Übungen zur Algebra II, WS 2002/03

Abgabe am Donnerstag, den 09.01.2003 vor der Vorlesung

Aufgabe 28. (Untervarietäten der affinen Gerade)

- a) (i) Es sei $X\subset \mathbb{A}^1$ eine affine Varietät. Zeigen Sie, dass X entweder eine endliche Menge oder gleich \mathbb{A}^1 ist.
 - (Hinweis: Betrachten Sie zuerst Varietäten der Form $X = V(\{f\})$, d.h. Varietäten, die durch ein einziges Polynom definiert werden.)
 - (ii) Geben Sie im Gegensatz zu (i) ein Beispiel einer \mathcal{C}^{∞} -Funktion $f: \mathbb{R} \to \mathbb{R}$ an, so dass die Nullstellenmenge

$$\left\{ x \in \mathbb{A}^1_{\mathbb{R}} \mid f(x) = 0 \right\}$$

unendlich viele Elemente enthält und nicht ganz $\mathbb{A}^1_{\mathbb{R}}$ ist.

b) Geben Sie ein Beispiel dafür an, dass die Vereinigung $\bigcup_{\lambda \in \Lambda} V_{\lambda}$ unendlich vieler affiner Varietäten V_{λ} im allgemeinen keine affine Varietät ist.

Aufgabe 29. (Affine Varietäten)

Welche der folgenden Teilmengen sind affine Varietäten?

- a) $\{t \in \mathbb{C} \mid |t| = 1\} \subset \mathbb{C} = \mathbb{A}^1_{\mathbb{C}}$
- b) $\{n\pi \mid n \in \mathbb{Z}\} \subset \mathbb{R} = \mathbb{A}^1_{\mathbb{R}}$
- c) $\{(\cos t, \sin t) \mid t \in \mathbb{R}\} \subset \mathbb{R}^2 = \mathbb{A}^2_{\mathbb{R}}$
- d) $\{(t, t^2) \mid t \in \mathbb{C}\} \subset \mathbb{C}^2 = \mathbb{A}^2_{\mathbb{C}}$

Finden Sie ggf. eine Darstellung X = V(T) mit einer geeigneten Menge T von Polynomen.

Aufgabe 30. (Schnitt zweier ebener Kurven)

Seien $f, g \in K[x, y]$ teilerfremde Polynome. Zeigen Sie, dass V(f, g) eine endliche Menge ist.

(Hinweis: Betrachten Sie f und g als Elemente in K(x)[y] und überlegen Sie sich, dass es eine Darstellung 1 = pf + qg mit $p, q \in K(x)[y]$ gibt (Warum gibt es diese?).)

Literatur zur Algebraischen Geometrie:

- J. Harris, Algebraic Geometry. A First Course, Springer-Verlag 1992.
 - K. Hulek, Elementare Algebraische Geomertie, Vieweg 2000.
 - M. Reid, Algebraic Geometry, Cambridge Univ. Press 1988.
- I. R. Shafarevich, Basic Algebraic Geometry, Springer-Verlag 1994.

Wir wünschen Ihnen ein frohes Weihnachtsfest und ein erfolgreiches Jahr 2003!