Fachbereich Mathematik und Informatik

Prof. Dr. B. Schmitt, D. Lellek

1. Aufgabenblatt zur Mathematik II

Aufgabe 1 (Mengen und Abbildungen)

(4)

Sei $f: M \to N$ eine Abbildung und $B \subset N$. Zeige, dass

$$f(f^{-1}(B)) \subset B$$
.

Beweise, dass sogar Gleichheit $f(f^{-1}(B)) = B$ gilt, wenn f surjektiv ist. Stimmt diese Aussage auch noch, wenn f nicht surjektiv ist?

Aufgabe 2 (Injektiv, surjektiv, bijektiv)

(4)

Untersuche, ob die folgenden Abbildungen injektiv, surjektiv, bijektiv sind. Gib im Falle einer bijektiven Abbildung die Umkehrabbildung an.

- (i) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x^2 + y^2, y)$,
- (ii) $f: \mathbb{Z} \to \mathbb{Z}, x \mapsto 2x 1$,
- (iii) $f: \mathbb{R} \to \mathbb{R}, x \mapsto 2x 1$.

${\bf Aufgabe~3} \quad (\ddot{A} \textit{quivalenz relation} en \textit{ und -klassen})$

(6)

- (i) Es sei \sim eine Äquivalenzrelation auf einer Menge $M \neq \emptyset$ und $[\cdot]$ die zugehörigen Äquivalenzklassen. Zeige, dass für $a,b \in M$ gilt: Entweder ist [a] = [b] oder $[a] \cap [b] = \emptyset$.
- (ii) Ist durch

$$a \sim b :\Leftrightarrow a - b$$
 gerade

eine Äquivalenzrelation auf der Menge Z der ganzen Zahlen gegeben?

Aufgabe 4 (Rechenregeln in Körpern)

(3)

Es sei K ein Körper, $a, b \in K$ und $k \in \mathbb{Z}$. Zeige, dass $a^k b^k = (ab)^k$ gilt.

Hinweise:

- Zettelabgabe stets freitags vor der Vorlesung.
- Abgabe in festen Zweiergruppen ist erlaubt.
- Zulassungsvoraussetzungen zur Klausur: 50% der Übungspunkte, Mitarbeit im Tutorium (Mindestens einmal vorrechnen).

Abgabe: Freitag, 24.04.15, vor der Vorlesung.