PHILIPPS-UNIVERSITÄT MARBURG Fachbereich Mathematik und Informatik Prof. Dr. Th. Bauer D. Schmitz

Sommersemester 2012

Aufgaben zur Algebraischen Geometrie

Blatt 1

Abgabe am Donnerstag, 19.04.2012 vor der Vorlesung

Aufgabe 1: Ideale von Punkten

(2 Punkte)

Zeigen Sie: Für einen Punkt $a = (a_1, \ldots, a_n) \in \mathbb{A}^n$ gilt

$$\{ f \in K[X_1, \dots, X_n] \mid f(a) = 0 \} = (X_1 - a_1, \dots, X_n - a_n).$$

Warum kann man schon auf der linken Seite der Gleichung erkennen, dass es sich bei der Menge um ein Ideal handelt?

Aufgabe 2: Hyperflächen

(4 Punkte)

Es sei f ein nicht-konstantes Polynom aus $K[X_1, \ldots, X_n]$. Wir betrachten die affine Varietät $V(f) \subset \mathbb{A}^n$ (eine *Hyperfläche*). Zeigen Sie: Falls K unendlich ist, enthält das Komplement $\mathbb{A}^n - V(f)$ unendlich viele Elemente.

(Hinweis: Fassen Sie f als Polynom in der Unbestimmten X_n mit Koeffizienten in $K[X_1,\ldots,X_{n-1}]$ auf und führen Sie Induktion nach n.)

Aufgabe 3: Hyperflächen

(3 Punkte)

Es sei f ein nicht-konstantes Polynom aus $K[X_1, \ldots, X_n]$ und X = V(f) die zugehörige Hyperfläche in \mathbb{A}^n . Zeigen Sie: Falls K algebraisch abgeschlossen ist und falls $n \geq 2$ ist, so enthält X unendlich viele Elemente.

(Hinweis: Sie können die gleiche Methode wie in der vorigen Aufgabe anwenden.)

Aufgabe 4: Ideale und Varietäten

(3 Punkte)

Gegeben sei das Ideal $J = (X^2 + Y^2 - 1, Y - 1) \subset K[X, Y].$

- (a) Bestimmen Sie die Varietät V(J) und ihr Ideal $I(V(J)) := \{ f \in K[X,Y] \mid f(x,y) = 0 \ \forall (x,y) \in V(J) \}.$
- (b) Welches der Ideale J und I(V(J)) ist im anderen enthalten. Falls eine echte Inklusion vorliegt, geben Sie ein Polynom an, das in einem der beiden Ideale liegt aber nicht im anderen.