 1 Y, = Y, C R", be an atlas for M, {f,} a corresponding
partition of unity, and { fL} a set of test functions with compact support in Y, satisfying f, = 1 on
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supp f,. Consider further a test function 0 < a € C°(1/2,3/2) such that & =1 in a neighborhood of
1, and set

IN(u, R, s, z,y) : //ERS et P (9) j(s)y(g) f.(x)

(2.4)
ca, (s, k(@) pw) fi(g - y)e(q(m,w) . (g, y) ST (w) dg,
where @, , ,(w,g) := (k. (z) — K,(g-y),w), a, € S’ghg is a suitable classical polyhomogeneous symbol
satisfying a,(0,2,n) =1, J,(g,y) a Jacobian, and
(2.5) S5 = {w € R™ | (s, k. (2),w) = R}

is a smooth compact hypersurface given in terms of a smooth function ¢, which is homogeneous in
n of degree 1 and satisfies (,(0,%,n) = q(r;(Z),n). Then, by [5, Corollary 2.2] one has for u > 1,
x,y € M, and each N € N the asymptotic expansion

N—

78 e 1 .

(26) K)’ZMOHW (Iay) :(271') ’Y [Z 12%35[?’ /LaRvsv'rvy)KR,s):(l,O)/L J +R7(M,$,y)
7=0

up to terms of order O(|u|~> ||v[|,,) which are uniform in z,y, where Déjs are known differential
operators of order 2j in R, s, and

IR) () <Cu™™ >~ sup|dp, (1. R.s,2.)]
18|<2N4+3 °

for some constant C' > 0. On the other hand, Ky, o, (7,y) is rapidly decaying as yu — —oc and
uniformly bounded in z,y by ||y,
3. EQUIVARIANT ASYMPTOTICS OF OSCILLATORY INTEGRALS

Let the notation be as in the previous section. As we have seen there, the question of describing
the spectral function in the equivariant setting reduces to the study of oscillatory integrals of the form

(3.1) 7, () ::/ /ER ctPen Dy (g)a(z,y,w, g) dEF* (W) dg,  p— +oo,

with ©2¢ as in (Z.F) and phase function

Oy y(w,9) = (k(x) = k(g - y),w),

where we have skipped the index ¢ for simplicity of notation, and a € CZ° is an amplitude that might
depend on p and other parameters such that (z,y,w, g) € supp a implies z,g-y € Y. In what follows,
we shall write YG :={g € G| g-y € Y}, as well as

(3.2) L) = 1,0, =0,
Let us assume in the following that G is a continuous group, and write x(z) = (Z1,...,Z,) so that the
canonical local trivialization of T*Y reads
Y xR 3 (x,n) = Y mk(diy). € T}Y.
k=1

With respect to this trivialization, we shall identify Ef,’s with a subset in 7Y for eventually different
x and 2, if convenient. Let € := J~1({0}) be the zero level set of the momentum map J: T*M — g*
of the underlying Hamiltonian G-action on T*M. Let O, := G - x denote the G-orbit and G,

{g € G| g-x =x} the stabilizer or isotropy group of a point z € M. Throughout the paper, it is
assumed that

dimO, <n-1 for all z € M.



6 PABLO RAMACHER

Let further N,O, be the normal space to the orbit O, at a point y € O, which can be identified with
Ann(T,0,) via the underlying Riemannian metric. For z € Y and O, NY # 0 let

Crit @, i= {(w,9) € 2P X VG | d(®@a,y)g) = 0}

be the critical set of ®, ,. With Mprin, Mexcept, and Mgiye denoting the principal, exceptional, and
singular stratum, respectively, it was shown in [5, Lemma 3.1] that

o if y € O,, the set Crit @, , is clean and given by the smooth submanifold
T ={w.9) | (g-yw)eQa=g-y} =VsxGg

of codimension 2 dim O,,, with V; = S8 NN, O, and Gy ={g € G |r =g y} C YG.
o if yd& Oy,

Crit @,y = {(w.9) | (9 y,) € 2, r(x) — (g - y) € NuF };

furthermore, assume that G acts on M with orbits of the same dimension «, that is, M =
Mprin U Mexcept, and that the co-spheres S;M are strictly convex. Then, either Crit ®, , is
empty, or, choosing Y sufficiently small, Crit ®, , is clean and of codimension n — 1 + &, its
finitely many connected components being of the form
j = Vj X Gj
with V7 = {wzs} and Gy = g7 - Gy C YG for some wy € X2 and g7 € G.
From this an asymptotic expansion for the integrals 17, (1) was deduced in [5, Theorem 3.3], yielding
a corresponding asymptotic formula for K5 o (z,y). In this paper, we improve the estimate for the
remainder in the isotypic aspect in case that G = T is a torus, which we assume from now on.

For this, recall that the exponential function exp is a covering homomorphism of t onto 7', and its
kernel L a lattice in t. Let 7' denote the set of characters of T, that is, of all continuous homomorphisms
of T into the circle, which we identify with the unitary dual of T. The differential of a character
~:T — S', denoted by the same letter, is a linear form v : t = R which is integral in the sense that
(L) C 2wi Z. On the other hand, if -y is an integral linear form, one defines

£ = ev(X) t=expX €T,

setting up an identification of T with the integral linear forms on t via v(¢t) = t7. Further, all irreducible
representations of 7' are 1-dimensional. We now make the following

Definition 3.1. Denote by T' C T the subset of representations occuring in the decomposition (L))
of L2(M), and let {V,} be a family of finite subsets V,, C T" such that

0]
a <C
ev, =< log p

HE(0,00)

for a constant C > 0 independent of p.

Our main result is the following improvement of the remainder and coefficient estimates in [3]
Theorem 3.3].

Theorem 3.2. Assume that T is a torus acting on M with orbits of dimension less or equal n — 1,
and let V,, be as in the previous definition.
(a) Lety e O,. Then, for every v € T and N = 0,1,2,... one has the asymptotic formula
N-1
I, () = @/ ™% | > Op(m,y)p™ + Rg(m,y,p) |, p— +oo,
k=0

where the coefficients and the remainder depend smoothly on R and s. The coefficients satisfy
the bounds

o0

|Qk(x,y)| < C e, ,vol(supp a(z,y,-,-) NCsy) sup (D2 Divya)(z,y, )|
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while the remainder satisfies
Ry @y, 1) < Cx g, vol(supp a(z,y,-,))

csup ||(DLDia)(z,y, )|, sup | Dyl e, v €V
1<2N+dim O, +1 I<N
The bounds are uniform in R,s for suitable constants Cy e, , > 0 and 61\7 ®,, > 0, where D!,

and D! denote differential operators of order | on X2 and T, respectively. As functions in
x and y, Qr(r,y) and Rg(x,y,pn) are smooth on Y N Myyin, and the constants Cy o, , and

ON,%AJ are uniformly bounded in x and y if M = Mprin U Mexcept-
(b) Let y & Op. Assume that M = Mpyin U Mexceps and that the co-spheres SiM are strictly
convex. Then, for sufficiently small Y and every N = 0,1,2,... one has the asymptotic

formula
e oy N-1
D= Y @r/w e T [ Y Qu k() + Ry @y, )
Jemo(Crit D5 4) k=0

as p — +oo, where k := dim M/T and O<I>;Zy stands for the constant values of ®, , on the
connected components J of its critical set. The coefficients Q7 k(x,y) and the remainder term
RJJ\*[(,T, y, p) depend smoothly on R, s, and x,y € Y N Mpyin. Furthermore, they satisfy bounds

analogous to the ones in (a), where now derivatives in t up to order 2k and 2N can occur, and
the constants C,e, , and Cy 4 , are no longer uniformly bounded, but satisfy

Cra, , < dist(y, 0,)~(n717m)/2=k éﬁ,%,y < dist (y,Ox)*("*lf’“)/Q*N.

Proof. The asymptotic expansion for the integral I7 , (1), the smoothness of the coefficients Qy(,y),
Q7 k(z,y), and the remainder terms in the parameters R, s, and =,y € Y N Mpyin, as well as cor-
responding bounds for the coefficients and the remainder term were shown in [5, Theorem 3.3]. To
improve on the remainder estimate concerning its dependence on 7 as y — 400, we rewrite 17 () up
to a volume factor as

~

Dy = [ [ emtmees D O,y w, X)asi @) ax, T,
tJ x50

where we can assume that a is compactly supported with respect to X € t in a small open connected
subset ¥t C t by choosing Y small. If we were to apply the stationary and non-stationary phase
principles to I (u) with @, , as phase function, which was the way we followed in [5], this would
involve derivatives of the amplitude 7a and generate non-optimal powers in 7 in the remainder estimate.
Instead, note that the character v(¢) = e"X) e S constitutes itself a phase, which can oscillate rather
quickly as « increases. To deal with these oscillations, we shall absorb them into the phase function,
and define for arbitrary £ € t*

S (w, X) =Dy y(w, e ™) —¢(X), t=expXeT.

The idea is then to apply the stationary and non-stationary phase principles to the integrals Igﬁy(u)
with phase function Q)iyy(w,X) and £ = v/iu as parameter, compare [3, Theorem 7.7.6], to obtain
remainder estimates that are optimal in v € V,,. If {X1,..., X4} denotes a basis of t, the X-derivatives
of ®§  (w, X) read

n

D wi(dEk) o-x o (X;) = 6(X;) = [I(e™™ -y, w) — (X)),

k=1
so that
Crit @5174 = {(w,X) | k(z) — k(e X -y) € N (BB, (e7X -y,w) € J_l({f})} .
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A repetition of the arguments given in [5, Proof of Lemma 3.1] then shows that for sufficiently small
iq
o if y € Oy, the set Crit @iyy is clean and given by the smooth submanifold

T={@X)| (X yw) eI (e}), x = e X -y}

of codimension 2 dim O, ;

o if yZ O, and T acts on M with orbits of the same dimension x and the co-spheres S} M are
strictly convex, then either Crit ®$  1s empty, or, choosing Y sufficiently small, Crit <1>§w is
clean and of codimension n — 1 + k,

which would also just follow from [5, Proof of Lemma 3.1] and the implicit function theorem. In
addition, note that for (w, X) € Crit ®§ ,

M y(w, X) := Trans Hess &% (w, X)is independent of &.

T,y
Next, notice that under the assumptions in (a) and (b), respectively, there is an open tubular neigh-
borhood Uy of Crit @, , and a constant g > 0 such that for all > po and v € V,,
o Crit @;/J“ C Uy,
o Crit @;,/;“ is clean, that is, @2{;“ is a Morse-Bott function.

Let Uy and Us be two further open tubular neighborhoods of Crit ®, , and po > p1 > p2 > 0 be such
that U C Uy C Us are proper inclusions and the pairs (Uy, 1), (Usz, u2) have the same properties than
(Uo, po)- Let u € C°(Uz,RY) be a test function with uy, = 1 and define

7, //R " @ Xy (w, X)a(z, y,w, X) dEES () dX,
E s
213, () o= 03, () =1 17, ().

By construction, for v € V,, and pu > po all critical sets Crit @Zg” have a minimal, non-vanishing]
distance to 0 Uy, so that
| grad @g/y”ﬂ >C>0 onsupp(l—u)a(z,y,-,-) forall v €V, with u > po.

An application of the non-stationary phase principle [3, Theorem 7.7.1] with respect to the phase
function fIJ;Y(;“ then yields for every k € N the uniform bound

1), (1) = Or.a(u™") for all v € V,, with p > po.

It remains to estimate the integral 1Ig7y(u) by means of the stationary phase principle with £ = v/iu
as parameter, for which we shall follow [3] Theorem 7.7.5] and its proof. Assume as we may that Us
is sufficiently small, and introduce normal tubular coordinates on Us in form of an atlas {({,,).)}
such that

(1) supp wa(z,y,-,-) C U,V
(2) ¢Hm/,m”) € Crit @S iff R 3 m” = my, where

el

g — 2dim O, in case (a)
" |n—1+k in case (b).

(3) the t-coordinates are given by standard Euclidean coordinates, so that in each chart
X = "mi XL+ m{sXj
a 3
for a suitable basis { X/, X5} of t.

1 At least on the intersection of the support of a(z,y,-,-) and Uj.
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Let {p.} be a partition of unity subordinated to the covering {),}, and write a,(z,y,w,X) =
p(w, X)a(z,y,w, X) as well as a,(z,y,m) = a,(z,y,{ 1 (m))B.(m), B, being a Jacobian. Denote
the product of u o ¢! with the Taylor expansion of a,(z,v,-) in the variable m” at the point my of

order 2k by T*(x,y,m), which is smooth and bounded in . Let M, ,(w, X) be as above and set
M., (m!,mf) = (Mg, 0 (1) (m',mY). Since for sufficiently small [m” —m{

[/ — mg
| grad,,, 5., (m’, m{)|
for all £, [3, Theorem 7.7.1] yields with respect to ®% , (m) := (®5 , o ¢, !)(m) for any k € N

2,0 Z/‘/ L T () din” din + O (™)
Rd/ Rd//

<M (m'sme) T < 1

uniformly in . Next, note that for fixed m/
(3.3) m” — (M, —my{), (m" —m))
defines a non-degenerate quadratic form, and introduce the auxiliary function
Hg(m) = (I)i,y(m) - q)g,y(m/a mg) - <Mbm,y(m/7 mél)(m// - mg)a (m// - mg)> /27
which vanishes of third order at m” = my. The function
S@i)y(m) = </\/l y(m mg)(m” — mg), (m” — mg)> /2 + sHS(m)
interpolates between ®5 , (m) — @5 (m/, mg) = 1®¢  (m) and the quadratic form ([3.3), and we define

T u(m mf)(m”

Z(s) ::/ e Py (MITE (2 g m) dm”.
Rd//

Taylor expansion then yields
2k—1

]I(l) - 0] < Oilslgl|z(2k)(s)|/L!.
1=0 ==

Now, differentiation with respect to s gives

20(s) = [ e P b () T 2, m) i

Rd//

In view of the uniform bounds
|m" —my

| grad,,, Sfbfc,y( m’,m{)|

< M, (m/ m{)7H| <1 forall € and s

and
| D& [HE (m)* T (2, y,m)]| < [m” —m{|%*71e] for all ¢
we obtain from [3, Theorem 7.7.1] with k replaced by 3k there the important uniform bound
TR (5) = O(u™F) for all v € V,, with p > po and all s.
Next, denote by H¢(m) the Taylor expansion of H(m) of order 3k, and notice that one has
(H)! — () = O — m][+)

°Note that D, H¢(m) = D

oy Dy y(m) for |a| > 3, while for |a| < 2 Taylor expansion at m’g’ implies

m/!!
D&, HE (m)| < |m” —mf [F7121 3™ sup D, @,y (m)] < |m” — my |2~ e
[8]=3

m/’

uniformly in £ since H%(m) depends on £ only via the term &(3, m o Xo + 225 m;’BXg) which vanishes when

differentiated more than one time.
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uniformly in . Applying again [3] Theorem 7.7.1] gives
200) = [ e Sl b () TS . m) din” + O ™)
Rd//

uniformly in £. The assertion now follows by taking into account [3, Lemma 7.7.3] and the final
arguments in the proof of [3, Theorem 7.7.5]. Note that the Taylor expansion H¢ starts with terms
of degree 3 and depends on ¢ in that the coefficients are evaluated at m’ = m’g' . Consequently, when
applied to Z()(0) the remainder estimate in [3, Lemma 7.7.3] can be uniformly estimated in £&. The final
remainder estimate results from the above uniform estimates, and local contributions of higher order
where additional derivatives of « arise. The local terms are unique, and coincide with the ones with
phase function ®, , and amplitude Fa considered in [5, Theorem 3.3], from which the corresponding
bounds are deduced. The fact that in case (a) only t-derivatives of order k and N occur, follows from
the particular form of the transversal Hessian, [5, Proof of Theorem 3.3]. O

Similarly, one derives

Theorem 3.3. Consider the integrals I}, (11) defined in (31). Assume that the torus T' acts on M
with orbits of the same dimension kK <n — 1, and that the co-spheres SiM are strictly convex. Then,
for sufficiently small Y and arbitrary N1, No € N one has the asymptotic formula

I, (1)

0BT ]\7171,]\7271
et Ve Qj,khkz (LL', y)

= n-1-n
e Gl —nlag IO | L2, PG TRG) - lar T F T

+R 7 5, Mo (%yau)}

as p — +oo. The coefficients and the remainder term depend smoothly on R,t, while 0@5071/ =

Rcg g,.4(t) denotes the constant value of ®,, on J. Furthermore, the coefficients are unifgrmly
bounded in R,s,x, and y by derivatives of v up to order 2ki, and the remainder term

Ry 5,10 1) =01 7 5, (M_Nl (1 llm(z) = Klgg -yl + 1)‘N2)
by derivatives of v up to order 2Ny, provided that v € V,,.
Proof. The proof is essentially the same than the one of [5, Theorem 3.4], using the arguments given

in the proof of the previous theorem. O

4. THE EQUIVARIANT LOCAL WEYL LAW

We shall now prove an improved version of the equivariant local Weyl derived in [5]. For this, we
first prove the following refinement of [5, Proposition 4.1].

Proposition 4.1 (Point-wise asymptotics for the kernel of the equivariant approximate
projection). For any fized x € M, v €T, and N € N one has as p — +00

Kyom, (m,2) = Y olp— py)le;(x)]?
j>0,e;€L2 (M)

(4.1) N-1
7 n—dim O, —1 _
= (—%) A L@,y + Ryg(2,7)
k=0

27

with coefficients and remainder depending smoothly on © € Mpyyin. They satisfy the bounds

|Lx(2,7)| < Crasup || Dl
1<k
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as well as _ .
Ry (2, )| < Cx,sup ||[DAy|| pw~™, yeV,
I<N

where D! denotes a differential operator on T of order 1, and the constants Cy ., C’N . are uniformly
bounded in x if M = Mprin U Moxcept- In particular, the leading coefficient is given by

Lo(z,v) = @(0)[7TV|TE s 1] wol (2N SEM)/TY,
where S*M = {(x,§) € T*M | p(x,&) = 1}. If p — —oo0, the function K5, omn, (v, ) is rapidly decreas-
mg in .
Proof. We only have to prove the bounds for the coefficients and the remainder, since all other assser-

tions have been shown in [5]. Let the notation be as in Section 2] and R,s € R, 2 € Y, be fixed. As a
direct consequence of Theorem (a) we have for any N € N

05 1) (1 R, 5,3, 7) = (21 /p) ™ O Z LSR5, 2,7 + RN (R, 5,071 |

where the coefficients and the remainder term are explicitly given and depend smoothly on R, s, and
z € Y N Mpyin. Furthermore, both the coefficients Eﬁﬁ(R, s,x,v) and the remainder are bounded by
expressions involving derivatives of v up to order £ and N, respectively, which are uniformly bounded
in x if M = Mprin U Mexcept- Equation (Z6) then implies the asymptotic expansion (ZII) with the
specified estimate for the remainder.

O

We can now sharpen [5, Theorem 4.3] in the isotypic aspect as follows.

Theorem 4.2 (Equivariant local Weyl law). Let M be a closed connected Riemannian manifold
M of dimension n carrying an isometric and effective action of a torus T, and Py a T-invariant elliptic
classical pseudodifferential operator on M of degree m. Let p(x,&) be its principal symbol, and assume
that Py is positive and symmetric. Denote its unique self-adjoint extension by P, and for a given vy € T
let e(x,y, \) be its reduced spectral function. Further, let J : T*M — t* be the momentum map of the
T-action on M, and put Q := J=1({0}). Then, for fivzed x € M one has

ey(z,, A) — Lﬂn :1]/\71::2 / _L
e (2m)n=rs (6l (. 0)e p(ag)<1) V0lO(s¢)

n—kg—1

S Cz,'y A m

(4.2)

as X — +oo, where ki, = dim O, and |7y, : 1] € {0,1} denotes the multiplicity of the trivial
representation in the restriction of m, to the isotropy group T, of x. Furthermore, for arbitrary

vews={reT|hl <5}
(4.3) Cry = Ou(s5up [ D], ) = Ox ()
1<1

is a constant that depends smoothly on x € My,in and is uniformly bounded in x if M = MprinUMexcept-

Proof. This follows directly by taking N = 1 in (@) and integrating with respect to p from —oo to
{/A with the arguments given in [I, Proof of Eq. (2.25)]. O

Remark 4.3.
(1) With the same constant C; -, as in ([{.2)) one also has the bound

ley(z,y, A+ 1) —ey(z,y,N)| < \/me)\nfinrl \/C'ly’ny)\—ni:nyi1 , z,y € M, v € Wy,

compare [5, Remark 4.4].
(2) As a consequence of Theorem .2 the constant C, , in [5, Corollary 4.6] can be improved
accordingly, as well as all examples given in [5, Section 4].
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5. EQUIVARIANT LP-BOUNDS OF EIGENFUNCTIONS FOR NON-SINGULAR GROUP ACTIONS

Let the notation be as in the previous sections. As a consequence of the improved point-wise
asymptotics for the kernel of the equivariant approximate projection, one obtains in the non-singular
case the following sharpened equivariant L°°-bounds for eigenfunctions.

Proposition 5.1 (L*°-bounds for isotypic spectral clusters). Assume that T acts on M with
orbits of the same dimension k, and denote by x the spectral projection onto the sum of eigenspaces
of P with eigenvalues in the interval (\, A + 1]. Then, for any v € Wi,

n—rk—1

(5.1) 10cx o T )l apy < CA+ N lullpaayy,  uw€LA(M),

for a positive constant C independent of v. In particular, we obtain
n—k—1
[l (ary < A2
for any eigenfunction u € L%(M) of P with eigenvalue X\ satisfying ||ul|; . =1 and v € Wj.

Proof. By Proposition [I] we have for v € W) the uniform bound

|K>ZA0Hw(yay)| < (1 + )\)" :L ’ Yy € M = Mprin U Mcxcept-

The assertion now follows by a repetition of the arguments in the proof of [5, Proposition 5.1 and
Equation (5.4)]. O

Similarly, we are able to sharpen the LP-bounds for isotypic spectral clusters derived in [5, Theorem
5.4] in the isotypic aspect.

Theorem 5.2 (L”-bounds for isotypic spectral clusters). Let M be a closed connected Riemann-
ian manifold M of dimension n on which a torus T acts effectively and isometrically with orbits of the
same dimension k. Further, let P be the unique self-adjoint extension of a T-invariant elliptic positive
symmetric classical pseudodifferential operator on M of degree m, and assume that its principal symbol
p(x,€) is such that the co-spheres STM = {(x,&) € T*M | p(z,§) = 1} are strictly convex. Denote by
X the spectral projection onto the sum of eigenspaces of P with eigenvalues in the interval (A, A + 1],
and by 11, the projection onto the isotypic component L?Y(M), where vy € T. Then, for u € L2(M) and
arbitrary v € Wh

oA 2(n—r+1)

gz s p e S
(5.2) [l(xa o H’y)u“LtJ(M) < (nn )2l i)
—_— n—kKk
C )\ Tmq HUHL2(M)7 2<q< S
for a positive constant C independent of -y, where % + % =1 and
1 1 1
On—r(q) == max <(n —K) 3~ a‘ — 5,0)
In particular,
A Anrtl) < g < oo,
HUHLq(M) < /
(n—r-1)(2—d")
4711qu2 . , 2§q§%,

Jor any eigenfunction u € L2(M) of P with eigenvalue X satisfying |lul|;> =1 and v € Wx.

Proof. The proof is a verbatim repetition of the proof of [5 Theorem 5.4] where instead of [5, Theorem
3.4] the improved estimates from Theorem B3] are used. O

As a consequence of the previous theorem, all examples given in [5, Section 5] can be sharpened in
the isotypic aspect.
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6. THE SINGULAR EQUIVARIANT LOCAL WEYL LAW. CAUSTICS AND CONCENTRATION OF
EIGENFUNCTIONS

Using the improved remainder estimates from Theorem all results in [B Section 7] can be
sharpened. In particular, the singular equivariant local Weyl law proved in [5l Theorem 7.7] can be
improved in the isotypic aspect. As before, let M be a closed connected Riemannian manifold and T
a torus acting on M by isometries, and consider the decomposition of M into orbit types

(6.1) M = M(H)U - UM(Hp),

where we suppose that the isotropy types are numbered in such a way that (H;) > (H;) implies ¢ < j,
(Hp,) being the principal isotropy type. We then have the following

Theorem 6.1 (Singular equivariant local Weyl law). Let M be a closed connected Riemannian
manifold M of dimension n with an isometric and effective action of a torus T and Py a T-invariant
elliptic classical pseudodifferential operator on M of degree m. Let p(x, &) be its principal symbol, and
assume that Py is positive and symmetric. Denote its unique self-adjoint extension by P, and for a
given vy € T let ey(x,y, \) be its reduced spectral counting function. Write k for the dimension of an
T-orbit in M of principal type. Then, for x € Mprin U Mexcept 0ne has the asymptotic formula

0,0
=5 YD Vb | AL e

N=1 i1 <---<iny =1

~ kel N— . . o
SCW/\T § § : H|7_il|d1mG7d1mH” k—1

N=1i1<--<inl=1

as A — 400, where the multiple sum runs over all possible totally ordered subsets {(H;,),...,(H;y)}
of singular isotropy types, and the coefficients satisfy the bounds L?f__m (z,7) < |||l uniformly in
x, while

C D!
v < sup[D]l

is a constant independent of x and X, the D' are differential operators on T of order I, and the
7i; = Ti; (x) parameters satisfying |7;;| ~ dist (x, M (H;,)).

Proof. The proof consists in a verbatim repetition of the proof of [5 Theorem 7.7] using the improved
remainder estimate in Theorem (a). O

As an immediate consequence this yields

Corollary 6.2 (Singular point-wise bounds for isotypic spectral clusters). In the setting of
Theorem [6.1] we have

n—1

CA\ =, S Msinga

Z lej(@)* < A= N _ _
XjEAF], Cy A Z > H |7_“|d1m Grdm My =n=l e M — Miing;
e; €L2 (M) =1 i1 <--<in l=

with C' > 0 independent of . In particular, the bound holds for each individual e; € L,QY(M) with
/\j € ()\, A+ 1]

O

Integrating the asymptotic formulae in Theorems and [6I] over x € M yields a sharpened

remainder estimate for the equivariant Weyl law derived in [4]. In addition, as a consequence of the
previous theorem, the example given in [5], Section 7] can be sharpened in the isotypic aspect.
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7. SHARPNESS

By the arguments given in [5, Section 8] the remainder estimates in Theorems and are
sharp in the spectral parameter ), and already attained on the 2-dimensional sphere S2. To see that
they are almost sharp in the isotypic aspect, endow M = S? with the induced metric, and let A
be the corresponding Laplace-Beltrami operator. The eigenvalues of —A are given by the numbers
A = k(k+1) with £ =0,1,2,3,..., and the corresponding k(k 4+ 1)-dimensional eigenspaces Hj, are
spanned by the classical spherical functions Yy, m € Z, |m| < k. The Y}, are orthonormal to each
other, and by the spectral theorem we have the decomposition L*(M) = @,—,Hy. Furthermore,
by restricting the left regular representation of SO(3) in L?(S?) to the eigenspaces Hj one obtains

7

realizations for all elements in the unitary dual SO(3) ~ {k =0,1,2,3,...}. Now, let T = SO(2) be
isomorphic to the isotropy group of a point in $? ~ SO(3)/SO(2). The irreducible representations of
SO(2) are 1-dimensional, and the corresponding characters are given by the exponentials 6 — e?™?

"

where 6 € [0,27) ~ SO(2), m € Z ~ SO(2). Each H; decomposes into SO(2) representations
with multiplicity 1 according to Hy = @‘ka H}*, where H}* is spanned by Yi,,. Consequently, if

3

Nim(A) := [z em(z, 2, \)dS? () denotes the equivariant counting function of A we obtain the estimate

(7.1) Nm(A) = > 1~ Y 1xVA—|m|

k(k+1)<, |m|<E |m|<k<VA

as A — 400, showing that the remainder estimates in Theorems and are almost sharp both in
the eigenvalue and in the isotypic aspect.

To see that the equivariant LP-bounds in Section [3] are almost sharp in the eigenvalue and isotypic
aspect, let us consider the standard 2-torus M = T2 C R? on which G = SO(2) acts by rotations
around the symmetry axis. Then all orbits are 1-dimensional and of principal type. Proposition 5.1l
then implies the bound

[ull oo (p2y = O1),  uw€LA(T?), |full. =1,
for any eigenfunction of the Laplace-Beltrami operator A on T2. Now, via the identification
R?/7% =5 T? ~ S' x SY, (x1, 1) — (271 2miv2),

the standard orthonormal basis of eigenfunctions of A is given by {e*"h1@1e2mih222 | (ky ko) € 72},
showing that the bounds in Proposition [5.1] and Theorem are almost sharp both in the eigenvalue
and isotypic aspect.
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