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REDUCED WEYL ASYMPTOTICS FOR PSEUDODIFFERENTIAL

OPERATORS ON BOUNDED DOMAINS II

THE COMPACT GROUP CASE

ROCH CASSANAS AND PABLO RAMACHER

Abstract. Let G ⊂ O(n) be a compact group of isometries acting on n-dimensional Euclidean
space R

n, and X a bounded domain in R
n which is transformed into itself under the action of G.

Consider a symmetric, classical pseudodifferential operator A0 in L2(Rn) that commutes with
the regular representation of G, and assume that it is elliptic on X. We show that the spectrum
of the Friedrichs extension A of the operator res ◦ A0 ◦ ext : C∞

c (X) → L2(X) is discrete,
and using the method of the stationary phase, we derive asymptotics for the number Nχ(λ) of
eigenvalues of A equal or less than λ and with eigenfunctions in the χ-isotypic component of
L2(X) as λ → ∞, giving also an estimate for the remainder term for singular group actions.
Since the considered critical set is a singular variety, we recur to partial desingularization in
order to apply the stationary phase theorem.

1. Introduction

Let G ⊂ O(n) be a compact Lie group of isometries acting on Euclidean space Rn, and X a
bounded open set of Rn which is transformed into itself under the action of G. Consider the regular
representation of G

(1) T(k)ϕ(x) = ϕ(k−1x)

in the Hilbert spaces L2(Rn) and L2(X) of square-integrable functions by unitary operators. As a
consequence of the Peter-Weyl theorem, T decomposes into isotypic components according to

L2(Rn) =
⊕

χ∈Ĝ

Hχ, L2(X) =
⊕

χ∈Ĝ

resHχ,

where Ĝ denotes the set of irreducible characters of G, and res : L2(Rn) → L2(X) is the natu-
ral restriction operator. The spaces Hχ are closed subspaces, and the corresponding orthogonal
projection operators are given by

(2) Pχ = dχ

∫

G

χ(k)T(k)dk,

where dχ = χ(1) is the dimension of the irreducible representation belonging to the character
χ, and dk denotes the normalized Haar measure on G. In what follows, we do not assume that
the boundary ∂X of X is smooth, but only that there exists a constant c > 0 such that for any
sufficiently small ̺ > 0, vol (∂X)̺ ≤ c̺, where (∂X)̺ = {x ∈ Rn : dist (x, ∂X) < ̺}, and that
0 6∈ ∂X.

1991 Mathematics Subject Classification. 35P20, 47G30, 20C99.
Key words and phrases. Pseudodifferential operators, asymptotic distribution of eigenvalues, compact group

actions, Peter-Weyl decomposition, partial desingularization.
This research was financed by the grant RA 1370/2-1 of the German Research Foundation (DFG).

1

http://arxiv.org/abs/0710.0126v1


2 ROCH CASSANAS AND PABLO RAMACHER

Let now A0 be a symmetric, classical pseudodifferential operator in Rn of order 2m that com-
mutes with the operators T(k) for all k ∈ G. Let a2m be its principal symbol, and assume that
there exists a constant C0 > 0 such that

(3) a2m(x, ξ) ≥ C0 |ξ|2m, ∀x ∈ X, ∀ξ ∈ R
n.

Let ext denote the natural extension operator by zero. Under condition (3), the operator

res ◦A0 ◦ ext : C∞
c (X) −→ L2(X),

is symmetric and lower semi-bounded, and we denote its Friedrichs extension by A. It can be
shown that A has compact resolvent, and if the boundary of X is sufficiently smooth, and A0

satisfies the transmission property, the domain of A is given by

D(A) = {u ∈ Hm
0 (X) : A0u ∈ L2(X)},

where Hm
0 (X) is the closure of C∞

c (X) in the Sobolev space Hm(X), so that we are in presence of
a generalized Dirichlet problem. Since A leaves each of the isotypic components resHχ invariant,
the restriction of A to resHχ gives rise to the so-called reduced operator Aχ. Its domain is
D(Aχ) = D(A) ∩ resHχ, and its spectrum is discrete, the spectrum of A being equal to the union
of the spectra of the operators Aχ.

The purpose of this paper is to investigate the spectral counting function Nχ(λ) of Aχ, which
is given by the number of eigenvalues of Aχ, counting multiplicities, that are less than λ ∈ R. It
corresponds to the number of eigenvalues of A less than λ, and with eigenfunctions in the χ-isotypic
component of L2(X), so that

Nχ(λ) = dχ
∑

t≤λ

µχ(t),

where µχ(t) denotes the multiplicity of the irreducible representation of dimension dχ corresponding
to the character χ in the eigenspace of A with eigenvalue t. Nχ(λ) describes the distribution of
eigenvalues of A, and we shall investigate its asymptotic behavior as λ → +∞ by means of the
generalized theorem of the stationary phase. It will turn out that Nχ(λ) is intimately related to
the representation theory of G, and the geometry of the Hamiltonian action of G on the symplectic
manifold T ∗(X). In fact, if (A1, . . . , Ad) is a basis of the Lie algebra g of G, let

J : T ∗(X) ≃ X × R
n → g ≃ R

d, (x, ξ) → (〈A1x, ξ〉 , . . . , 〈Adx, ξ〉),
be the associated momentum map, where 〈·, ·〉 stands for the Euclidean scalar product in Rn, and
denote by

Ω0/G = J
−1({0})/G

the symplectic quotient of T ∗(X) at level zero. This quotient is naturally related to the critical
set of the phase function in question, and plays a crucial role in our reduction. Indeed, we shall
prove that Nχ(λ) is asymptotically determined by a certain volume of the quotient Ω0/G, which
is symplectically diffeomorphic to T ∗(X/G) on its smooth part [8]. Now, the major difficulty in
applying the generalized stationary phase theorem in our setting stems from the fact that, due to
the singular orbit structure of the underlying group action, the zero level Ω0 of the momentum
map, and, consequently, the considered critical set, are in general singular varieties. In fact, if
the G-action on T ∗(X) is not free, the considered momentum map is no longer a submersion,
so that Ω0 and Ω0/G are not smooth anymore. Nevertheless, it can be shown that these spaces
have a Whitney stratification into smooth submanifolds, see [20], Theorems 8.3.1 and 8.3.2, which
corresponds to the stratification of T ∗(X), and Rn into orbit types. To apply the principle of the
stationary phase to our problem, we shall therefore proceed to partially resolve the singularities of
Ω0, and then apply the stationary phase theorem in the resolution space under the sole assumption
that the set Sing Ω0 of points where Ω0 is not a manifold is contained in a strict vector subspace
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of T ∗(X). This is always fulfilled for group actions that satisfy the following condition 1: If Rn(H0)

denotes the union of all principal orbits in Rn of type G/H0, which is an open and dense subset
in Rn, then Rn \ Rn(H0) should be contained in a strict vector subspace of Rn. The main result of

this paper is Theorem 8, which states that, as λ→ +∞, one has the asymptotic formula

Nχ(λ) =
dχ[̺χ|H0

: 1]

(2π)n−κ
vol ([a−1

2m((−∞, 1]) ∩ Ω0]/G)λ(n−κ)/2m +O(λ(n−κ−1/4)/2m),

where dχ = χ(1), [̺χ|H0
: 1] is the multiplicity of the trivial representation in the restriction of ̺χ

to any principal isotropy group conjugated to H0, and κ the common dimension of the orbits of
principal type. The volume of the quotient [a−1

2m((−∞, 1]) ∩ Ω0]/G is defined in Section 5.
The asymptotic distribution of eigenvalues was first studied by Weyl [25] for certain second

order differential operators in Rn using variational techniques. Hörmander [13] then extended
these results to elliptic pseudodifferential operators on closed manifolds using the theory of Fourier
integral operators. The first ones to study reduced Weyl asymptotics for elliptic operators on
closed Riemannian manifolds in the presence of a compact group of isometries were Donnelly [6]
together with Brüning and Heintze [3]. In the semi-classical context, reduced Weyl asymptotics
and trace formulae were investigated in [7], and in [4] via coherent states. Our approach is based
on the method of approximate spectral projections, first introduced by Tulovskii and Shubin [24].
Nevertheless, due to the presence of the boundary, the original method cannot be applied to our
situation, and one has to use more elaborate techniques, which were subsequently developed by
Feigin [9] and Levendorskii [18]. Compared to the method of Fourier integral operators, this
approach gives weaker estimates for the remainder, but allows to consider non-smooth boundaries.
Recently, Bronstein and Ivrii have obtained even sharp estimates for the remainder term in the
case of differential operators on manifolds with boundaries satisfying the conditions specified above
[2, 16].

This paper is the second part of an investigation initiated in [21], which we shall refer to in
the following as Part I. There, the foundations of the calculus of approximate spectral projection
operators were provided, and the case of a finite group of isometries was settled. In this second
part, the case of a compact group of isometries will be considered. Before we start, some comments
on the results obtained might be in place. Asymptotics for the spectral counting function Nχ(λ)
were obtained in [6] and [3] for general compact, isometric and effective Lie group actions using
Heat kernel methods; nevertheless, this approach does not allow to derive estimates for the remain-
der term. Using Fourier integral operator techniques, the same authors obtained rather optimal
remainder estimates for compact G-manifolds in the cases where there is only one orbit type, or all
orbits have the same dimension. For orthogonal actions in Rn, estimates for the remainder where
obtained in [12, 7] in case that the union Rn(H0)

of all principal orbits is given by Rn −{0}. In this

paper, remainder estimates are obtained in the case that singular orbits are present by partially
resolving the singularities of the zero level of the momentum map Ω0.

2. Reduced spectral asymptotics and the approximate spectral projection

operators

In this section, we shall review some basic facts in the theory of pseudodifferential operators
that will be needed in the sequel, and introduce the method of approximate spectral projection
operators. For a more detailed exposition, the reader is referred to Part I, Sections 2 and 3. Let
A0 be a classical pseudodifferential operator of order 2m in Rn, regarded as an operator in L2(Rn)

1Examples for such group actions are given in Remark 1.
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with domain C∞
c (Rn). In other words, A0 can be represented by an oscillatory integral of the form

A0u(x) =

∫ ∫
ei(x−y)ξa(x, ξ)u(y)dyd̄ξ,

where its symbol a(x, ξ) has an asymptotic expansion of the form

a(x, ξ) ∼
∑

j≥0

a2m−j(x, ξ) (1 − χ(ξ)),

χ being a compactly supported function equal to 1 in a neighborhood of zero, and the functions
a2m−j are homogeneous of degree 2m− j in variable ξ. a2m is called the principal symbol of A0. If
0 ≤ ̺, δ ≤ 1, and Y is an open set in Rn, let us denote by Sm̺,δ(Y×Rn) the set of smooth functions

σ(x, ξ) on Y × Rn such that for all compact sets K in Y, and all multi-indices α, β, there exist
constants CK,α,β > 0 such that

|∂αξ ∂βxσ(x, ξ)| ≤ CK,α,β 〈ξ〉m−̺|α|+δ|β|
.

Let Lm̺,δ(Y) be the class of pseudodifferential operators with symbols in Sm̺,δ(Y × Rn). Then, as

a local pseudodifferential operator, A0 ∈ L2m
1,0 (Rn), see [23], Section 3.7. In what follows, we shall

also need certain global spaces of symbols and pseudodifferential operators, which also take decay
properties in x into account. They were introduced by Hörmander within the framework of Weyl
calculus of pseudodifferential operators. Thus, consider on R2n the metric

g̃x,ξ(y, η) = (1 + |x|2 + |ξ|2)δ|y|2 + (1 + |x|2 + |ξ|2)−̺|η|2,
where 1 ≥ ̺ > δ ≥ 0, and put h(x, ξ) = (1 + |x|2 + |ξ|2)−1/2.

Definition 1. Let p be a g̃-continuous function. The class Γ̺,δ(p,R
2n), 0 ≤ δ < ̺ ≤ 1, consists

of all functions u ∈ C∞(R2n) which for all multiindices α, β satisfy the estimates

| ∂αξ ∂βx u(x, ξ)| ≤ Cαβ p(x, ξ) (1 + |x|2 + |ξ|2)(−̺|α|+δ|β|)/2.
In particular, we shall write Γl̺,δ(R

2n) for Γ̺,δ(h
−l,R2n), where l ∈ R.

The class Γ̺,δ(p,R
2n) is also denoted by S(g̃, p), see Part I, Definitions 1 and 3. Let now

a ∈ Γ̺,δ(p,R
2n), 0 ≤ 1 − ̺ ≤ δ < ̺ ≤ 1, and τ ∈ R. Then

Au(x) =

∫ ∫
ei(x−y)ξa((1 − τ)x + τy, ξ)u(y)dy d̄ξ

defines a continuous operator in S(Rn), respectively S′(Rn), see Part I, Corollary 1. In this case,
a is called the τ -symbol of A, and the operator A is denoted by Opτ (a). If τ = 1/2, a is called
they Weyl symbol of A, and one also writes Opw(a) for A. Pseudodifferential operators with
real Weyl symbols give rise to self-adjoint operators. For τ = 0 and τ = 1 one simply obtains
the usual left and right symbols, respectively. Our symbol classes will be mainly of the form
S(h−2δg, p) = Γ1−δ,δ(p,R

2n) with

gx,ξ(y, η) = |y|2 + h(x, ξ)2|η|2,
where p is a smooth, positive, g-continuous function, and 0 ≤ δ < 1/2. In what follows, Π̺,δ(p,R

n)
and Πl

̺,δ(R
n) will denote the classes of pseudodifferential operators with symbols in Γ̺,δ(p,R

2n),

and Γl̺,δ(R
2n), respectively.

Consider now a bounded domain X in Rn with not necessarily smooth boundary ∂X, and let a
be the left symbol of the classical pseudodifferential operator A0. Clearly, a ∈ S(g, h−2m, Z ×Rn)
for any compact set Z ⊂ Rn. By changing a outside X × Rn, we can therefore assume that
a ∈ S(g, h−2m), so that

A0 ∈ Π2m
1,0 (Rn).
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Assume now that A0 satisfies the ellipticity condition (3).

Lemma 1. The ellipticity condition (3) is equivalent to the existence of constants C,M > 0 such
that

(4) ((A0 +M1)u, u)L2(X) ≥ C ‖u‖2
Hm(X) , ∀u ∈ C∞

c (X).

where ‖.‖Hm(X) is the norm in the Sobolev space Hm(X).

Proof. Since A0 +M1 is a classical symmetric pseudodifferential operator with principal symbol
a2m, the implication (4) ⇒ (3) follows with [18], Lemma 13.1. Now, let us assume that (1) is
fulfilled. By compactness, there exists a constant ε > 0 such that, if Xε = {x ∈ Rn : dist(x,X) <
ε}, one has

(5) a2m(x, ξ) ≥ C0

2
|ξ|2m, ∀x ∈ Xε, ∀ξ ∈ R

n.

The restriction of A0 to Xε is of course in L2m
1,0 (Xε) since X is bounded, and is elliptic in view of

(5). It is not properly supported in general but, according to [23], Proposition 3.3, there exists
an operator R with smooth kernel KR ∈ C∞(Xε × Xε), and an operator A1 in L2m

1,0 (Xε) which is

properly supported in Xε such that, on L2(Xε),

A0 = A1 +R.

A1 is a classical pseudodifferential operator in Xε, with the same principal symbol as A0, and is
elliptic on Xε in view of (5). Applying now the G̊arding inequality as stated in [11], page 51, one
deduces the existence of a constant C1 > 0 such that, for all u ∈ C∞

c (Xε) with support in X,

Re ((A1 + C11)u, u)L2(Xε) ≥
1

C1
‖u‖2

Hm(Xε)
.

Now, by the Schwartz inequality,

‖Ru‖2
L2(X) =

∫

X

|Ru(x)|2dx ≤
∫

X

(∫

X

|KR(x, y)|2dy
∫

X

|u(z)|2dz
)
dx, u ∈ C∞

c (X),

which implies that the restriction of R to L2(X) is a bounded operator. Consequently, there exists
a constant C2 > 0 such that for u ∈ C∞

c (X)

(A0 + C11)u, u)L2(X) ≥
1

C1
‖u‖2

Hm(Xε)
+ Re (Ru, u)L2(X) ≥

1

C1
‖u‖2

Hm(X) − C2 ‖u‖2
L2(X) ,

and the assertion of the lemma follows. �

Next note that if A0 were properly supported, then A0 ◦ ext : C∞
c (X) → C∞

c (X1), where X1

is some compact set in Rn, see [23], Proposition 3.4. By continuity, this map would extend to
a map from D′(X) to D′(X1), but in general it is not immediately clear if the restriction of A0

to X extends to D′(X). Nevertheless, as a pseudodifferential operator in the class Π2m
1,0 (Rn), the

operator A0 : S(Rn) → S(Rn) extends to a mapping from S′(Rn) to S′(Rn), see [14]. Therefore,
if u ∈ L2(X), then (A0 ◦ ext)(u) ∈ S′(Rn), and via the inclusion S′(Rn) →֒ D′(X), the operator
res◦A0 ◦ ext extends naturally to an operator from L2(X) to D′(X). Let us now assume that A0 is
symmetric, and that (3) is satisfied. Under these circumstances, the previous lemma implies that
the operator

res ◦A0 ◦ ext : C∞
c (X) −→ L2(X)

is lower semi-bounded, and we shall denote its Friedrichs extension byA. It is a self-adjoint operator
in L2(X), and is itself lower semi-bounded. Its spectrum is real. The following proposition shows
that A has compact resolvent, which implies that the spectrum of A is discrete, i.e. it consists
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of a sequence of isolated eigenvalues of finite multiplicity tending to infinity, while the essential
spectrum of A is empty.

Proposition 1. As an operator in L2(X), A has compact resolvent . Moreover, D(A) ⊂ Hm
0 (X)

and

(6) ((A+M)u, u)L2(X) ≥ C ‖u‖2
Hm(X) ∀u ∈ D(A).

Here, Hm
0 (X) denotes the closure of C∞

c (X) in Hm(X) =
{
u ∈ D′(X) : ∂αu ∈ L2(X), |α| ≤ m

}

with respect to the Sobolev norm.

Proof. Put Ã = res ◦ A0 ◦ ext : C∞
c (X) → L2(X). In view of (4), Ã is semi-bounded on C∞

c (X).
Let Q(A) be its form domain, that is, the completion of C∞

c (X) with respect to the norm p(v) =√
(Ã+M)v, v), see [22], page 177. Q(A) is endowed with the limit norm ‖.‖Q(A) of p. According

to (4), Q(A) ⊂ Hm
0 (X). Since A is the Friedrichs extension of Ã, one has D(A) ⊂ Q(A), and we

obtain equation (6). Let now λ < −M . If u ∈ D(A), the Schwartz inequality yields

‖u‖Hm(X) ≤ C ‖(A− λ)u‖L2(X)

for some constant C > 0. Thus, if v ∈ L2(X),
∥∥(A− λ)−1v

∥∥
Hm(X)

≤ C ‖v‖L2(X). Therefore

(A − λ)−1 is a continuous map from L2(X) to Hm
0 (X). But the injection Hm

0 (X) →֒ L2(X) is
compact by the Rellich theorem. Consequently, A must have compact resolvent. �

Consider now a compact group of isometries G ⊂ O(n) acting on Euclidean space Rn, and
assume that the bounded domain X in Rn is invariant under G. Then its boundary is G-invariant,
too. Let T be the unitary representation of G in the Hilbert spaces L2(Rn) and L2(X) defined in
(1), and assume that the operator A0 commutes with the representation T. The G-action on X

induces a Hamiltonian action of G in the cotangent bundle T ∗(X) of X given by

G× T ∗(X) → T ∗(X) : (k, x, ξ) → σk(x, ξ) = (κk(x),
t κ′k(x)

−1(ξ)) = (κk(x), κk(ξ)),

where we wrote κk(x) = kx. Now, since

T (k)Opτ (a)T (k−1) = Opτ (a ◦ σk), a ∈ S(g̃, p),

the G-invariance of A0 is equivalent to the G-invariance of its symbol, by the uniqueness of the
τ -symbol. In particular, the principal symbol a2m of A0 is invariant under σk for all k ∈ G. Since
the operator A is also G-invariant, the eigenspaces of A are unitary G-modules that decompose
into irreducible subspaces. The restriction of A to the isotypic component resHχ in the Peter-Weyl
decomposition of (T,L2(X)) is called the reduced operator, and is denoted by Aχ. Its domain is
D(Aχ) = D(A) ∩ resHχ. As explained in [4], Aχ inherits from A the property of having compact

resolvent, and the spectrum of A is equal to the union over χ in Ĝ of the spectra of the operators
Aχ.

Our purpose in this paper is to investigate the spectral counting function Nχ(λ) of Aχ, which is
given by the number of eigenvalues of Aχ, counting multiplicities, that are equal or less than λ ∈ R.
It corresponds exactly the number of eigenvalues of A equal or less than λ, whose eigenfunctions
belong to the χ-isotypic component of L2(X), so that

Nχ(λ) = dχ
∑

t≤λ

µχ(t),

where µχ(t) denotes the multiplicity of the irreducible representation of dimension dχ corresponding
to the character χ in the eigenspace of A with eigenvalue t. We shall study Nχ(λ) using the method
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of approximate spectral projection operators, which was first introduced by Shubin and Tulovskii,
and adapted to the case of bounded domains by Levendorskii. It departs from the observation that

N(λ) = tr(Eλ),

where Eλ = 1(−∞,λ](A) is the spectral projector of A belonging to the value λ. The idea is
then to approximate the Eλ by means of certain pseudodifferential operators Eλ. The trace of Eλ
should then give a good approximation of N(λ). The approximate spectral projection operators
Eλ will be constructed using Weyl quantization. In order to define them, we introduce now the
relevant symbols. Thus, let aλ ∈ S(g, 1), and d ∈ S(g, d) be G-invariant symbols which, on
X̺ × {ξ : |ξ| > 1}, X̺ = {x : dist (x,X) < ̺}, are given by

aλ(x, ξ) =
1

1 + λ|ξ|−2m

(
1 − λ

a2m(x, ξ)

)
,

d(x, ξ) = |ξ|−1,

where ̺ > 0 is some fixed constant, and in addition assume that d is positive and that d(x, ξ) → 0
as |x| → ∞. We also define

bλ(x, ξ) = aλ(x, λ
1/2mξ).

We need to define smooth approximations to the Heaviside function, and to certain characteristic
functions on X. Thus, let χ̃ be a smooth function on the real line satisfying 0 ≤ χ̃ ≤ 1, and

χ̃(s) =

{
1 for s < 0,
0 for s > 1.

Let C0 > 0 and δ ∈ (1/4, 1/2) be constants, and put ω = 1/2 − δ. We then define the G-invariant
functions

χλ = χ̃ ◦ ((aλ + 4hδ−ω + 8C0d)h
−δ), χ+

λ = χ̃ ◦ ((aλ − 4hδ−ω − 8C0d)h
−δ),

where 0 < δ − ω < 1/2. One can then show that χλ, χ
+
λ ∈ S(h−2δg, 1) = Γ0

1−δ,δ(R
2n) uniformly in

λ, see Part I, Lemma 10. Next, let U be a subset in R2n, c > 0, and put

U(c, g) =
{
(x, ξ) ∈ R

2n : ∃(y, η) ∈ U : g(x,ξ)(x− y, ξ − η) < c
}

;

according to [18], Corollary 1.2, there exists a smoothened characteristic function ψc ∈ S(g, 1)
belonging to the set U and the parameter c, such that suppψc ⊂ U(2c, g), and ψc|U(c,g) = 1. Let
now

Mλ =
{
(x, ξ) ∈ R

2n : aλ < 4hδ−ω + 8C0d
}
.

Both Mλ and ∂X×Rn are invariant under σk for all k ∈ G, as well as (∂X×Rn)(c, h−2δg), and
Mλ(c, h

−2δg), due to the invariance of a2m(x, ξ), and the considered metrics and symbols. Now,
let η̃c, ψλ,c ∈ S(h−2δg, 1) be smoothened characteristic functions corresponding to the parameter
c, and the sets ∂X × Rn and Mλ, respectively. According to Lemma 5 in Part I, we can assume
that they are invariant under σk for all k ∈ G; otherwise consider

∫
G η̃c ◦ σk dk,

∫
G ψλ,c ◦ σk dk,

respectively. We then define the functions

ηλ,−c(x, ξ) =

{
0, x /∈ X,

(1 − η̃c(x, ξ))ψλ,1/c(x, ξ), x ∈ X,

ηc(x, ξ) =

{
η̃c(x, ξ), x /∈ X,

1, x ∈ X.

Only the support of ψλ,c depends on λ, but not its growth properties, so that ηc, ηλ,−c ∈ S(h−2δg, 1)
uniformly in λ. Furthermore, since η̃2c = 1 on supp η̃c, and ψλ,1/c = 1 on suppψλ,1/2c, on has
ηλ,−c = 1 on supp ηλ,−2c, which implies ηλ,−2cηλ,−c = ηλ,−2c. Similarly, one verifies ηcη2c = ηc.
We are now ready to define the approximate spectral projection operators.
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Definition 2. The approximate spectral projection operators of the first and second kind are defined
by the equations

Ẽλ = Opw(ηλ,−2)Opw(χλ)Opw(ηλ,−2), Eλ = Ẽ2
λ(3 − 2Ẽλ),

while the ones of the third and fourth kind are given by

F̃λ = Opw(η2
2χ

+
λ ), Fλ = F̃2

λ(3 − 2F̃λ),

Both Eλ and Fλ are integral operators with kernels in S(R2n). By Lemma 7.2 in [14], this implies
that Eλ and Fλ are of trace class and, in particular, compact operators in L2(Rn). In addition, by
Theorem 2, and the asymptotic expansion (10) in Part I, one has στ (Eλ), στ (Fλ) ∈ S(h−2δg, 1)
uniformly in λ. On the other hand, all the involved symbols are real valued, which by general Weyl
calculus implies that Opw(ηλ,−2), Opw(χλ), Opw(η2

2χ
+
λ ), and consequently also Eλ, and Fλ, are

self-adjoint operators in L2(Rn). Let Pχ denote the orthogonal projector defined in (2) onto the
isotypic component of the Peter-Weyl decomposition of (T,L2(Rn)) corresponding to the character
χ. By construction, both Eλ and Fλ commute with the projection Pχ, so that PχEλ and PχFλ are
self-adjoint operator of trace class as well. Although the decay properties of στ (Eλ), στ (Fλ) are
independent of λ, their supports do depend on λ, which will result in estimates for the trace of
PχEλ and PχFλ in terms of λ that will be used in order to prove Theorem 8. In particular, the
estimate for the remainder term in Theorem 8 is determined by the particular choice of the range
(1/4, /1/2) for the parameter δ, which guarantees that 1 − δ > δ.

The method of approximate spectral projection operators is based on variational arguments.
Thus, if S is a symmetric, lower semi-bounded operator in a separable Hilbert space, and if V is
a subspace contained in its domain D(S), the variational quantity

N (S, V ) = sup
L⊂V

{dimL : (S u, u) < 0 ∀ 0 6= u ∈ L}

can be used to give a qualitative description of the spectrum of S. In our case one has

Nχ(λ) = N (A0 − λ1,Hχ ∩ C∞
c (X)).

Indeed, the Friedrichs extension of res ◦ A0 ◦ ext : C∞
c (X) ∩ Hχ −→ resHχ is given by Aχ, and

the assertion follows with [18], Lemma A.2. Now by the general theory of compact, self-adjoint
operators, zero is the only accumulation point of the point spectra of Eλ and Fλ, as well as the only
point that could possibly belong to the continuous spectrum. Therefore the number of eigenvalues
of Eλ which are ≥ 1/2, and whose eigenfunctions belong to the isotypic component Hχ is clearly
finite, and shall be denoted by NEλ

χ . Similarly, the number of eigenvalues of the operators Fλ
which are ≥ 1/2, and whose eigenfunctions belong to the isotypic component Hχ, shall be denoted
by NFλ

χ . As it was shown in Part I, Theorems 5 and 6, these quantities constitute upper and lower
bounds for the spectral counting function Nχ(λ), namely

NEλ
χ − C ≤ N (A0 − λ1,Hχ ∩ C∞

c (X)) ≤MFλ
χ + C

for some constant C > 0. Furthermore, by Lemmata 11 and 12 of Part I one has

2 tr(PχEλ · PχEλ) − trPχEλ − c1 ≤ NEλ
χ ≤ 3 trPχEλ − 2 tr(PχEλ · PχEλ) + c2,

2 tr(PχFλ · PχFλ) − trPχFλ − c1 ≤ NFλ
χ ≤ 3 trPχFλ − 2 tr(PχFλ · PχFλ) + c2,

for some constants ci > 0. The study of the asymptotic behaviour of Nχ(λ) is therefore reduced
to an examination of the traces of PχEλ and PχFλ, together with their squares, and will occupy
us for the rest of this paper.
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3. Compact group actions and the principle of the stationary phase

In this section, we shall begin to estimate the traces of PχEλ and PχFλ using the method of the
stationary phase, in order to obtain a description of the spectral counting function Nχ(λ) as λ→
+∞. As mentioned in the introduction, first order asymptotics for invariant elliptic operators were
already obtained in [6, 3] in the general case of effective group actions by using heat kernel methods;
nevertheless, estimates for the remainder are not accessible via this approach. On the other hand,
the derivation of remainder estimates within the framework of Fourier integral operators or, as
we shall see, within the setting of approximate spectral projections, meets with serious difficulties
when singular orbits are present. The reason for this is that, using these approaches, one is led to
the study of the asymptotic behavior of integrals of the form

(7)

∫

G

∫

Rn

∫

Rn

ei(x−kx)ξ/µa(x, ξ, k)dx d̄ξdk, µ→ 0+,

via the generalized stationary phase theorem, where a(x, ξ, k) ∈ C∞
c (Rn×Rn×G) is an amplitude

which might also depend on µ. While for free group actions, the critical set of the phase function
(x − kx)ξ is a smooth manifold, this is no longer the case for general effective actions, so that, a
priori, the principle of the stationary phase can not be applied in this case. Nevertheless, in what
follows, we shall show how to circumvent this obstacle by partially resolving the singularities of
the critical set of the phase function in question, and in this way obtain remainder estimates for
Nχ(λ) in the case of singular group actions. Let us begin by stating the generalized stationary
phase theorem.

Theorem 1 (Generalized stationary phase theorem for manifolds). Let M be a n-dimensional
Riemannian manifold, ψ ∈ C∞(M) be a real valued phase function, a ∈ C∞

c (M), µ > 0, and set

I(µ) =

∫

M

eiψ(m)/µa(m) dm,

where dm denotes the volume form on M . Let C =
{
m ∈M : ψ′ : TMm → TRψ(m) is zero

}
be the

critical set of the phase function ψ, and assume that

(i) C is a smooth submanifold of M of dimension p in a neighborhood of the support of a;
(ii) for all m ∈ C, the restriction ψ′′(m)|NmC of the Hessian of ψ at the point m to the normal

space NmC is a non-degenerate quadratic form.

Then, for all N ∈ N, there exists a constant CN,ψ > 0 such that

|I(µ) − eiψ0/µ(2πµ)
n−p

2

N−1∑

j=0

µjLj(ψ; a)| ≤ CN,ψµ
Nvol (supp a ∩ C) sup

l≤2N

∥∥Dla
∥∥
∞,M

,

where Dl is a differential operator on M of order l, and ψ0 is the constant value of ψ on C.
Furthermore, for each j there exists a constant C̃j,ψ > 0 such that

|Lj(ψ; a)| ≤ C̃j,ψvol (supp a ∩ C) sup
l≤2j

∥∥Dla
∥∥
∞,C

,

and, in particular,

L0(ψ; a) =

∫

C

a(x)

|detψ′′(m)|NmC |1/2
dσC(m)eiπσψ′′ ,

where σψ′′ is the constant value of the signature of ψ′′(m)|NmC for m in C.

Proof. See [15, 5]. �
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From now on, we shall restrict ourselves to the study of trPχEλ, since the corresponding con-
siderations for Fλ are completely analogous. Let therefore σl(Eλ)(x, ξ) denote the left symbol of
Eλ. Since σl(Eλ) is G-invariant, we have

PχEλu(x) = dχ

∫

G

∫ ∫
χ(k)ei(x−ky)ξσl(Eλ)(x, ξ)u(y)dy d̄ξ dk, u ∈ C∞

c (Rn).

The kernel of PχEλ, which is a rapidly decreasing function, is given by the absolutely convergent
integral

KPχEλ(x, y) = dχ

∫

G

∫
χ(k)ei(x−ky)ξσl(Eλ)(x, ξ) d̄ξ dk.

Consequently, the trace of PχEλ can be computed by

trPχEλ =

∫
KPχEλ(x, x)dx = dχ

∫

G

∫ ∫
χ(k)ei(x−kx)ξσl(Eλ)(x, ξ)dx d̄ξdk.

As already noticed, the decay properties of σl(Eλ) ∈ S(h−2δg, 1) = Γ0
1−δ,δ(R

2n) are independent
of λ , while its support does depend on λ. Indeed, as it was already explained in Part I, equation
(51),

(8) σl(Eλ) = (η2
λ,−2χλ)

2(3 − 2η2
λ,−2χλ) + fλ + rλ,

where rλ ∈ S(h−2δg, hN(1−2δ)) for arbitrary large N , and fλ ∈ S(h−2δg, h1−2δ), everything uni-
formly in λ. Moreover, in Lemma 9 we shall see that

supp fλ ⊂ Ac,λ =
{
(x, ξ) ∈ X × R

n : aλ < c(hδ−ω + d)
}
.

Now, since |rλ(x, ξ)| ≤ C′(1 + |x|2 + |ξ|2)−N/2 for some constant C′ independent of λ and N
arbitrarily large, we get the uniform bound

∫ ∫
|rλ(x, ξ)|dx d̄ξ ≤ C;

note that the x-dependence of h(x, ξ) is crucial at this point. In order to determine the asymptotic
behaviour of trPχEλ with respect to λ, we can therefore neglect the contribution coming from
rλ(x, ξ), so that

trPχEλ = dχ

∫

G

∫ ∫
χ(k)ei(x−kx)ξ[(η2

λ,−2χλ)
2(3 − 2η2

λ,−2χλ) + fλ]dx d̄ξdk +O(1),

as λ goes to infinity. To apply the generalized stationary phase theorem, we introduce the new
parameter

µ = λ−1/2m, λ = µ−2m,

and performing the change of variables

Ψµ : (x, ξ) 7→ (x, µξ)

we obtain

trPχEλ = dχλ
n/2mI(λ−1/2m) +O(1),

where we set

I(µ) =

∫

G

∫

X

∫

Rn

e
i
µψ(x,ξ,k)χ(k)σµ(x, ξ)dx d̄ξdk,

ψ(x, ξ, k) = (x− kx)ξ,

σµ = [(η2
λ,−2χλ)

2(3 − 2η2
λ,−2χλ) + fλ] ◦ Ψ−1

µ .

(9)
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As we shall see later, there exists a compact subset K ⊂ R2n, such that σµ has support in K for all
µ > 0, see (37). To get an asymptotic expansion of I(µ) as µ→ 0+ via the generalized stationary
phase theorem, we commence by examining the critical set

(10) C = {(x, ξ, k) ∈ X× R
n ×G : ψ′(x, ξ, k) = 0}

of the phase function ψ. After a straightforward computation we obtain

C = {(z, k) ∈ Ω0 ×G : kz = z} ,
where we put z = (x, ξ), and

Ω0 = {(x, ξ) ∈ X × R
n : 〈Ax, ξ〉 = 0 for all A ∈ g} ,

g being the Lie algebra of G. 〈·, ·〉 denotes the Euclidean product in Rn. Note that Ω0 is invariant
under the Hamiltonian action of G on the cotangent space T ∗(X) given by (x, ξ) 7→ (kx, kξ), as
well as homogeneous with respect to x and ξ. It has the following interpretation in terms of the
Hamiltonian action of G on T ∗(X). If (A1, . . . , Ad) is a basis of g, let

J : T ∗(X) ≃ X × R
n → g ≃ R

d, (x, ξ) → (〈A1x, ξ〉 , . . . , 〈Adx, ξ〉),
be the associated momentum map, and denote by

Ω0/G = J
−1({0})/G

the symplectic quotient of T ∗(X) at level zero. This quotient is naturally related to the critical
set of the phase function in question, and we shall prove that Nχ(λ) is asymptotically determined
by a certain volume of the quotient Ω0/G. Now, the major difficulty in applying the generalized
stationary phase theorem in our setting stems from the fact that, due to the singular orbit structure
of the underlying group action, the zero level Ω0 of the momentum map, and, consequently, the
considered critical set C, are in general singular varieties. In fact, if the G-action on T ∗(X) is
not free, the considered momentum map is no longer a submersion, so that Ω0 and Ω0/G are not
smooth anymore. To circumvent this difficulty, we will partially resolve the singularities of C by
constructing a partial resolution of Ω0, which takes into account the singular orbit structure of the
underlying G-action, and then apply the stationary phase theorem in the resolution space. 2

In what follows, we shall therefore briefly recall some basic notions of the theory of compact
group actions. For a detailed exposition, we refer the reader to [1] or [17]. Let G be a compact Lie
group acting locally smoothly on some n-dimensional C∞-manifold M , and denote the stabilizer,
or isotropy group, of x ∈M by

Gx = {k ∈ G : k · x = x}.
The orbit of a point x ∈ M under the action of G will be denoted by Ox. Assume that M/G is
connected. One of the main results in the theory of compact group actions is the following

Theorem 2 (Principal orbit theorem). There exists a maximum orbit type G/H for G on M .
The union M(H) of orbits of type G/H is open and dense, and its image in M/G is connected.

Proof. See [1], Theorem IV.3.1. �

2As we shall see in Section 5,

σµ(x, ξ)−→1{a2m≤1}(x, ξ) as µ → 0+,

where 1A stands for the characteristic function of the set A. By homogeneity, a2m(0, 0) = 0, so that zero is contained
in the support of 1{a2m≤1}. In general, σµ is therefore not supported away from the set of singular points of C,

since (0, 0) is always a singularity of Ω0 in case that 0 ∈ X.
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Orbits of type G/H are called of principal type, and the corresponding isotropy groups are
called principal. A principal isotropy group has the property that it is conjugated to a subgroup
of each stabilizer of M . The following result says that there is a stratification of the considered
G-space into orbit types.

Theorem 3. Let K be a subgroup of G, and denote the set of points on orbits of type G/K by
M(K). Then M(K) is a topological manifold, which is locally closed. Furthermore, M(K) consists
of orbits of type less than or equal to type G/K. The orbit map M(K) →M(K)/G is a fiber bundle
projection with fiber G/K and structure group N(K)/K.

Proof. See [1], Theorem IV.3.3. �

Let now Mτ denote the union of non-principal orbits of dimension at most τ .

Theorem 4. If κ is the dimension of a principal orbit, then dimM/G = n−κ, and Mτ is a closed
set of dimension at most n− κ+ τ − 1.

Proof. See [1], Theorem IV.3.8. �

Here the dimension of Mτ is understood in the sense of general dimension theory. In what
follows, we shall write SingM = M −M(H) = Mκ. Clearly,

SingM = M0 ∪ (M1 −M0) ∩ (M2 −M1) ∪ · · · ∪ (Mκ −Mκ−1),

where Mi −Mi−1 is precisely the union of non-principal orbits of dimension i, and M−1 = ∅, by
definition. Note that

Mi −Mi−1 =
⋃

j

M(Hij)
, dimG/Hi

j = i,

is a disjoint union of topological manifolds of possibly different dimensions. We apply this theory
now to the case where M = Rn, and G is a compact subgroup of O(n).

Definition 3. Let G/H0 be the principal orbit type of the action of G ⊂ O(n) on Rn, and denote
by κ the dimension of G/H0.

Since X is open in Rn, it has the same principal orbit type than Rn. Now, even if Ω0 is not a
smooth manifold, it can be shown that it has a Whitney stratification into smooth submanifolds,
see [20], Theorem 8.3.1, which corresponds to the stratification of T ∗(X) and Rn into orbit types.
In particular, the strata of Ω0 are submanifolds of R2n, and Ω0 admits a principal orbit type, too.

Proposition 2. Let Reg Ω0 = Ω0(H1)
be the principal stratum of Ω0. Then Reg Ω0 is an open

dense subset of Ω0, and a submanifold of X×Rn of codimension κ. Moreover, for z ∈ Reg Ω0 one
has

(11) Tz(Reg Ω0) = (Jgz)⊥, where J =

(
0 1n

−1n 0

)
.

Futhermore, H1 is conjugated to H0, and thus

Reg Ω0 = {z ∈ Ω0 : Gz is conjugated to H0} .
In particular, if (x, ξ) ∈ Ω0, and if Ox or Oξ are of type G/H0, then (x, ξ) ∈ Reg Ω0.

To prove the proposition, we need the following

Lemma 2. Assume that (x, ξ) ∈ Ω0. If Ox is of principal orbit type in Rn, then Gx ⊂ Gξ.
If Oξ is of principal orbit type in Rn, then Gξ ⊂ Gx.
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Proof. Let (x, ξ) ∈ Ω0, that is, ξ ∈ NxOx, where NxOx denotes the normal space to the G-orbit
Ox at the point x, which is a vector subspace in Rn. Assume now that Ox is of principal type.
Denote by Vε the open ε-ball in NxOx, and consider the linear tube

G×Gx Vε −→ G · Vε, [g, v] → gv,

around Ox, see [1], Corollary II.5.2. By loc. cit., Theorem IV.3.2, Gx acts trivially on Vε, and
consequently also on NxOx, and the assertion follows. To see this directly, one can also argue
as follows. Let (x, ξ) ∈ Ω0, so that ξ ∈ (gx)⊥. If g ∈ Gx, then gξ ∈ (gx)⊥. Thus (g − 1)ξ ∈
(gx)⊥. We claim that if Ox is of principal orbit type in Rn, then (g − 1)ξ ∈ gx, which will yield
(g − 1)ξ = 0, and prove the inclusion Gx ⊂ Gξ. Now, by [17], Theorem 4.19, the canonical
projection π : Rn(H0) ։ Rn(H0)/G is a smooth submersion. Since the preimage of the tangent space

of a smooth manifold under a submersion is equal to the tangent space of the preimage of the
considered manifold at the given point, ker dxπ = gx. Moreover, since M(H0) is an open set of Rn,
one can differentiate the relation

π(gy) = π(y),

with respect to variable y at x to obtain dgxπ ◦ g = dxπ. Since gx = x, dxπ ◦ (g − 1) = 0. This
proves that the image of (g − 1) is contained in kerdxπ = gx. �

Proof of Proposition 2. The first part of the statement follows from the references previously given,
while the characterization of the tangent space is obtained by observing that dimReg Ω0 = 2n−κ.
By the previous lemma, (Rn×Rn(H0)

)∩Ω0 is a non-empty open subset of Ω0 consisting of orbits of

type G/H0. As Reg Ω0 is open and dense in Ω0, it must intersect (Rn×Rn(H0)
)∩Ω0, and therefore

consist of orbits of type G/H0. �

In what follows, we will denote by Sing Ω0 the complement of Reg Ω0 in Ω0. The next lemma
will provide us with a suitable parametrization of Reg Ω0.

Lemma 3. The sets {(x, ξ) ∈ Reg Ω0 : x ∈ Sing Rn}, {(x, ξ) ∈ Reg Ω0 : ξ ∈ Sing Rn} have measure
zero in Reg Ω0 with respect to the induced volume form on Reg Ω0.

Proof. We shall show that N = {(x, ξ) ∈ Ω0 : x ∈ Sing Rn} is a closed set in Ω0 of dimension at
most 2n− κ− 1. Indeed, with M = Rn, and notations as above,

N =

κ⋃

i=0

{(x, ξ) ∈ Ω0 : x ∈Mi −Mi−1} =

κ⋃

i=0

⋃

j(i)

{
(x, ξ) ∈ R

2n : x ∈ R
n
(Hij)

, ξ ∈ NxOx

}
,

where the union over j(i) ranges over all non-principal orbit types G/Hi
j with dimG/Hi

j = i. By
the previous theorem, dim Rn

(Hij)
≤ dimMi ≤ n− κ+ i− 1, and in addition, dimNxOx = n− i for

all x ∈ Rn
(Hij)

. Consequently,
{

(x, ξ) ∈ R2n : x ∈ Rn
(Hij)

, ξ ∈ NxOx

}
is a subset of Ω0 of dimension

at most 2n − κ − 1. Since for orthogonal group actions there are only finitely many orbit types,
the union over j(i) is finite, and the assertion of the lemma follows. �

Finally, for future reference we note the following

Lemma 4. The set

Reg C = {(z, k) ∈ Reg Ω0 ×G : kz = z}
is a smooth submanifold of dimension 2n+ d− 2κ, and for (z, k) ∈ Reg C,

T(z,k) Reg C = {(α,Ak) : α ∈ Tz Reg Ω0, A ∈ G and (1− k)α+Az = 0} .
Proof. See [4], Lemma 3.2. �



14 ROCH CASSANAS AND PABLO RAMACHER

In particular note that if (z, k) belongs to Sing C, the complement of Reg C in C, then z must
necessarily lie in Sing Ω0. After these preliminary remarks, we are now ready for the analysis of
I(µ).

4. Phase analysis and partial desingularization

We shall now start with the computation of an asymptotic formula for I(µ) via the generalized
stationary phase theorem by partially resolving the singularities of the critical set

C = {(x, ξ, k) ∈ X× R
n ×G : ψ′(x, ξ, k) = 0}

of the phase function ψ(x, ξ, k) = 〈x− kx, ξ〉. Such a resolution will be given by a proper R-analytic

map ζ : M̃ →M of some smooth manifold M̃ onto M = Rn, inducing a transformation ζ : C̃ → C
such that C̃ is a partially desingularized subvariety of M̃ , and ζ induces an isomorphism of real
analytic manifolds ζ−1(Reg C) → Reg C, where Reg C denotes the set of nonsingular points of C.
By performing such a resolution we will be led to a new phase function, whose critical set is no
longer a singular variety. As before, denote by Rn(H0)

the union of all orbits of principal type G/H0

in Rn. We will construct an explicit resolution of C̃ by constructing a resolution of Ω0 first, under
the following

Assumption 1. The set Sing Rn = Rn \ Rn(H0)
is included in a strict vector subspace F of Rn of

dimension r < n.

Remark 1. Particular cases of Assumption 1 are
i) Transitive actions on the sphere. For any compact subgroup of O(n) acting transitively

on the (n − 1)-dimensional sphere, Sing Rn = {0}. The list of compact, connected Lie groups
acting transitively and effectively on spheres has been found by Montgomery and Samelson [19]. It
includes all the holonomy groups of a simply-connected Riemannian manifold with an irreducible,
nonsymmetric metric appearing in Berger’s list, and in particular, the group SO(n) acting on Rn.

ii) Cylindrical actions. For the group of rotations around an axis in Rn, Rnsing is equal to the

rotation axis. More generally, any group conjugated to G × {1q} in O(n), where G is a compact
subgroup of O(p) acting transitively on the (p− 1)-dimensional sphere, and p+ q = n, is included.

We begin by considering the blowing-up of M = R2n with center C = {ξ1 = · · · = ξn = 0} given
by

M̃ = {(x, ξ, [µ]) ∈M × RP
n−1 : ξiµj = ξjµi, i < j},

together with the monoidal transformation

ζM : M̃ −→M, (x, ξ, [µ]) 7→ (R0x,R0ξ),

with R0 ∈ O(n) such that
R0(R

r × {0}) = F.

Covering M̃ with the charts M̃j = M̃ ∩ (M × Uj), where Uj =
{
[µ] ∈ RP

n−1 : µj 6= 0
}
, one

obtains in M̃j the local coordinates

xi, i = 1, . . . , n, ηk =
µk
µj
, ηj = ξj , k = 1, ∧. . ., n,

and we write

ϕ̃j : R
2n −→ M̃j , (x, η) 7→ (x, ηj(η1, . . . , 1, . . . , ηn), [η1 : · · · : 1 : · · · : ηn]).

Now, the total transform of Ω0 is given by Ω̃tot
0 = ζ−1

M (Ω0), and contains the exceptional divisor

E = ζ−1
M (C), while the strict transform of Ω0 in the j-th chart is locally given by

Ω̃st
0 =

{
(x, η) ∈ R

2n : 〈AR0x,R0(η1, . . . , 1, . . . , ηn)〉 = 0, A ∈ g
}
.
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For j = r+1, . . . , n, it is a non-singular variety, since in this case the condition (x, η) ∈ Ω̃st
0 implies

that (R0x,R0(η1, . . . , 1, . . . , ηn)) ∈ Reg Ω0 by Assumption 1, and Proposition 2. By functoriality,

the G-action on M lifts to a G-action on M̃ . To construct a partial resolution for C, we put
N = M × G, Ñ = M̃ × G, and ζN : Ñ → N, (x, ξ, [µ], k) 7→ (x, ξ, k). Using the coordinates
introduced above, we see that the strict transform of C with respect to ζN is locally given by

C̃st = {(x, η, k) ∈ Ω̃st
0 ×G : (k − 1)R0x = 0, (k − 1)R0(η1, . . . , 1, . . . , ηn) = 0}.

For j = r + 1, . . . , n, G acts on Ω̃st
0 only with one orbit type, so that in this case C̃st must be

non-singular. Let now I(µ) be defined as in (9). Since each chart M̃j completely covers M̃ except
for a set of measure zero, one has

I(µ) =

∫

G

∫

R2n

eiψ̃j(x,η,k)/µσ̃µ,j(x, η)χ(k)|ηn−1
j | dxd̄η dk(12)

for arbitrary j, where we put ψ̃j(x, η, k) = ψ((ζM ◦ ϕ̃j)(x, η), k), σ̃µ,j(x, η) = (σµ ◦ ζM ◦ ϕ̃j)(x, η),
and took into account the fact that |detD(ζM ◦ ϕ̃j)(x, η)| = |ηn−1

j |. In what follows, we shall work

in the chart j = n, and denote ψ̃n and σ̃µ,n simply by ψ̃ and σ̃µ, respectively. Let us now introduce
the new parameter3

ν = µ/ηn.

Defining the new phase function4

ψwk : R
n × R

n−1 ×G→ R, ψwk(x, η
′, k) = 〈(1− k)R0x;R0(η

′, 1))〉
Rn
,

and taking into account (37), we write

I(µ) =
1

(2π)n

∫ E0

−E0

Iηn(µ/ηn)|ηn|n−1 dηn,

where E0 is some suitable positive number, and

(13) Iηn(ν) =

∫

G

∫

R2n−1

e
i
ν ψwk(x,η

′,k)σ̃νηn(x, η′, ηn)χ(k) dx dη′ dk.

The significance of the new phase function ψwk stems from the following proposition. It will
enable us to derive an asymptotic formula for Iηn(ν) as ν goes to zero by using the stationary
phase theorem in the region where ηn is not small. Note that, in particular, Theorem 1 will allow
us to handle the dependence of the amplitude σ̃µ in variable µ = νηn.

Proposition 3. Let Cψwk = {ψ′
wk = 0} denote the critical set of ψwk. Then

Cψwk = {(x, η′, k) ∈ R
n × R

n−1 ×G : (R0x,R0(η
′, 1), k) ∈ Reg C}.

It is a smooth submanifold of Rn×Rn−1 ×G of codimension 2κ. Moreover, at each point (x, η′, k)
of Cψwk , the transversal Hessian of ψwk defines a non-degenerate quadratic form on the normal
space N(x,η′,k)Cψwk of Cψwk in Rn × Rn−1 ×G.

Remark 2. Note that if ψwk is regarded as a function on Ñ , that is, as a function of x, η, and k,
the proposition implies that its critical set is given by the strict transform C̃st of C; moreover, its
transversal Hessian does not degenerate along C̃st.

3The idea of introducing the new parameter ν was taken from [7], Section 6. Nevertheless, Helffer and El-
Houakmi work in spherical variables, which leads to secondary critical points that were not explicitly taken into
account in their work. Our approach does not lead to secondary critical points.

4The subscript ’wk’ stands for “weak transform”.
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Proof of Proposition 3. We shall denote by (e1, . . . , en) the canonical basis of Rn. With respect to
the coordinates (x, η, k) one computes





∂xψwk(x, η
′, k) = 0 ⇐⇒ (1 − k−1)R0(η

′, 1) = 0.
∂kψwk(x, η

′, k) = 0 ⇐⇒ 〈AR0x,R0(η
′, 1)〉 = 0, ∀A ∈ g.

∂η′ψwk(x, η
′, k) = 0 ⇐⇒ 〈(1− k)R0x,R0ei〉 = 0, i = 1, . . . , n− 1.

The second equation is equivalent to the fact that (R0x,R0(η
′, 1)) ∈ Ω0. By Assumption 1,

R0(η
′, 1) /∈ F , so that using Proposition 2, we obtain that our second equation is equivalent to the

fact that (R0x,R0(η
′, 1)) ∈ Reg Ω0. Using Lemma 2, the two first equations imply that kx = x,

and therefore imply the third one. Consequently, we obtain

Cψwk = {(x, η′, k) ∈ R
n×R

n−1×G : (k−1)R0x = 0, (k−1)R0(η
′, 1) = 0, (R0x,R0(η

′, 1)) ∈ Reg Ω0}.
Next, we see immediately that Cψwk is diffeomorphic to the intersection of Reg C and (R0 ×
R0)({ηn = 1}). Thus, in order to show that Cψwk is a smooth manifold, we have to prove that
these two sets are transversal. Let (z, k) = (R0x,R0η, k) ∈ Reg C ∩ (R0 ×R0)({ηn = 1}). We need
to prove that T(z,k) Reg C 6⊂ (R0 × R0)({ηn = 0}). For this purpose, consider α = (−R0x,R0η).

This is an element of TzΩ0 = Jgz⊥ which satisfies (R0 ×R0)
−1(α) 6∈ {ηn = 0}. Moreover, we shall

see later in Lemma 7 that kz = z implies (k − 1)α ∈ gz for all α ∈ TzΩ0. Consequently, there
exists an A ∈ g such that (α,Ak) ∈ T(z,k) Reg C \ (R0 × R0)({ηn = 0}). The dimension of Cψwk
follows from Lemma 4, and the tangent space at (x, η′, k) is therefore given by
(14)
T(x,η′,k)Cψwk = {(q, p′, Ak) ∈ R

n × R
n−1 × gk : (R0(q), R0(p

′, 0), Ak) ∈ T(R0x,R0(η′,1),k)(Reg C)}.
To compute the Hessian of ψwk at a point (x0, η

′
0, k0) ∈ Cψwk , we fix a basis (A1, . . . , Ad) of g, and

use the chart α : R2n−1 × Rd → R2n−1 ×G defined by

α(x, η′, s) =

(
x, η′, exp

(
d∑

i=1

siAi

)
k0

)
.

With respect to these coordinates, the Hessian of ψwk is given by

Hess ψwk(x0, η
′
0, k0) =

(
∂2(ψwk ◦ α)

∂Xi∂Xj
(x0, η0, 0)

)

1≤i,j≤2n+d−1

which is a square matrix of size 2n + d − 1. Before entering the computations, we recall that by
(3.17) of [4] we have

(15) 〈JAz,Bz〉
R2n = 0 ∀z ∈ Ω0, ∀A,B ∈ g,

which is equivalent to

(16) 〈Ax,Bξ〉
Rn

= 〈Bx,Aξ〉
Rn

∀(x, ξ) ∈ Ω0, ∀A,B ∈ g.

Using these identities, we obtain for all (x, η′, k) ∈ Cψwk that Hess ψwk(x, η
′, k) is given by




0
〈
R0ei; (k

−1 − 1)R0ej
〉 〈

R0ei; k
−1AiR0(η

′, 1)
〉

〈R0ei; (k − 1)R0ej〉 0 −〈AjR0x;R0ei〉〈
R0ej; k

−1AiR0(η
′, 1)

〉
−〈AiR0x,R0ej〉 − 〈AiR0x,AjR0(η

′, 1)〉


 ,

where the first diagonal block is of size n, the second of size n − 1 and the third of size d; each
block has been characterized by specifying the entry of the i-th line and the j-th column. Let now

(q, p′, s) ∈ Rn × Rn−1 × Rd. We set A =

d∑

i=1

siAi. Then (q, p′, s) ∈ kerHess ψwk(x, η
′, k) if and
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only if




(1 − k)R0(p
′, 0) +AR0(η

′, 1) = 0, (a)
(k − 1)R0(q) −AR0x = λ0R0(en), (b)
〈kR0(q);AiR0(η

′, 1)〉 − 〈AiR0x;R0(p
′, 0)〉 − 〈AiR0x;AR0(η

′, 1)〉 = 0, ∀i = 1, . . . d, (c)

for some λ0 ∈ R. Taking the scalar product of (b) with R0(η
′, 1), we obtain λ0 = 0. Using (a), we

find that (c) is equivalent to the fact that 〈kR0(q), BR0(η
′, 1)〉 = 〈kR0(p

′, 0), BR0x〉 for all B in g.
Since kR0x = R0x and kR0(η

′, 1) = R0(η
′, 1), we see that for all B ∈ g,

〈kR0(q), BR0(η
′, 1)〉 = 〈kR0(p

′, 0), BR0x〉 ⇐⇒ (R0(q), R0(p
′, 0)) ∈ [Jg(R0x,R0(η

′, 1))]
⊥
.

But then, according to Lemma 4, and equation (14), we deduce that

α(kerHess ψwk(x, η
′, k)) = T(x,η′,k)Cψwk ,

which concludes the proof of the proposition. �

Using the preceding proposition, we are in position to apply Theorem 1 to the integral (13).
Nevertheless, since the integrand in (13) also depends on the parameter ν, the derivatives of
σ̃νηn(x, η) with respect to x and η′ have to be examined carefully. Indeed, while the derivatives of
χλ ◦ Ψ−1

µ and ψλ,c ◦ Ψ−1
µ behave nicely in terms of µ, the derivatives of η̃c ◦ Ψ−1

µ with respect to ξ
turn out to be more delicate.

Lemma 5. For all multiindices α, β, there exists a constant C > 0, which depends only on α and
β, such that

sup
(x,η)∈X×Rn

| ∂βx ∂αη′ σ̃νηn(x, η)| ≤ C max (1, |ν|−δ(|β|+|α|)).

Proof. With σ̃νηn(x, η) = σνηn(x, ηn(η1, . . . , 1)) = τνηn(x, (η1, . . . , 1)/ν), τµ = [(η2
λ,−2χλ)

2(3 −
2η2
λ,−2χλ) + fλ] one computes

| ∂βx ∂αη′ σ̃νηn(x, η)| = |ν|−|α||(∂βx ∂αη′ τνηn)(x, (η′, 1)/ν)|
≤ Cα,β |ν|−|α|(1 + |x|2 + (|η′|2 + 1)/ν2)(δ|β|−(1−δ)|α|)/2

≤ Cα,β |ν|−δ|α||ν|−δ|β|(ν2 + |νx|2 + |η′|2 + 1)(δ|β|−(1−δ)|α|)/2

≤ Cα,β |ν|−δ(|α|+|β|)(ν2 + |νx|2 + |η′|2 + 1)δ|β|/2.

Since by (37) σµ has support in a compact set independent of µ, we obtain an estimate of order

O(1) for large ν, and one of order O(ν−δ(|α|+|β|)) for small ν. �

It is interesting to note that similar bounds for ∂αξ ∂
β
x σµ do not exist; indeed, the fact of

considering only differential operators which are transversal to Reg C in the variable ξ turns out to
be decisive. We can now give an asymptotic expansion for I(µ).

Theorem 5. There exists a constant C > 0 independent of µ such that for all µ > 0, and all
δ ∈ (1/4, 1/2),

∣∣∣I(µ) − (2πµ)κL0(µ)
∣∣∣ ≤ Cµκ+1−2δ,

where κ is given by Definition 3, and

L0(µ) =
1

(2π)n

∫

0≤|ηn|≤E0

∫

Cψwk

χ(k)σ̃µ(x, η
′, ηn)

|det ψ′′
wk(x, η

′, k)|N(x,η′,k)Cψwk
|1/2 dσCψwk (x, η′, k)|ηn|n−κ−1dηn.
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Proof. In view of Proposition 3, we can apply Theorem 1 to the integral Iηn(ν) which was defined
in (13). Consequently, for each N ∈ N, there exists a constant CN > 0 independent of ηn such
that

∣∣∣Iηn(ν) − (2π|ν|)κ
N−1∑

j=0

|ν|jQj(ηn)
∣∣∣ ≤ CN |ν|N sup

|α|+|β|≤2N

∥∥∥∂αη′ ∂βx σ̃νηn
∥∥∥
∞,X×Rn

,

as well as constants C̃j > 0 independent of ηn, such that

|Qj(ηn)| ≤ C̃j sup
|α|+|β|≤2j

∥∥∥∂αη′ ∂βx σ̃νηn
∥∥∥
∞,X×Rn

,

where, in particular,

Q0(ηn) =

∫

Cψwk

χ(k)σ̃νηn(x, η′, ηn)

|detψ′′
wk(x, η

′, k)|N(x,η′,k)Cψwk
|1/2 dσCψwk (x, η′, k).

Now, by the previous lemma, for |ν| ≤ 1 one has

sup
|α|+|β|≤2N

∥∥∥∂αη′ ∂βx σ̃νηn
∥∥∥
∞,X×Rn

≤ c1|ν|−2Nδ,

where c1 is some constant depending only on N . Thus, if |ν| ≤ 1, we obtain

∣∣∣Iηn(ν) − (2π|ν|)κQ0(ηn)
∣∣∣ =

∣∣∣Iηn(ν) − (2π|ν|)κ


N−1∑

j=0

|ν|jQj(ηn) −
N−1∑

j=1

|ν|jQj(ηn)



∣∣∣

≤ CN |ν|N sup
|α+β|≤2N

∥∥∥∂αη′ ∂βx σ̃νηn
∥∥∥
∞,X×Rn

+
∣∣∣(2π|ν|)κ

N−1∑

j=1

|ν|jQj(ηn)
∣∣∣

≤ c2|ν|N(1−2δ) + c3|ν|κ
N−1∑

j=1

|ν|j(1−2δ)

(17)

with constants ci > 0. Next, let us fix ε > 0, and write

I(µ) = J1(µ) + J2(µ),

where

J1(µ) =

∫

ε≤|ηn|≤E0

Iηn(µ/ηn)|ηn|n−1 dηn,

J2(µ) =

∫

|ηn|≤ε

Iηn(µ/ηn)|ηn|n−1 dηn.

Since Iηn(µ) is uniformly bounded in ηn and µ,

(18) |J2(µ)| ≤ c4ε
n,

where c4 is independent of ηn and µ. Now, according to equation (17), if ε ≥ µ, then
∣∣∣J1(µ) − (2πµ)κ

∫

ε≤|ηn|≤E0

Q0(ηn)|ηn|n−1−κdηn

∣∣∣

≤ C1

N−1∑

j=1

µκ+j(1−2δ)

∫

ε≤|ηn|≤E0

|ηn|n−1−κ−j(1−2δ)dηn + C2µ
N(1−2δ)

∫

ε≤|ηn|≤E0

|ηn|n−1−N(1−2δ)dηn
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for some constants Ci > 0. One easily computes that
∣∣∣∣∣

∫

ε≤|ηn|≤E0

|ηn|n−1−κ−j(1−2δ)dηn

∣∣∣∣∣ ≤ C3 max{1, εn−κ−j(1−2δ)},

∣∣∣∣∣

∫

ε≤|ηn|≤E0

|ηn|n−1−N(1−2δ)dηn

∣∣∣∣∣ ≤ C3 max{1, εn−N(1−2δ)},

so that if we take ε = µ, which ensures that |ν| ≤ 1 for J1(µ), we obtain
∣∣∣J1(µ)− (2πµ)κ

∫

µ≤|ηn|≤E0

Q0(ηn)|ηn|n−1−κdηn

∣∣∣ ≤ C1 max{µκ+1−2δ, µn}+C2 max{µN(1−2δ), µn}.

As the dimension of an orbit of G ⊂ O(n) in Rn is at most n− 1, one necessarily has κ ≤ n− 1,
yielding µn = O(µκ+1) as µ goes to zero. Therefore, by choosing N large enough, and taking
equation (18) together with

(2πµ)κ
∫

0≤|ηn|≤µ

Q0(ηn)|ηn|n−1−κdηn = O(µn)

into account, one gets
∣∣∣I(µ) − (2πµ)κ

∫

0≤|ηn|≤E0

Q0(ηn)|ηn|n−1−κdηn

∣∣∣ ≤ Cµκ+1−2δ.

The proof of the theorem is now complete. �

Remark 3. Note that the strict transform of the critical set C of ψ is locally given by

C̃st = {(x, η, k) ∈ R
2n ×G : (R0x,R0(η

′, 1), k) ∈ Reg C} ≃ Cψwk × R.

The first coefficient in the expansion of Theorem 5 can therefore also be expressed as

(19) L0(µ) =
1

(2π)n

∫

C̃st

χ(k)σ̃µ(x, η)|ηn|n−κ−1

|det ψ′′
wk(x, η

′, k)|N(x,η′,k)Cwk
|1/2 dσC̃(x, η, k).

5. Computation of the leading term

In this section, we shall address the question of computing the leading coefficient L0(µ) in the
expansion of I(µ). The main result of this section is the following

Proposition 4. One has

(20) L0(µ) =
1

(2π)n
[̺χ|H0

: 1]

∫

Reg Ω0

σµ(z)
dσReg Ω0(z)

volOz
,

where dσReg Ω0 is the Riemannian measure on Reg Ω0, and volOz denotes the Riemannian volume
of the G-orbit of z. In particular, the integral on the right hand side of (20) is convergent.

Note that Reg Ω0 is not compact; nevertheless, the existence of the integral in (20) will be
deduced on basis of the partial desingularization of C accomplished in the previous section. Let us
start proving Proposition 4, and introduce first certain cut-off functions for Sing Ω0.

Definition 4. Let K be compact subset in R2n as in (37), ε > 0, and denote by vε the characteristic
function of the set

(Sing Ω0 ∩K)2ε =
{
z ∈ R

2n : |z − z′| < 2ε for some z′ ∈ Sing Ω0 ∩K
}
.
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Consider further the unit ball B1 in R2n, and a function ι ∈ C∞
c (B1) with

∫
ιdz = 1, and set

ιε(z) = ε−2nι(z/ε). Clearly
∫
ιεdz = 1, supp ιε ⊂ Bε, and we define

uε = vε ∗ ιε.
One can then show that uε ∈ C∞

c ((Sing Ω0∩K)3ε), and uε = 1 on (Sing Ω0∩K)ε, together with

| ∂αz uε| ≤ Cαε
−|α|,

where Cα is a constant which depends only on α and n, see Hörmander [15], Theorem 1.4.1.

Next, we shall prove

Lemma 6. Let α ∈ C∞
c (R2n). Then the limit

lim
ε→0

∫

Reg C

χ(k)[α(1 − uε)](z)

|det ψ′′(z, k)|N(z,k) Reg C |1/2
dσReg C(z, k)

exists and is finite. In particular, one has

(21) L0(µ) =
1

(2π)n
lim
ε→0

∫

Reg C

χ(k)[σµ(1 − uε)](z)

|det ψ′′(z, k)|N(z,k) Reg C |1/2
dσReg C(z, k).

where dσReg C is the Riemannian measure on Reg C.

Proof. With uε as in the previous definition, let us define

Iε(µ) =

∫

G

∫

X

∫

Rn

e
i
µψ(x,ξ,k)χ(k)[α(1 − uε)](x, ξ)dx d̄ξdk.

Since (x, ξ, k) ∈ Sing C implies (x, ξ) ∈ Sing Ω0, a direct application of the generalized theorem of
the stationary phase for fixed ε > 0 gives

(22) |Iε(µ) − (2πµ)κL0(µ, ε)| ≤ Cεµ
κ+1−2δ

for some δ ∈ [0, 1/2), where Cε > 0 is a constant depending only on ε, and

L0(µ, ε) =
1

(2π)n

∫

Reg C

χ(k)[α(1 − uε)](z)

|det ψ′′(z, k)|N(z,k) Reg C |1/2
dσReg C(z, k).

If α is independent of µ, on has δ = 0. For α = σµ, the stationary phase theorem has to be applied
on G×X× Sn−1, and δ ∈ (1/4, 1/2). On the other hand, applying Theorem 5 to Iε(µ) instead of
I(µ), we obtain again an asymptotic expansion of the form (22) for Iε(µ), where now, according
to (19), the first coefficient is given by

L0(µ, ε) =
1

(2π)n

∫

C̃st

χ(k)[α(1 − uε) ◦ ζM ◦ ϕ̃n](x, η)|ηn|n−κ−1

|det ψ′′
wk(x, η

′, k)|N(x,η′,k)Cwk
|1/2 dσC̃(x, η, k).

Since the first term in the asymptotic expansion (22) is uniquely determined, the two expressions
for L0(µ, ε) must be identical. The statement of the lemma now follows by the Lebesgue theorem
on bounded convergence, by which, in particular,

lim
ε→0

1

(2π)n

∫

C̃st

χ(k)[σµ(1 − uε) ◦ ζM ◦ ϕ̃n](x, η)|ηn|n−κ−1

|det ψ′′
wk(x, η

′, k)|N(x,η′,k)Cwk
|1/2 dσC̃(x, η, k) = L0(µ).

�

Remark 4. Note that existence of the limit in (21) has been established by partially resolving the
singularities of the critical set C, the corresponding limit being given by the absolutely convergent
integral (19).
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Lemma 7. Let α be a smooth, compactly supported function on Reg Ω0. Then
∫

Reg C

χ(k)α(z)

|det ψ′′(z, k)|N(z,k) Reg C |1/2
dσReg C(z, k) = [̺χ|H0

: 1]

∫

Reg Ω0

α(z)
dσReg Ω0(z)

Vol Oz
.

Proof. The main difficulty consists in computing the determinant of the transversal Hessian, which
will be accomplished by recuring to previous computations done in [4]. Thus, let (z, k) be a fixed
point in Reg C, and choose an appropriate basis (A1, . . . , Ad) for g as follows. If κ denotes the
dimension of Oz , let

(A1, . . . , Aκ) be an orthonormal basis of (TeGz)
⊥,

(Aκ+1, . . . , Ad) be an orthonormal basis of TeGz ,

where orthogonality is defined with respect to the scalar product

〈〈A,B〉〉 = tr(tAB)

for arbitrary linear maps A and B in Rn. From [4] we recall that

det

(
ψ′′(z, k)|N(z,k)Reg C

i

)
= det

(A|
F⊥

i

)
,

where A = Hess ψ(z, k) denotes the Hessian of ψ with respect to the coordinates (z, s) →
(z, exp(

∑d
i=1 siAi)k), and

(23) F =

{
(α, s) ∈ R

2n × R
d : (k − 1)α+

d∑

i=1

siAiz = 0

}
.

Next, let (B1, . . . , Bκ) be in g such that (B1z, . . . , Bκz) is an orthonormal basis of gz. For j =
1, . . . , κ, we define

(24) εj = (JBjz, 0), ε′j = ((k−1 − 1)Bjz, 〈Aiz,Bjz〉 , 0), (i = 1, . . . , κ).

Then (ε, ε′) constitutes a basis of F⊥, see [4], Lemma 3.3. In what follows, we shall compute A|
F⊥

in this basis. Writing αj = (kBjx,Bjξ) we find

(25) Aεj = ((k−1 − 1)(1 − Πgz)αj , 0) +

κ∑

r=1

〈αj , Brz〉 ε′j ,

where Πgz is the orthogonal projection onto the space gz in R2n. We state now certain relations
that will be crucial for the rest of the computation. For all (z, k) ∈ Reg C, we have

(26) [k,Πgz] = 0, [J, k] = 0.

(27) rank [(k − 1)(1 − Πgz)] ⊂ Jgz.

The first equality follows easily from the relations k−1
gk = g and kz = z, while the second simply

says that k is symplectic as a Hamiltonian action in R2n. In order to establish (27), we differentiate
the identity

π(kz) = π(z)

with respect to z ∈ Ω0, and obtain (k − 1)α ∈ ker dzπ = gz for all α in TzΩ0, where π denotes
the canonical projection of R2n

(H0)
onto the quotient by G. The inclusion (27) now follows by using

(11). Coming back to (25), we get

Aεj =

κ∑

r=1

−
〈
J(k−1 − 1)αj , Brz

〉
εr +

κ∑

r=1

〈αj , Brz〉 ε′r.



22 ROCH CASSANAS AND PABLO RAMACHER

Using (15), and the fact that (B1z, . . . , Bκz) is orthonormal, we obtain

(28) Aεj =
κ∑

r=1

〈
(1 − k)(1 − k−1)Bjx,Brξ

〉
εr +

κ∑

r=1

[〈(k − 1)Bjx,Brx〉 − δjr ]ε
′
r,

where δjr is the Kronecker symbol. In the same way we obtain

Aε′j =

κ∑

r=1

−
〈
J(k−1 − 1)βj +

1

2
(k−1 + I)Cjz,Brz

〉
εr +

κ∑

r=1

〈βj , Brz〉 ε′r,

where

Cj =

κ∑

r=1

〈Arz,Bjz〉Ar, βj = (k−1 − 1)(−kBjξ,Bjx) −
1

2
(Cjξ, Cjx).

Let now f : gz → gz be defined by

(29) f(z̃) =
κ∑

r=1

〈Arz, z̃〉Arz, ∀z̃ ∈ gz,

and let

Λ =
(
(k − 1)(k−1 − 1) + f

)
|gz

be the restriction of the map (k − 1)(k−1 − 1) + f to gz. Note that Λ plays a crucial part in the
computations of [4]. Using again (15), one easily gets

Aε′j =
κ∑

r=1

〈(
k−1 0
0 1n

)
ΛBjz,Brz

〉
εr −

κ∑

r=1

〈(
0 1n
0 0

)
ΛBj , Brz

〉
ε′r,

where the matrices have an obvious meaning. Together with (28), the last equation implies that
the matrix of A in the basis (ε, ε′) is given by

(30)




〈
(1 − k)(1− k−1)Bjx,Biξ

〉 〈(
k−1 0
0 1n

)
ΛBjz,Biz

〉

〈(k − 1)Bjx,Bix〉 − δij −
〈(

0 1n
0 0

)
ΛBj, Biz

〉


 .

Let Λ0 be the matrix of Λ in the basis (B1z, . . . , Bκz). Then (30) is equal to



〈
(1− k)(1 − k−1)Bjx,Biξ

〉 〈(
k−1 0
0 1n

)
Bjz,Biz

〉

〈(k − 1)Bjx,Bix〉 − δij −
〈(

0 1n
0 0

)
Bjz,Biz

〉


 .

(
1κ 0
0 Λ0

)
.

Multiplying by i, and shifting the two columns, we obtain

det

(
ψ′′(z, k)|N(z,k)C0

i

)
= det (Λ) · D,

where

(31) D = det

( 〈
(k−1 − 1)Bjx,Bix

〉
+ δij

〈
(k − 1)(k−1 − 1)Bjξ, Bix

〉

−〈Bjξ, Bix〉 〈(k − 1)Bjx,Bix〉 + δij

)
.

We are going to show that D = 1. For this, we introduce the notation

U =
(
B1x . . . Bκx

)
, V =

(
B1ξ . . . Bκξ

)
,

where Bjx is taken as a column vector in the canonical basis of Rn. U and V are therefore matrices
of size n× κ.
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Lemma 8. For all k ∈ G we have

(a) tUU +t V V = 1κ;
(b) tUV =t V U ;
(c) k commutes with U tU , V tV , U tV , and V tU ;
(d) (k − 1)U tV = (k − 1)V tU ;
(e) (k − 1)(U tU + V tV ) = k − 1.

Proof. (a) says that (B1z, . . . , Bnz) is orthonormal. (b) comes from (16). Next, let us denote
by X the matrix X =

(
B1z . . . Bκz

)
. Then XtX is the matrix of Πgz in the canonical basis

of R2n. Moreover,

XtX =

(
U tU U tV
V tU V tV

)
.

Therefore the property [Πgz , k] = 0, see (26), is equivalent to (c). The two last properties are more
subtile. One has to note that (26) is equivalent to

Πgz(k − 1)J(1− Πgz) = (k − 1)J(1 − Πgz).

By expressing this in terms of matrices, one easily obtains (d) and (e). �

Coming back to the proof of Lemma 7, we rewrite equation (31) as

D = det

(
tU(k − 1)U + 1κ

tV (k−1 − 1)(k − 1)U
−tV U tU(k−1 − 1)U + 1κ

)
= det

(
a b
c d

)
,

where we replaced k−1 by k. We claim that the blocks c and d commute. Indeed,

cd = −tV U tU(k−1 − 1)U −t V U,
dc = −tU(k−1 − 1)U tV U −t V U = −tU(k−1 − 1)V tUU −t V U,

by (d) of Lemma 8. By (c) of Lemma 8, (k−1 − 1) commutes with V tU , and since tUV =t V U ,
by (b), we get [c, d] = 0. Therefore, D = det(ad − bc). Using (a) and (d) of Lemma 8, it is then
a straightforward computation to show that in fact, ad− bd = 1κ, yielding D = 1. We have thus
shown the equality

det

(
ψ′′(z, k)|N(z,k)C0

i

)
= det

(
(k − 1)(k−1 − 1)|gz + f

)
,

where the map f : gz → gz was defined in (29). The rest of the proof of Lemma 7 now follows by
the argument given in [4], Section 3.3.2. �

To finish proving Proposition 4, we note that, as a consequence of Lemmata 6 and 7, the limit

lim
ε→0

∫

Reg Ω0

[α(1 − uε)](z)
dσReg Ω0(z)

Vol Oz

exists for any α ∈ C∞
c (R2n) and is finite. Assume now that α is non-negative. Since |uε| ≤ 1, the

Lemma of Fatou implies
∫

Reg Ω0

lim
ε→0

[α(1 − uε)](z)
dσReg Ω0(z)

Vol Oz
≤ lim

ε→0

∫

Reg Ω0

[α(1 − uε)](z)
dσReg Ω0(z)

Vol Oz
<∞,

which means that

(32)

∫

Reg Ω0

α(z)
dσReg Ω0(z)

Vol Oz
<∞ ∀α ∈ C∞

c (R2n,R+).
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In particular, if α is taken to be equal 1 on the compact set K specified in (37), we obtain

(33)

∫

Reg Ω0

|σµ(z)|
dσReg Ω0(z)

Vol Oz
≤ C

∫

Reg Ω0

α(z)
dσReg Ω0(z)

Vol Oz
<∞

for some C > 0. Now, by Lemmata 6 and 7,

(34) L0(µ) =
1

(2π)n
[̺χ|H0

: 1] lim
ε→0

∫

Reg Ω0

[σµ(1 − uε)](z)
dσReg Ω0(z)

Vol Oz
.

Since (33) implies that the integrand in (34) has an integrable majorant for arbitrary ε, we can
apply the Lebesgue Theorem of bounded convergence to obtain

L0(µ) =
1

(2π)n
[̺χ|H0

: 1]

∫

Reg Ω0

σµ(z)
dσReg Ω0(z)

Vol Oz
.

This completes the proof of Proposition 4.

So far we have shown that trPχEλ = dχλ
n/2mI(λ−1/2m) +O(1), where

(35) I(µ) =
µκ

(2π)n−κ
[̺χ|H0

: 1]

∫

Reg Ω0

σµ(z)
dσReg Ω0(z)

Vol Oz
+O(µκ+1−2δ),

δ ∈ (1/4, 1/2), and σµ = [(η2
λ,−2χλ)

2(3 − 2η2
λ,−2χλ) + fλ] ◦ Ψ−1

µ with λ = µ−2m. In particular, the
last integral exists, and is finite, so that in order to finish the computation of the leading term in
the asymptotic expansion for trPχEλ, we are left with the task of examining the latter integral.
To characterize the support of σµ, let us introduce the sets

Wλ = {(x, ξ) ∈ X× R
n : aλ < 0} ,

Ac,λ =
{
(x, ξ) ∈ X× R

n : aλ < c(hδ−ω + d)
}
, Bc,λ = X× R

n −Ac,λ,

Dc = (∂X× R
n)(c, h−2δg),

Fλ = {(x, ξ) ∈ X× R
n : χλ = 0 or ηλ,−2 = 0 or χλ = ηλ,−2 = 1} ,

RVc,λ =
{
(x, ξ) ∈ X× R

n : |aλ| < c(hδ−ω + d)
}
∪
{
(x, ξ) ∈ Dc : x ∈ X, aλ < c(hδ−ω + d)

}
.

Note that Dc =
{

(x, ξ) ∈ R2n : dist (x, ∂X) <
√
c
(
1 + |x|2 + |ξ|2

)−δ/2}
, since for

h−2δ(x, ξ)g(x,ξ)(x− y, ξ − η) = (1 + |x|2 + |ξ|2)δ
[ |ξ − η|2
1 + |x|2 + |ξ|2 + |x− y|2

]
< c

to hold for some (y, η) ∈ ∂X× Rn, it is necessary and sufficient that |x− y|2(1 + |x|2 + |ξ|2)δ < c
is satisfied for some y ∈ ∂X.

Lemma 9. For sufficiently large c > 0 one has

(i) supp fλ ⊂ RVc,λ ⊂ Ac,λ;
(ii) supp(η2

λ,−2χλ)
2(3 − 2η2

λ,−2χλ) ⊂ Ac,λ;

(iii) (η2
λ,−2χλ)

2(3 − 2η2
λ,−2χλ) = 1 on Wλ ∩ ∁X×RnRVc,λ.

Proof. As already explained in Part I, Equation (51), the support of fλ is contained in ∁X×RnFλ,
the complement of Fλ in X × Rn. Furthermore, for sufficiently large c > 0, the set ∁X×RnFλ is
contained in RVc,λ, which is a consequence of the inclusions

(36) ∁X×RnFλ ⊂ Ac,λ ∩ ∁X×RnEλ ⊂ RVc,λ,



REDUCED WEYL ASYMPTOTICS FOR PDO ON BOUNDED DOMAINS II 25

where Eλ =
{
(x, ξ) ∈ X× Rn : (x, ξ) 6∈ D4, aλ < −4hδ−ω − 8C0d

}
, see Part I, Lemma 16. Next,

we note that (η2
λ,−2χλ)

2(3 − 2η2
λ,−2χλ)(x, ξ) must be equal 1 on Wλ ∩ ∁X×RnRVc,λ, since accord-

ing to (36) we have the inclusion ∁X×RnRVc,λ ⊂ Bc,λ ∪ Eλ, and hence Wλ ∩ ∁X×RnRVc,λ ⊂
Eλ ⊂ {(x, ξ) ∈ X × Rn : χλ = ηλ,−2 = 1}, due to the fact that Wλ ∩ Bc,λ = ∅. Furthermore,
(η2
λ,−2χλ)

2(3 − 2η2
λ,−2χλ)(x, ξ) vanishes on Bc,λ, since for large c, (x, ξ) ∈ Bc,λ implies (x, ξ) 6∈

Mλ(1, h
−2δg), by the proof of the previous lemma. �

Consequently, by introducing the sets

W̃µ =Ψµ(Wµ−2m) =
{
(x, ξ) ∈ X × R

n : bµ−2m < 0
}
,

Ãc,µ =Ψµ(Ac,µ−2m) =
{
(x, ξ) ∈ X × R

n : bµ−2m < c(hδ−ω + d) ◦ Ψ−1
µ )
}
,

B̃c,µ =X × R
n − Ãc,µ,

R̃Vc,µ =Ψµ(RVc,µ−2m) =
{
(x, ξ) ∈ X × R

n : |bµ−2m | < c(hδ−ω + d) ◦ Ψ−1
µ

}

∪
{
(x, ξ) ∈ X× R

n : (x, ξ/µ) ∈ Dc, bµ−2m < c(hδ−ω + d) ◦ Ψ−1
µ

}
,

one sees that for all µ ∈ R+
∗

(37) suppσµ ⊂ Ãc,µ ⊂ K

for some sufficiently large c > 0, and some suitable compact subset K ⊂ R2n. We proceed now to
split the integral in (35) into the three integrals

∫

Reg Ω0∩fWλ

dσReg Ω0(z)

volOz
−
∫

Reg Ω0∩fWλ∩gRVc,µ

dσReg Ω0(z)

volOz

+

∫

Reg Ω0∩gRVc,µ

σµ(z)
dσReg Ω0(z)

volOz
,

(38)

where we made use of the fact that, since Wλ,RVc,λ are contained in Ac,λ, and ∁Ac,λRVc,λ ⊂Wλ,

one has Ac,λ−Wλ ∩ ∁X×RnRVc,λ = RVc,λ. The next lemma will show that the main contribution
to L0(µ) is actually given by the first integral in (38), provided that we make the following

Assumption 2. There exists a constant c > 0 such that for sufficiently small ̺ > 0, vol (∂X)̺ ≤
c̺. Furthermore, 0 6∈ ∂X.

Lemma 10. Put

R̃V(1)

c,µ =
{
(x, ξ) ∈ X × R

n : |b| < c(hδ−ω + d) ◦ Ψ−1
µ

}
,

R̃V(2)

c,µ =
{
(x, ξ) ∈ X × R

n : (x, ξ/µ) ∈ Dc, b < c(hδ−ω + d) ◦ Ψ−1
µ

}
,

so that R̃Vc,µ = R̃V(1)

c,µ ∪ R̃V(2)

c,µ. Then, as µ→ 0,
∫

Reg Ω0∩gRV
(1)

c,µ

dσReg Ω0(z)

volOz
= O(µ2δ− 1

2 ),

∫

Reg Ω0∩gRV
(2)

c,µ

dσReg Ω0(z)

volOz
= O(µ

δ
1+δ ),

for arbitrary δ ∈ (1/4, 1/2).

Proof. Let 1A denote the characteristic function of the set A. As already noted, Ω0 is homogeneous
in x and ξ, meaning that (x, ξ) ∈ Ω0 implies (sx, tξ) ∈ Ω0 for all s, t ∈ R. Furthermore, by Lemma
3, {(x, ξ) ∈ Reg Ω0 : ξ ∈ Sing Rn} is a subset of measure zero in Reg Ω0. Consequently, we can
parametrize Reg Ω0 up to a set of measure zero as follows. Take z = (x, ξ) ∈ Ω0, ξ ∈ Rn(H0)

, and let
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ξ = sη, x = rϑ be polar coordinates in Rn, and NξOξ, respectively, where r, s > 0, and η ∈ Sn−1,
ϑ ∈ Sn−κ−1. In this coordinates one computes then

∫

Reg Ω0∩gRVc,µ

dσReg Ω0(z)

volOz
=

∫

R
n
(H0)

(∫

NξOξ

1gRVc,µ
(x, ξ)

dσNξOξ(x)

volO(x,ξ)

)
dξ

=

∫ ∞

0

∫

Sn−1
(H0)

( ∫ ∞

0

∫

N1
sηOsη

1gRVc,µ
(rϑ, sη)sn−1rn−κ−1 dr dϑ

volO(rϑ,sη)

)
ds dη,

(39)

since √
det g|Reg Ω0

(r, s, ϑ, η) = sn−1rn−κ−1dϑ dη,

where g|Reg Ω0
denotes the induced metric on Reg Ω0, and dη and dϑ are the volume elements of

Sn−1 and N1
ξOξ = {v ∈ NξOξ : ‖v‖ = 1}, respectively. Note that (32) implies that

∫

NξOξ

1gRVc,µ
(x, ξ)

dσNξOξ(x)

volO(x,ξ)

is L1-integrable on Rn(H0)
as a function of ξ. Now, the condition b(x, ξ) < c(hδ−ω + d)(x, ξ/µ)

implies that |ξ| < c1, see Part I, equation (60); here, and in what follows, ci > 0 will denote
positive constants. Hence,

R̃V(2)

c,µ ⊂
{
(x, ξ) ∈ X × R

n : c0µ
ε2 ≤ |ξ| ≤ c1, dist (x, ∂X) < c2|ξ|−δµδ

}

∪{(x, ξ) ∈ X × R
n : |ξ| < c0µ

ε2}
⊂[(∂X)c3µδ(1−ε2) ×Bn(c1)] ∪ [X×Bn(c0µ

ε2)],

where Bn(̺) denotes the ball of radius ̺ in n-dimensional Euclidean space, and 1 > ε2 > 0 will be
chosen later. On the other hand, the proof of Lemma 18 in Part I implies that, for small µ, and
some 0 < ε1 < 1 to be specified later,

R̃V(1)

c,µ ⊂
{
(x, ξ) ∈ X × R

n : c4 ≤ |ξ| ≤ c1,
∣∣1 − 1/a2m(x, ξ)

∣∣ ≤ c5µ
δ−ω

}
∪ [X ×Bn(µε1 )].

Now, using the parametrization of Reg Ω0 specified above, one sees that for small ̺ > 0
∫

Reg Ω0∩[X×Bn(̺)]

dσReg Ω0(z)

volOz
=

∫ ̺

0

∫

Sn−1
(H0)

(∫

NsηOsη

1X(x)
dσNsηOsη(x)

volO(x,sη)

)
sn−1 ds dη = O(̺),

where we took into account took that volO(x,sη) is at most of order sκ for small s, and κ ≤ n− 1.

Therefore, the restriction of the integral (39) to Reg Ω0 ∩ R̃V(1)

c,µ can be estimated from above by
∫

Reg Ω0

1n
(x,ξ)∈X×Rn:c4≤|ξ|≤c1,

∣∣1−1/a2m(x,ξ)
∣∣≤c5µδ−ω

o(z)
dσReg Ω0(z)

volOz
+O(µε1 ).

Now, by letting x ∈ Rn(H0)
, ξ ∈ NxOx, and interchanging the roles of x and ξ, we obtain

∫

X∩R
n
(H0)

(∫ c1

c4

∫

N1
xOx

1n
(x′,ξ):

∣∣1−1/a2m(x′,ξ)
∣∣≤c5µδ−ω

o(x, sη)
sn−κ−1 ds dη

volO(x,sη)

)
dx

=

∫

X∩R
n
(H0)

( ∫

{ς:|ς−1|≤c5µδ−ω}

∫

N1
xOx

ς−1
( 1

ςa2m(x, η)

)n−κ
2m 1[c1,c4]((ςa2m(x, η))−

1
2m )dς dη

volO(x,(ςa2m(x,η))−1/2mη)

)
dx

≤ c6

∫

{ς:|ς−1|≤c5µδ−ω}

dς = O(µδ−ω),

where we made the change of variables ς = |ξ|−2m/a2m(x, ξ/|ξ|) = s−2m/a2m(x, η), and used the
fact that (1+ z)β− (1− z)β = O(|z|) for arbitrary z ∈ C, |z| < 1, and β ∈ R. Note that due to the



REDUCED WEYL ASYMPTOTICS FOR PDO ON BOUNDED DOMAINS II 27

ellipticity condition (3), a2m(x, η) is positive for x ∈ X. Putting ε1 = δ − ω = 2δ − 1/2 therefore
yields

∫

Reg Ω0∩gRV
(1)

c,µ

dσReg Ω0(z)

volOz
= O(µ2δ− 1

2 ).

Similarly, for small µ, the restriction of the integral (39) to Reg Ω0 ∩ R̃V(2)

c,µ can be estimated from
above by

∫

Reg Ω0

1[(∂X)
c3µ

δ(1−ε2)×Bn(c1)](z)
dσReg Ω0(z)

volOz
+O(µε2 )

=

∫

R
n
(H0)

∩(∂X)
c3µ

δ(1−ε2)

(∫

NxOx∩Bn(c1)

dσNxOx(ξ)

volO(x,ξ)

)
dx+O(µε2 )

≤ c7 vol (∂X)c3µδ(1−ε2) +O(µε2) = O(µδ(1−ε2)) +O(µε2 ) = O(µ
δ

1+δ )

by Assumption 2, where we put ε2 = δ/(1 + δ), and took into account that, since 0 6∈ ∂X,
the integrand of the last integral over x is bounded on Rn(H0) ∩ (∂X)c3µδ(1−ε2) by some constant

independent of µ. The assertion of the lemma now follows. �

Now, for x ∈ X, |ξ| > µ, the condition bµ−2m(x, ξ) < 0 is equivalent to a2m(x, ξ) < 1, due to the
ellipticity condition (3). By using arguments similar to those given in the proof of the previous
lemma one therefore computes

∫

Reg Ω0∩fWµ

dσReg Ω0(z)

volOz
≤
∫

Reg Ω0∩[X×Bn(µ)]

dσReg Ω0(z)

volOz
+

∫

Reg Ω0

1(−∞,1](a2m(z))
dσReg Ω0(z)

volOz

= O(µ) +

∫

Reg Ω0/G

1(−∞,1](a2m([z])dσReg Ω0/G([z])

= O(µ) + vol ([a−1
2m((−∞, 1]) ∩ Reg Ω0]/G),

(40)

where we took into account Equation (3.37) in [4]. Here the latter volume is defined in the sense
of [10], Section 3.H.2. This finishes the computation of the leading term. Collecting everything
together, we obtain

Proposition 5. As λ→ +∞, one has

∣∣∣ trPχEλ −
dχ[̺χ|H0

: 1]

(2π)n−κ
vol ([a−1

2m((−∞, 1]) ∩ Ω0]/G)λ(n−κ)/2m
∣∣∣ = O(λ(n−κ−1/4)/2m),

Furthermore, a similar result holds for the trace of (PχEλ)2, too.

Proof. Since trPχEλ = dχλ
n/2mI(λ−1/2m)+O(1), the assertion follows with Theorem 5 and Propo-

sition 4, together with Equations (38), (40), and Lemma 10, by taking into account that

max
δ∈(1/4,1/2)

min
( δ

1 + δ
, 1 − 2δ, 2δ − 1

2

)
=

1

4
.

Finally, if in all the previous computations Eλ is replaced by E2
λ, we obtain a similar estimate for

the trace of PχEλ · PχEλ = PχE2
λ. �
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6. Proof of the main result

As a consequence of Lemma 11 of Part I, and Proposition 5, we get the following

Theorem 6. Let NEλ
χ be the number of eigenvalues of Eλ which are ≥ 1/2 and whose eigenfunctions

are contained in the χ-isotypic component Hχ of L2(Rn), and assume that Assumptions 1 and 2
are satisfied. Then

∣∣∣NEλ
χ − dχ[̺χ|H0

: 1]

(2π)n−κ
vol ([a−1

2m((−∞, 1]) ∩ Ω0]/G)λ(n−κ)/2m
∣∣∣ = O(λ(n−κ−1/4)/2m),

as λ→ +∞. �

Similar estimates for the traces of F̃λ and Fλ can be derived as well, and using Lemma 12 of
Part I we obtain

Theorem 7. Let MFλ
χ be the number of eigenvalues of Fλ which are ≥ 1/2 and whose eigenfunc-

tions are contained in the χ-isotypic component Hχ of L2(Rn). Then under Assumptions 1 and 2
one has

∣∣∣MFλ
χ − dχ[̺χ|H0

: 1]

(2π)n−κ
vol ([a−1

2m((−∞, 1]) ∩ Ω0]/G)λ(n−κ)/2m
∣∣∣ = O(λ(n−κ−1/4)/2m),

as λ→ +∞.

Proof. The proof is similar to the one of Theorem 6; in analogy to Equation (8) one has

σl(Fλ) = (η2
2χ

+
λ )2(3 − 2η2

2χ
+
λ ) + fλ + rλ,

where rλ ∈ S−∞(h−2δg, 1), and fλ ∈ S(h−2δg, h1−2δ), everything uniformly in λ. Again we have
supp fλ ⊂ RVc,λ for sufficiently large c, and

∫ ∫
|rλ(x, ξ)| dx d̄ξ ≤ C for some constant C > 0

independent of λ, so that in order to study the asymptotic behavior of trPχFλ, we can restrict
ourselves to the integral∫

G

∫ ∫
χ(k)ei(x−kx)ξ((η2

2χ
+
λ )2(3 − 2η2

2χ
+
λ ) + fλ)(x, ξ)dx d̄ξ dk.

An application of the method of the stationary phase then yields the desired result. �

We are now in position to prove our main result. In the case G = {1}, one has Ω0 = R2n, and
we simply obtain Theorem 13.1 of [18].

Theorem 8. Let G be a compact group of isometries in Euclidean space Rn, H0 a principal
isotropy group, and X ⊂ Rn a bounded open set invariant under G. Assume that

(i) for sufficiently small ̺ > 0, vol (∂X)̺ ≤ c̺, where c > 0 is a constant independent of ̺,
and 0 6∈ ∂X;

(ii) the set Sing Rn = Rn \ Rn(H0) is included in a strict vector subspace F of Rn of dimension
r < n.

Let further A0 be a symmetric, classical pseudodifferential operator in L2(Rn) of order 2m with
principal symbol a2m that commutes with the regular representation T of G, and assume that A0

satisfies the ellipticity condition (3). Consider further the Friedrichs extension of the operator

res ◦A0 ◦ ext : C∞
c (X) −→ L2(X),

and denote it by A. Then A has discrete spectrum. Furthermore, if Nχ(λ) denotes the number
of eigenvalues of A less or equal λ and with eigenfunctions in the χ-isotypic component resHχ of
L2(X), and κ = dimH0, then

Nχ(λ) =
dχ[̺χ|H0

: 1]

(2π)n−κ
vol ([a−1

2m((−∞, 1]) ∩ Ω0]/G)λ(n−κ)/2m +O(λ(n−κ−1/4)/2m),
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where dχ denotes the dimension of any unitary irreducible representation ̺χ determined by the
character χ, and [̺χ|H0

: 1] is the multiplicity of the trivial representation in the restriction of ̺χ
to H0.

Proof. The disreteness of the spectrum was already shown in Proposition 1. Now, by Theorems 5
and 6 of Part I, there exist constants Ci > 0 independent of λ such that

NEλ
χ − C1 ≤ N (A0 − λ1,Hχ ∩ C∞

c (X)) ≤MFλ
χ + C2.

Theorems 6 and 7 then yield the estimate

∣∣∣Nχ(λ) −
dχ[̺χ|H0

: 1]

(2π)n−κ
vol ([a−1

2m((−∞, 1]) ∩ Ω0]/G)λ(n−κ)/2m
∣∣∣ = O(λ(n−κ−1/4)/2m).

The proof of the theorem is now complete. �
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Birkhäuser Boston Inc., Boston, MA, 2004.

[21] P. Ramacher, Reduced Weyl asymptotics for pseudodifferential operators on bounded domains I. The finite
group case, 2007.

[22] M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Aca-
demic Press, New York, 1975.



30 ROCH CASSANAS AND PABLO RAMACHER

[23] M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd edition, Springer–Verlag, Berlin, Heidelberg,
New York, 2001.

[24] V. N. Tulovsky and M. A. Shubin, On the asymptotic distribution of eigenvalues of pseudodifferential operators
in R

n, Math. Trans. 92 (1973), no. 4, 571–588.
[25] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit

einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), 441–479.

Roch Cassanas and Pablo Ramacher, Georg-August-Universität Göttingen, Institut für Mathematik,

Bunsenstr. 3-5, 37073 Göttingen, Germany

E-mail address: cassanas@uni-math.gwdg.de, ramacher@uni-math.gwdg.de


	1. Introduction
	2. Reduced spectral asymptotics and the approximate spectral projection operators
	3. Compact group actions and the principle of the stationary phase
	4. Phase analysis and partial desingularization
	5. Computation of the leading term
	6. Proof of the main result
	References

