
Language Composition Untangled

Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel

University of Marburg, Germany

Abstract

In language-oriented programming and modeling, software developers
are largely concerned with the definition of domain-specific languages
(DSLs) and their composition. While various implementation techniques
and frameworks exist for defining DSLs, language composition has not ob-
tained enough attention and is not well-enough understood. In particular,
there is a lack of precise terminology for describing observations about
language composition in theory and in existing language-development
systems. To clarify the issue, we specify five forms of language com-
position: language extension, language restriction, language unification,
self-extension, and extension composition. We illustrate this classification
by various examples and apply it to discuss the performance of different
language-development systems with respect to language composition. We
hope that the terminology provided by our classification will enable more
precise communication on language composition.

1 Introduction

Domain-specific languages (DSLs) are a prominent candidate for bridging the
gap between domain concepts and software developers. DSLs enable software
developers to think about the components and relations of a domain rather than
about how these components and relations might be represented. DSLs thus
provide abstraction over the concrete realization of domain concepts.

Not least due to the success of DSLs in practice, many language-development
systems have been investigated [19]. To implement a DSL, a language developer
can, for example, write a parser and interpreter, apply an attribute grammar
system [9, 31], use a language workbench [7, 18], write a compiler plug-in for
an extensible compiler [9, 20], or provide a library for domain primitives using
regular functions [16], macros [29, 28], or sugar libraries [12]. Advances in DSL
implementation techniques have led to a proliferation of DSLs in today’s software
engineering research and practice, and DSLs for many problem domains are
available today.

However, realistic software projects are not just concerned with a single
problem domain but also with many secondary domains such as data serial-
ization and querying, communication, security, data visualization, graphical

1

user interfaces, concurrency, or logging. Following the idea of language-oriented
software development [6, 36], we want to provide a separate DSL for each domain
that occurs in a project and to use all of these DSLs together. Support for this
large and changing amount of domains can only be efficiently provided if DSLs
can be implemented independently and then composed together. Consequently,
realistic software projects in a language-oriented context require language com-
position. Most recent work on language-development systems addresses language
composition in one way or another.

At conceptual level, however, language composition is treated rather vaguely
in the literature. In particular, there is no account the authors are aware of
that specifies what language composition exactly means. This lack of a clear
conceptual framework hinders our ability to reason about the composability
of languages or to compare the support for language composition in different
implementation techniques.

To this end, our goal is to provide precise terminology for language compo-
sition that enables effective communication on language composition and can
serve as a basis for comparing existing and future language-development systems.
In summary, we make the following contributions.

• We present a classification of language composition that distinguishes
five cases: language extension, language restriction, language unification,
self-extension, and extension composition. We illustrate this classification
through various examples.

• We demonstrate that our classification provides precise terminology to
explain language-composition support in existing technology and therefore
clarifies our understanding of these systems.

• We apply our terminology to show that many language-development sys-
tems employ multiple forms of language composition. Without precise
terminology, these different applications of language composition can easily
be confused.

• Our classification reveals unexpected room for improvement for language-
composition support in existing language-development systems. In fact,
only one of the systems we investigated supports the composition of
independent languages.

2 Language composition

The term “language composition” can refer to mechanisms and usage scenarios
that significantly differ in terms of flexibility and reuse opportunities. In fact, the
composability of languages is not a property of languages themselves: any two
languages can be composed by stipulating a new syntax and semantics for the
composed language. Rather, language composability is a property of language
definitions, that is, whether two definitions work together without changing
them.

2

To clarify the situation, we develop a taxonomy of language composition
based on the idea of unchanged reuse, that is, whether a language definition can
be reused without modifying it. Existing language-development systems differ
significantly in their support for unchanged reuse. For example, some systems
support the unchanged reuse of a base language through extension (e.g., macro
systems), whereas other systems even allow to compose independently developed
languages unchanged (e.g., JastAddJ). To avoid ambiguous statements, authors
need to be aware of the equivocality of language composition and we recommend
to consciously use language composition only as an umbrella term for our more
precise terminology.

2.1 Language extension (C)

When the first stable version of Java was released, it lacked many features that
we are used to today. For example, before version 1.5, Java had no support
for the foreach loop or generics. Java was only extended with these features
later on. Similarly, earlier versions of Haskell did not include support for let

expressions (introduced in Haskell 1.1), monads, or do notation (both introduced
in Haskell 1.3) [17]. By now, these later-added features have become characteristic
for Java and Haskell, respectively. More generally, languages evolve over time
and subsequent introduction of language features is usual.

This brings us to the first form of language composition: language extension.
A language designer composes a base language with a language extension. A
language extension is itself a language fragment, which typically makes little
sense when regarded independent of the base language. This dependency of the
language extension on the base language is the main characteristic of this form
of language composition.

Often, implementing a language extension involves changing the implementa-
tion of the base language. Examples include the integration of generics into Java
and do notation into Haskell. However, the language-engineering community has
brought forward language-development systems that particularly support lan-
guage extensibility. These systems share a common property, which we capture
in the following definition.

Definition 1 A language-development system supports language extension of a
base language if the implementation of the base language can be reused unchanged
to implement a language extension.

Importantly, this definition only demands the reuse of the base language’s
implementation but does not regulate how language extensions are implemented.
In particular, this definition does not prescribe whether multiple language
extensions can be used jointly. In addition to describing terminology, we also
introduce an algebraic notation for language composition. We will later use this
notation to explain how different forms of language composition integrate. We
denote the result of composing a base language B with a language extension E
as B C E. The asymmetry of the language-composition operator C reflects the
dependency of the extension on the base language.

3

Language restriction. Especially in education, it sometimes makes sense
to restrict an existing programming language. For example, to teach students
functional programming in Haskell, monads and type classes are rather hindering.
It might be more instructive to rigorously forbid the use these constructs. We
call this language restriction as opposed to language extension.

Interestingly, language restriction does not require special support by language-
development systems. Instead, a language restriction can be implemented as an
extension of the validation phase of the base language: The extension rejects
any program that uses restricted language constructs. The same idea is used
in pluggable type systems [2]. Since language extension subsumes language
restriction, we do not treat language restriction specifically in the remainder of
this paper.

2.2 Language unification (])

Language extension and language restriction assume the existence of one domi-
nant (typically general-purpose) language that can serve as the base of other
languages. However, sometimes it is more natural to compose languages on
equal terms. For example, consider the composition of HTML and JavaScript.
Both languages serve a purpose and can be used independently: HTML for
describing web pages and JavaScript as a prototype-based programming language.
If anything, it would make sense to use the general-purpose language JavaScript
as a base language for HTML. However, in the domain of dynamic web pages,
the HTML-based view is the central program artifact.

Accordingly, we want to compose languages in an unbiased manner. Fur-
thermore, the language composition should be deep and bidirectional, that is,
program fragments from either language should be able to interact with program
fragments from the other language. For example, in the composition of HTML
and JavaScript as defined by the W3C [35], JavaScript programs can manipulate
and generate HTML documents using the DOM tree or document.write(), and
dynamic JavaScript-based behavior can be attached to HTML elements using
attributes like onMouseOver="showPopup()". In summary, to compose HTML
and JavaScript, we need to add primitive support to JavaScript for generating
HTML document trees and to supplement the definition of HTML elements to
allow event attributes.

This illustrates the next form of language composition: language unification.
A language designer composes two independent languages by unification. Like
in mathematical unification, language unification requires that parts of the
languages are equalized. For example, deep integration often requires sharing
of primitive data types such as numbers or strings. Also, like in mathematical
unification, the unified language subsumes its two constituents.

Language unification is very difficult to achieve in practice and rarely sup-
ported by language development systems. Often language unification requires
the composition of language implementations by hand. The reason for this
seemingly incompatibility of languages is the lack of a common back-end (for
example, compiled for different VMs or separate interpreter engines). Unification

4

is simpler if the same language-development system implements both languages.
In particular, sometimes support for language extension suffices to unify two
languages, for example, regular expressions and Java. More generally, though,
we apply the following definition.

Definition 2 A language-development system supports language unification of
two languages if the implementation of both languages can be reused unchanged
by adding glue code only.

Notably, this definition permits the adaption of the unified languages as long
as their implementations remain unchanged. Generally, we can assume that
some program weaves the two language implementations together. As usual in
component engineering and modularity discussions, we refer to the program that
weaves two languages as glue code.

We write L1]g L2 to denote the language that unifies L1 and L2 with
glue code g. The symmetry of the language operator] reflects that unification
composes languages on equal terms. Due to glue code, though,] is not necessarily
a symmetric relation, that is, L1]g L2 only equals L2]g L1 for different glue
code g. Moreover, the unification of two languages is typically not unique. For
example, in HTML]g JavaScript, the glue code g determines the attribute
name onMouseOver, which might as well be called onPointerOver.

2.3 Self-extension (← [)
For many subdomains of a software project exist special-purpose languages that
provide functionality specific to the domain. Examples of such DSLs include
SQL for data querying, XML for data serialization and regular expressions for
string analysis. Since these languages each only tackle a small part of a software
system, it makes sense to make their functionality available in a general-purpose
language that can serve as a bridge between these DSLs.

Traditionally, this form of language composition is called language embedding:
A domain-specific language is embedded into a host language by providing a
host-language program that encapsulates the domain-specific concepts and func-
tionality [16]. However, the term “language embedding” is ambiguous because
it only describes the result of integrating one language into another language.
However, such integration can not only be achieved with pure-embedding-like
techniques but also using language extension in an extensible compiler, for exam-
ple, where the embedding is described as a compiler plugin. Since the decisive
difference to other forms of language composition is how we integrate languages,
our terminology should reflect that. In particular, we aim to exclude systems
where the extensibility is external to the host language.

We call this form of language composition self-extension. To compose a host
language with an embedded language, a language implementor develops, in the
host language itself, a program which defines the embedded language. Often the
definition of the embedded language simply consists of a host-language API for
accessing domain-specific concepts and functionality. More advanced languages

5

also enable the self-extension of the host language’s syntax, static analyses, and
IDE support. Because the implementation of an embedded language is itself a
regular program of the host language, the host language extends itself.

There are various ways of self-extending a language, but two extension styles
are most popular: string embedding and pure embedding. In string embedding, a
program of the embedded language is represented as a string of the host language
and the embedded language provides an API for evaluating embedded programs.
A good example of string embedding is the integration of regular expressions
into Java (similar for many other host languages). A programmer writes a
regular expression "a[b-z]*" as a string and passes it to the library function
Pattern.match as in Pattern.match("a[b-z]*","atext"). Pattern.match

parses and compiles the regular expression at runtime and matches it against
the given input text "aText". Another example for string embedding is the
integration of SQL into Java, where SQL queries are represented as Java strings
(see package java.sql). Generally, string-embedded programs do not compose
well with each other because string embedding reifies a lexical macro system [11].
In particular, string embeddings are vulnerable to injection attacks [3].

Alternatively, programs of the embedded language can also be expressed
as a sequence of API calls in the host language. Paul Hudak coined the term
pure embedding for this kind of self-extension [16]. As an example, consider
the embedding of XML into Java using JDOM. A program of the embedded
language XML is simply a Java program that utilizes the JDOM API:

Element book = new Element("book");

book.setAttribute("title", "Sweetness and Power");

Element author = new Element("author");

author.setAttribute("name", "Sidney W. Mintz");

book.addContent(author);

A purely embedded language does not provide its own syntax but instead reuses
the syntax of the host language. Therefore, programs of a purely embedded
language can be readily mixed with code from the host language, for example,
to retrieve the author name from a database.

Clearly, the term self-extension can only apply to languages and not to
language-development systems in general. Accordingly, we define:

Definition 3 A language supports self-extension if the language can be extended
by programs of the language itself while reusing the language’s implementation
unchanged.

Self-extension has two essential advantages over regular language extension.
First, to run or compile a program of a self-extended host language, the standard
interpreter or compiler of the host language is reused. In contrast, systems
that support regular language extensions often require compiler configurations
that reflect the activated extensions, which may differ for different source files.
Second, since self-extensions are implemented in the self-extensible language
itself, extensions can be used when writing further self-extensions. In particular,

6

this enables the integration of meta-DSLs, that is, DSLs for implementing further
DSLs [12].

We write H ←[E to denote the self-extension of a host language H with
the embedded language E. As defined above, the implementation of E has to
be an instance of H. The asymmetry of the language operator ← [reflects this
dependency of the embedded language on the host language.

2.4 Extension composition

So far, we have identified three language-composition scenarios a language-
development system may support: language extension, language unification,
and self-extension. However, these properties only describe to which extent a
system supports base-language composition with a single extension or language.
Our terminology so far does not describe to which extent a system supports
the composition of extensions, that is, whether different extensions can work
together.

Let us first note that systems which support language unification also support
unification of extensions: L]g (E1]h E2). On the other hand, for systems that
only support language extension, we need to distinguish three cases: no support
for extension composition, support for incremental extension, and support for
extension unification. In a system that does not support any form of extension
composition, two extensions B C E1 and B C E2 cannot be used in combination
at all. In contrast, in a system that supports incremental extension, an extended
language B C E1 can in turn be extended to (B C E1) C E2. Here, extension E2

may be specifically built to work on top of E1. Incremental extension supports
Steele’s idea of growing a language [26]. Finally, in a system that supports
extension unification, two independent extensions can be composed and used
together B C (E1]g E2) by using some glue code g. Extension unification
supports growing a language modularly.

Self-extension adheres to the same case distinction for extension composability
(no extension composability, incremental extension or extension unification). In
addition, though, self-extensible languages support another interesting form
of extension composition, namely self-application. Since implementations of
extensions are programs of the host language itself, a host-language extension
E1 can be used in the implementation of another extension E2, that is, H ← [E2

where E2 ∈ (H ← [E1).
This discussion shows that language composition is not only important for

the base language but also for extensions. Therefore, precise terminology is
crucial to enable clear statements about the language-composition support of
a system and to prevent confusion about whether a statement addresses base-
language composability or extension composability. Furthermore, this discussion
illustrates the utility of an algebraic notation for describing and reasoning about
language composition.

7

Code
editor

IDE Source Parser AST Validation
Valid
AST

Semantics

Syntax Static semantics Dynamic semanticsEditor services

Figure 1: A typical language processing pipeline.

3 Language components

Support for language composition is often not uniform for all components
of a language definition because different low-level techniques and high-level
considerations apply to different aspects of a language. Generally, a language
consists of syntax and semantics. Accordingly, most language definitions stipulate
the syntax and semantics of a language separately. However, for machine-
processed languages and programming languages in particular, this picture is
not entirely correct. In fact, the definition of many machine-processed languages
consists of three artifacts: a context-free syntax, a collection of non-context-free
validation procedures (the static semantics), and a definition of the language’s
behavior (the dynamic semantics). While the reason for separating context-
free syntax and validation is a technical one—generic context-sensitive parser
frameworks are inefficient—we cannot ignore the implications on language design
and language composition.

The relation between language-definition artifacts is depicted in Figure 1.
First, a parser checks whether the input source code adheres to the given
context-free grammar and either rejects the program with an error message
or produces an abstract syntax tree. Subsequently, the language validation
procedure processes the resulting syntax tree and either accepts or rejects it,
together with the original source artifact. If the code is not valid, validation
generates an error report. If the program is instead valid, validation may add
information to the AST (for instance, overload resolution in Java). Next, the
language’s (dynamic) semantics takes a syntax tree as input and produces the
meaning of the corresponding program. The behavior of the dynamic semantics
may be unspecified for programs which are rejected during parsing or validation.

In addition to these classical components of a language processing pipeline, we
include integrated development environments (IDEs) as a fourth component into
Figure 1 and the discussion in the present paper. IDEs provide an editor with
various editor services to the programmer. Editor services may include syntax
coloring, code outline, code folding, code completion, reference resolving to jump
to the definition of an identifier, or refactorings. More generally, this component
includes all programming tools that a developer can use to write, navigate
or maintain programs. While IDE support is not directly part of a language
definition, it is essential for the productivity of programmers. Furthermore, only
few systems exist that support the composition of IDE support for different

8

languages.
Our separation of languages into four components is general and covers

any programming language. For instance, the Java programming language [13]
declares a context-free syntax, a type checker, and a compiler that produces byte
code. Instead of using a general context-sensitive parser to parse Java’s context-
sensitive syntax directly, compilers parse the context-free syntax first before
applying special-purpose validations such as type checking and the remainder of
compilation. In addition, various IDEs for Java exist, for example, Eclipse or
IntelliJ IDEA. Another example language is XML: XML’s context-free syntax
and XML validity can both be checked efficiently, whereas the application of
a general-purpose context-sensitive parser will likely lead to inefficient XML
processing. Finally, note that language components similarly exist for DSLs such
as SQL, VHDL, or DOT.

However, some languages combine two or more of the language components
we identified. Prominently, dynamically typed languages such as Ruby or
Smalltalk perform well-typedness validation as part of their dynamic semantics.
Alternatively, type checking and parsing can be combined to resolve syntactic
ambiguities by typing information [4]. LaTeX even applies parsing and validation
as part of its dynamic semantics: it repeatedly parses, validates and executes the
next command or macro until the complete source file is processed [11]. Finally,
in Smalltalk, even the IDE is interpreted by the language’s dynamic semantics
and can be modified at runtime.

4 Existing technologies

We introduced new terminology for language composition in order to enable
more precise descriptions of existing and future technologies. In this section, we
exemplify the use of our terminology to classify existing language-development
systems with respect to their language-composition support.

We reviewed existing language-development systems as described in the
literature in light of our classification. Table 1 summarizes our findings. Each cell
in the table shows how a system supports composition with respect to a specific
language component, both regarding language extension or unification (first
symbol) and regarding incremental extension or extension unification (second
symbol, in parentheses). The last column applies to all language components
and records whether a system supports self-extension. We have been somewhat
liberal in our judgment for extension unification and also acknowledged support
to systems that only support unification for non-interacting language extensions.

Different technologies follow very different approaches to achieve language
composability. One of the simplest and also most popular mechanisms is hand-
written preprocessors [25]. To extend a language, a programmer writes a prepro-
cessor that translates the extended language into the base language. However,
each extension requires its own preprocessor and preprocessors can only be com-
posed sequentially, that is, run one after another. Consequently, preprocessors
only support incremental extension but not extension unification.

9

Syntax Validation Semantics IDE Self-ext.

OpenJava [27] C(]) yes
pure embedding [16] C(]) C(]) yes
MPS [34] C(]) C(]) C(]) yes
string embedding C() C() yes
AspectLisa [22] C() C(]) no
Converge [29] C() C() C() yes
preprocessors [25] C(C) C(C) C(C) no
Racket [28] C(C) C(]) C(]) yes
JSE [1] C(]) C(]) yes
Helvetia [23] C(]) C(]) C(]) yes
ableJ [31] C(]) C(]) C(]) no
Polyglot [20] C(]) C(]) C(]) no
JastAddJ [9] C(])](])](])](]) no
Spoofax [18]](]) C(]) C(]) C(]) no
SugarJ [12]](]) C(]) C(]) C(]) yes

Table 1: Support for language composition in existing language-development
systems: No composition (empty), extension but no extension composition C(),
incremental extension C(C), extension unification C(]), language unification
](]).

AspectLisa [22], ableJ [31] and JastAddJ[9] follow more sophisticated ap-
proaches and build on attribute grammars. Attribute grammars [8, 30] enable
the definition of new productions to extend the base syntax and new attributes
to extend the base language validation and semantics. Since AspectLisa and
ableJ allow language extensions to reuse and extend base-language attributes,
they support language extension, where the base language does not have to
be changed. In addition, AspectLisa applies aspect-oriented programming to
add new attributes to productions of the base language. On the other hand,
JastAddJ applies aspect-oriented programming and rejects information hiding to
support overwriting attributes. Accordingly, JastAddJ supports the composition
of languages by unifying their respective implementations, that is, by only adding
glue code and not changing previous implementations. The same also applies to
IDE support [24].

Spoofax [18] follows an alternative approach to language composition based
on SDF for syntax composition and Stratego for semantic composition. SDF [14]
applies scannerless generalized LR parsing, which enables the unification of arbi-
trary context-free grammars. However, generalized parsing may result in a syntax
tree that contains ambiguities. SDF supports the elimination of ambiguities on
the basis of glue code, that is, without changing the original grammars. For
semantic composition, Spoofax applies the Stratego term rewriting language [32],
which supports adding rules to handle an extended base language. Stratego does

10

not support the adaption of an existing rule base, though, which is necessary to
unify languages.

Polyglot [20] is an extensible compiler that allows language extensions to
integrate into various compiler phases. For example, a language extension can
extend the parsing, type checking, and code generation phase of the compiler to
support additional language constructs. Polyglot achieves language extensibility
with method delegation, where compiler actions are delegated to extensions,
which further delegate to yet other extensions. Polyglot does not support
language unification since adapting the behavior of extensions is not supported.

Self-extensible languages. The following language-development systems are
self-extensible languages, that is, the base language itself is used to implement
language extensions or glue code. The extended base language can then be used
in the implementation of further self-extensions. Notwithstanding this similarity,
self-extensible languages come in various flavors.

String embedding and pure embedding are approaches that apply to any
base language that supports strings and code reuse. In string embedding,
programmers use language extensions by writing specially-formatted strings of
the base language, which the extension parses and evaluates at runtime of the
program. A typical example of a string-embedded language is the language
of regular expressions. The main problem of string embedding is the lack
of proper structural abstraction. Therefore, string embeddings fall back to
lexical abstraction and composition of program snippets, which is error-prone
and forestalls static syntax analyses [11]. Furthermore, since IDEs require a
structural representation of programs, string embedding comes without IDE
support. Nevertheless, string embedding is widely applied in practice, for
example, to issue SQL queries or generate XML documents.

Pure embedding takes a more structural approach than string embedding
and represents programs as API calls [16]. In particular, a programmer can
nest or sequentialize calls to such a special-purpose API. Moreover, API calls
can readily be mixed with regular base language code as well as with calls
to other special-purpose APIs. There is, however, one constraint that is often
overlooked: Pure embeddings must share their data representations. For example,
suppose an extension provides its own collection data type. This prevents reuse
of functionality from the base language such as mapping or sorting as well as
integration with other extensions that can only process standard collections. As
pointed out by Mernik et al. [19], pure embedding enables the reuse of IDE
support of the base languages such as code completion for a special-purpose API.
However, true domain-specific editor services such as SQL-specific code coloring
is not in the focus of pure embedding.

Converge [29], JSE [1], OpenJava [27], and Racket [28] enable language
extensions with macros and macro-like facilities. A macro is much like a normal
function except it is run at compile-time. Consequently, a macro does not take
or produce normal runtime data, but instead takes and produces compile-time
data, that is, representations of programs. Converge, JSE, and Racket represent

11

programs as syntax trees, whereas OpenJava represents programs as metaobjects.
None of these systems support language unification since the meaning of a
previously defined macro cannot be changed. However, some macro systems
come with more advanced support for unifying independent language extensions.
For example, Racket supports extension unification through local and partial
macro expansion, which enables the collaboration of independent macros [28].

SugarJ [12] is similar to macro systems but supports more flexible syntax
composition. Like Spoofax, SugarJ employs SDF [14] to support the unification
of arbitrary context-free grammars, where additional glue code can coordinate
between grammars to eliminate ambiguities. To specify the validation and
semantics of extensions, SugarJ uses Stratego’s support for composing partial
pattern matches through equally-named rules. Since pattern matches can only
be added, SugarJ does not support the unification of an extension’s validation
or semantics. Moreover, SugarJ provides IDE support for the base language
and extensions [10]. IDE support is extensible because it aggregates information
from all extensions (e.g., for code completion) or chooses the most specific editor
service available (e.g., for syntax coloring).

Helvetia [23] leverages Smalltalk’s dynamic nature to enable extensibility of
parsing, compilation, and IDE support. Helvetia extensions are implemented
through annotated methods, which Helvetia organizes in a global rule set. When-
ever two or more rules are active in the parser, compiler, or IDE, Helvetia throws
an error. It is not possible to adapt existing extensions non-invasively.

The projectional language workbench MPS [34] rejects parsing and applies
intentional programming instead. Essentially, MPS maintains a central program
representation, which can be thought of as an AST, and displays projections of the
AST to the programmer. To edit a program, a programmer sends edit directives
to MPS, which applies the edits to the central AST and updates the projection.
This way MPS provides IDE support and creates a user experience close to
usual programming environments. Furthermore, MPS supports extensibility:
The central program representation can be extended by new concepts, which
can integrate into existing projections, validations, and code generation. As in
the other systems, once defined, the behavior of an extension is fixed [33].

Summary. We have shown how our terminology for language composition is
useful to explain existing systems and distinguish between them meaningfully.
In particular, our terminology enables the precise description of composition
support with the base language in contrast to composition support for language
extensions.

We are aware that our discussion of existing technologies is incomplete and
many more systems deserve attention. In particular, we excluded any tools
from this discussion that do not support semantic extensibility, because without
semantics programs of an extended language cannot be run. However, since
the goal of this work is the clarification of language composition in general,
we believe the omission of any particular system is negligible. Furthermore,
we excluded semantic IDE services like debugging or testing from the present

12

discussion. An investigation of the composability of such services remains future
work.

One important conclusion of our study is the lack of wide-spread support for
language unification in existing systems. In our study, JastAddJ is the only tool
that supports language unification for semantics. Language unification requires
that a system supports the adaption of independently implemented languages,
for example, by glue code. In JastAddJ, the flexible adaption by glue code is
based on aspect-oriented programming. This suggests that technologies that
favor flexibility over modularity in the sense of information hiding [21] should be
more thoroughly investigated as a foundation for language-development systems.

5 Related work

Other authors have described DSL-related patterns but with less focus on
reusability of language implementations. Spinellis [25] describes and classifies
patterns for DSL design and implementation. Mernik et al. extend Spinellis’
work and present an extensive survey [19] that covers various aspects of DSL
development methodologies: They identify different DSL development phases,
discuss when DSL development is appropriate, and compare different implemen-
tation techniques for DSLs. Mernik et al. also survey language-development
systems and mention the use of DSLs as metalanguages within such systems.
Spinellis and Mernik et al. distinguish whether an existing language is restricted
or extended with new elements. As explained in Section 2.1, we instead identify
these scenarios and consider language restriction as an extension to the validation
system. In addition, we distinguish language unification, self-extension, and
extension composability.

Hofer et al. [15] distinguish hierarchical and peer language composition in the
context of embedded DSLs. We can describe hierarchical language composition
through (H C L1) C L2 and peer language composition through H C (L1]g L2).
Our notation thus covers these scenarios while supporting the description of
language-composition scenarios in a uniform way.

6 Conclusions

The goal of this paper is two-fold. First, we want to raise awareness on the
many meanings of language composition and on the consequent ambiguity in
discussions on language composition. For this ambiguity, we believe the lack
of precise terminology deserves major blame. Therefore, our second goal is the
classification of language composition and the introduction of precise terminology
to describe language composition. We hope that the terminology introduced
in this paper can clarify future discussions and communication on language
composition.

13

Acknowledgements. We thank Christian Kästner and Klaus Ostermann for
fruitful discussions and the reviewers for helpful comments on this paper. This
work is supported in part by the European Research Council, grant No. 203099.

References

[1] J. Bachrach and K. Playford. The Java syntactic extender (JSE). In Proceed-
ings of Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 31–42. ACM, 2001.

[2] G. Bracha. Pluggable type systems. In OOPSLA Workshop on Revival of Dynamic
Languages, 2004. Available at http://bracha.org/pluggableTypesPosition.

pdf.

[3] M. Bravenboer, E. Dolstra, and E. Visser. Preventing injection attacks with syntax
embeddings. Science of Computer Programming, 75(7):473–495, 2010.

[4] M. Bravenboer, R. Vermaas, J. J. Vinju, and E. Visser. Generalized type-based
disambiguation of meta programs with concrete object syntax. In Proceedings of
Conference on Generative Programming and Component Engineering (GPCE),
volume 3676 of LNCS, pages 157–172. Springer, 2005.

[5] M. Bravenboer and E. Visser. Concrete syntax for objects: Domain-specific
language embedding and assimilation without restrictions. In Proceedings of Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 365–383. ACM, 2004.

[6] S. Dmitriev. Language oriented programming: The next programming
paradigm. Available at http://www.jetbrains.com/mps/docs/Language_

Oriented_Programming.pdf, 2004.

[7] S. Efftinge and M. Voelter. oAW xText: A framework for textual DSLs. In
Workshop on Modeling Symposium at Eclipse Summit, 2006.

[8] T. Ekman and G. Hedin. Rewritable reference attributed grammars. In Proceedings
of European Conference on Object-Oriented Programming (ECOOP), volume 3086
of LNCS, pages 144–169. Springer, 2004.

[9] T. Ekman and G. Hedin. The JastAdd extensible Java compiler. In Proceed-
ings of Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 1–18. ACM, 2007.

[10] S. Erdweg, L. C. L. Kats, T. Rendel, C. Kästner, K. Ostermann, and E. Visser.
Growing a language environment with editor libraries. In Proceedings of Conference
on Generative Programming and Component Engineering (GPCE), pages 167–176.
ACM, 2011.

[11] S. Erdweg and K. Ostermann. Featherweight TeX and parser correctness. In
Proceedings of Conference on Software Language Engineering (SLE), volume 6563
of LNCS, pages 397–416. Springer, 2010.

[12] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-based
syntactic language extensibility. In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 391–406.
ACM, 2011.

14

http://bracha.org/pluggableTypesPosition.pdf
http://bracha.org/pluggableTypesPosition.pdf
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf

[13] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification,
(3rd Edition). Addison-Wesley, 2005.

[14] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF – reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

[15] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic embedding of
DSLs. In Proceedings of Conference on Generative Programming and Component
Engineering (GPCE), pages 137–148. ACM, 2008.

[16] P. Hudak. Modular domain specific languages and tools. In Proceedings of
International Conference on Software Reuse (ICSR), pages 134–142. IEEE, 1998.

[17] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history of Haskell: Being lazy
with class. In Proceedings of Conference on History of Programming Languages
(HOPL), pages 1–55. ACM, 2007.

[18] L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules for
declarative specification of languages and IDEs. In Proceedings of Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 444–463. ACM, 2010.

[19] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-
specific languages. ACM Computing Surveys, 37:316–344, 2005.

[20] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler
framework for Java. In Proceedings of Conference on Compiler Construction (CC),
volume 2622 of LNCS, pages 138–152. Springer, 2003.

[21] K. Ostermann, P. G. Giarrusso, C. Kästner, and T. Rendel. Revisiting information
hiding: Reflections on classical and nonclassical modularity. In Proceedings of
European Conference on Object-Oriented Programming (ECOOP), volume 6813 of
LNCS, pages 155–178. Springer, 2011.

[22] D. Rebernak, M. Mernik, P. R. Henriques, and M. J. V. Pereira. AspectLISA:
An aspect-oriented compiler construction system based on attribute grammars.
Electronic Notes in Theoretical Computer Science, 164(2):37–53, 2006.

[23] L. Renggli, T. Gı̂rba, and O. Nierstrasz. Embedding languages without breaking
tools. In Proceedings of European Conference on Object-Oriented Programming
(ECOOP), volume 6183 of LNCS, pages 380–404. Springer, 2010.

[24] E. Söderberg and G. Hedin. Building semantic editors using JastAdd: Tool
demonstration. In Proceedings of Workshop on Language Descriptions, Tools and
Applications (LDTA), pages 1–6. ACM, 2011.

[25] D. Spinellis. Notable design patterns for domain-specific languages. Journal of
Systems and Software, 56(1):91–99, 2001.

[26] G. L. Steele, Jr. Growing a language. Higher-Order and Symbolic Computation,
12(3):221–236, 1999.

[27] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. OpenJava: A class-based
macro system for Java. In Proceedings of Workshop on Reflection and Software
Engineering, volume 1826 of LNCS, pages 117–133. Springer, 2000.

[28] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen.
Languages as libraries. In Proceedings of Conference on Programming Language
Design and Implementation (PLDI). ACM, 2011.

15

[29] L. Tratt. Domain specific language implementation via compile-time meta-
programming. Transactions on Programming Languages and Systems (TOPLAS),
30(6):1–40, 2008.

[30] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: An extensible attribute
grammar system. Science of Computer Programming, 75(1-2):39–54, 2010.

[31] E. Van Wyk, L. Krishnan, D. Bodin, and A. Schwerdfeger. Attribute grammar-
based language extensions for Java. In Proceedings of European Conference on
Object-Oriented Programming (ECOOP), volume 4609 of LNCS, pages 575–599.
Springer, 2007.

[32] E. Visser. Stratego: A language for program transformation based on rewriting
strategies. In Proceedings of Conference on Rewriting Techniques and Applications
(RTA), volume 2051 of LNCS, pages 357–362. Springer, 2001.

[33] M. Voelter. Language and IDE modularization, extension and composition with
MPS. In Pre-proceedings of Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE), pages 395–431, 2011.

[34] M. Voelter and K. Solomatov. Language modularization and com-
position with projectional language workbenches illustrated with
MPS. http://voelter.de/data/pub/VoelterSolomatov_SLE2010_

LanguageModularizationAndCompositionLWBs.pdf, 2010.

[35] W3C HTML Working Group. HTML 4.01 specification. Available at http:

//www.w3.org/TR/html4/, 1999.

[36] M. P. Ward. Language-oriented programming. Software – Concepts and Tools,
15:147–161, 1995.

16

http://voelter.de/data/pub/VoelterSolomatov_SLE2010_LanguageModularizationAndCompositionLWBs.pdf
http://voelter.de/data/pub/VoelterSolomatov_SLE2010_LanguageModularizationAndCompositionLWBs.pdf
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/

	Introduction
	Language composition
	Language extension ()
	Language unification ()
	Self-extension ()
	Extension composition

	Language components
	Existing technologies
	Related work
	Conclusions

