GEOMETRIC AND ANALYTIC PROPERTIES OF FAMILIES OF
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ABSTRACT. We study the geometry of families of hypersurfaces in Eguchi-Hanson
space that arise as complex line bundles over curves in S? and are three-dimensional,
non—compact Riemannian manifolds, which are foliated in Hopf tori for closed curves.
They are negatively curved, asymptotically flat spaces, and we compute the complete
three—dimensional curvature tensor as well as the second fundamental form, giving
also some results concerning their geodesic flow. We show the non—existence of LP—
harmonic functions on these hypersurfaces for every p > 1 and arbitrary curves,
and determine the infima of the essential spectra of the Laplace and of the square
of the Dirac operator in the case of closed curves. For circles we also compute the
L2-kernel of the Dirac operator in the sense of spectral theory and show that it is
infinite dimensional. We consider further the Einstein Dirac system on these spaces
and construct explicit examples of T—Killing spinors on them.
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1. INTRODUCTION

In this paper we shall study certain families of hypersurfaces in Eguchi-Hanson space
that arise as complex line bundles over curves on S? ~ C U {oo}. They are three-
dimensional, open, asymptotically flat Riemannian manifolds of non—positive scalar cur-
vature which, in case of a closed curve, are foliated in Hopf tori. We describe their
geometry in detail, computing the complete three—dimensional curvature tensor as well
as the second fundamental form, and give also some results on the structure of the geo-
desic flow. Since an explicit description of the geometric properties of these hypersurfaces
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is possible, we are able to make precise statements about the spectra of the scalar Lapla-
cian and the Dirac operator and also about the existence of solutions of spinorial field
equations. In particular, we show that there are no LP—harmonic functions for every
p > 1 and arbitrary curves, and that for curves arising by Mébius transforms from closed
curves the essential spectra of the closure of the scalar Laplacian and the square of the
closure of the Dirac operator come arbitrarily close to zero. In case that the considered
curves are generalized circles in C that arise by Mobius transforms from circles in C with
center at the origin the L2-kernel of the Dirac operator in the sense of spectral theory
can be computed explicitly and we show that zero is an eigenvalue of infinite multiplicity.
As it turns out, these hypersurfaces do not admit solutions to the Einstein—Dirac system;
such solutions can only be obtained by deformation into a singular situation. Neverthe-
less, we can construct explicit examples of T—Killing spinors, which are solutions of a
generalized Killing equation for spinors.

Hopf tori have been extensively studied, see e.g. [24], and where first considered by
Pinkall [19]. If 7 : S3 — S? denotes the Hopf fibration, the inverse image of any closed
curve in S? will be an immersed torus in S, which is called a Hopf torus. Using Hopf
tori Pinkall showed that every compact Riemann surface of genus one can be conformally
embedded as a flat torus into the unit sphere S3. As a further application, and using
elastic curves in S2, he constructed new examples of compact embedded Willmore sur-
faces in R?, which are extremal surfaces for the Willmore functional [ §)dA, where $
denotes the mean curvature.

The Eguchi-Hanson metric is a four—-dimensional metric, which can be constructed
in the total space of the fibration p : T*P!(C) — P!(C) ~ S?, and since its holonomy
is contained in SU(2), it is Ricci flat and self-dual. Both the Hopf fibration 7 and the
projection p are compatible with the action of U(2) in C U {oco}, and, like the stan-
dard metric in 3, the Eguchi-Hanson metric is invariant under this action. Therefore,
its restriction to the three-dimensional projective space P3(R), which is immersed in
T*P!(C) as the set of all cotangential vectors of unit length, corresponds exactly to the
standard metric in S®. For this reason the projection p is a geometric extension of the
Hopf fibration, and the preimage of any closed curve on $? under the projection p gives
rise to a three-dimensional non—-compact Riemannian manifold foliated in Hopf tori. Its
end is of topological type T? x (0,00)/ {£1}, where T? is the two-dimensional torus.
Nevertheless, the corresponding Willmore functional turns out to be unbounded, so that
the considered hypersurfaces are not accessible to integral geometry. The interest in
Eguchi-Hanson space itself originates from a result of Schoen and Yau [20], who proved
that a complete asymptotically Euclidean four-manifold whose Ricci tensor vanishes is
necessarily flat. For Ricci flat asymptotically locally Euclidean Kéahler metrics this turns
out not to be true, the first example of such a metric being given by the Eguchi—-Hanson
metric [4].

We give now a description of the main results of this work. The Sections 2, 3, 4 and
5 are concerned with the geometry of the hypersurfaces studied, the Sections 6, 8 and
9 with the spectra of the Dirac and the Laplace operator, while Section 7 is devoted to
the study of spinorial field equations. The Eguchi-Hanson metric is described in Section
2: it depends on a real parameter ¢ > 0, thus giving rise to a one-parameter family of
Riemannian metrics g;. These metrics become degenerate along the zero section in case
that t = 0. For any curve I'(s) = 7(s)e??r(*) in CU{oco0} ~ P'(C) we consider its preimage
M3 := p~1(I') and obtain a family of hypersurfaces (M3, h), where we assume that I'(s)
is parametrized by arc length and h; denotes the induced Riemannian metric. Each of



HYPERSURFACES IN EGUCHI-HANSON SPACE 3

these hypersurfaces is a complex line bundle over I', and introducing the polar coordinates
o and ¢ in each fiber, we obtain a parametrization of M2 outside the zero section by
the coordinates s, g, ¢, see Section 3. Since the coefficients of h; do not depend on ¢,
the corresponding S'-symmetry is an isometry. We determine the inner geometry of the
hypersurfaces and in Theorem 1, page 12, the complete Ricci tensor is computed with
respect to an orthonormal frame, one eigenvalue being positive, one negative and the
third one becoming negative at infinity, yielding, for the scalar curvature, the expression

Q4(7"2+1)2
(94(r2+1)2+t4)3/2'

It is negative and tends to zero for large g and r with the order 1/0?(r? 4 1). For t # 0,
S remains regular at ¢ = 0, i.e., the scalar curvature vanishes on the zero section. In
Section 4 we turn to the study of the Levi-Civita connection of the Eguchi—Hanson space
and determine the second fundamental form of the hypersurfaces M3 with respect to the
above orthonormal frame, thus obtaining

0 0 0
=0 0 rVez==ull
K K
0 40 r24+1 “6

see Theorem 2 on page 24, and Corollary 1 on page 26, where K is the function K =
20%(r? +1)2/y/0*(r? +1)2 + t* and $ denotes the mean curvature. It is given by the
geodesic curvature k, of I' as a curve in S? according to the formula

H= 2 - ky
Q4(T2+1)2+t4

This appears to be natural, since the geometry of the vector bundle 7*P*(C) is deter-
mined by the elliptic geometry of P1(C) ~ S?. The above formula also implies that M3
is a minimal surface if and only if k, = 0, i.e., if [ is a great circle in S?. Further,
since the function o?(r? 4 1) corresponds to the distance in T*P!(C), both the scalar
curvature S and the mean curvature ), as well as the components of the Ricci tensor
and of the second fundamental form, are manifestly invariant under the action of the
isometry group U(2). Section 5 contains some results concerning the geodesic flow of the
hypersurfaces M3. So, in case I' is a circle in C with center at the origin, we are able to
compute the distance of a point in M2 to the curve I' C M2, i.e., to the zero section, see
Proposition 10 on page 30, and, in this way, to calculate the exponential growth of M3
explicitly.

In Section 6 the vanishing of the LP—kernel, p > 1, of the scalar Laplacian on the hy-
persurfaces (M3, hy) is proved for every t > 0 and every curve I' by showing the existence
of a canonical exhaustion function on the considered hypersurfaces, see Proposition 13
and Corollary 4 on page 35. The result then follows from the work of Greene and Wu
[10], who studied integrals of certain generalized subharmonic functions on connected
non—compact Riemannian manifolds admitting such a function, and showed that these
integrals cannot be bounded. For the first eigenvalue of the scalar Laplacian we obtain,
in Section 9, the estimate

MO(Mg) < t_23 t>0,

where I' is a closed curve, see Corollary 5 on page 56, since by general theory lower
bounds for the Ricci tensor of open complete manifolds imply upper bounds for the first
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eigenvalue of the Laplace operator [5]. By using the min—max principle we are also able
to determine the infimum of the essential spectrum of the closure of the Laplacian A on
(M3, hyt), obtaining
inf oess(A) < 6

for every § > 0 and arbitrary ¢ > 0 and closed curves I'. A result of Brooks [3] then implies
that in this case the hypersurfaces M2 must be of subexponential growth, generalizing the
previously obtained result. Section 7 is devoted to the study of spinorial field equations.
In [8] Friedrich and Kim showed that in dimension 3 the existence of a solution to the
Einstein Dirac system is equivalent to the existence of a so—called Weak Killing or WK
spinor. For the existence of such a spinor geometric integrability conditions that are
independent of the considered spin structure are known, and we show that, for ¢ > 0,
these conditions can never be fulfilled, implying that there cannot be any solutions to
the Einstein Dirac system on the hypersurfaces (Mg, h;) for any ¢ > 0 and any curve T,
see Proposition 15 on page 38. Nevertheless, such solutions can be constructed explicitly
with respect to the trivial spin structure in case that ¢ = 0, the manifolds considered then
being no longer complete. As remarked above, the Eguchi-Hanson metric is self-dual
and, due to this, there is a parallel spinor on Eguchi-Hanson space. By restricting this
spinor to the hypersurfaces M3 C T*P!(C) we show in Proposition 17 that there exists
a T-Killing spinor on M3 if and only if M2 is a minimal surface. The spectrum of the
Dirac operator D is studied in Section 8. There we show, by estimating the Rayleigh
quotient from above and using again the min—max principle, that the infimum of the

essential spectrum of D’ on (M3, ht) becomes arbitrarily small,
inf Gess (D7) < 6,

where 6 > 0 and I is a closed curve, see Theorem 4 on page 43, t > 0 being arbitrary;
here the involved spin structure is again the trivial one. In case that I' is a circle in
C with center at the origin, an isometric S! x S'-action is given and the L?-kernel of
the Dirac operator and of its closure decompose into the unitary representations of this
action according to the spectral decomposition of the corresponding generators i 9., i 0s,
and with respect to the trivial spin structure one obtains

Kerp2 (ﬁ) = @ Ho ® Hg,
f=—1,—2,...

the L2kernel of the Dirac operator itself being trivial. Since M{ and M3y are isometric
for every A € U(2), statements for a particular curve in C U {oo} can be generalized to
curves that arise from it by Mdbius transforms.

2. THE EGUCHI-HANSON SPACE (T*P!(C), g;)

Let G be a finite nontrivial subgroup of U(m) that acts freely on C™ \ {0}. Then
C™ /G carries an isolated quotient singularity at zero and any resolution (M, ) of C™/G
is a non—compact complex manifold. A K&hler metric g on M is said to be asymptotic to
the Euclidean metric h on C™ /G if there is a smooth surjective map f : M — C™ /G such
that f=1(0) is a connected, simply connected, finite union of compact submanifolds of M
and f induces a diffeomorphism M/f~1(0) ~ (C™/{0})/G. Under this diffeomorphism
f«(g) should satisfy

(1) fl9)=h+00™"),  Vflg)=00""), V(g =00"°
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for large r, where r is the distance from the origin and V is the flat connection in C™/G.
Such a metric is called an asymptotically locally Euclidean or ALE metric. Notice that
the topological type of the end is given by a quotient of the Euclidean space. In the
following we will mainly be concerned with the case of m = 2.

In [20] Schoen and Yau proved that a complete asymptotically Euclidean four—manifold
whose Ricci—tensor vanishes is necessarily flat. Nevertheless, a similar statement for
Ricci—flat ALE Kéhler—metrics does not hold, since, as mentioned, the topology of the
end differs from the topology of Euclidean space. An important class of Ricci—flat Kéhler
metrics which give rise to ALE spaces is given by the so—called hyperkéhler structures.
In the case of an oriented four-dimensional smooth manifold X a hyperkéahler structure
is a metric whose holonomy is contained in SU(2). A manifold with such a structure
is Ricci—flat and self-dual, and its metric is Kahler with respect to each of the three
anticommuting complex structures. Alternatively, a hyperkéhler structure on X may be
defined to be a triple of smooth, closed 2—forms o1, 02, 03 on X that can be represented
locally according to

(2) o1 =11 Nlg+ 15 N3, o9 =11 Nlg — s Ny, o3 =11 Nlg 4+ 13 N\ ly,

where (l1,...,l4) is a local oriented frame of 1-forms on X. The systematic construction
of ALE metrics with holonomy SU(2) as hyperkéhler quotients was initiated by Hitchin
[12] and carried over by Kronheimer [15, 16], who studied the spaces C2?/G for general
polyhedra groups G C SU(2) and showed the existence of hyperkahler metrics on the
resolution M for the considered groups G, giving a complete classification. For cyclic
groups these metrics are explicitly known.

The first example of a hyperkdhler ALE four—manifold was found by Eguchi and
Hanson [4]. We will now briefly proceed to describe its construction. Let m = 2 and
G = Zy and consider the mapping

d:C? — C3, (21, 20) = (23, 22, 21 29).
The image of C? under ® is
X :=Im® = {(w1,ws,w3) € C3: wywy = wg},

and ® induces a bijection ® : C2/ {41} — X so that X becomes analytically equivalent
to C?/{41}. The canonical bundle over P!(C),

H = {(l,v) eP(C)x C*:v e},

can be described explicitly as follows. If one introduces the homogeneous coordinates
[ : B] in P1(C), then the total space H consists of all equivalence classes of triples [, 3, 7]
with respect to the equivalence relation (o, 8,7) ~ (Aa, AB,~v/A), where A € C*, i. e.

H = {(a,8,7) € (C*\{0}) x C} / ~.

The one-dimensional complex tangential bundle TP!(C) is biholomorphic to the square
of the dual of the canonical bundle [18]

TPY(C) = H*® H*,
from which one obtains, for the cotangential bundle T*P*(C), the description

T*PY(C) = H* = {(a, 8,7) € (C*\ {0}) x C} / ~1,
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with the equivalence relation (o, 3,v) ~1 (Aa, AB,v/A?). Notice that H? is simply-
connected. We define now the mapping

T H2 —>Xa 77([%@7]) = (042/756277@67)'
The preimage of the point (0,0,0) under 7 is the zero section of the bundle H?. Away
from this set 7w : H2\ P}(C) — X \ {(0,0,0)} is bijective, and hence (H?, ) represents
a resolution of the singularity of C?/ {£1} at zero. Summing up one obtains the diagram

H2

C?/{£1}
where the mapping 71 is given by the formula 7 ([, 3,7]) = [/7, 8/7]. The closed
holomorphic 2-form dz; A dzy and the function uy := |z1]> + |22|* on C2 are invariant
under reflections at the origin, descend to C2/ {1} and, thus, lift to forms on H?, which
we will denote by dz1 A dze and uy as well.

We come now to the description of the Eguchi-Hanson metric. Following [17] we
consider, on the complex manifold H?, the family of real-valued functions f; € EY°(H?)
depending on the parameter ¢,

U1
fri=Ju? +t* 4 2 log ————, t>0.
' ! N ERTENE

Here the function u; : H2 — R is explicitly given by ui([a, 3,7]) = (la* + |8°) ],
from which it follows that, away from the exceptional curve, i.e., the zero section, u; is
a smooth function, and the same holds for f;. For ¢ > 0 the associated form

wp =400 f, € EM(H?)

is regular even in the exceptional curve and thus defines a Kihler form on H?2. For using
homogeneous coordinates we can define a complex analytic structure on H? as follows.
Let Uy = {[o, 3,7] : « # 0}, Ug = {[o, 3,7] : B # 0} be open subsets in H? and define
the homeomorphisms

ha :Us — C?, [a,B,7] = [1, B/, v0®] — (B/a,va?),
hg :Ua — C? [, 8,7] = [/B,1,758%] — (a/B,75%).

Since hq © hgl : hg(Ua NUB) — ho(Uy NUg) is a biholomorphic mapping, this gives a
complex analytic structure on H?. We can therefore choose the functions $ and v as
local coordinates in Uq by setting a equal to 1, so that 8§ : £P9(H?) — £ 1.9 (H?)
and 9 : £P9)(H?) — £Pa+1)(H?) are given by

0 0 = 0 = 0

0= —df + —dv, 0= —=dB+ —dy

AR T 05" " 05"
on Uy. The regularity of wy for ¢ > 0 then follows by noting that the derivatives of
f+ with respect to v,3,7 and [ become regular (note that vy = (1 + 88)+/97 ). For
example, in C, one has

03 [ /IE T + 1og |2] _ 20+ 2822 + (2t + Z2) VL + 22 b A ds.
V02 4+t +t2 4(th 4 Z2) (2 + Vit 4 2z)?
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In case that ¢ = 0 on has fy = u;, and wy becomes degenerate along the zero section.
On H? the Kihler form wy induces a Riemannian metric through the formula

gt(X,Y) == wi(X,JY), X,Y € X(H?),

where J denotes the complex structure of H?. For t # 0 (H?, g;) becomes a complete
Riemannian manifold.

The complex manifold M* := H?\ P!(C) is an open dense subset of H?, so it suffices
for the study of the geometric properties of H? to consider w; as well as the other
relevant geometric objects just on M?. Further, since m; maps M* bijectively onto
C2\ {0} / {£1}, w; can be explicitly computed on M* with respect to the coordinates
21, 22. For uy = 2121 + 2225 € EXY(R?) as a function on C? one has therefore

dup = 3" (auldzi + %dzi) € ELO(RY) @ EOL(RY),

1o 0z 0z
311,1 = Zldzl + ZQdZQ, 8u1 = Zldzl + ZQdZQ,
see e. g. [22], which yields 0 f; = (\/u? + t4/u;) Ou; and thus
t4

Wy = — { |21|2 dzy Ndz1 + |ZQ|2 dzo NdZo + 2122 dzo N\ dZq

v
uZy/uf + tt

+ 212’2 le A dfg} +Z

/0,2 t4
L {le A dfl + dZQ A dfg} .

U1
The form dz; AdZ; is expressed with respect to the coordinates z1 = x1+1iy1, 22 = T2 +1y2
by

dz; Ndz; = dx; Ndxj + dy; N dy; — i(dl‘i Ady; +dx; A dyi),
and the action of J is given by J(0,,) = 0y,, J(9y,) = —0s,. Computation of g;
restricted to M* then gives

Gl 0 _G4 _G3
B 0 G Gy -G
9= Gy G3 Go 0O ’

Gy —G4 0 G

where
Gi1 =G — H(z? +y3), Gy =G — H(x3 + v3),
Gs = H(z1ys — 1132), Gy = H(x122 + 1172),

and G, H : M* — R are the smooth functions

VA L
For later use we define the smooth function
K : M* >R, K :=G — Hu; = 4G

From this it becomes evident that g; satisfies condition (1). One further computes the
volume form dM* = w; A wy to be V(dz1 A dzy A dza A dz), eriere V = 2. By the
general theory of Kéhler manifolds [13] the Ricci—form Ric = :99dlogV then vanishes
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and it follows immediately that the Riemannian curvature tensor with respect to the
decomposition A\?(M*) = /\i(M‘l) ® A2 (M) is given by

(WL 0 0 B~ S (Wi 0
R‘( 0 W)+(B 0 )_E_( 0 0 )
where W_ and W are the negative and positive part of the Weyl tensor respectively, B is
the trace—free part of the Ricci tensor and S denotes the scalar curvature. The condition
B = 0 implies that (H?,g;) is an Einstein space and the vanishing of W_ means that
(H?,g,) is self-dual; the latter is equivalent to the statement that the bundle A (M?*) is

flat which in turn implies that there exist three parallel forms on /\3 (M*). These forms
can be chosen as w; and the two closed 2—forms o9, o3 defined by o9 + i03 = dz1 A dzs.
One can show that the triple (w1, 02, 03) may locally be written in the form (1) and thus
forms a hyperkahler structure on M* and hence on H2.

We consider now the projection

p: H? = T*P(C) — P'(C) 2 CU {o0} = 52,

which is explicitly given by [a, 8,7] — [ : ] — «/B. The function w; is invariant
under the standard action of U(2) on C? resp. C? \ {0} /{£1} ~ M*, which is given
by its matrix representation. On the other hand, U(2) acts as a group of holomorphic
transformations on C U {oo} by the so—called Mébius transform

a b _az+b
(C d)z_cz+d’
resp. on P1(C) by
(Z Z)[a:ﬁ][aa+bﬂ:ca+dﬂ].

Taking the mapping p := pom; * : C2\ {0} / {£1} — P'(C), which is given by p[z1, 2z0] =
[21 : 22], one therefore sees that

ﬁ(( Z Z ) [21722]) = < Z Z )]5[21,22],

which means that the diagram

H?\ PY(C) ——— C*\ {0} / {#1}
p -
p
P!(C)

is compatible with the group action of U(2). Since the set C?\ {0} /{£1} is mapped by
U(2) onto itself, it follows that, by extending the action of U(2) to H?, the exceptional
curve in H? must be mapped onto itself, too. The projection p : H? — P!(C) is therefore
also compatible with the U(2)-action. Since u; vanishes on the zero section, it becomes
U(2)-invariant on H 2. The Kéhler metric wy and the Riemannian metric ¢;, which are
defined by means of the function uj, are thus also invariant under U(2) in H?.
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3. HYPERSURFACES IN (T*P!(C),g:) AND THEIR INNER GEOMETRY

We now introduce certain hypersurfaces in 7*P!(C) and to this end consider for any
curve I'(s) = u(s) 4 iv(s) = r(s)e’?r®) in C U {oo} its preimage

Mg :=p~{(I) = {[[(s), 1,7] € H* : v € C},

obtaining a real three—dimensional hypersurface in H2. Let h; be the Riemannian metric
on M2 induced by g;. The three-manifold M3 is open and in case of a closed curve its
end is of topological type T2 x (0,00)/ {£1}, where T? = St x S! is the two—dimensional
torus. The hypersurfaces M3 are asymptotically flat, but no ALE spaces, since their end
is not modeled on the end of R3/G . Note that M2 is a one-dimensional complex vector
bundle over I'.

Since p : H? — P!(C) is compatible with the action of U(2), and since g; and hence h;
are invariant under this action, M3 is mapped isometrically onto M3 ., where A € U(2).
Remember that under Mobius transforms generalized circles in C are mapped again into
generalized circles.

We will now compute the inner geometry of the hypersurfaces M3 and assume from
now on that I'(s) is parametrized by arc length. Using the projection p one obtains a
parametrization W : [0, Lr) x (0,00) x [0,27) — w1 (M2 N M*), (s, 0,¢) — [21, Y1, T2, ya]
of the hypersurfaces M2 outside the zero section

MENM* ~ { [g(u(s) cosp — v(s)sin ), o(v(s) cosp + u(s)sinp), pcosp, psin go} } ,

where s is the length parameter of I' and \/y = ¢ - e’? € C* denotes the parameter of
the fiber over I'. All the following calculations will be performed in M3 N M*, which is
dense in M{. The vector fields on M3 induced by the parametrization ¥ read

9, = U, () = (g(ﬁcosgof Dsin ), o(0cosp + asin ), 0, 0),
0, =9,(0,) = (ucosgo — vsin g, vcosp + usiny, cosy, singo),

O0p =V, (0,) = ( — o(using +vcosp), —p(vsinp —ucosp), —psing, o cosgp).
Further, one has
B =i+ 2 = 41— 1,
since s is the arc length parameter of I'. Note also that ut+v0 = 77 and ud — vt = r2¢r.
Moreover, outside the zero section the following identities hold:

(ﬁﬂﬁ)’w = o’ (ﬂﬂ%er%)’Mg =0,

(@132 = 122)) 0 = —v0%, (@122 + y192) |, 5 = w0,

)‘Mg )’Mﬁ

and w13 = 0*(r? +1). Let hy be the Riemannian metric on M3 induced by g;. In the

case of a closed curve I' the hypersurface (M2, h;) is a complete Riemannian manifold
for ¢ # 0. Making use of the above relations one obtains the following proposition.

Proposition 1. On MENM?*, the coefficients of the induced Riemannian metric hy with
respect to the local coordinate frame {0s,0,,0,} are given by

hiy = (K+HQ2)Q2a hi2 = rroK,
his = ¢rro°K, hos = (r* + 1)K,
haz =0, h3z = (7“2 + 1)Q2K.
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The function K is given on M2 N M* by the formula
20%(r* +1)
oi(r2 + 1)2+t4,

and the functions G and H by
2\/0*(r2 +1)2 4+ ¢4 2t
G:= g+ 1)+ , H := .
04 (r2 +1)2/0% (12 + 1)2 + ¢4

Q2 (TQ + 1)

In order to compute the relevant geometric quantities of M3 it turns out to be con-
venient to work within the framework of Cartan. For this purpose we determine an
orthonormal frame with respect to h; by the ansatz

1 1
3a Y1 = —20,, Y, = —0,,
(3a) i e s O
The vector fields Y7 and Y, are normalized to length 1; since hog = 0, they are orthogonal
to each other. From the condition h:(Y1,Y3) = he(Y2,Ys) = 0 together with h:(Y3,Y3) =

1 one obtains

Ys =D, +Ed,+F0d,.

h
—%E.
o
Here we have introduced the function ¥ := p+/(det hy)~! and one computes
8@6 (7,2 + 1)2
o*(r2 +1)2 +¢#
The vector fields {Y7, Ya, Y3} are defined on M2 N M* and outside the exceptional curve
do represent a global section in the frame bundle of M2. Note that since hgo is positive,

D is always positive. The local base of 1-forms {wl,wQ,w3} dual to the orthonormal
frame is then given by

(4) wl = \/h_gg(dg - %ds), w? = \/h_gg(d<p - %ds), wd = %ds,

and the connection forms wj; = h(VY;,Y;) of the Levi-Civita—connection V on Mlg’ as

(3b) D=hyY, E=-hp%, F=

det hy = hoa(hi1has — h340% — h33) = 4(r? + 1)K o* =

well as the components of the Riemannian curvature tensor Ri” = Ryyi; are uniquely
determined by Cartan’s structure equations

3
(5) dw' = Zwij Aw,
j=1
3 A
(6) dwij = Zwik ANwrj+ 5 Z R} w" AWt
k=1 k=1

We determine now the connection forms of the considered hypersurfaces.

Proposition 2. With respect to the orthonormal frame (3), the forms wj; of the Levi-
Civita connection on ME N M* are given by

1 1 1 0 F
=—— 2+ Z(logK 2=(1+ =(log K dp — —=d
o= 7 (5 + 2000K)e ) = (14 300e10,) (45 - S )

(logD),Qw3 =

wig = — (log D) , ds,

1 1
vV h22 D V h22

wo3 = 0.
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Proof. Using the orthonormal frame {Y7,Ys,Y3} on M2 N M*, the components of the
Levi-Civita—connection can be obtained via the formulas

(7) 2hi(Vy; Y5, Yi) = ha ([, Y31, Yae) — ha([Y5, Yal, Vi) + ha([Ya, Yil, Y5),

resulting from the Koszul-formula. A direct computation of the commutators yields

1 (1 1K
Vi,Ya] = ——— [ = + -=2 | V&
e WE( SR
[}/1,)/3]:(394r o (2r¢K+(r2+1)K,S)+
22

E E
V)VK,——=D,|Y
2h22 (T + ) 5@ D 19) 1

DQ
Vhoo D

D
V2, Va] = [ =20 (MK Y2y 1)K5) n
2h33 ’

F
+Q<EQ DD>}/2+ Yg,

E
(r? +1)(20K + 0*°K ,) | Yo.
2h33 ’

Now, a short calculation gives
(8) (r* + VK 4 = rioK ,,

by which one further calculates

E h
Eo—=D,=%(20?+ 1)K, —riK —rioK , | = 21K,
D haa

D(QM«K + (2t 1)K,s) +E(? + 1)K, = 20 + 1)K,

which shows that the first coefficient of [Y7, Y3] vanishes. Similarly, it can be seen that
the second coefficient is also zero, since

F 1 1 1
F,— ED@ = 7h13,9E2 — hys (252 + Ez,g)
1 1
hiz—=Y—— (P> + 1) (K, 2+ KX
Fhe iR D eE + KE,)

1 1 1
=% (—7‘2<,bp(2QK + QQK,Q)? + 2r2pr (EK + 5K@)) =0,

and by using (8) again one sees that the commutator [Y2, Y3] vanishes completely. In the
equations (7) therefore only the terms

1 1 1
h:([Ya, Y1), Y- + —(log K he([Ys,Y1],Y3) = — log D) ,,
t([ 2 1] 2) \/E ( 2( g ) ) t([ 3 1] 3) \/@( g )79
are non-trivial, and for the forms w;; this gives the stated expressions. O

Summing up, one obtains that the structure equations (5) read
dw! = w12 Aw? + wiz Aw? = 0,
1
Vha2

1
dw® = w31 Aw! +wgp Aw? = —
Vh'22

We are now able to compute the components of the Riemannian curvature tensor as
well as the Ricci tensor and the scalar curvature of the hypersurface M.

dw? = wo1 Aw! +woz Aw? =

(5 + ek, ) ! e

(log D) pw' Aw?.
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Proposition 3. With respect to the section (3), the components of the Riemannian
curvature tensor R of the hypersurfaces (M3, ht) are given by

1 1
Ri212 = s <E(10g K),, + (log K),@@) )
1 2
Ra3z3 = " hng (E + (log K),Q) (log D)o,
Riziz = 35— (~2(1og D)oo + (log K) o (log D). + 2(log D)7 ),

while R1213, R2312 and R2313 vanish.

Proof. We calculate the components of R by using the structure equations (6) of the
hypersurface Mg By Proposition 2 the 2—forms wi3 A w3o and wis A wag vanish and

1 1 1
wor Awiz = — [ =+ =(log K) , | (log D) , w?* A w?.
haa \o = 2

Further, the differentials dw;; of the connection forms are given by
dorz = (S(l0g K) ) dondo+ (S(0gK),) dsAdy
5@ S

F 0
> (1 + 5(1ogK)yg)) do A ds

0

1
= | =(logK) ,+ =(log K — W' AW?
2( g K), (log ),99) haso
1 0 E 0 D 2 3
—((=(0gK) , + 2(log K 2log K) , :
(3008 )0+ £008 ) 00 ) =+ Sl108 ) o= ) 2
1
d = — log D doNd
w13 <D h22(0g ),g>,9 0 S

1 1
= [ =7—(log D) 4y + 57— (log K) ,(log D) , + 7—(log D)*, | w' A w7,
' 2hao ' = hao @

0

and one obtains the stated formulas for the components R;;r; of the curvature tensor by
using (6). Notice that

((log K)o + o(log K) o) £ + o(log K) 5, D
orr

= (g K)o + 008 K) ) (-r7oKS) + 0 (£ 108 K)) (07 +DES =0,
;0

implying that Re315 vanishes. O

Theorem 1. The components R;; of the Ricci tensor Ric of the Riemannian C°—
manifolds (Mg, ht) are given with respect to the orthonormal frame (3) by

1 2t 0 0
Ric = 3 0 2t —ot(r* +1)? 0 ,
/2 4 _ A2 2
2(@4(7’2+1)2+t4) 0 0 —4t* — p*(r* 4+ 1)
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and the scalar curvature is
Q4(T2 + 1)2

S=Ru+ Ros + Raz = — 372
94(r2+1)2+t4)

Proof. One computes

2t4
(log K),Q =
(94(7"2 +1)2+ t4)9
(log ).y = 24 8tto%(r? +1)?
00 — T - PRI
(94(r2 +1)2+ t4) 0? (@4(7"2 +1)2+ t4)
1 t* 1 1
(10g2),9=—§— Z—E—Q(IOgK),m

(Q4(T2+1)2+t4)g
1
(log D), = (log K) , + (logX) , = —— + (logK)

obtaining thus, with the previous proposition, for the components R;; = Zizl Riprj of
the Ricci tensor that

1 1 1 1
= — |——(logK),, — (log K (log K), —+ —(logK
Rus = g |08 ). = (08 K) g~ (o ) (5 4 5108 5, )

1 1

1 1 1
—92 (_ — —(1ogK) logK ) ( 5(1OgK)7QQ):|
0
= 1 K 1 K)
2h22 ( (log (log )
1 1 Y
Roy = 2h22 [ ElogK — (log K) , +—2(2+g(logK) )(—1+5(10gK),g)]
= l10 K) ,— (log K) ferl(lo K)?
2h22 0 & B ee 0?2 8% )

1
—(logK) » ( —— log K -2 log K
= o |-t < +gl0p 1)) <2 (55 - 20wk, +

1
4
+2 ( + %(logK),m_)) + §(2 + 9(10gK),9) (—é + %UOgK)v@)}

1 1 , 3 2
= S ((logK)@Q — 5(10gK)yg + E(logK),Q — ?) ,

the remaining coefficients being equal to zero. While the components of the Riemannian
curvature tensor turn out to be unbounded when ¢ — 0, the components of Ric and thus
S stay bounded. Explicitly one has

1 g o 2, .4 t8
Ri = 75 (= (o' )24 e) - 5
92(r2+1)2<g4(r2+1)2+t4) 0 e
t4

3/2°
<Q4(T2+1)2+t4)
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1 ., A

Ry = 5~ (0P ) + 5
2@2(r2+1)2(g4(r2+1)2+t4) e e
tt 1

+E<Q4(T2+1)2+t4) +4t492(r2+1)2E(gg(r2+1)4+t8+2g4(7’2+1)4)>
2t — o' (r* + 1)

2(94(r2 1y t4)3/2,

1 ¢
R33 = 372 (—2(g4(7’2 +1)2 +t4) — 4t % (r? +1)?
2@2(r2+1)2(g4(r2+1)2+t4) 0
3ty o 2 | 44 L s 2 448 40,2 2,4
—?+?(g (r2 +1) +t)fg(g (2 + )"+ 5 4 2002 + 1))

74154 _ 94(7,2 + 1)2

2(@4(T2+1)2+t4)3/2

3

showing that the divergent terms cancel out and the assertion follows. O

Hence, the scalar curvature S is negative and tends as 1/02(r? + 1) to zero as ¢ and
r go to infinity. For ¢ # 0 all components of the Ricci tensor as well as S remain regular
at 0 = 0 and are therefore defined everywhere on the Riemannian manifolds M. For
t = 0 the scalar curvature degenerates at ¢ = 0 in concordance with the fact that the
hypersurfaces M3 are no longer complete in this case.

4. THE SECOND FUNDAMENTAL FORM OF THE HYPERSURFACES M}

We proceed now studying the second fundamental form of the hypersurfaces M. In

order to do so, we need the Levi-Civita connection V7 * of the Eguchi-Hanson space
(H?, g;). Tt can be obtained from the Koszul formula, which reads for commuting vector
fields as follows:

26:(VE'Y, Z) = X(9:(Y. 2)) + Y (9:(Y. Z)) — Z(g:(X, Y)).

In the following we will denote the coordinates x1, y1, 2, y2 of the dense complex manifold
M* C H? by 1, 2,3, x4 so that the components of VH® on M* are given by

1 (0gik agjk 391‘;‘
i == —
k=9 <0xj + ox; 0y,

(9) >, r% = gHry,.

Because of the symmetry

(10) 9k (Xm) = gri(zm), k:=k+2 mod 4,

of the covariant coefficients of the metric one obtains, for the Christoffel symbols, the
relations

(11) Liim (2n) = Tipm(Tn).
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Now the contravariant coefficients g™/ of g; are given by the matrix

Go 0 Gy Gs
) 1 0 Gy -Gs Gu

It Vdet g¢ g4 —GG3 C(Y')l Cg) ’
3 4 1

where det g; = (G1G2 — G% — G%)? = 16. Further, the derivatives of the functions G and
H are

G,zi = —Q.Z‘iH, H@i = —2331'1,
with T := 2t4(3u? +1*) /ud(u? + t1)3/2. A straightforward calculation yields the Christof-
fel symbols of the first kind.

Proposition 4. The Christoffel symbols of the first kind of the Egquchi—Hanson space
(H?,g:) are given on M* by

1
Tin = —21(2H — I(a + 23)), Dyg = =21 (561962963 + 5964(:63 - m?)),
Piip = 2(2H — I(aF + 23)), Tis1 = —z3(H — I(2] + 27)),

1
I3 =21 ($1$21‘4 + iwg(l‘% - l‘%)), T30 = $4(H - I(.’L‘? + .Z‘g)),

the remaining ones can be obtained from these by taking into account the symmetry
Tijk = Tjir as well as the relations (11) together with the additional symmetries

[og; = Ty, Pai = =T334, a3 = T, Fogi = —T'1s
and

Fioi =Tii-1),  Tis =Ti3p-1),  Tsai = Ta36-1) for i even,

Fioi = —Tiigrys Thae = —Tisrn),  sa = —Tazegn for i odd.

The Christoffel symbols of the second kind are derived from these formulas as indicated
in (9). By the symmetries of the Levi-Civita connection V# * it is sufficient to compute
only six of them explicitly. So one has

1 1
Il = jzlG(QH — I(2? 4+ 22)) + ZH [:cl(xg + 23 (2H — I(2? + 22))

1
+ 27 [(mlm + x2x4) (961562964 + 5553(30% - m%))

1
— (2124 — wo23) (961302903 + 5354(35% - x%))”

1 1 1
=1 [ - ZG(2H — I(x? + 23)) + §H2(x§ +23) + ZHI[ — (23 + 23)(23 + 73)

+ @4 a)(ot - )+ 2(eded + ofad)] | = o,

where we have introduced Ay = $H?(23 + 23) — 1G(2H — I(2% + 23)). In a similar way
one obtains

2
Fll = —.’L‘gAl.
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Further one checks that

I} = iGF113 + EH[ —Tus(af + z3)
— (2H — I(a7 + 23)) [z1 (2123 + 2224) + T2 (T1224 — .T2$3>]:|
= iGFHg, — %H2(2x1$2x4 + l‘3($% — mg))
+ EH{ —Pug(af + 23) + (2] + 23) (212004 + 23(2F — m%))}

1 1
= 50(:1:1:132&64 + §$3(1'% - x%))v

as well as

1 1
1'“111 = —§C(x1$2$3 + 51'4(1'% - m%))a

where C' = (IG — 2H?). Finally, one calculates

1 1
F}S = ZGFlBl + ZH[* Flgl(l'g + Ii)

+ (H — I(z3 +23)) [ — z1(z2ma + 2123) + 22(T124 — $2$3)]:|

1
= —@s |[G(H — I(a? +a3)) + H*(~a} — o + 2} + 23)|

1
+ 1 HIws(a} +23)(ad +a3) — wa(ad + 23)(a? +23)| =~y

2
F13 = Z‘4B1,

with By given by By = [G(H — I(a} + 23)) + H?*(2} + 23 — 23 — #3)]. Taking into
account the relations (10), (11) one thus obtains that the F;k are given as follows.
Proposition 5. The components F;k of the Levi-Civita connection of the FEguchi—
Hanson space (H?,g;) are given on M* by

F%l = IlAl, F§3 = 1'3142,
F%l = —332141, Fg,g = —.’L‘4A2,
C 1 C 1
s = 5 (m1$2$4 + 5:1:3(30? — x%)), 1"%,3 =3 ($2x3x4 + 5901(:6% — mi)),
C 1 C 1
I = -3 (11311132903 + 5964(30% — m%)), Iz, = s ($1x3$4 + 51‘2(,@421 — x%)),
F%g = —IgBl, F?S = —.’L‘lBQ,

2 4
F13 = x4B1, F13 = 12Bo,
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where

1 1
Ay = §H2(z§ + i) - 1602H — I(a} +a3)),

1

By = 7 |GUT 123 +a3)) + H2(a} + 23 — o} — a3)]
1 1

Ay = §H2(zf +a3) - 1602H — (a3 +a?)),
1

By

1 [G(H — I(mg +22)) + H?(2? + 25 — x§ — xi)}

and C = (IG—2H?). All remaining F;k can be obtained from the above by using Ffj = F?i
as well as the relations

Fé2 = _Fil’ 1"3'14 = _1—%3’ F§3 = Fh, F§4 = —1"13
and
T =T, DL =T, Tu=T§"  forieven,
I, =T, T, =14, Th=-T4"  fori odd.

In order to describe the outer geometry of the hypersurfaces Mg, we first determine
a field of unit normal vectors N : M2 — (T M)+ on ME. Up to orientation such a field
is given by the conditions

GV N)=0, i=1,2,3,  g(N,N)=1,
which are equivalent to the system of equations
Ni(ucosp —vsinp)K + Na(veosp + using)K + N3K cosp + NyK singp =0,
—Ni(using +vcosp)K — Na(vsingp —ucosp)K — N3K sinp + Ny K cosp = 0,
{Nl(ucosgo — osinp) + Na(vcosp + usingo)}(K + H %) — N3(cos (vi 4 uit)
+ sin (v — vu))H o* — Ny(sin @(v0 + utt) — cos p(iw — vu))Ho* = 0,
(N? + N3)(K + Ho®) + (N5 + Ni)(K + Ho*r?) + 2(NaNy — N3NaJvo® H
—2(N3N1 + NyNo)ug®H = 0.

By solving these equations with respect to the components N; of the unit normal vectors
one obtains the following proposition.

Proposition 6. On M2 N M* a field of unit normal vectors is given by

N*l | K ( )
- 2 T2+1 w1, —W2, —TwW3, W4 ),

where the functions w; are
wy = U COs Y + Usin @, Wg = U COS Y — VSin g,

w3 = 7" sin @ + TP COoS VY, Wyq = T COS (p — 1Y Sin (.

We note that wy and w; can be viewed as the real and imaginary part of T'(s)e?,
wy and w3 as the real and imaginary part of I'(s)e’?e ™% respectively. By construction
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the hypersurfaces M3 are imbedded in H2. If N denotes the field of unit normal vectors
determined above, the second fundamental form of M2 is defined by

(12)  I1: X(MEN MY x X(MEN MY — F(ME),  II(X,Y) = g:(X, VI N).

It is symmetric and bilinear. In the following we will write the coordinates s, g, ¢ as
71,12, 13, and denote the components of IT with respect to the induced frame of coordinate
vector fields by II;;. For shortness, we will simply write V for VH in the remaining of
this section. Explicitly,

Vo, N(®) = (4, Niw) + Ni() Vo, ) Ou, Iy,

Vanj 8961 p — dxy, (87]j)(p) Fgci (p) amz |p7

where p € MI§ N M4 On MI§ N M* the coordinates x1, T2, 3, T4 can be expressed by the
coordinates s, ¢, 0 according to

(13)

1 = 0(1, T2 = 0 (2, X3 = 0 COS P, xq4 = 9 sing,
where we have defined
(1 =wucosp —vsinp, (o =wvcosy + usin .

Thus one obtains that on Mg N M* the polynomials appearing in the expressions for the
'y, are given by

[ 1 | . 1
T122%4 + 5903(:13% — 23) |z = 0® [ —wvsing + (u? — ’U2)§ cos go} ,

- ) :
T1Taws + §x4(z§ —z?) g = 0® [uv cos @ + (u? — 1)2)5 sin @],

1 3
XToX3Tg + 5901(:5% —29) |z = %[vsincp + ucospl,
[ 1 2 2 _ @ .
T123%T4 + 5902(:134 —x3) |l = ?[u sin ¢ — v cos ).

We compute now the covariant derivatives Vg, N. To this end we first note the
relations

W3 COS Y — Wy SN Y = TYr, wy cos @ +wgsing =7,
(14) ws €OS ¢ + wi sin @ = 1, w1 COS  — wasinp = v,
. 2 .
Crwa + w1l = 717, Grwr — GQawe = r7¢r.

Because of
ri = r(7 cos pr — r¢r sin <pp) = 7u — TPTU,
r0 = r(7sin@r + r¢r cos cpp) =7V 4+ roru

one has further

(15a) rwy = cos @(Fv + r¢u) +sinp(ru — rorv) = uws + vws,
(15b) rwy = €0S P(Fu — rH,v) — sine(rv + reru) = —vws + uwy,
and thus

(15¢) rws = cos ¢r(uws + vwy) — sin pp(—vws + uwy) = vw; — Vwa,

(15d) rwg = sin or(uws + vwy) + cos pr(—vws + uwy) = w1V + Wau.
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Proposition 7.

4
Vo.N = Z(Nl,s + O N; +r¢prN; ) 0z, = Ng + O(FN +7$rN ),

i=1
where ® = —1HK o*r.
Proof. By using the symmetries of the Christoffel symbols Ffj one has

4
{Nl,s + 5" Ni (Tigows + Thyown) } Da,
1 k=1

|
.M“

Vo, N

s

3

I
'M%

|:Ni75 + Qr’il(Nl’LUQ - NQ'LUl) + QF%Q(NQ'LUQ + lel)

=1

+ QF§3(N3’LU2 — N4’LU1) + QF§4(N4’LU2 + Ng’wl)} azi

K
r2 41

(2T wiws + Ty (w] — w3)

I
.M%

N; s + L
.8 92

i=1

+ T ar(—wswe — wawy) + T4 r(waws — wgwl))} Oy, -

The first component of Vg N reads

1 K . .
dx1(Vo,N) = Ny s+ 51 / 7“2——1—102T(A1 + B1)(rwy + rérws),

since by the relations (14) one has

20 wiwy + Dy (wi — w3) = A1o(2Gwiws + G (wi — w3))
= Ajo[wi (w2 + w1C2) + wa(Grwr — Caws)]
= Ajor(rwy + rorws),
F%3r(—w3w2 — wawy ) + 1"%4r(w4w2 — w3w)
= Bjor[cos p(waws + wiwy) — sin p(wawe — wawy )]
= B pr{wa(ws cos ¢ — wy sin ) 4+ wi (w4 cos ¢ + ws sin ¢)]

= Byor(wargr + wir).

The second component is given by

1 K . .
dx2(Vo,N) = Na s+ 21 / 7“2——1—102T(A1 + B1)(—7wa + rérwr),

as can be verified by an analogous calculation. As far as the third component is concerned,
using also the relations (15) one computes

U27’l}2

1
T3 wywe + Ty (wi — wd) = 5930[( —uvsing + cos <p> 2wy ws

u? — v?

+ <uv cosp + sin <p> (w? — w%)}
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1
— 5QBC {uv (wl(—wg sin @ 4 wq cos ) + we(—w1 sin g — ws cos <p))

u271)2
+

(wl (wg cos ¢ + w1 sin @) + wa(w; cos ¢ — ws sin ga))}
w2 — 2

2

1
0*Clu v(w10 — walt) + (wit + wgv)]

QBC|: (bu — ww) + u—g&(—uv—&—i)u)—&— %(U@—&—ud) - %(ua—i-m})]

2
1
2 2

1 1
4 3C[(vwl + uwg)r or + (uwy — vwa)rr] = ZQBTQC(TQbF’u};; + 7ws)

and
[3ar(—wsws — wawy) + T yr(waws — wswy)
= Boor[—(i (—waws — wiwsa) — Co(wawe — wswq )]
= Byor[ws(Grws + Gaw1) + wa(Crwy — Gws)] = Bapr?(wst + warér),
so that

1 [ K 1
dr3(Vo,N) = Nas + 51/ mg2r2 (1@20 + 32) (fws + rérwa).

In the same way one verifies for the fourth component that

1 [ K 1
dr4(Vo,N) = Nus + 5/ mQQTQ (1920 + 32) (—rws + r$ruws).

The stated expression for VIV then follows by noting that the equalities

1 1
A+ B = Z(HQQQ(T2 +1)—-GH) = —ZHK,

1 1 1

1092 + By = (IG ~ 2H?)0? + (G(H - I10%) — H?0*(r* — 1))

1 1
= ZH(G —He*(r* +1)) = ZHK

hold and that the derivatives N; , of the components of the normal vector with respect
to ¢ are given by the components N; according to

(16) Ni, o = Nj_1 for i even, Nio =—N;y1 foriodd,
thus finishing the proof. We remark that, since Vg; = 0, one has that ¢;(N,VyN) =0

for all vector fields Y € X(M3), and a computation indeed shows that the normal part
of Vs, N vanishes. O

Proposition 8.

Vg,N =0.
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Proof. One computes

Noat 3" Nu (g + Ty + Ty cosi + Ty siw)] o,

4
=37 [Nig + T (NGt — NaGa) + Tig (Moo + N1a)
=1

Ii3(N3¢1 — NaGa + Ny cos ¢ — Ny sin )
+ T14(NaGr + N3Gz + Nocos g + Nysing)
+ I3 (N3 cos p — Nysin ) + I, (Nycosp + N3sinp) | 0, .

Once again we calculate the components of Vi, N separately. By using the symmetries
of the T and (14), (15) one obtains

Il (Ni¢ — Nada) + Do (NaGy + NiGa)

L —K 1 K
- 5\/ZA19[§1 (w11 + waa) + Co(—w2ls + wi1G)] = 5\/;14197’21017

1"}3 (N3§1 — Ny(o + Ny cosp — Nysin (p) + 1"}4 (N4§1 + N3(2 + Ny cos ¢ + Ni sin (p)

1 K .
=735\ 2+1319[COS<P(( w31 — wala) + Wy cos @ + ws sin )

+ sincp(r(w4C1 — w3(2) — wsa cos @ + wy sin <p)]

1 K

5\/ T 1B1Q[w1 + rwa (G sin g — (2 cos ) — rws(Ce sing + ¢ cos go)}
1 [ K 1 [ K ,

3 mBlg[wl + rwa(—v) — rwsu] = ~3 mb(l —rfws,
'3, (N3 cos p — Nysin ) + T3, (Nycos ¢ + Nz sin @)

1 K

_ 3 .
=7 r2+1 CK—smgaJrgcosga)(wgcosgaw4s1nga)

u v .
+ 5 siny - Ecoscp) (wy cos — w3 smgo)]

1 [ K 1 [ K,
=3 T2+1TQ 3C(— uw370w4):f§ mr@C’wl,

and, moreover,

1 K 1
N)=N ) —=——0o|(A; + By)r* — [ By + =0%r?
dz1(Va,N) 1,g+2wr2+19(( 1+ Bi)r ( T C) ) w

A similar calculation gives for the second component the expression

1 [ K 1
N) = N. —\/—=——0( (A1 + B)r? Bi 4 =22
dz3(Vo,N) = N+ 5 T2+19( (A1 + By)r +( 1470770 ) | ws
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One calculates further

Fu(NlCl

+ (uv Cos @ +

Y
~ 4

’LL2*

2
0’C

4
0’C

4

as well as

I35(N3G —

+N;sing) =

K
V241

Na(o) +

1}2

(wl (Cl

=
\/7’2+1_

u2+v2

08>
2
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+ T35 (N2C1 + Niga)

(e 5

2 2

v cos cp) (w1G1 + wa2)

5 sin(p) (—w2C1 +w1C2):|

e s (w1 (1 sinp — (o cos ) + wa(Casiny + (4 cos ga))

cos ¢ + (o sin @) 4+ wa(Ca cos p — (7 sin @))]

2

2

K
T2+1Q

2

u
— wv(—vwy + uws) + (uwy + vwz)}

1

s 313 Cws,

5 (uwy — vws) =

Ny 4 Ny cos  — Nosin ) + I3, (Ny¢y + N3lo + Nocos @

K .
izt [ — G (r(—ws1 — wala) + w1 cos + wasin p)

—Co (r(w4(1 — w3(2) — wa cOS  + w1 sin @)}

_ 2B
2

+rws (¢

_ 2B
2

K . .
21 [w1(*C1 cos ¢ — G2 sin ) + wa(—(1sing + (2 cos )
+¢3)]

K 1
o (—uwy + vws + rPws) = s\ or(r® — 1) Bows,

I35 (N3 cosp — Nysin) + T's, (N, cos ¢ + N3 sin @)
1 K . . .
=5 —197’A2 [cos p(—ws cos p — wy sin ) + sin (w4 cos p — ws sin ga)}

1

r2+1

r2 4
K

QTA2w3a

thus obtaining for the third component of Vg, IV that

dl‘g(VagN)

:N319+

1
2

[ K 1
7“2——|—10T <(A2 + BQ) + <B2 —+ ZQQC) 7’2> ws.

Finally, by an analogous calculation one finds that the fourth component reads

dCL‘4 (Vag

N):N4,g+

1
2

| K 1
72—“@7“ (A2 + BQ — (BQ + 1920) T2) wy.
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Since

1 1 1 1
Ay + By = §H292r2 — ZG(H —I0%) + ZG(H —10%) — ZHQQQ(TQ +1)

1 1
= —ZH(G —He*(r* +1)) = —ZHK,

1 1 1 1
1927«20 + Bi = [G(H - I10%r%) + H?o*(r* — 1)] + Z927«2(10 —2H%) = 1K,

the desired statement follows by noting that N; , = (log K) ,N;/2 and

1 1
5(1ogK)yg - ZHKQ(T’Q +1)=0.

It remains to compute the covariant derivative of NV with respect to 0.

Proposition 9.
4

Vo, N = Z =N, 02, = EN,,
i=1
where 2 =1— 1HK@*(r? +1).
Proof. Again,
4 4
Vo, N=>_ [NW + ) N[ — 06Ty, + 0GiThy, — osin Ty, + ocos wFZkH e,
i=1 k=1
4

=> [Nw + oI (=GNt = (1N2) + oI5 (—C2 N2 + (LN )
=1

0ol 5(—CaN3 — Ny sing — (3 Ny — Nacos )
+F§4Q(—C2N4 + Nicose + (1 N3 — Nasinp)
+0oI%5(—N3sin — Nycosp) + Iy 0(—Nysin g + N3 cos ga)} O, -
By the symmetries of the F}; ; one has for 7 odd that
dz;(Vo,N) — Nip = —0(dzit1(VooN) — Nit1,0)

and one obtains for the first and third component

1 /| K 1
dml(V3¢N) = NLQP + 5 mgﬂ ((Al +B1)7’2 — (Bl + ZQ2T2C>) w2,
dr3(Va, N) = N +1,/ K (A + Bo) + Bo+ 202C) i
r3(Vo, = V3,0 B T2+10T 2 2 2 49 T ws.

In an analogous way one has for ¢ even
dxi(Vo,N) = Nip = 0(dri-1(VaoN) = Ni-1,0) ,
the second and fourth component being given by
1

K 1
d$2(Va¢N) = N21¢ —+ 5 mQQ ((Al —+ B1)7’2 — (Bl —+ ZQQT20>) w1,

1/ K 1
dxs(Vo,N) = Nap + 5 mé’% ((A2 + B2) + <BQ + ZQQC> T2) w3,
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and the assertion follows. Again, one verifies that g:(N, Vs N) = 0. O
We are now able to compute the second fundamental form of the hypersurface M.

Theorem 2. With respect to the coordinate frame (0s,0,,0,) the components of the
second fundamental form of the Riemannian C*°-manifolds (M3, ht) are given by

7 [ Gl — vit) — 2HQP(ud —vit) 0 K
M=\ 5 0 0 0
e K 0 0

Proof. By the equations (12), (13) and Proposition 7 one has

4
M = Y giydai(04)dw; (Vo,N) = o| (N, + ®(#Ns + rr Ny, )

ij=1
(—w2G4 +w1Gs) + (Nas + ®(#Ny + 1¢r Nup)) (—w2Gs + w1 Ga)
+((N1,s + ®(7Ny + r¢r N1 p))we + (Na s + ®(7Na + TSbFNQ,g;))wl)Gl}
= Q[Hf [<I)(—r7*(N3w4 + Nyws) + r2<,bp(N4w4 — N3ws))
—7(N3,sws + Ny sws)] + (G — Ho*r?)[(N1,swz + w1 Na,s)
+@(r(N1wa + Nowr) + répr(—Nows + lel))]:| ;

where we made use of the relations (16) as well as

—woGy + w1 G3 = (—wau — ’LU1’U)Q2H = —rws0°H,

—waG3 — w1 Gy = (wav — wlu)QQH = —rwso’H.
Since further Nsw4 + Njws = 0, Nyws + Now; = 0 and
1 [ K, , o, 1[K
Nyws — Nsws = 5 r2+1r(w3 twi) =354/ 1"
1

—Nows + Nywy =

1 /| K 1 /| K
_ 3 3
1111 = HQ dr QDFE m —7r\|— (5 mT) (’LU3’UJ4 - ’UJ4’LU3)

1 [ K
Drop=
"V

+o(G — HQQTQ)

+ (Prop + i — i) (G — Hg2r2)}

K
r2 41

- g [G(Pr¢, + i — vil) — Ho?r?¢r).
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Here we made use of the relation —ws sws + waswz = —7(F¢r + rér) + réri and
W1,sWo — W, sW1 = Ul — Vi as well as

ub — vt = ¢r + 7 (ror + rgr) — rort.

Because of GOr¢r = —iGHKQQTQQbF = —Hp%*r%2¢r one finally obtains

1/ K
Iy, = 5 TQ—HQ[G(UU - UU) - 2HQ2(U’[) — UL'L)L

since r2¢pr = u® — vii. By proposition 8,
4
Iy = Z 9ijdz;i(0,)dx;(Vo,N) =0,
i,j=1
and using the equalities
Gaws — Gawy = (vws + vw4)92H = ro’w H,
—Gaws — Gawy = (vws — uw4)92H = —ro*w.H

in addition to the above relations, one also sees that II33 vanishes, since by Proposition
9 and (16),

4
33 = Z gijdri(0y)dr;(Va,N)
ij=1
= E[— 0G2(G1N1,p — GaN3p — G3Nap) + 001 (G1N2,p + G3N3,p — GaNyp)
—osinp(—G4Ni,p + GsNa, + G2N3 )
+ocos p(—G3N1,p, — G4Na o + GQN4,¢)}
= E[* 0G2(—=G1 N2 + G4Ny — G3N3) + 001 (G1 N1 — G3Ny — G4 N3)

—osinp(G4 Ny + Gs N1 — GoNy) + g cos o(G3 Ny — G4 N1 + G2 N3)

1 K .
=3 / ﬂ—HEQ{Gl(le — (ows) + Gar(—ws cos ¢ + wy sin )
+(ir(Gaws — Gawa) + Cor(—GsWs — Gawa)

+ cos p(—Gaw; — Gaws) + sinp(—Gswy + G4w2)}

1 K _ . .
=3 / 7“2—4—1:9[((; — Ho*r*)r*¢r — (G — Ho*)r*pr

+H *r(Grwyr — Gawar — w3 cos ¢ + wy sin @)}

1 [ K _ . L
=V Er 1:9[(*1{927"2 + Ho*)r*r + Ho?r(r’ or — rgr)| = 0.

Analogously,

4
My = g¢(0s, Vo, N) = Y _ gijdai(9s)dz;(Vo,N) =0,

ij=1
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i3 = g¢(9s, Vo, N) = Z 9ijdx1(05)dz;(Vo,N)

7,7=1

1 9

%3

1 / K
2o 05 1[r292H+ G — Ho*r?]

1 [ K 1 1 [ K
—o=y/—— (1= =HK*(r*+1 =\ K.
92\/r2+1< 1 Q(T+))G 2\ 211

Finally,
4
Mg, = Y gijdwi(9,)dz;(Vo,N) =0,
i,j=1
and the remaining components are determined by the symmetry of II. ]

In order to compute the invariants of II we need to express the second fundamental
form with respect to the orthonormal frame Y7, Y5, Y5. In this case we denote its compo-
nents by H;‘j. Let k1, Ko, k3 be the eigenvalues of II in this base, regarded as a symmetric
transformation on TMg. The mean curvature, the first elementary symmetric function
associated with II, is then given by the sum 9 = k1 + k2 + kg = II7; + 115, + 1135, Now,
writing Y; = a;; ,, one has

3 3
(17) II; = g:(Y:, Vy; N) = Z aikajigt(On, Vo, N) = Z aikajy g,
k=1 k=1

ie., II* = A-II- T A, where the coefficients of A = (a;;); ; are determined by the equations
(3). As a consequence of the previous theorem we obtain then the following result.

Corollary 1. The mean curvature of the hypersurfaces (M2, hy) is given by

\/ r2+1 e

where kg == ((4i — 0i)(r? + 1) — 2(ud — v)) /2 denotes the geodesic curvature of the
curve I' in S2. In particular, ME’ is a minimal surface if and only if kg =0, i.e., if ' s
a great circle in S2.

Proof. One easily sees that 117, =I5, = 0 as well as

* 0 K
5, = D*1Ij; +2DF L5 = SRV 1( + 1)K?*S?[(r* + 1)G (4 — bii)

— 2(ud — vi)(H(r* + 1)0* + K)]

:\/2 = ! [(@d — 0it)(r® + 1) — 2(ud — vi)].

4 (p2 + 1)2 +t4
So $ = II3;. We further remark that 11}, = IIj5 = 0 and
g K DK K K (r? +1)0?

115 = .
23 = 7“2—1—1% 49 r2 4+ 1 \/5(94(r2+1)2+t4)3/4
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Let us now compute the geodesic curvature of I' regarded as a curve in S? ~ C U {oo}
using the stereographic projection. With respect to the coordinates u,v the induced
metric on S? reads

o ——— )

Writing v1, v3 for u, v the geodesic curvature of I" is then given by (see e.g. [14])

U1 U2
_ 2 2 o 3/2
kg = /det gs2 B+ S ng@i@j B4+ 3 ng@i@j /(9i0i05)* 7,
i,j=1 i,j=1
the Christoffel symbols F;k being obtained from the formulas (9), where now the g;;
denote the components of gg2 and the z; should be replaced by the corresponding v;.

Note that 0§ + 93 = 1. We put L := (r? +1)2, M := —4/(r? + 1) and obtain

LM LM
Fh = F%Q = F§1 = Tvla 1—% = —702,
LM LM
F%z = F%1 = F%z =5 V2 F%z =5 U1
2 2
a direct calculation then yields
’(')1 7.}2
. 2 1 - - . 2 2 . . = ’[)1’52 — 1.)2’51 + %(’Uli)g - 1)21.)1),
U1 + Z Fij’Ui’Uj V2 + Z Fij’Ui’Uj 2L
i,j=1 i,j=1

and by noting that LM /2 = —2/(r?> + 1) and g;;0;0; = v/det gz = 1/L one finally has
(up to a sign)
1
ko= ((uv — i) (r2 1) — 2(ud — vu)),
and thus the assertion. ]

The third elementary symmetric function associated with II is the Gauss curvature; it
is given by s - k2 - k3 = det II* and equal to zero; the second one is the so—called second
order homogeneous curvature.

Corollary 2. The second order homogeneous curvature of the hypersurfaces (Mg, hy) is
ot(r? + 1)
8(0*(r2 + 1)2 + t4)3/2

Proof. As computed in the proof of the previous corollary, the components of II with
respect to the orthonormal frame (3) are given by

= /8.

K1ko + K1RK3 + KoK3 = —

0 0 0
=0 0 o/ 74T
K K

0 10\ 7241 2

The roots of the characteristic polynomial

det (II* —k1) = —k( — k(H — k) — K*/160°(r* + 1))

are then k1 = 0, ko3 = (=9 £ 1/H2 + K3/1602(r2 + 1)) /2. O
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Since uy ME = 0%(r? +1)2, the three elementary symmetric functions associated with
the second fundamental form, i.e., essentially its trace $) and the scalar curvature S, are
manifestly invariant under the action of the isometry group U(2). The fact that the mean
curvature of the hypersurfaces M2 is given in terms of the geodesic curvature of I' in S2
appears to be natural, since the geometry of the vector bundle T*P!(C) is determined
by the elliptic geometry of P*(C) ~ S2. Note that i — ¥ii is the geodesic curvature of
T" as a curve in C with respect to the Euclidean metric.

As an immediate consequence one obtains the following statement.

Corollary 3. Let T be a curve in S? of bounded geodesic curvature. Then the functionals
/f_)a dMlz’ and /(H1H2 + K1k3 + Iigﬁg)ﬁ dMI?i

stay bounded for o > 3 and 8 > 3/2, respectively.

Consequently, the Willmore functional [ $?dM} remains unbounded, the hypersur-
faces M3 thus being not accessible to integral geometry.

5. ON THE GEODESIC FLOW OF THE HYPERSURFACES M}

In this section we will study the structure of the geodesic flow of the hypersurfaces
(ME, ht) and compute the exponential growth pe(M3) explicitly, at least in the case
where I" is a generalized circle in C that arises by a Md&bius transform from a circle in
C with center at the origin. In general, the exponential growth of an open, complete
Riemannian manifold (M™, g) is defined as

oo = lim sup  log vol (Br(qo)),
R—o0 R

where g is a point in M™ and vol (Br(qo)) denotes the volume of the ball of radius R
with center at qg. If poo = 0, one says that M™ has subexponential growth. In case M™
has finite volume, this quantity is not interesting, since then one always has po = 0,
but for vol (M™) = oo the exponential growth is directly related to the infimum of the
essential spectrum of the Laplace operator on M ™. We will return to this point in section
9. There we will be able to calculate the exponential growth of (M3) for arbitrary closed
curves.

Let v(1) = W(s(7),0(7), (7)) be a smooth curve in M{ and X(7) = 23:1 X7 (1)
d/ 0y, a vector field along (7). Its covariant derivative with respect to v is given by
the formula

w

VX S (LX) + 3 DX ) B

k=1 1,j=1

where Iy, = h(Va, 8y,,0y,) are the components of the Levi-Civita connection of Mg
with respect to the coordinate frame {95, d,, 0, }. For a geodesic it holds that V+(7)/dt =
0 and one obtains the system of differential equations

(19) () + ZFZ(v(T)W(TW(ﬂ =0, k=123

However, it turns out to be more convenient to determine the geodesic lines of the
hypersurfaces Mg by considering the first integrals of the geodesic flow. Let us consider
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therefore the geodesic system (TM3,E) of M2, where the Lagrangian £ is given by the
metric,

1
E:TME — R, XH§MXX)

The function £ is a first integral of the geodesic flow, i. e. with respect to the coordinate
reper {0s, 0y, 0, } one has that

E((r) = % [P118%(7) + 2(h128(7)6(T) + ha33(T)p(7)) 4 ho20®(T) + haz®(1)] = €

is constant for any geodesic line. Let now p = ¥(s,p,¢) and z € €' € S. Since the
coefficients of the metric h; do not depend on the angle variable ¢, the map

Kyt Mg nM*— Mg ﬂM4,nZ(p) = U(s, g, (¢ + 7) mod 27),

represents a one—parameter family of isometries. Consequently, using Noether’s theorem,
the function
d
My T(MENMY) =R, My(X):= ht(%“r(p)\T:O) = hi(0p, X)p,
is a second first integral of the geodesic flow and a computation yields the formula

(20) Ml(’Y(T)) = h133(7') + h33(,b(7’) = Ml.

For $ = 0 and ¢ = 0 it can be seen immediately from the equations (19) for a geodesic
or the relation £(¥(7)) = £ that, for
2& ot(r2+1)2 +t4

21 2 = =& tant
the curve (1) = ¥(s, o(7), ¢) must be a geodesic in M3.

We will assume from now on that r = r( is constant and, in this case, determine the
distance of a point p = W¥(s, 0,¢) to the set I' = {[0,0]} € M2. Since r(s) = ro and
¢r(s) = ¢€/ro are constant, € = %1, the coefficients h;; do also not depend on s so that

p : M3 nM*— M ﬂM4,,uz(p) = U((s + 7r)mod 277, 0, ),

is an additional one—parameter group of isometries and Noether’s Theorem gives a third
first integral,

d
My T(MEAMY) =R, Ma(X) = ht(E,uT(p)‘T:O) =m0, X) s

i. e.,
(22) MQ(’}/(T)) = hllé(T) + hlggb(T) = MQ
is constant for any geodesic line as well. From the equations (20), (22) one obtains
(23) 26 = K(r* + 1)0° + M1¢ + Mas
and
575/\/11—(724—1)](@2@ . 7€M2—(K+Hg2)g2é
N ro?K ’ v ro’K '

Solving the latter two equations with respect to ¢ and § yields

. K + Ho?)o* M _

[ <€M2 = TKQQlQ =) (re*K — (K + Ho?)g*(r* + 1)/r) ™!

(4+ GHe*)M; — 4eMor
40°G ’
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as well as
§= 4KGQ ———[4GM; — (r* + 1)(4(M1 — eMor)K + 40> HM,)]
- %g%[ (G—K(r*+1) — Ho*(r* + 1)) My + 4e(r? + 1)rK My
—erMy+ (r? + 1)M2K

402 ;
thus the functions s = s(7) and ¢ = (1) are determined by the function ¢ = o(7).
Equation (23) now reads

1
28 = el 4 +1)0* + — ( (M3 —2eMyMor + (r2 + 1)M3) + GHQ2M%):| .

42

Note that M? — 2e My Mar + (12 + 1) M3 = (M1 — e Mar)? + M3 is non—negative. By
inserting the expressions for G and H into the previous equation one finally obtains the
following ordinary differential equation for ¢ = o(7):

Q4(T2+1)2+t4 1 t4M%
AT T 1) 1207+ 1) \ (2 + 1)

(24) ¢* = + (M — eMor)? + M%) .
Thus, for r(s) = 1o, all geodesics v(1) = ¥(s(7), o(7), ¢(7)) in MZNM* are parametrized
by the three parameters £, M1, Ms. We are now able to compute the distance of a point

MF(T o) to the curve I'.

Proposition 10. Let ' be a circle in C of radius r(s) = ro. The distance of a point
po = ¥(s0, 00, 0) € MENM* to the curve T C M is given by

oo(rg + 1)
t4

1
25 dist (po,T) = —=o0a(ré +1)F(1/2,1/4,3/2, — ,
(25) (10.T) = =030 + DF(1/2,1/43/ )
where F denotes the hypergeometric function, which is defined for z € C, |z| < 1, by the
series

B af ala+1)B(B+1)
f(a,ﬂ,%z)—1+7.1z+ D12 2+,

the parameters a, 3,7 being arbitrary complex numbers, v # 0, +1,+2,....

Proof. Let v(€, My, Mz3) : (0,79] — M2 be a geodesic of positive energy € from the
curve I' to the point pg with coordinates sg, 09, vo. For My, My = 0 the geodesic
v(E, M1, My) is precisely the geodesic line (21) already described. If M; were not equal
zero, at least ¢ would be different from zero almost everywhere; then equation (24) would
imply that there exists a critical value pqi; > 0 for which

P24 A2
2 Ar2 +1)2 4+ t4 = ! - 2 3.
(26) EVot(r?+1)2 4+ 1 (94(T2+1)3 + (My —eMar)” + M;
For smaller values of ¢ the right-hand side of (24) would become negative, implying
that o(7) > gerit > 0 must hold for all 7 € (0,7p). This means that for M; # 0 the
geodesic y(&, M1, M3) can never reach the curve I'. Assume therefore M; = 0, M»
being arbitrary. By (24) we have

I AV A G e r+12/\/12
0

40%(r* +1)°
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In case that 4t — (r? + 1)2M3 < 0, this expression becomes negative for small o
so that v(&, My = 0, 4t?€/(r? + 1) < M3$) can never reach the set I'. However, for
442 — (r? +1)2M3 > 0 we have that ¢? is non-negative for all 7, as well as
r24+1 . (r* +1)?
er 2 s = 2,
2¢/o*(r2 +1)2 + ¢4 2¢/o*(r2 +1)2 + ¢4

so there are infinitely many geodesic lines v(€, My = 0, 4t2€/(r?+1)% < M%) reaching the
set I in M2 in a spiral motion. In this case, equation (24) implies for u1 (1) = ¢*(7)(r?+1)
the relation

(27) uy > = 200(r* +1) = \/45\/1@ + 1t — (r2 +1)2M3 > 0,

i.e., ui,, as well as u; are strictly monotone increasing as functions in 7 and the point pg
is reached earliest, that is, for smallest 79, in case that M is also zero. Since the length
of a geodesic is given by

o =—

70

LW(E,M17M2) = / ‘#(55M1;M2)|d7— :/ ht(FYa’Y)dT =V 257—0;
0 0

the distance of the point pg to the set I' C M3 must be given by the length of the geodesic
’Y(E,Ml =My = 0).

The integral [1/vaz? + t*dx cannot be represented by elementary functions and one
has

dz x
— = ZF(1/2,1/4,3/2, —az?/tY),
| = = R/ 2 e
where F(a, 8,7, ) is the hypergeometric function introduced above. For Re (a+3—7) <
0 the defining series converges even in |z| < 1; the hypergeometric function has an analytic
continuation for |z| > 1 and under the assumption that Rey > Re § > 0 it can be written
for all z as the integral

(28)

1

/ (—Q)P1(1 = (P11 — (o),

0

]:(avﬁvl%z) =

where T" denotes the Gamma function and |arg(—z)| < 7 is assumed in order to make the
integrand uniquely defined. If z is real, differentiation under the integral with respect
to z gives the stated equality (28) if one takes the relation F(m,f3,5,2) = (1 — z)™™,
m € R, § arbitrary, into account additionally. For M; = My = 0 we finally deduce from
(27)
0 u1(70)
1 Ui, r

1 dU1
dr = /
WE ) rn wE | en

T0 —

1 2 4
= mul(m)}'(l/l 1/4,3/2, —ui(m)/t%),

and thus

' 1 4 7“2 _,’_ 1 2
dist (po, T') = mgg(rz n 1)]—"(1/2,1/4,3/2,_90( . ) )

finishing the proof. (]
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We are now in a position to compute the exponential growth of the hypersurface M3
in case that I' = 9 B(0,r¢) is a circle in C. Note that we can estimate the volume of
the ball with radius R around a point go € I' C M2 by the volume of the union over all
R-balls around points of I', thus obtaining

21w OR 271

vol (Ba(ao) < vol (U (@) = [ [ [ Vethids ndgnag

—271'\/_// + D dsNdo= ——— A [(oh(r* + 1)% +t4)¥/* — 3],

r2 +1)2 + ¢4 3(r2+1)
since by our previous considerations
U Br(@) = {p = ¥(s,0r,¢) € MP : s € [0,277), ¢ € [0,2m)},
qer

where gp is given by the expression (25) for R = dist (p,I'). The analytic continuation
of F(a, 8,7, 2) for |z| > 1 is given by the formula

7( ) ) T*Fla,a — v, — z
e > D)y ) L
so that for gg being big enough the distance of pg = ¥(so, 0o, po) to the set I' is given by
. ol 5, (3/2)I'(—1/4) t2 —tt
dst o) = b+ 1 | N e (395 e )
I(3/2)T(1/4) ¢ f(l 13—t )
T(L/2T6/MA) gV 110 \& 1T 02+ 1)2
_ @214 ¢ TE/2)T(A/4) [r2+1 1o
Ty Vst e (1 gt

implying that dist (po,T") is proportional to ggv/r2 + 1 for 1 < gg. We obtain for ¢g € T’
that

1
i — I 1 (B <
Jim 2 logvo (Br(qo)) <

lim
0—00

[1og 4(\@:: ; +1log ((*(r® +1)* +14)%/* — t3)] : {%%*

0(3/2)0(1/4) [rZ+1 1 4 o
TrapremV e ¢ (1 BT e )
i 30%(r? +1)2 r3/2)r1/4) [r2+1
0= gh(r2 4 1)2 4 ¢4 — 13 /2 (12 + 1)2 + ¢4 | T(1/2)T(5/4) 2

1 4 -1
(1 =0
( 1oz )] ’

the corresponding limes superior therefore being zero, too. By isometry arguments we
thus obtain the following proposition.
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Proposition 11. Let ' = 9 B(0, 1) be a circle in C with center at the origin and radius
r0. Then pioo(M3p) =0 for all A € U(2).

We want to finish this section with some remarks concerning closed geodesics in
M3, where we assume again that I' is a circle in C of radius 7(s) = ro. In this
case M3 is foliated by the two—dimensional tori T;Omo, 00 > 0 being constant. Let
Y(1) = W(s(7), 00,9(7)) : [0, L] — TZ, , C M} be a geodesic line parametrized by arc
length. Since ¢ = 0, § and ¢ are also zero. Relation (23) then reads Maos = 26 — My¢
and equation (26) must hold, representing a condition on & = &(go, ro) for given values

of M1, My. Now, by the S' x S'-symmetry of T}

0,707

\I](SOaQOaSDO) :\I](SO+27TTO'TL5 00, (100+27T'm)7 n,mEZ.

Writing s(7) = so + 37, ©(7) = wo + @7 we see that v(7) is a closed geodesic if and only
if $Ly = 2mrg-n and ¢L, = 27 - m are satisfied, i. e., if

i:rO'EGTO'@*v n,m#(],

%) m
of course, if n or m are zero, v(7) is also a closed geodesic. Inserting the expressions for
$ and ¢ computed above we obtain for the previous condition

—eroMi + (rd + 1) My
4(M1 — 87’0./\/12) + GHQ%Ml

Note that GH = 4t*/o5(r? + 1)3. Taking all together we find as solutions for M; and
Moy

€rg- Q.

m(rd +1)/4+enrd , , 9
+1
03(7“84‘1)24—1?4 %(ro )

My = - l(n—i—le),

My =

where n,m are integers. The curve v(£, M1, My) is then a closed geodesic in T .,
where £, M1, M5 depend on g, 79,1, m as explained above. In particular, there must

be at least countably many closed geodesics in TZ(,,TU C M3

6. INTEGRALS OF SUBHARMONIC FUNCTIONS ON THE HYPERSURFACES M?

In this section we will show that the LP—kernel of the Laplacian on the hypersurfaces
(M3, ht) becomes trivial for all p > 1, where ¢t > 0 and T' are arbitrary. We will base
our considerations on the much more general work of Greene and Wu [10], who studied
integrals of certain generalized subharmonic functions on connected non—-compact Rie-
mannian manifolds admitting a canonical exhaustion function and showed that these
integrals cannot be bounded. More precisely, they showed that the following theorem
holds.

Theorem 3 (Greene and Wu). Let M be a connected non—compact oriented C* Rie-
mannian manifold. Suppose that there exists a continuous proper function ¢ : M — R
and a compact set K, C M such that

a) (pll\/[\K¢ 18 CQ.

b) olank, s uniformly Lipschitz continuous.

c) olank, s subharmonic.
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Denote by (M) the closure of the set of all C* subharmonic functions in CO(M).
Then, if [ is a nonnegative function in (M) such that

{peM: f(p) >0, pp) > maxp, gradp(p) # 0} # 0,

there exist constants Ay > 0 and 1y such that

/ fdM > As(t —10)
Mz

for all T > 19, where M¥ denotes the set of all p € M such that p(p) < 7; in particular,
fM fdM = 4o0.

A description of the set 3(M) is given by the following proposition.

Proposition 12 (Greene and Wu). Let M be a non—compact C* Riemannian manifold.
Then the following functions are in X(M):

1) Any function f: M — R that is the limit uniformly on compact subsets of M of a
sequence of functions in 3(M),

2) C? subharmonic functions,

3) uP where u is a C? nonnegative subharmonic function and p > 1,

4) |ulP where u is a harmonic function and p > 1,

5) any geodesically convex function.

In general the scalar Laplacian on a Riemannian manifold (M™, g) is given by A =
— grad(div f),where for a vector field X € X(M™) its divergence with respect to an
orthonormal frame {Y7,...,Y,} is given by

div (X) = 3 g(Vyi X, Yi) = 3 Vi(X) + 3 Xuwj(Yh).

i=1 i,j=1

Here the X* denote the components of X and the w;; the connection forms of the Levi-
Civita connection V of M™. In the following we will show that the above results also
apply for the considered hypersurfaces M3, I' being arbitrary, obtaining in particular the
vanishing of the LP—kernel of the Laplacian even in case M3 is not complete. Let us first
start considering the function

o = poVr? +1,
which is C*° on M2 N M*?. One calculates with respect to the orthonormal frame (3)

1 1
Y1(<p*)=\/@ 2 +1, Y1Y1(<p*)=—2h22(10gK),gv7“2+1,

and thus
2 1 /1 2
Ap* = -N1Yi(p") = Y Vil wn(V;) = h—m(g(logK),g - 5)\/7’2 +1=
=1
94(7.2 + 1)2 +t4( t4 B 2)
203(r2 + 1)3/2 \d(r2 + 1) + ¢4

Because of sup,t*(o*(r? 4 1)? +¢*)~' = 1 it follows that ¢* is subharmonic and one
computes further that
Q4(7’2 + 1)2 +t4

20%(r2 +1)

|grad ™| = Y7 (p") = K =
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We define now the C* function A : R — [0,1) by A(z) = e=2/%" for z > 0 and A(z) = 0
for x < 0 and put

xT +oo
(29) po)i= [ A=)y [ A ).
The function p : R — [0,1] is C* too, monotone, equal to zero for z < 0 and one for
x> 1. Let 0 < sg < Lr. Then

¢ = oVr?+1-pu(o)

is C*> on M and subharmonic on Mg\ K, where

Ko:={p=p(s,0,0) € MP:0<1,s<s0}.
Note that K, is compact and that ¢ is proper, i. e.,

0 (00, K] = {pEMﬁ: ovVr?+1-pu(o) SH}

is compact for all kK € R. We show that ¢ is globally Lipschitz. In order to do so, let us
first remark that | grad¢| < B, on M2, where B,, is a constant, since |grad|? tends
asymptotically to 1/2 on M2\ K, and, as a smooth function, remains bounded on K.
Now let p and ¢ be two points on M2, and v(7) the shortest geodesic between them so
that dist(p,q) = L-; we assume that v is parametrized by arc length. Since

elarad o(7(10)), 4()) = dp(1(70)) (1 (70) = =07l

one has by Cauchy—Schwarz that
Ly g4 L,
o)~ el = | [ metaenar] = | [ mtemad o). 5
L'Y

< [ laradetn)]- (n)ldr < B, dist (p,0),
0

i.e., ¢ is uniformly Lipschitz continuous on Mg. Summing up we obtain the following
proposition.

Proposition 13. On the connected non-compact oriented C>* Riemannian manifolds
(M3, hy) there exists, for every t # 0 and every curve T', a proper continuous function
o : M — R and a compact set K, C M2 such that

a) p is C>,

b) ¢ is uniformly Lipschitz,

¢) ¢luz\k,, is subharmonic.

In particular the conclusions of Theorem 3 hold.

Note that the above proposition is also true in case t = 0, i.e., for the non—complete
C° Riemannian manifolds (M2NM*%, hg). As a consequence of the proposition we obtain
the following vanishing theorem.

Corollary 4. Let p > 1. There exist no LP—harmonic functions, on the hypersurfaces
(ME, ht) for arbitrary t € R and curves T.

Proof. Let ¢ and K, be given as in the previous proposition and let u be a harmonic
function on M3Z. By Proposition 12 one has |u|? € X(Mg) for all p > 1. Now,
by the Aronszajn—Cordes uniqueness theorem for second order differential operators
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2 ja|<2 @a(z) 0 with elliptic metric principal symbol [1] w cannot vanish identically
on M2\ K, unless it vanishes everywhere. Therefore, for u not being trivial, the set
{me M2 : |ulP(m) >0, p(m) > maxg, ¢, gradp(m) # 0} is not empty, and by Theo-
rem 3 there exist constants A and 7y such that

[ ulrad = A - m)
M¢
for all 7 > 79. In particular Kerp»(A) = {0} for all p > 1. O

7. EINSTEIN AND T—KILLING SPINORS ON THE HYPERSURFACES MIZ’

In the sequel we will consider the Dirac operator D on the hypersurfaces M3, whose
geometry has been studied in the previous sections. For ¢ > 0, the homotopy type of M3
is given by R? xI'/ {#-1}. If the curve I is not closed, M2 cannot be complete and admits
only one spin structure. Otherwise M3 has the same homotopy type as the circle S! and,
consequently, admits two spin structures. The trivial spin structure is characterized by
the fact that there exists a global trivialization of the Spin(3)—principal bundle covering
an arbitrary orthonormal frame bundle, while the non—trivial spin structure admits a
trivialization of this kind only locally. On the other hand, the unique spin structure of
the Eguchi-Hanson space H? induces a spin structure on the hypersurface M3 C H?
by reduction of the former with respect to the normal vector field of M3. It turns out
that the induced spin structure is the trivial one if and only if the winding number of the
closed curve I' is even. In the following most of the results will be derived for the induced
spin structure, though some of them that follow from purely geometric arguments hold
for both spin structures.

First we will try to determine solutions to the Dirac equation that are also solutions
to the Einstein equation and we will show that the aforementioned hypersurfaces do not
admit such solutions in case t # 0. Nevertheless, it is possible to construct such solutions
explicitly by deformation into the singular situation, though these solutions are no longer
complete. In the complete case and if M3 is a minimal surface, one can further show the
existence of a spinor field satisfying a generalized Killing equation for spinors.

Let ey, ..., e, denote the standard basis of the Euclidean space R™ and introduce the
complex two-dimensional matrices

i 0 0 i 10 0 —i
o=(o %) e=(T0) 2=(an) (0 7)

In case n = 2m, the spin representation of the n—dimensional complex Clifford—algebra
C¢ is given by the isomorphism
Kom : O3, ~ End(Dgm),  Kom(ej) =E®- @E®gaj ®T®--- T,

where j = 1,...,2m and «(j) is equal to 1 and 2 for j odd and even, respectively. For
n = 2m + 1 one has the representation

Roam+1 * CQCerl ~ End(A2m+1) (&%) End(A2m+1) ﬂ> End(A2m+1),
'“52m+1(ej) = Fagm(ej), H2m+1(€2m+1) ==l ® T,

where Ao, = Agpi1 = A2m+1 = C2" denote the corresponding representation spaces
as well as the representations itself. The induced representations of Spin(n) C C¢& will
be denoted by the same symbols.

We denote by X(Mg) or simply ¥ the spinor bundle considered in each case of M3, by
(-, -) its hermitean inner product and by I'(X) the space of smooth sections in X. Further
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we identify the tangent bundle TM3 and the cotangent bundle 7* M3 with the aid of hy.
The Clifford multiplication T Mg @g L(Mg) — S(M2) of a spinor and a vector can then
be extended naturally to a multiplication A(M3) @g L(M2) — X(M3) of a spinor and a
form. The Levi-Civita connection V of (M3, g¢) induces a covariant derivative in L(MZ),
which we will denote by V, too. With respect to an orthonormal frame {Y7, Y2, Y3} one
has for V the local representation

3
1
ViD(E) — DI (MY) @),  Vo=db+zd wYi Y v,
i<j
where the w;; are the connection forms of the Levi-Civita connection V. The Dirac
operator D : I'(X) — I'(X) on M3 is then locally given by

3
D¢ =YY Vy 0,
i=1
where X - 1 denotes the Clifford multiplication of a vector field with a spinor; in the
realization of the complex Clifford algebra C§ ~ M(2,C) & M (2,C) given above, the
vectors Y7, Ys, Y3 are represented by the matrices g1, go, —¢7T, respectively. Note that in
the three-dimensional Clifford algebra it hold that e; = ;51 ejer, where €55 denotes the
totally skew symmetric tensor. With respect to the global trivialization (3) the 1-forms
w;; have been computed in Proposition 2. Let us now introduce the following definitions.

Definition 1. A non—trivial spinor field 1 on a Riemannian spin manifold (M™, g) with
n > 3 is called a positive resp. negative Einstein spinor with eigenvalue A € R if it is a
solution of the Dirac equation and the Finstein equation

1 1
Dy = My, Ric—ng:iZT ,
where Ty(X,Y) = Re (X - Vy¢+Y - Vx,¢) is the symmetric (0,2)—tensor field de-
fined by 1, the energy momentum tensor of V.

As shown in [8], in dimension n = 3 and in case that the scalar curvature does not
vanish, the existence of an Einstein spinor is equivalent to the existence of a so—called
WK spinor:

Definition 2. Let (M™,g) be a Riemannian spin manifold whose scalar curvature S
does not vanish anywhere. A non—trivial spinor field on M satisfying the field equation

-1
(30)  2(n—1)S V¢ =ndS(X)p + 2A"—2 (2Ric(X) = SX) -9+ X - dS - ¢
n—
s called o weak Killing spinor or WK spinor with WK number X\ € R.

For general n each solution 9 of the field equation (30) with AS < 0 and AS > 0
corresponds to a positive and negative Einstein spinor with eigenvalue A, respectively.
For the existence of a WK spinor the following necessary condition is known [8]:

Proposition 14 (Friedrich and Kim). Let (M™, g) be a Riemannian spin manifold with
non—vanishing scalar curvature and ¢ a WK spinor on (M™,g) with WK number \.
Then

o 4(n — 1)X2[(n? — 5n + 8)S? — 4|Ric|?]

= (n—2)%[(n—1)8% +n|dS|* + 2(n — 1)S(AS)].
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We show in the following that, for ¢ # 0, the condition (31) cannot be fulfilled on M3
for any choice of the curve T'.

Proposition 15. For t # 0 and for any spin structure the hypersurfaces (Mg, hy) do
not admit solutions of the WK equation and, hence, there can be no solution to the
Dirac—FEinstein system.

Proof. Assume that a WK spinor with WK number A is given on (Mg, h;). Then, by
Proposition 14

(32) 8A2(252 — 4|Ric|’) = 25% 4 3]dS|* + 4S(AS)

must hold, where S has been computed in Theorem 1 Using the relation (r? + 1)S , =
r70S , one computes with respect to the trivialization (3)

1 9. 1 93(r2+1)2 4 472 2
n(s) = Vha do” " Vhx (0*(r? +1)2 +4)5/2 (47 =207+ 1)),
1 0
Yo(S) = —— — G =
2(S) x/h_ss@sos 0
o 0 0

thus obtaining for the Laplacian of S that

3
—AS = div grad § = V1Y1(S) + Y _ Vi (S)wi(V7)
1=1

1 1 2
=YY, Y1(S)—— | =(logh — (log D =¥"Y; Y;
A(S) + ()= (G0, ~ (0g D), ) = AVA(S) + 1a() 2=,
compare Proposition 2. One computes further that

1 1 1 1
Y1Y1(S) = — | —S5 = —8 - ———hy,S
) \/h—<\/h— ) has % 2(hag)?

_ o 2(4t —20(1 + )%ttt +3(1 4-7%)%0®)
- (g4(r2 + 1)2 +t4)3

as well as
2 2t4 — o*(r? +1)2
Vh33 (0*(r2 +1)2 1)

obtaining for AS the expression

Y1(S)

88 — 1804 (r2 +1)% + o®(r? + 1)4
(0 (r2 + 1)2 + t4)3 :
Since |dS|” = Y1(5)2, |Ric|” = trRic? = R2, + R2, + R2;, one obtains
9 1
(0 (r2 + 1)2 + t4)3
for the left—hand side of (32) and
-2
(o*(r2 +1)24+t4)3

AS =

(—24¢% — 40 (r? +1)?)

S[—8t% + 480" (r* + 1)1,
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for the right—hand side, so that the condition (32) reads
N (1268 — 200 (r? + 1)%t") = S(t® — 60" (2 + 1)),
and one sees that in case t # 0, it cannot be satisfied for any choice of the curve I'.

Note that since the integrability condition (32) is purely geometric, the assertion of the
proposition holds for any spin structure. O

Only for ¢ = 0 the condition (32) is fulfilled for arbitrary values of A, since then
both sides vanish. In this case the hypersurfaces (Mg, ho) are no longer complete for
any curve, the metric becoming degenerate along the exceptional curve; one finds that
K =G =2, H=0 and the Ricci tensor and the scalar curvature are

. 0 0 0
Ric= ———=——— [ 0 —o*(r2+1)? 0
6 (2 3 ’
(33) 200+ 12 g 0 —o'(r* +1)?
1
[ ——
A+ T)

In the following we show that, in this case, solutions of the Dirac—Einstein system can
be constructed explicitly on (M3 N M*, hg) for an arbitrary choice of the curve I'.

In order to do so let 1) be a non-trivial spinor field on M3 that satisfies the spinor
equation (30) for n = 3,

Vxi = %dS(X)zlz—i— %Rm(}() )= AX %X-ds-w.

Putting v = v/—S x, the above equation can be reformulated into an equation for y.
Using V(f9) = d f@y+ fV for a function f and the relation X -dS = —dS(X)+X xdS
in the 3—dimensional Clifford algebra yields

(34) VXXA(%Ric(X)X)-er%(Xde)q(.

As already shown, with respect to the base (3) only Y7(.9) is different from zero and one
obtains
X xdS = w3 (X)Y1(S)Ys — w?(X)Y1(S)Y5.

Further, one has
2R11 - S 2R22 - S

S S
In the realization of the complex Clifford algebra given above one then obtains due to
Proposition 2 that

1 1 ; g — i
VX:dX+§Zwini'Yj'X=dX+_( 1Wa3 w1z — w13 ) (X1)

- 2\ wiz —iwi3 —iwa3 X2
1<)

B 1 [(oghss), [ 0 —w? 0 iwd X1
- dX + 2 /—h22 |: 9 UJ2 0 + (IOg D),Q in 0 X2 .
Now, if t =0,

2 2Rs3 —
5 Rie(X) - X = W (X)Y; + w?(X)Ys + R%S

w3 (X)Ys.

2R - S 2Ry — S 2R33 — S

=1 k2
S ’ 0, S

5 =0

as well as

1 2 2
logD) ,=——, loghsz),, = —, log§),=—-—.
(log D), = =~ ( Je=7 (log 9),0 = ==
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Summing up, (34) now reads

dx1 \ _ \ —iw! 0 _ 1 0 w3 4+ w?
dxs | 0 iw! 20V has \ & 3 _w? 0
1 0 —w? —iwd X1
20V/haz \ w?—iw’ 0 X2

-\ —jwlt 0 X1
B 0 jwt x2 /)’

the summands (X x dS)/45 and 37, ; wi;j(X)e; - €;/2 cancelling out each other. Since
dw; = 0, the system above can be integrated. Taking into account the equality dy; =

S22 Yi(xg)w' = Xjs d5+ X0 do+ X, dip and the expressions for the w’ one derives the
system of partial differential equations

OC OO A0-¢pe
0s \X2 0 fo X2/’ do \ X2 0 fo X2/’

where
fo= —iAT G IR fo= —ix/(2 + DK.
r24+1 ’

are functions in the variables g and s. Note that (r? 4+ 1)fy = rr*of>. Further one has

0 1 K

—_— = —)\— —2 & =

Qasf2 Q( S\ 7“7“> Jo
showing that
1= ef2(5)9, Yo = e—f2(s)e

is a solution of the system above. Transforming back to the original WK equation yields
the following proposition.

Proposition 16. Consider the family of hypersurfaces (M2 N M*, hg), where T is an
arbitrary curve. Then
1 67/\\/2(r2+1)gi
- 0 r2 1 ek 2(r2+1)pi

is a WK spinor of length [|> = =S |x|* = —=S(jxa|* + [x2|?) = —2S and WK number
A € R. Thus, the normalized spinor

-S 1 —A\/2(r2+41) 01
Y= .
Al* T o202 F DI\ V2D
is an Einstein spinor on M2 N M* with eigenvalue \.
The homotopy type of ME N M* is given by R% x S x I'; therefore it has at least
two spin structures, the one involved here being determined by the global trivialization
(3). Recall that M2 N M* is parametrized by the length parameter s of the curve

I'(s) = r(s)e’r(*) ¢ C and the fiber parameters 0 < p < 00, 0 < ¢ < 27. The metric hg
is then given by the formula

ho = 2(g2d52 + (r? 4 1)(do* + 92d302)) +riodsdo+ r2pro’ds do,
and the Ricci tensor has rank two, see equation (33). Similar examples of WK spinors

on a 3—dimensional non—complete Riemannian manifold with negative scalar curvature
have been constructed in [8].



HYPERSURFACES IN EGUCHI-HANSON SPACE 41

We introduce now the notion of a T-Killing spinor [9].

Definition 3. Let (M™,g) be a Riemannian spin manifold. A spinor field 1 without

zeros will be called o T-Killing spinor if the trace Tr(Ty) = W Tr(Ty) is constant and

1 is a solution of the field equation
1.
Vxy =—5Tp(X) -y, X eX(M").

Here Ty(X,Y) = —L3Ty(X,Y) is the energy momentum tensor of the normalized spinor

WP
¥/ Il

As remarked at the beginning, (H?,g;) is endowed with a hyperkihler structure and
therefore Ricci—flat and self-dual. Due to this, there is a parallel spinor on H?, and the
study of its restriction to M3 will enable us to construct a T-Killing spinor explicitly.
There we follow a similar construction carried out in [7, 9], where the restriction of a
parallel spinor on the Euclidean space R? to an isometrically immersed closed 2-surface
of constant mean curvature is considered, yielding examples of T-Killing spinors on any
surface of constant mean curvature in R3.

We consider first the restriction of the spinor bundle of H? to the submanifold M3
(compare [2]). Note that the Clifford representation Asgio can be constructed directly
from the Clifford representation Agy41 by setting

Agpio 1= Aggi1 @ Aoggy1
and defining the Clifford multiplication in Aggyo by means of the Clifford multiplication
in Aok,
ei- (V1 @2) =6 b1 ®(—e;-¢2), 1<i<2k+1,
eakt2 - (V1 @ h2) i= o @ (—41).
The mapping
fr=i"er .. eapya) s Aggya — Agpyo
is an automorphism of the corresponding Spin(2k + 2)-representation, and because of
(e1...eak42)% = (—=1)**1 it turns out to be an involution. Thus the spin representation
Agk1o decomposes into the eigensubspaces of f, and we denote them by AQik 4o Explicitly
one has
fhr @ o) = i" ey .. eaprr - Pa Der ... eapy1 - 1),
yielding in particular for k = 1 the relation

f(1 @) = —(616263 ~1hg D erezes - 1/11) =1y ® Y1,

since ejeses = —1 in the three—dimensional Clifford algebra. In this way one obtains
AT = {1 @b € Ay i thy = £},

i.e., a spinor in A} or A] uniquely defines a spinor in A3 and vice versa. Thus we have
defined two isomorphisms of Spin(3) representations,

(35) Ag ~ Ait ) e 2 | (&%) (i(pl)

Since the four-dimensional spin manifold (H?, g;) is simply connected, it has only one
spin structure, and we denote the corresponding spinor bundle by X 2. It splits into
the subbundles ZEZ and X, according to the above decomposition of Ay, and as a
consequence of Ay = Az @ Az and (35) we have the identifications

EH2|MIQZE@Z, Ezzﬁz‘Mgv
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where ¥ is the induced spinor bundle on M. Consider now a spinor field ¢+ € F(Z;[p)
and its restriction QPIJSW? = 1 ® p1 to ME, where ¢; € I'(X) is a three—dimensional
spinor field. In particular note that for a field of unit normal vectors on M3 the relation
N - (o1 ® p1) = p1 D (—p1) holds, according to the realization of Ay given above. By
using the local formulas for the different covariant derivatives one obtains for the spinorial
derivative of ¢ on M3 the relation

b3 1
Vitet=dpt(X) 45 Y wi(X)YiY - (e @)
1<i<j<3

1
+3 D wu(X)Yi-N- (o1& ¢1)

1<i<4

1 2 2
= (VXe1© Vie) = (VK N -1 @ VN - )

for every vector field X € TME, since wi;j(X) = ¢(VE Y;,Y;) = ht(VA)?‘éYi,Yj) and
wis(X) = gt(V)}in,N) = —ht(Yi,ngN). Here and until the end of this section
{Y1,Y2,Y3} denotes an arbitrary section in the frame bundle of M2. Since one part
of the Weyl tensor of the Eguchi-Hanson space H? vanishes, we can assume that the

parallel spinor on H? is contained in F(ZEZ) and given by ¢T. Hence V)Z(H ot =0, and
with II(X) = VZ° N we obtain the equation

1
Vier = 3 II(X) - 1
for the corresponding three—dimensional spinor ;. Further, since II is a symmetric
bilinear form, >>_ Y; - T[(Y;) = —$ is a scalar and one obtains

=) Yi-Vigi = —&Ply

moreover, 1 has constant length because it is given by the restriction of a parallel spinor.
We summarize these results in the following lemma.

Lemma 1. Let X denote the induced spinor bundle of M3. Then there exists a spinor
* € T(X) on M2 with

1
Viet= (Xt Dyt =et e =1

Let now ¢* be given as in the previous lemma. Then Vx¢* = —(II(X)/2) - ¢
that

TW(X,Z) = mRe (X-1(2) - 9"+ Z - 1I(X) - ™, 0", X,Z € X(M3).

Making use of the relation Re (X -, 1) = 0, which holds for an arbitrary vector field X
and spinor v, one computes in the base of the Y;

3
Ty-(X,2) = — 2||¢ 7 <Z XiZj+ZiXJ)IIjk§/i.Yk.w*,w*>

k=1

1
23" XIZIIL wt gt ) = 11X, Z),
2fyr|)? < Z > 2

3,7=1
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since only the summands with ¢ = k are different from zero. In particular, one has

. 1

3
Te(Ty-) = > Re (Y; -1 (Y;) - 4%, 9%) = TrIT = §,

T2

™ =
and it follows that Tr(ﬁb*) is constant if §) is constant. Since the latter only occurs if $
vanishes identically, we deduce the following proposition.

Proposition 17. Denote by X the induced spinor bundle of M{ and let M2 be a minimal
surface, i. e., I' a great circle in S%. Then there exists a T-Killing spinor ¢* € T'(X)
with Tr(Ty-) = 0 satisfying the field equation

* 1. * 1 *
V" = =5l (X) 9" = 5 II(X) -y
For any other choice of the curve T' there are no T-Killing spinors.

8. THE ESSENTIAL SPECTRUM OF THE DIRAC OPERATOR

In this section we will study some properties of the spectrum o (D) of the Dirac operator
on the hypersurfaces M3, T being a closed curve, so that M3 is complete. In general,
the Dirac operator D on a Riemannian spin manifold (M™,g) is an elliptic formally
selfadjoint differential operator of first order and, as a differential operator, closable.
If M is complete, D is essentially selfadjoint as an unbounded operator in L?(X) with
domain C§°(M™,%) and the kernels of D and D? coincide, see e.g. [6]. Here L?(X)
is defined as the completion of C§°(M™,3), the space of sections in ¥ with compact
support, with respect to the norm induced by the scalar product

(61, ) = / (W1 (2), o (@))dM™, oy € CF(M™,5).

M

One has 0(D) = ¢(D). If M™ is complete, (D) is real and consists only of the approx-
imation spectrum since, in this case, D has no residual spectrum. If, additionally, M™
is non—compact, one has to expect point spectrum as well as continuous spectrum; in
particular, we are interested in the essential spectrum of D, which is defined by

Oess (B) = {)\ € C: there is a Weyl sequence for A and 5} ,

and represents the continuous spectrum together with the eigenvalues of infinite mul-
tiplicity. The main result of this section will consist in showing that the infimum of
0655(52) on (M3r,ht), where T' is a closed curve and A € U(2), becomes arbitrarily
small for arbitrary values of the parameter ¢, and that, for I' arising by a Mdbius trans-
form from a circle in C with center at the origin, zero is an L2-eigenvalue of D of infinite
multiplicity. As we use the global trivialization (3), thess results hold for the trivial spin
structure. More precisely, we will prove the following theorem.

Theorem 4. Let T’ be a closed curve and D the closure of the Dirac operator on the
hypersurfaces (M3p, ht), endowed with the trivial spin structure, where t # 0 and A €
U(2). Then, for arbitrary 6 > 0,

inf {)\ e 0855(52)} <.
We will prove this statement by using the min—max principle. For this, we need the
following lemmas.

Lemma 2. The L2

2 —kernel of D on (Mg, hy) is non—trivial for arbitrary t and T.
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Proof. With respect to the realization of the previous section one has for ¢ € I'(X) that

Vyh = (jj;g:;) T [aog ) ( b, T )

+2(10gD)7@( iWB(()Yk) iw3(()Yk) )} (iﬁ;)

ie., Vy,& = dyp(Y1) for every . Then dyy; = S°_ Vi(sh;)w' implies that the Dirac
operator on Mg N M* is given by

Dy — (iY1(1/)1)+z‘Y2(1/12)Y3(1/)2) ) L (1 0) (%)’

—iY1(¢2) + 1Yo (1) + Y3(¥1) ) ov/haa \O —1) \¢2
since 1 1 1 9
= (5t glog k)., — (log D)) = ——.

By taking ¥ = o/v/deth; = 1/20v/ha2 into account one obtains on M2 N M*, for the
Dirac operator, the system of partial differential equations

1 [0 1 1
(36) N {Z <6_g + E> P1 — Q_QQN/Q} = M1,
1 [ (0 1 1 B
(37) \/ng [—l (8_9 + 5) Vo + 2_QQIIw1:| = Mo,
where

0= (r*+ 1)K2 - ngKi — (r*¢rK + 21‘)i

0s do e
0 . 0 . NEY
Q= (r*+ 1)K% — rrgKa—Q — (r*¢rK — 21)%.

Let now A = 0 and 1 be of the form ¢ = (g, s) = o~ *7(s). Clearly one has then

0 1 . 1 1
i (8_9 + 5) ¥j(o,5) = iv;(s) (_? + ?) =0

as well as

. 0 rr 0
riog ti(e.s) = ——%(s), (r? +1)5-v;(0,8) = 5579(5)
Equating these expressions yields the relation
0 10
—(log7;) = —=—=—(log(r® + 1
55 1087%) = —55—(log(r" +1))
for v, so that by integration
1
logvy; = —3 log(r? 4 1) 4 log Cj.
Putting 7; = (r? +1)7'/2C; one sees that all spinors of the form

o= 1 (Cl)
Covrr1\ O

are harmonic on M3 N M*, where C; € C are constants. Since, further

/|¢|2dM§:/ [v[2\/det hy ds A do A dep,
U U
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for an open region U C M3 and det hy = 4¢*hoo, the harmonic spinors 9 are in L2 (2).

Lemma 3. Let I' and t be arbitrary. Then there exists a LE ~harmonic spinor 1o on
ME N M* which can be approzimated pointwise by spinors 1. € L2(X) NT(X) depending
on a parameter € > 0 such that D . € L*(2).

Proof. To begin with, note that v/—S converges pointwise to 1/0vr2 + 1 as t — 0, and
we therefore introduce the function

ot(r® +1)2

S. = — ,
(0*(r2 + 1)2 + 4)3/2

>0,

replacing in S the parameter ¢ of the Kéahler potential by the new parameter €. One
computes

\/_ 254 _ Q4(T2 + 1)2
- 4

(67 17 +=7)

1

0

l\/— 3e?
0 54

(r2 4+ 1)2 4%’

5o/ 5e =
(F+ )=~

Qrv—=5. =0, Qrrv =5 =

since (12 41)S: s = r70S:,,. Each other function in ¢ and s of the functional dependence
oV7r? + 1 is also harmonic with respect to Q; and Q7. We put

(38) Ye 1=/ —6}6_364@v i+l (gl) , C; € C constant.
2

as well as

For ¢ — 0 one has then

o @)
RN
As remarked, Q;¢. =0, Q7. = 0, so that
i 8 1 4 2 C
D = — [ — - /7S€ —3e%oVr?+1 1
v Vha <80+Q) [ ‘ } —Cs
3€4i 1 4 p) C
_ o 2 . —3e%oVr?2+1 1
= <Q ( T — oV + 1) v/ —See <_02> .

NCAVICES e

Then one computes, since € > 0,

]2 = / (—8.)e~ S V(04 2 4 | Cof?) A

—2770// dethte 6oVt Lds A do < oo,



46 PABLO RAMACHER

where C' = |C1]? + |C2|?, as well as

ID el
2
= /(_58)6—6849\/T2+1(|Cl|2 +Cs?) 9" ! —oVr2+1) dMp
ha20® \ 0*(r? +1)> +&*

oo Lp
4 P} 988 1 2
=2nC -5 det hye= 6 ovritl — 24+1) dsnd
: //( o) V/det hue ha2o? \ 0*(r?2 +1)% + ¢4 evTEt s ae
0

i. e., the 9. are L2-approximations of L

2 ~harmonic spinors,

LQ(Z) ( ) > w&‘ - wo € Lloc(z)
D %, being in L2, too. O

In the following we will use the abbreviations

/72 988 1 2
= /deth —6e%oVr? T = 2401 -
De € t€ ) qe h2292 Q4(T2 1)2 54 ovr )

for ¢ — 0 we then have that

Vdet
Q*(r* + 1)’
pointwise. Let 1. be as in (38).While ||¢).||; . becomes unbounded for ¢ — 0, it does not
follow that ||Dc|; . — O for small e. Nevertheless, we will show that for given § > 0
and ¢ small enough, ||D.||;2/||¢c|l;2 < ¢, thus proving Theorem 4. For this we have
to determine precise estimates for the Rayleigh quotient ||D 1/18H32 / ||1/J5|\iz from above,
where the point is to find bounds not depending on g.

e Pe — Sepege — 0

Proof of Theorem 4. Let 1. be as in Lemma 3, equation (38). One has
2v/207(r? +1)°
—S:+/det h
ohy = 2+ 1)2 4 4)3/2(p4(r2 + 1)2 + ¢4)1/4
2 +1)30" + 1)2(t* + 6e*) + 7ttt
2 (- s = f’" Al Gl G e 5 WP
A(r2 +1)2 +e4)5/2(o4(r2 + 1)2 + t4)5/4

2\/_
sup(—Scv/det hy) ;
Q>18 ! VT2 + 1

therefore —S.+/det h; is strictly increasing and tends to 2\/5/\/ 72 +1 as p — 00, so that
it seems natural to estimate ||z/)5||iz from below according to

LFOO

||1/)8||L2 —27TC// Sepe)doNds > 271'0/ inf (—Sc+/det hy) / —6'oVrT 1, A ds.

Here P > 0 is a cutting point to be determined in a convenient manner, such that
the resulting lower bound for ||1/16||iZ is as great as possible. A possible choice would
be the turning point P, of —S.v/deth;, which can be calculated by the condition
(—S.v/det hy) ,2 = 0 by solving the equation of third degree in uf = g*(r* + 1)?

(u? 4 M) (u? + t1)[30ule? + 4264 = 502 [t (u? + €h)? + 12e% (u? + t1)?).
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Since this turns out to be a little bit involved and does not necessarily lead to optimal
estimates, we look for a condition for g instead such that

(39) 0< %(—ng/detht)b <a<xl1,

i. e.,

[Q4(7’2+1)2}6/5 [654(94(7"2+1)2+t4)+t4(g4(7"2+1)2+{—:4)}4/5

a 4/5
S (2_\/5) (Q4(T2+1)2+€4)2(Q4(7“2+1)2+t4).

This is fulfilled if
4/5
(0" + 1) + ) (6e* + 4] < (%) (0" + 12 (0 (r + 1) + 1Y),

where we assumed ¢ < t. For small € and ¢ this does not represent a much stronger
condition. Again this is assured if

<2x/§<664 + t4>>4 < [o"(r? + 1)2P%,

a

and we put

1 2v/2(6e* + t*
P, = u(e,t,0) — where wule, t,a) == ( M

NEES§ a

Then one calculates
i>nlf; (—=Sev/det hy) = —Scn/det hy|p, = M(e,t,a)
0>Pa

the function M being given by

1
2v/247

(uh + )32 (pt + t0)1/4°
We remark that, as € — 0, the functions p and M tend to a finite value that is independent
of p, namely

M(e,t,a) :=

— /4
Va2t \ (M)
5/ 2v/2t at
lim p(e, t,a) = , lim M (e, t,a) = 02| AL ,
e—0 a e—0 s/ (2v3 4
(7) +1

the cutting point P, also remaining finite. We finally obtain an estimate for |j1)||;. of
the form

Lr‘ oo
el = 200 [ g (~Se/Aeths) [ e o' g nds
o " P,
1 67654Pa\/r2+1
=21CM(e,t,a) ds.

VrZ+1 6etvr2 +1
Note that M tends to 2v/2 if, additionally, a-t — 0 so that the value of —S.v/det h; at the

point P, becomes arbitrarily close to sup,(—S.v/det hy) = 24/2/r% + 1. This can always
be achieved by choosing a small enough, though for big ¢ the cutting point P, becomes
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big, too. Nevertheless, we will see that this is of no relevance for later arguments. For
small ¢ we do not lose too much by the above estimate, since then P, is also small.
We turn now to estimating ||D 1/)€||iz. First, one has

—S: q- v/det hy
4Q4(T2+1)2+t4 1 2+1 2<
— T (0.]
(Q4(7’2+1)2+E4)3/2 Q4(T2+1)2+€4 0 9

= 9V2e80°(1? + 1)

and we set

2 1 2
A% = oi(r2 +Ql)2 ! (94(7,2 T1)2 et ovr?+ 1) ;
Vor(r2 +1)2 +
0t (r2 +1)2 T+t
which yields —5. g. v/det by = 9v/2e8AA2. The function A vanishes only for o = 0. The
zeros of A are p = 0 and the solutions of the equation of fifth degree in g,

(40) oV +1(e* (P +1)* +ef) —1=0.

Now 0v/r2 + 1 becomes zero for ¢ = 0 and is strictly increasing; (o*(r? + 1)? +4)~1 is
equal to t=* for ¢ = 0 and strictly decreasing. The equation (40) has therefore exactly
one real solution; it is positive and will be denoted in the following by @. Note that @
is greater than 0 and bounded from above by 1/4/r2 + 1. Since —S.g./det h; is non—
negative and (—S.q.v/det hy) , = 9v/2e3A(2AA , + AA ), the numbers 0 and Q are the

only absolute minima of —S.qv/det hy. The absolute value of A can then be estimated
according to

A= o(r* +1)

0 1
Al = — 2411 <
A A L 1E el |+ 12 ret OV s
527 Vritl foro > Q,
< /ot (r2+1)2+et
@ res Q.

The relation

>0

(2 + 1)2 + &2 T (0A(r2 +1)2 4 £4)3/2

i ( V2 +1 ) B 20etVr2 +1
do

as well as
sup cveerrl |
0 \/94(r2+1)2+54 Vr2 +1

imply the estimate .

Al < ——
A€ o=

foro > Q.

In a similar way one sees by

0 ( 0 ) B et —50%(r? +1)2

do (' (2 + 12 + 4372 ) — (o*(r2 + 1)2 + 4)5/2’
that o(0*(r? 4 1)% + £*)73/2 has a maximum at g,4e = W with

0 _ 1
(0 (r2 +1)2 + 54)3/2 ’Q

 e5Y5(6/5)3/2v/r2 + 17

max
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and we obtain the estimate

1
Al <

g?4/6/5%/r2 4+ 1
Now A tends asymptotically to v/72 + 1 as ¢ — oo and one computes
o, P+ [e%tt + (26 — t4) 0" (r? + 1)?]

3_9 - (0% (r? —|—1)2+54)3/2(Q4(r2+1)2+t4)3/4’
so that for 2e* < t* one sees that A has a maximum at o, = \/W \/—1, otherwise

forp < Q.

it is strictly increasing. Inserting o] .. in A we obtain
t
A =Vr2+1-N(e,t),
Tnax -

where N (e, t) :=t/(/2v/t* — €%), and thus, for A, the estimate
A< r2+1 for 2e* > t4,
V2 +1N (e, t)L for 2¢* <t
As £ — 0, the function N tends to 1/v/2. Summarizing we find that, under the assump-
tion that 2e* < t*, —S.qv/det h; can be estimated from above according to

9v2N(e,t) , 7
———"te’ for 0>Q
_ 8 2 2 = &y
—SeqeV/dethy = 9V2PAN? < & Vel

k2+/r2f1 €3 for 0<@Q,
where x := {/66/55; finally we obtain for ||D .||}, assuming € to be small, that

Lt Q
ID 7 < 2wc/sgp(_sgq@/—detht)/e_6954mdwd8
A 0@ J
Lt 00
+27rC’/Sup(*Seqs V detht)/e_6984mdg/\ds
0>Q
0 Q

C LF9\/§N(6 Ot [ 11— 8QNVIHT o —6Q"VITHT ]
=27 - +e€ S.
[ T e s

Under the assumption that 24 < t* we obtain the estimate

HDwEHiZ 9\/_]\7 (e,t tf( 3k 72 *6Q54\/7) +ee —6Qe* \/7T+1) ds
el — Mlet,a) [ e=6PuctViTH g

for the Rayleigh quotient. The expression
76Qs Vr
/12 1 )k 4h=3
B Z k! —6QVr

tends to zero as ¢ — 0, so that the Raylelgh quotient itself becomes arbitrarily small for

e — 0. Since for closed curves I' the hypersurfaces M3 are complete, both Dand D are
self-adjoint, and by the min—max principle, see e. g. [21], one has

Dy
inf )\:)\EU..52 = inf L2
{ =] vep®) [Yl7
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since 52 is bounded from below. The domain of definition of the closure D of the Dirac
operator is given by

D(D) = {w € L2(3) : Ja seriesh, € D(D) : b, — ¢ and
D %,, converges in L?(X) },

and in case 1 € D(D) NT(X), one has Dy = D+ . The assertion of the theorem then
follows by noting that the inequalities [ [[¢c]|?dME < oo, [|Dee|®dME < oo and
J HD2 1/)€||2 dM32 < oo imply that 1. lies in D(D) and D(E2), respectively, since M2 is
assumed to be complete. To see this, let py € Mg be fixed and p(z) : R — [0,1] be the
function defined in (29). Following [6] we put

dist
bulp) = (2~ SUBPNY s pent

Then b, = 1 on B, (po) and suppb,, C Ba,(po). Further one sees that b,, is Lipschitz—
continuous and, hence, almost everywhere differentiable with | grad b,|?> < M/n?, where
M is a constant. Since M2 is complete, the closed envelopes of the geodesic balls B, (po)
are compact in M2 and therefore

Yn = bp e € D(D) = CSO(MF,Z)

Since ||1.||3> < oo, one has ¥, — 1. in L*(2). In the same way |[D¢.|3, < oo implies
with the relation D 1),, = b, D 9. +grad b, -, that D, — D). in L?(X). Consequently,
one obtains 1. € D(D), and in a similar way D). € D(D). O

In the following we will study the L2-kernel of the Dirac operator in case that I is a
circle in C with center at the origin and radius 7 = ro. Let p = U(s, 0,0) € Mg N M*
and z = €' € S'. As explained in section 5, in this case

Kyt MENM?* — MENM* k. (p) = ¥(s, 0, (¢ + 7) mod 27),
pz : MENM* — M0 M*, p.(p) = U((s + 7) mod 277, 0, )
represent two isometric Sl-actions on Mg N M*. Putting

(k:0)(p) == 1(k-1(p))  und  (u:90)(p) == P(p.—1(p))

one obtains two continuous unitary S'-representations in L2(X), since by the invariance
of the volume form under k., and p, the equality

/(w(fiz—l(p)),so(ﬁz—l(p))>dME’(p) =/<w(p)7<p(p)>(ﬁz)*(dME’)(p), @, € L*(%),

and a similar one for pu, hold. Then, by the theorem of Stone, there exist uniquely
determined self-adjoint operators M and M; such that k.- = €™M p ir = ™M1, They
are given by M =1 0,, My = i 05, while the corresponding eigenfunctions are determined
by
iiem‘/’ = —qe'?, iﬁeio“/’F = —Bpreer,
102" ds
where o and (3 are integers and ¢r = ¢/7, ¢ = £1. Because of D|, = D|,._p) = D, (p);
the operator D commutes with . and u,, so that each of the eigensubspaces Fy of D and
D corresponding to the eigenvalue A decomposes into the eigensubspaces of the unitary
St x St-action according to
By = P Ha @ H},
o,
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in concordance with the spectral decomposition of the operators M and M7; in particular,

one has Kery2(D) = @aﬂ Ho ® Hg. A general solution of the Dirac equation D¢ = A
on ME N M* can then be written as a product of the form

(41) (s, 0,0) = ¢TI R(p),

where R is a function of p. Thus, the system of partial differential equations (36) leads
to a system of ordinary differential equations

L |:’L < g + 1) R — 21@((7’2 + 1)K/B(pp — (T2¢FK+ 22)&)R2:| = ARy,

(42) v1h22 65 Ql b
i ! 2 p 2. . .
Vhoso [_l (3_9 + E) Ry + 2—9((7“ + 1)K B¢r — (rigrK — Qz)a)Rl] = AR

for the radial function R(p). Introducing § := ((r* + 1) — r?a)¢r/2, we put
f= (6K —ia)/o, g:= (6K +ia)/o,

and make the substitution
oY g 210
X - Q 671}[ /h22dQR2(Q) )

so that one obtains for y the system of differential equations

d (xa1 _lix n iAV N2z 0 X1
do \ x2 0 \ X2 0 —iAvhao X2

i e\ Viazde 0 —1/0— 1M/ haa f R’y
0 0 N g —1/o+i\ha ) \Ro

_ (0 Y (u
g 0 X2
with f:= e%* [ Vhaadef g.— ¢=2i2 [ Vhadey Note that
(r? +1)0° ol(r? +1)2 1/4 114 o'(r?+1)2
hQQdQ: 1+7 ]: 9 A a1 |-
Y V2o (12 + 12 + 1)1/ B s
If « or § are different from zero, neither f nor g vanish; differentiating again gives
(x1).02 = foxa + f (x2).0 = (0g f) .o (x1).0 + f G x1,
(x2).02 = o X1+ (x1).0 = (1089),0 (x2) .0 + f § x2,

and one obtains the differential equations of second order

(13) (@) 4 5(0) (0 + ale) a(0) =0,
(44) o)+ p0) 20 + ale) xal) =
where
po) =5 bt 2N, ale) = - (K e <0

If one puts xa2 := f1(x1)., and x1 := §~*(x2),erespectively, each solution of (43) or
(44) corresponds to a solution of the above system of differential equations for x, i.
e., solving the latter system of two differential equations of first order is equivalent to
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finding a solution of the differential equation of second order (43) or (44). The latter are
differential equations of Sturm—Liouville type and our next goal will consist in showing
that, for A = 0 and « # 0, they cannot have any bounded solutions and, in particular,
that they do not lead to L2-integrable solutions ¥ of the Dirac equation. For this purpose
we will make use of the following theorem proved by Hartman [11].

Theorem 5 (Hartman). Let I be an interval in R and w(x) a solution of the differential
equation

W(x) + p(x)w(z) + g(x)w(z) =0, zel,
with continuous complex valued coefficients p and q. If
1
(45) Re| - q(@) - 7lp(@)*] = 0,
then r(z) = |w(z)|? is concave, i. e., i#(z) > 0.

Now, in our case one computes

Rep(@)zl(erp):%_‘SK,@( Lo, )

2 2 \O6K —ia 0K +ia
1 °KK,
- 0 02K2 + a2’
1 0K 1 1
I - —7n) = — Q0 — — 2)\ h
mp(e) = 5;(p = P) 2 (5Kia 5K+m) V22
adK ,
=———% - —2\Vh
2K2 + a2 22
and thus
1 s 1 (5 5 1 ?K?(log K) ,
Q(Q) 4|p(9)| - 92 <5 K +a 4 (52K2+a2
1 (logK), a\/(r?+1)K 9, o
= - s - A K.
(29 1 5K (" +1)
Because of

1 (logK), 1 tt 0

20 4 20 ( o4(r2+1)2 + t4) ”
one recognizes that, for A = 0 and « # 0, the condition (45) is fulfilled for the differential
equations (43) and (44), while for A # 0 the expression —¢q(o) — |p(0)|?/4 tends asymp-
totically to —2A%(r? + 1) for ¢ — oco. For A = 0 and a = 0 it becomes also negative as
0 — 0. As a consequence of the preceeding theorem we obtain the following lemma.

Lemma 4. Assume that A =0 and o # 0, and let x1, x2 be solutions of the differential
equations (43) and (44), respectively. Then |x1]?> and |x2|? are concave.

We are now in a position to prove the announced theorem.

Theorem 6. Let I' be a circle in C with center at the origin and radius r = 1o, and ¥ a
spinor on (M N M*, hy) of the form (41). If ¢ is a solution of the Dirac equation with
respect to the trivial spin structure corresponding to the eigenvalue A = 0 and if o # 0,
then |47, = 0.



HYPERSURFACES IN EGUCHI-HANSON SPACE 53

Proof. Let D¢ = 0 and « # 0. By our previous considerations x1 = CoR1(p) satisfies
the differential equation (43) and we consider its continuation

ddeQl (2) +p(2) %(Z) +ta(z)xa(z) =0, z¢€C,

to the whole complex domain. For « # 0 both p(z) and ¢(z), z € C, are meromorphic
functions with poles of first and second order at zero, respectively. The differential
equation (46) is therefore of Fuchssian type and zero is a regular singular point. Let x1 1,
X1,2 form a fundamental system of solutions of (46); they can be expanded around the
origin into the uniformly convergent series

o0 o0
X1,1(2) = 2% (1 + Z anz”), X1,2(2) = 2°2 (1 + Z bnzn),
n=1 n=1
where a,, b, are constants and €1, €5 are the roots of the equation

24+ —1e+¢"=0

(46)

with
¢’ =limz%q(z),  p° = lim zp(2),
z—0 z—0
see e. g. [23]. One obtains 1 + &5 = 1 — pY, g162 = ¢°, which yields in our case that

e1+ea=1—-1=0,¢e16e9 = —a?, and hence €; = o, €9 = —a. Evidently, analogous
considerations hold for yo = CoRx2(p), too. Now,

27 oo 2mr

1
[elie = [ (s, 0, 9)||* dME = = (Ix1(0)]? + |x2(0)|?) V/det hy ds A do A dp.
/ O/O/O/Q

In order that the above integral remains bounded it is necessary that |x1(0)|? and |x2(0)|?

decrease with order greater than one for o — 0o, since

V8o(r? +1)

VGRSV

1
—Vdet hy = ~ constant;
o

therefore |x;(0)|?> < 1/0, i = 1,2, must hold for large g. As, moreover, |x;(0)|? is smooth,
there exists a g such that (]x;(00)|?)., < —1/08 < 0. However, by Lemma (4) one has
that |x;(e)|%, is monotone increasing so that

d 1
—Ixi(@)P < —= <0 for all o < og
do ™' %
must hold. Consequently, |x;(0)|? is monotone decreasing and strictly monotone decreas-
ing for ¢ < go. Let us now assume that o« = 1, 2, ... without loss of generality. If x(o)
is not identically zero, it follows that, in a neighbourhood of the origin, its components

x1 and y2 must have the developments
o .
xi(o) = Ao~ {1 +> c;g"},
n=1

where A;, ¢! are constants; otherwise one would have (]x;(0)[?), > 0. Let now p; be
sufficiently small so that y; and x2 can be developed as above and, in particular,

‘ZRec;g" <§ for all o< 01.
n=0
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Then
27w 01 27T
///Hi/)sg, Nk dMF*47rT/ °‘+1)ZA2[(1+ZRecg)
0 0 0 1=1,2
+ (Zlmcflg ) }\/dethtdg>7r r(A? 4 A3) / o2t /det hy do
n=0 0
01
2+1
> (A7 + A3) vE( 4 1) /Q*Q’*“ do
Vor(r? +1)2+ 1ty
1ogg| = o0, a=1,
B | S
and hence ||1/J||i2 = 00. O

We turn now to the remaining case of o = 0. If (s, o, ) = €P¥T R(p) is a harmonic
spinor on M2 N M*, the components of x = ¢ R(p) satisfy the differential equations (43)
and (44), respectively, where

1 5K \?
p:;—(lOgK)7g, q:—f2:—92:—(?) s

i. e., for x1 and 2 one obtains the differential equations
*xi dxi
e (o) + (o) a0 (0) — f*(0) xi(e) =0
and these can be integrated explicitly. Indeed, putting
(92(;Z+1)) _ B
t26

i 5
xi(e) = Bie” ( (r? + 1) + Vo (r2 + 1)2 + t4)

one verifies that
dx; 1) i 1 403(r? +1 2
Xi (o) = xi(o) 200 +1)+ L 22 (r+1)
dg 92(T2+1)+ Q4(T2+1)2+t4 2 Q4(7’2+1)2+t4
20(r* +1)8

BN/ GCESE +t4x(9) = f(o) x(o),

Txi0 = (0 1 (=3 + toe 0 ) ) i) = ((0) ~ 101 p(0) o)

We continue v to a spinor on M{ by setting Yr = 0. Let now ¢r = 1/r and § =
—1,-2,...,s0 that § = (7> + 1)3/2r < 8 < 0. Then one computes

/ 1(s, 0,0)||* dM

B} + B3 V8o(r2 +1)
t10 Vor(r? +1)2 ¢

= 47°%r

20
(92(r2 +1)+Vor(r2 +1)2 + t4) do < o,

so that 1 € D(D). Thus we have completely determined the L2-kernel of the Dirac
operator in case that I' is a circle in C with center at the origin and obtain the following
theorem.
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Theorem 7. Let I' be a generalized circle in C that arises by a Mdébius transform from
a circle in C with center at the origin, and D the Dirac operator on (Mg, hy) with respect

to the trivial spin structure. Then 0 € o' (D) and

€ss

(47) Ker2(D)= P Ho@Hs,
B=—1,—2,...

while the L2—kernel of the Dirac operator itself is trivial.

Proof. Let I be a circle in C with center around the origin and radius r = ro. Without
loss of generality we can assume that ¢r = 1/r. For § = —1,—2,-3,... and by the
previous considerations

eiﬁwr (5arsinh(—92(7§+l)) Bl
als.0.0) = e =) (5

iBer 5
— ZW(QQ(TQ +1)+ /(2 +1)2+t4) (g;)
are harmonic L2-spinors on M{ with respect to D, where 6 = (r2 4+ 1)3/2r, B; are
constants and d’ﬁu‘ = 0. By Theorem 6, apart from the trivial representation no other
representations of the S'-action k. can occur in the L?-kernel of the closure of the
Dirac operator and we obtain (47) in case that I' = 9 B(0,r). The general statement
then follows from the fact that M2 and M3 are isometric for A € U(2). If, further,
¢ € L2(X) is a harmonic spinor with respect to D, then the regularity theorem for
solutions of elliptic differential equations implies that 1 € I'(X). However, since all L2~
harmonic spinors have to be linear combinations of the g, which, nevertheless, are not
regular at o = 0, the L?-kernel of the Dirac operator itself turns out to be trivial. (I

9. ON THE SPECTRUM OF THE LAPLACIAN

In this section we will continue the study of the Laplacian on the hypersurfaces M3,
which we began in Section 6. Unlike the Dirac operator, the spectrum of the Laplacian on
an open complete manifold is related to the underlying geometry in a much more intrinsic
way. Thus, lower bounds for the Ricci tensor imply upper bounds for its first eigenvalue,
and by studying the geodesic flow and the exponential growth of the manifold one obtains
statements about the infimum of the essential spectrum of the Laplace operator and vice
versa.

Operating on functions, the Hodge—Laplace operator and the Bochner—Laplace oper-
ator coincide, and we have A = V*V : Q9(M2) — Q°(M2) on the hypersurfaces M3;
further, since M3 is complete for a closed curve I', A is essentially selfadjoint as an op-
erator in L2(M3) with domain Qf(M3z), where the domain of A is given by the Sobolev
space 2Q0(M32) = H?(M2). Now, for the first eigenvalue of the Laplacian the following
proposition holds in general (see e.g. [5]).

Proposition 18. Let (M™,g) be an open complete Riemannian manifold, the compo-

nents of the Ricci tensor being bounded from below by —(n — 1)C, where C' > 0. Then

the first eigenvalue of the Laplacian po(M™) satisfies

(n—1)?
4

Hence, as an immediate consequence we obtain the following statement.

pro(M™) < C.
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Corollary 5. Let I" be a closed curve in C. Then the first eigenvalue of the Laplacian
on the hypersurfaces (M3r, ht) satisfies po(M3p) < t72, where t #0 and A € U(2).

Proof. By Theorem 1, Ry; > Rgs > Rss. Further, since Rgss is strictly increasing one
has that inf, R33 = R33|,—0 = —2/t% so that R;; > —2C, where C = t=2. The assertion
then follows from the proposition above. O

In the following we will proceed to find estimates for the infimum of the essential
spectrum of A on the considered hypersurfaces by using again the min-max principle,
and show that it becomes arbitrarily close to zero for any closed curve I'. This enables us
to compute the exponential growth of M2 for an arbitrary closed curve, thus generalizing
the results previously obtained in section 5, since, as already mentioned, the infimum of
the essential spectrum of the Laplacian is closely related to the exponential growth of the
underlying manifold. More precisely the following theorem proved by Brooks [3] holds.

Theorem 8 (Brooks). Let (M™, g) be an open complete manifold of infinite volume.
Then

. 1
inf oess(A) = ZM?’O

Consequently, the exponential growth of the hypersurfaces Mg must be zero for any
closed curve I'. Let us now prove these assertions.
First note that for ¢ € H?(M3),

/(%Asﬁ)dMﬁ = /(V% Vip)dM}
holds, where (-, ) denotes the scalar product in Q°(M2) and
(Vo, Vo) ==Y (Vv Vy,p) = Y2 (p) = | grad o|*.

By the min—max principle we have
(48) nf e (B) = inf L& SPdME
rep@) [ IfIPdM
Now we consider the function
V2
Vol(r2 +1)2 + 4’

which is derived from the trace $) of the second fundamental form, and by means of this

function we generate estimates for oegs(A).

e =

>0,

Theorem 9. Let T be a closed curve in C and A the closure of the scalar Laplacian on
(M3r, ht), where A € U(2). Then, for arbitrary § > 0,

inf oess (A) < 6.

Proof. By Corollary 3, ¢ is L2~integrable over M2 for > 3/2. One computes further
that

a/2
1 0 2 / B 1 ag®(r*+1)2% _,
)2 e 9e

Y1 (H%) = — = —

1(5735) /_h,22 ag ( Q2(7’2 ¥ 1 /h22 Q4(T2 + 1)2 +E4
the derivatives Y(H2) and Y3(9H2) being zero so that
a2g (12 + 1)
20 (r2 + 1)2 + e4)2

|grad H2* = Y?(H2) = 0+ 1)2 + 11 92
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For a = 2, and assuming ¢ < ¢, the monotony of the integral implies

3 (2 1
/53dM§z8\/§ﬁ/ e+ 1) ds A do

(Q4(T2+1)2+€4)4 Q4(T2+1)2+t4
3(,.2
0°(r* +1)
> 8\/§7r/ (G0 1 1) ey e A de
L L

1 o 88w 1
_ _ ds = ds.
8\/§7T/{ (1+r2)(g4(7“2+1)2+54)1/4]0 S - /7‘24—1 S
0 0

Similarly, under the assumption that ¢ < ¢ one computes

212 77173 o'(r* +1)° ) 2144
| grad $22d M2 = 1687 @02 +1)7 + 1) o4(r2+1)2+t*doAds

7002 3
o' (r*+1)
§16\/§7T/(Q4(T2+1)2+€4)11/4 do Nds
L

:16\/§7T0/L([_21(04(794(7"2“)2“54 ]‘”) o 64\/&0/ L

r24+1)24eH)7/4(r2 +1) ], 21e3 (r2 41)

showing that $2 € D(A). Summing up we have
J|grad H22dMit _ 8
[ Hiddr — 21e?
using (48) one obtains the stated bound from above for the essential spectrum of the
Laplacian. O

forall 0<t<e;

Corollary 6. Lett > 0 be arbitrary and A € U(2). Then for any closed curve T in C,
(M35, ht) has subexponential growth.

Proof. This is a consequence of the theorems 8 and 9. O
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